
1070-9932/16©2016IEEE

1070-9932/17©2017IEEE Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.146 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

T
hanks to the efforts of the robotics and autonomous
systems community, the myriad applications and
capacities of robots are ever increasing. There is
increasing demand from end users for
autonomous service robots that can

operate in real environments for extended periods.
In the Spatiotemporal Representations and
Activities for Cognitive Control in Long-Term
Scenarios (STRANDS) project (http://strands-
project.eu), we are tackling this demand
head-on by integrating state-of-the-art
artificial intelligence and robotics research
into mobile service robots and deploying
these systems for long-term installations in
security and care environments. Our robots
have been operational for a combined
duration of 104 days over four deployments,
autonomously performing end-user-defined
tasks and traversing 116 km in the process. In
this article, we describe the approach we used
to enable long-term autonomous operation in
everyday environments and how our robots are
able to use their long run times to improve their
own performance.

Long-Term Autonomy in STRANDS
Autonomous robots come in myriad forms and can be used
in a range of applications. With these differences, long-term
autonomy (LTA) has a variety of meanings. For example, NASA’s
Opportunity rover has been autonomous for more than ten years on the surface of Mars; wave gliders
can automatically monitor stretches of ocean for months at a time; and autonomous cars have completed
journeys of thousands of kilometers. In this article, we restrict our contributions to mobile robots operat-
ing in everyday, indoor environments, such as offices and hospitals, and capable of performing a variety of

The STRANDS Project

By Nick Hawes, Chris Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lacerda, Lenka Mudrová,
Jay Young, Jeremy Wyatt, Denise Hebesberger, Tobias Körtner, Rares Ambrus, Nils Bore, John Folkesson,

Patric Jensfelt, Lucas Beyer, Alexander Hermans, Bastian Leibe, Aitor Aldoma, Thomas Fäulhammer,
Michael Zillich, Markus Vincze, Eris Chinellato, Muhannad Al-Omari, Paul Duckworth, Yiannis Gatsoulis,

David C. Hogg, Anthony G. Cohn, Christian Dondrup, Jaime Pulido Fentanes, Tomáš Krajník,
João M. Santos, Tom Duckett, and Marc Hanheide

Long-Term Autonomy in Everyday Environments

Digital Object Identifier 10.1109/MRA.2016.2636359
Date of publication: 8 June 2017

147september 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 147

service tasks. Across the various robots described previously,
there are commonalities in low-level, short-term control algo-
rithms (e.g., closed-loop motor control). Beyond this, the
algorithms used to provide long-term, task-specific autono-
mous capabilities—and the hardware these algorithms
control—vary greatly, according to application and environ-
mental requirements. The challenges that distinguish indoor
service robots from other LTA robots relate to both their envi-
ronment and their task capabilities. Indoor task environments
are less physically risky than outdoor environments, but they
have a comparatively higher degree of short- to medium-term
physical variability, e.g., moving objects such as people, doors,
and furniture. You might argue that traffic is highly variable,
but roads are generally similar to each other and the move-
ment of vehicles is generally more predictable than the move-
ment of people. In terms of application requirements,
multipurpose service robots must be capable of predictable
scheduled behavior while also being retaskable on demand
with high availability and must be able to navigate in rela-
tively confined, dynamic environments. This is in contrast
to the largely restricted-purpose systems mentioned previ-
ously, such as rovers and wave gliders. Taken together, the
set of requirements for indoor service robots presents
unique challenges, and, thus, LTA in this context warrants
dedicated research.

Given the state of the art, we consider long-term for a
mobile service robot to mean at least multiple weeks of
continuous operation. In very general terms, such LTA
operation requires a robot’s hardware and software to be
robust enough to overcome failure to enable such opera-
tion. Such robustness can be provided by both design-time
and run-time approaches. It is essential that LTA systems
actively manage consumable resources (e.g., a battery) and
that any autonomy-supporting capabilities (e.g., localiza-
tion) are not adversely affected by long run times. While
this latter point is common sense and may be common
practice in many other technologies (from operating sys-
tems to cars), it has only recently been considered in auton-
omous robotics.

One reason it is challenging to design a service robot to
meet the requirements of LTA is the impossibility of antici-
pating all situations in which it may find itself. If we can
enable robots to run for long periods of time, however, then
they will have opportunities to learn about the structure and
dynamics of such situations. By exploiting the results of such
learning, the robots should be able to increase their robust-
ness further, leading to a virtuous cycle of improved perfor-
mance and greater autonomy. It is this latter point that
motivates STRANDS: To go beyond robots that simply sur-
vive to those that can improve their performance in the long
term. It is within this context that this article makes its main
contribution: the STRANDS Core System, a robotic software
architecture that was designed for LTA service robot applica-
tions and has been evaluated across four end-user deploy-
ments. The STRANDS Core System contains a mix of
common sense and novel elements that have enabled it to

support more than 100 days of autonomous operation. This
is the first time all of these elements have been presented
together, and this is the first presentation of metrics describ-
ing performance across deployments. Our approach is
inspired by the work of Willow Garage [1] and the CoBot
project [2], plus the pioneering work on the Rhino and
Minerva systems (e.g., [3]). Our work is distinguished from
previous work by the combination of multiple service capa-
bilities in a single system capable of weeks-long continuous
autonomous operation in dynamic indoor environments
while using various forms of learning to improve system per-
formance. Many other projects address one or two of these
elements but not all four simultaneously.

Application Scenarios
To ensure our research meets the demands of end users, our
work is evaluated in two application scenarios—security and
care. Space does not permit a detailed explanation of the
tasks in each scenario; instead, we cite other works that
include further information on the tasks and technology
from each scenario.

Our security plan was developed with G4S Technology. The
aim of this system was to have a robot monitor an indoor office
environment and generate
alerts when it observed
prohibited or unusual
events. We completed two
security deployments in
which a mobile robot rou-
tinely created models of
the environment’s three-
dimensional (3-D) struc-
ture [4], objects [5], and
people [6]; modeled their
changes over time; and
used these models to detect
anomalous situations and
patterns. For example, we
developed robot behaviors
to detect when a human
moves through the envi-
ronment in an unusual
manner [6], to build models of the arrangement of objects on
desks [7], and to check whether fire exits have been left open.
Long-term deployments are essential for these services to
gather sufficient data to build appropriate models.

Our care scenario was developed with the Akademie für
Alterforschung at the Haus der Barmherzigkeit. In this
arrangement, the robot supported staff and patients in a large
elder-care facility. We completed two care deployments in
which a mobile robot guided visitors, provided information to
residents, and assisted in walking-based therapies. In the care
scenario, the robot serves users more directly, and, therefore,
long-term system robustness is crucial, as is adapting to the
routines of the facility. More information on this plan is
available in [8] and [9].

Our robots have been

operational for a combined

duration of 104 days

over four deployments,

autonomously performing

end-user-defined tasks

and traversing 116 km in

the process.

148 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

Robot Technology
The systems reported in this article are developed in Robot
Operating System (ROS), available under open-source licenses
and binary packaged for Ubuntu (http://strands-project.eu/

software.html) [2]. While
the majority of our work is
platform-neutral, all of
our deployed systems are
based on the MetraLabs
SCITOS A5 robot (Fig-
ure 1). This is an industry-
standard mobile robot
capable of long run times
(12 h on one charge) and
autonomous charging. Our
robots each have SICK
S300 lasers in their bases
(for localization, leg detec-
tion, and so on) and two
Asus Xtion PRO RGB-D
cameras, one at chest height

pointing downward (for obstacle avoidance) and the other on a
pan-tilt unit (PTU) above the robot’s head. The SCITOS has an
embedded computer with an Intel Core i7 processor with 8 GB
of random-access memory (RAM), to which we networked
two additional computers, each with an Intel Core i7 processor
and 16 GB of RAM.

The STRANDS Core System
The STRANDS Core System (Figure 2) is an application-neu-
tral architecture for LTA in mobile robots. It is a combination of
widely used components and components designed specifically
for LTA. As mentioned previously, hardware and software
robustness is essential for LTA. Hardware robustness is beyond
the scope of our research; thus, we assume our software is
running on an appropriate robot and computational platform.
We address software component robustness through a mix of

strategies. During development, we encourage components to
be designed in a way that makes the minimal assumptions
about the existence of other components and services (e.g., by
checking service existence before running). We also pay partic-
ular attention to error handling to ensure component-local
errors and exceptions do not propagate unnecessarily. This
allows components and whole subsystems to be brought up
and down automatically. At run-time, we use built-in ROS
functionality to automatically relaunch crashed components,
and most subsystems run only when required, thus saving the
energy and processing power and reducing opportunities for
errors. We also use run-time topic monitoring to detect prob-
lems (e.g., low publish rates) and trigger component restarts.
Finally, we run a continuous integration server that tests
components and the whole system in isolation, on recorded
data, and in simulation.

The overall performance of a mobile robot is constrained
by its localization and navigation systems, so we use widely
adopted ROS packages to provide state-of-the-art perfor-
mance. At the start of a deployment, we build a fixed map from
laser scans, localize in it with adaptive Monte Carlo localiza-
tion, and navigate using the dynamic window approach
(DWA) over 3-D obstacle information [3]. See http://wiki.ros
.org/navigation for details on these techniques. While our use
of a fixed map appears at odds with LTA in a dynamic environ-
ment, our environments are dominated by static features (e.g.,
walls), which prevent the robot’s localization performance
from degrading. We also take advantage of the robot’s need to
regularly dock with a charging station by resetting the robot’s
position to this known location while it is docked. This limits
localization drift to that which can occur during time away
from the dock.

We manually build a topological map on top of the fixed
continuous map. We place topological nodes at key places in the
environment for navigation (e.g., either side of a door) or for
tasks (e.g., by a desk to observe). The topological map from our
2015 security deployment is shown in Figure 3. Edges in the

Figure 1. Two of the STRANDS MetraLabs SCITOS A5 robots in their application environments. (a) The robot Bob at G4S’s Challenge
House in Tewkesbury, United Kingdom. (b) The robot Henry in the reception area of Haus der Barmherzigkeit, Vienna.

(a) (b)

We also take advantage

of the robot’s need to

regularly dock with

a charging station by

resetting the robot’s

position to this known

location while it is docked.

149september 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

topological map are parametrized by the
action required to move along them. In
addition to DWA navigation, our system
can perform door passing, docking with
a charging station, and adaptive naviga-
tion near humans [10].

In our experience, navigation per-
formance is a major determinant of
the autonomous run time of a mobile
robot. This is because navigation fail-
ures (e.g., getting stuck near obstacles)
can result in the robot being unable to
return to its charging station. The ele-
ments of the STRANDS Core System
support LTA in the following ways: By
constraining the robot’s movements to
the topological map, we are able to
restrict navigation to known good
areas of the environment. We addi-
tionally restrict movement by marking
areas of the static map as “no go”
zones that cannot be planned through.
Despite these restrictions, navigation
failures still occur due to environmental dynamics (e.g., peo-
ple walking in front of the robot). Therefore, edge traversals
in the topological map are executed by a monitored naviga-
tion layer that can perform a range of recovery actions in the

event of failure (see the “Monitored Navigation” section).
Topological route planning and execution is one area where
our core system adapts to long-term experience, as described
in the “Adaptive Topological Navigation” section.

Topological Goals,
Navigation Statistics

Task Executor

Adaptive
Navigation

Task Durations and

Time W
indows

Task Order
and Timings

Navigation

Durations

N
avigation

Execution

Scheduler

Monitored
Navigation

Topological
Navigation

Topological Goals/Position,
Recovery Actions

Continuous
Navigation

2-D Navigation Goals, Position

MongoDB Store

FreMEn

Long-Term Data

Duration/
Success

Predictions

T
ask R

esults

P
redictions

M
ap

/S
ta

te

Pre
di

ct
io

ns

Scenario Routines and Robot
Maintenance Requirements

Components Log Data
to Long-Term Store

Task Definitions

Figure 2. A schematic overview of the STRANDS Core System. 2-D: two-dimensional.

Figure 3. The map of the deployment area in Challenge House in Tewkesbury, United Kingdom,
with the topological map superimposed. Also displayed are the locations where the robot
successfully recovered from a navigation failure. Locations where the bumper was triggered are
red, and green locations indicate nonbumper fails; the robot asked humans for help at these
locations. Places where recoveries were performed by reversing along the previous path are
marked in yellow, and recoveries performed by simply retrying are shown in blue.

150 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

The main unit of behavior in our system is a task. Tasks rep-
resent something the robot can do (e.g., check whether a fire

door is open, deliver infor-
mation via a graphical user
interface), and tasks have
an associated topologi-
cal location, a maximum
duration, and a time win-
dow for execution. Our
executive framework [11]
schedules tasks to be exe-
cuted within their time
windows and manages
task-directed navigation
and execution. To prevent
task failures from inter-
fering with long-term op
erations, our framework
detects task time-outs and

failures, at which point it will stop or restart robot behaviors as
necessary. Maintenance actions such as charging, batch learn-
ing, and database backups are all handled as tasks, allowing the
executive framework to control most of the robot’s behavior.

This is essential for LTA as it enables the system to actively
manage its limited resources. A plot of tasks from the 2015
security deployment can be seen in Figure 4.

Our system relies on separate pipelines for perceiving differ-
ent elements of its environment: real-time multiperson RGB-D
detection and tracking [12], visual object instance and category
modeling and recognition [13], and 3-D spatiotemporal map-
ping [4]. This article does not cover our work on perceptually
challenging tasks. Instead, we refer readers to other sources
where we have exploited these perception pipelines, e.g., [5],
[7], and [10].

The data observed and generated (e.g., as intercomponent
communication) by an LTA system is crucial for both learning
and for monitoring and debugging the system. We therefore use
tools based on MongoDB (http://wiki.ros.org/mongodb_store)
to save ROS messages to a document-oriented database. Data-
base contents (e.g., observations of doors being opened or
closed) can then be interpreted by the Frequency Map
Enhancement (FreMEn) component [14], which integrates
sparse and irregular observations into spatiotemporal models
representing (pseudo) periodic environment variations. These
can be used to predict future environment states (see the “Adap-
tive Topological Navigation” section).

Friday, 08 May 2015
Monday, 11 May 2015
Tuesday, 12 May 2015

Wednesday, 13 May 2015
Thursday, 14 May 2015

Friday, 15 May 2015
Monday, 18 May 2015
Tuesday, 19 May 2015

Wednesday, 20 May 2015
Thursday, 21 May 2015

Friday, 22 May 2015
Tuesday, 26 May 2015

Wednesday, 27 May 2015
Thursday, 28 May 2015

Friday, 29 May 2015
Monday, 01 June 2015
Tuesday, 02 June 2015

Wednesday, 03 June 2015
Thursday, 04 June 2015

Friday, 05 June 2015
Monday, 08 June 2015
Tuesday, 09 June 2015

Wednesday, 10 June 2015

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

ID Check

Wait, Gather Data

Meta-Room Creation

Fire Door Check

Autonomous Object Learn

Visual Object Search

Build Edge Duration Model

Explore Topological Edge

Figure 4. A plot of the tasks performed by the robot during the 2015 security deployment. White space represents times when the
robot was not performing any tasks, which indicates that the robot was charging or a failure had occurred.

The data observed

and generated (e.g.,

as intercomponent

communication) by an LTA

system is crucial for both

learning and for monitoring

and debugging the system.

151september 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Metrics
So far, we have performed two evaluation deployments for
each of the security and care scenarios. For each deployment,
we monitored overall system performance against two metrics:
the total system lifetime (TSL) and the autonomy percentage
(A%). The TSL measures how long the system is available for
autonomous operation and is reset if the system experiences
an unrecoverable failure or needs an unrequested expert inter-
vention (i.e., something that cannot easily be done by an end
user on site). The A% measures how long the system was
actively performing tasks as a proportion of the time it was
allowed to operate autonomously; in our deployments, this is
typically restricted to office hours. The motivation of the A% is
that it is of little value to achieve a long TSL if the system does
nothing. Neither the TSL nor the A% measures the quality of
the services being provided. As this article focuses on LTA, we
restrict our presentation to task-neutral but LTA-specific met-
rics. End-user evaluations of task-specific performance are
ongoing and will be published in the future (see [8] and [9]
for early evaluations from the care scenario).

Table 1 presents our systems’ LTA performance in 2014
and 2015. In 2014, we aimed for 15 days for the TSL; however,
the longest run we achieved was seven days. Most of our sys-
tem failures were caused by the lack of robustness of our ini-
tial software, leading to unrecoverable component behavior
(crashes or deadlock states). This was fixed for our 2015
deployments by following the development approaches out-
lined in “The STRANDS Core System” section. In 2015, we
targeted 30 days for the TSL, coming close with 28 days in the
security deployment. This long run was terminated when the
robot’s motors failed to respond to commands, an issue that
has since been fixed with a firmware update. In the 2015
deployments, most failures were due to computer-related
issues beyond the direct contributions of the project (e.g.,
USB drivers, power cables, network problems, and so on). Of
the seven runs in 2015, one run was ended due to user
intervention (a decorator powered off the robot), two due to
bugs in our software, and the remaining four due to faults in
software or hardware beyond our components.

The variations across deployments in terms of the num-
ber of tasks completed and distance traveled are largely
attributable to the different types of tasks performed by the
robots and the different environments in which they were

deployed. For example, information-serving tasks may take
several minutes with very little travel, but door-checking
tasks will be brief but will require the robot to travel both
before and during the task.

Systems in the literature have delivered more autonomous
time and distance cumulatively (i.e., accumulated across multi-
ple robots and system runs), but we believe the 28-day run is
the longest single continuous autonomous run of an indoor
mobile service robot capable of multiple tasks. The most
relevant comparison we can make is to the CoBots, which
reported a total of 1,279.5 h of autonomy time, traversing
1,006.1 km [2]. This was achieved by four robots in 3,199 sep-
arate continuous autonomous runs over three years, at an aver-
age of 23 min and 0.31 km per run. They did not report the
longest single continuous run (either in time or distance), but
even an extremely long run for a CoBot would only be mea-
sured in hours, not days, because the CoBot does not have
autonomous charging capabilities. In contrast, the STRANDS
systems performed a total of 43 separate continuous runs,
yielding a total of 2,545 h and 116 km over the four deploy-
ments, at an average of 2.7 km and 58 h 12 min per run. The
varied durations of individual runs can be seen in Figure 5.
Note that we use this data to provide a point of comparison.

Table 1. LTA metrics from the first four STRANDS system deployments.

Care 2014 Security 2014 Care 2015 Security 2015 Total

Total Distance Traveled (km) 27.94 20.64 23.41 44.25 116.24

Total Tasks Completed 1,985 963 865 4,631 8,444

Maximum TSL 7 d, 3 h 6 d, 19 h 15 d, 6 h 28 d, 0 h

Cumulative TSL 20 d, 19 h 21 d, 0 h 27 d, 8 h 35 d, 3 h 104 d, 7 h

Individual Continuous Runs 18 18 5 2 43

A% 38.80% 18.27% 53.51% 51.10%

0

2

4

6

8

10

12

14

Length of Continuous Run

12
 h

24
 h

48
 h

72
 h

96
 h

12
0

h

14
4

h

1
w

2
w

3
w

4
w

5
w

Care 2014
Security 2014
Care 2015
Security 2015

5

9
6

1

1
4

3
2

1
1

1
1
1 1 1

2
3

Figure 5. A histogram of individual continuous run lengths over
the four STRANDS deployments.

152 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

The two projects are targeting different metrics (i.e., total dis-
tance for CoBots and single-run duration for STRANDS);
thus, the systems naturally have different perfor-
mance characteristics.

Monitored Navigation
Given the huge variety of situations an LTA service robot
will encounter, it is impossible to develop a navigation
algorithm that will successfully account for all of them. We

therefore developed a framework
that executes topological navigation
actions and monitors them for fail-
ure. If a failure is detected, then the
framework steps through a list of
recovery behaviors until either the
navigation action completes success-
fully or the list is exhausted, in which
case, failure is reported back to the
calling component. Failure types can
be mapped to specific lists of recov-
eries. When the robot’s bumper is
pressed, a hardware cut-off prevents
it from moving forward, which
means that the robot must ask to be
pushed away from obstructions by
nearby humans. If the local DWA
planner fails to find a path, then sim-
ply clearing the navigation costmap
to remove transient obstacles may
suffice. We also developed a back-
track behavior that uses the PTU-
mounted depth camera to sense
backward while the robot reverses
along the path it took to the failure
location. This is triggered when navi-
gation fails and clearing the costmap
does not overcome the failure.

Table 2 and Figure 6 present the
recovery behaviors used in our 2015
deployments. Successful recoveries
are those that were not followed by
another failure within one minute or

1 m of travel; otherwise, they are unsuccessful. A successful
recovery may be preceded by any number of unsuccessful
recoveries. A sequence of unsuccessful recoveries can come
from the monitored navigation system as it attempts recov-
eries that then fail or from the task execution framework
unsuccessfully trying to navigate the robot to another task
after a previous failure. Figure 3 shows where all the suc-
cessful recoveries from our 2015 security deployment
occurred. They are largely clustered around areas where it

Figure 6. Per-recovery counts for the 2015 (a) security and (b) care deployments.

Security 2015 Monitored Navigation Recoveries

0

150

300

450

600

Request Help
(Bumper)

Request Help
(Navigation)

Backtrack Stuck on
Carpet

Sleep and
Retry

Unsuccessful
Successful

(a)

Request Help
(Bumper)

Request Help
(Navigation)

Backtrack Stuck on
Carpet

Sleep and
Retry

0

25

50

75
Unsuccessful
Successful

Care 2015 Monitored Navigation Recoveries

(b)

Table 2. Classes of navigation failure, their associated recoveries, and the overall counts of successful
and unsuccessful recoveries from these failures. Per-recovery counts are shown in Figure 6.

Failure Recoveries Successful Unsuccessful Total

Bumper pressed Request help via screen and voice.
Repeated request until recovered.

177 148 325

Navigation failure (no valid
local or global path)

Sleep then retry; backtrack to last
good position; request help via
screen and voice. Repeated request
until recovered.

707 993 1,700

Stuck on carpet Increased velocities commanded to
motors

16 247 263

153september 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

was difficult to navigate, such as near doors and close to
desks. This novel approach contributed significantly to the
LTA performance of our systems, as each recovered failure
could have potentially caused the end of a continuous run.

Adaptive Topological Navigation
While monitored navigation helps the robot recover from
navigation failures, it does not help it to avoid them. To
avoid navigation failures in the future, the robot’s navigation
experience is aggregated into a Markov decision process
(MDP) automatically built from the topological map [15].
Using the MDP allows the system to model uncertainty over
the success of the robot traversing an edge in the map and
its expected duration. By learning models for these suc-
cess probabilities and durations online, the robot is able to
continually adapt its behavior to the environment in
which it is deployed. Every time the robot navigates an
edge, the duration and success of the traversal is logged to
the robot’s database. These logs are processed by FreMEn
to produce a temporal predictive model that allows the
actions of the MDP to be assigned probabilities and travel
durations appropriate for the time of execution [11]. This
MDP is then solved for a target location to produce a poli-
cy for topological navigation that prefers low-duration
edges with high success probabilities (see [15] for details).
This improves the system’s robustness by making it avoid
areas where it previously encountered navigation failures.
This is only possible in an LTA setting where the robot
runs repeatedly in the same environment.

Predicting Human–Robot Interaction
In the Haus der Barmherzigkeit care facility, our robot acted
as an information terminal, using its touch screen to present
the weather, daily menu, news, and so on, to staff and resi-
dents with potentially severe dementia. This behavior was
scheduled as a task at different topological nodes in the care
home. As we did not know in advance the locations and
times people would prefer to interact with the robot, we
allowed it to adapt its routine based on long-term experience.
To achieve this, each node in the topological map was associ-
ated with a FreMEn model that represented the probability
of someone interacting with the robot’s screen at a given
time. This was built from logs of screen interactions stored in
MongoDB. These FreMEn models were used to predict the
likelihood of interactions at given times and locations. These
predictions were used by the robot to schedule where and
when it should provide information during the day.

The schedule must satisfy two contradicting objectives
common to many online active-learning tasks: exploration (to
create and maintain the spatiotemporal models) and exploita-
tion (using the model to maximize the chance of interacting
with people). Exploration requires the robot to visit locations
at times when the chance of obtaining an interaction is
uncertain. Exploitation requires scheduling visits to maxi-
mize the chance of obtaining interactions. To tackle this trade-
off, the schedule was generated using Monte Carlo sampling

from the location/time pairs according their FreMEn-predict-
ed interaction probability (exploitation) and entropy (explora-
tion). For more details see [16].

Figure 7 shows that the robot was able to increase the
number of successful interactions (i.e., when information
was offered and someone interacted with the screen) on aver-
age, per day, over the course of its deployment. Although we
have no control group to compare against, our on-site obser-
vations indicate that the robot’s choices had a positive effect.
This demonstrates the ability of the system to improve its
application-specific behavior from long-term experience.

Activity Learning
In our security scenario, the robot had to learn models of nor-
mal human activity and then raise an alert if an observation
deviated from this. We explored activity learning using walk-
ing trajectories [see Figure 8(b)]. Over the 2015 security
deployment, the robot detected 42,850 individual trajectories.
As described in [6], we used qualitative spatiotemporal
activity graphs (QSTAGs) to generalize from individual
trajectories to spatial and temporal relations between trajecto-
ries and landmarks in a semantic map [see Figure 8(a)].
QSTAGs ignore minor quantitative variations across trajecto-
ries but capture larger, qualitative changes. Every night, the
robot created QSTAGs for a subset of all trajectories observed
during the day (based on their displacement ratio). It then
clustered these to create classes of movement activities. Some
examples of the results can be seen in Figure 9.

During the day, an observation of a trajectory sufficiently
far from any cluster center triggered a task to approach the
tracked human and request confirmation of their identity
using a card reader. To enable a fast response, it is important
that the robot can accurately match the start of the trajectory
to a cluster. Table 3 shows how the accuracy of predicting the
cluster of a trajectory from an initial segment (20%) improves
as more data is gathered over the robot’s lifetime. This provides
another example of how a robot can improve its application-
specific performance once it can operate over long periods.

Figure 7. The results of the robot selecting interaction times and
locations using FreMEn models learned during the 2015 care
deployment.

S
uc

ce
ss

fu
l I

nt
er

ac
tio

ns
/D

ay

0

4.25

8.5

12.75

17

C
lic

ks
/D

ay

0

55

110

165

220

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

Clicks/Day
Successful Interactions/Day

154 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

Figure 9. Trajectories belonging to three learned clusters in the region at the bottom left of Figure 8 (the direction of motion is red to
green). These can be interpreted as two clusters of a desk-approaching activity and one cluster of a desk-leaving activity.

Figure 8. (a) The manually created semantic map from the 2015 security deployment. (b) Example human trajectories with lengths
close to the average trajectory length of 2.44 m. Also pictured are the manually annotated room regions used for task planning, where
the circles indicate the vertices of region polygons that were used to annotate the types of regions in the environment. The yellow
regions indicate offices, the dark orange regions indicate meeting rooms, the light orange region is a kitchen, and the red region is a
corridor. Blue to green lines indicate direction of movement.

(a)

(b)

155september 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Conclusions and Future Work
The STRANDS Core System features a mix of design- and run-
time approaches that allow it to deliver LTA in everyday envi-
ronments. A key strategy for delivering long-term robustness is
the monitoring of system behavior, from the individual compo-
nent level up to navigation and task behaviors, as well as the
ability to restart system elements on demand. This allows the
system to cope with unexpected situations both internally and
in the external environment. The system also uses the
long-term experience of failures to learn to avoid these failures
in the future. This approach improves navigation ability, and we
hope to generalize this to other parts of the system. While these
features provide a fundamental ability to operate autonomously
for long durations in everyday environments, our robots cur-
rently have no way to manage failures that are more catastroph-
ic, harder to predict, or both. For example, our systems have
suffered from computer component failure and subtle network-
ing issues. In the future, we would like to look at the use of
redundancy and online reconfiguration, such as substituting a
failing software or hardware component, coupled with more
general failure detection approaches. Both of these topics have
been extensively researched in robots and other systems.

Our robots are able to learn online from lengths of experi-
ences from which no other robots to date have access. The
discussed results demonstrate what we have always known
from machine learning: More data improves performance.
The novel element here is that a robot must be able to operate
longer to gather additional data and must be able to make
active choices about what data is gathered.

In the future, we will focus on the robot’s ability to
understand human activities, which are the major causes of
environmental dynamics at most scales, and to actively close
gaps in the knowledge it has already obtained from weeks of
autonomous run time.

Acknowledgments
We wish to thank our project reviewers and project officers for
their contributions to our research: Luc De Raedt, James Ferry-
man, Horst-Michael Gross, Olivier Da Costa, and Juha Heikkilä.
The research leading to these results has received funding
from the European Union Seventh Framework Program
(FP7/2007-2013) under grant agreement No. 600623, STRANDS.

References
[1] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office envi-
ronment,” in Proc. IEEE Int. Conf. Robotics Automation, Anchorage,
AK, 2010, pp. 300–307.
[2] J. Biswas and M. Veloso, “The 1,000-km challenge: Insights and
quantitative and qualitative results,”IEEE Intelligent Syst., vol. 31, no. 3,
pp. 86–96, May 2016.
[3] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D.
Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” in Proc.
IEEE Int. Conf. Robotics Automation, Detroit, MI, 1999, pp. 1999–2005.
[4] R. Ambrus, J. Ekekrantz, J. Folkesson, and P. Jensfelt, “Unsupervised
learning of spatial-temporal models of objects in a long-term autono-
my scenario,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems,
Hamburg, Germany, 2015, pp. 5678–5685.
[5] T. Faeulhammer, R. Ambrus, C. Burbridge, M. Zillich, J. Folkesson, N.
Hawes, P. Jensfelt, and M. Vincze, “Autonomous learning of object models on
a mobile robot,” IEEE Robot. Autom. Lett., vol. 2, no. 1, pp. 26– 33, Jan. 2016.
[6] P. Duckworth, Y. Gatsoulis, F. Jovan, N. Hawes, D. C. Hogg, and A.
G. Cohn, “Unsupervised learning of qualitative motion behaviours by
a mobile robot,” in Proc. Int. Conf. Autonomous Agents and Multiagent
Systems, Singapore, 2016, pp. 1043–1051.
[7] L. Kunze, C. Burbridge, M. Alberti, A. Tippur, J. Folkesson, P. Jensfelt,
and N. Hawes, “Combining top-down spatial reasoning and bottom-up
object class recognition for scene understanding,” in Proc. IEEE Int.
Conf. Intelligent Robots and Systems, Chicago, IL, 2014, pp. 2910–2915.
[8] D. Hebesberger, C. Dondrup, T. Körtner, C. Gisinger, and J. Pripfl,
“Lessons learned from the deployment of a long-term autonomous
robot as companion in physical therapy for older adults with demen-
tia: A mixed methods study,” in Proc. IEEE Int. Conf. Human–Robot
Interaction, New Zealand, 2016, pp. 27–34.
[9] D. Hebesberger, T. Körtner, J. Pripfl, and M. Hanheide, “What do
staff in eldercare want a robot for? An assessment of potential tasks
and user requirements for a long-term deployment,” in Proc. Workshop
on Bridging user needs to deployed applications of service robots, Ham-
burg, Germany, 2015.
[10] C. Dondrup, N. Bellotto, M. Hanheide, K. Eder, and U. Leonards, “A
computational model of human-robot spatial interactions based on a quali-
tative trajectory calculus,” Robotics, vol. 4, no. 1, pp. 63–102, Mar. 2015.
[11] L. Mudrová, B. Lacerda, and N. Hawes, “An integrated control
framework for long-term autonomy in mobile service robots,” in Euro-
pean Conf. Mobile Robots, Lincoln, UK, 2015, pp. 1–6.
[12] O. H. Jaffari, D. Mitzel, and B. Leibe, “Real-Time RGB-D based people
detection and tracking for mobile robots and head-worn cameras,” in Proc.
IEEE Int. Conf. Robotics Automation, Hong Kong, 2014, pp. 5636–5643.
[13] J. Prankl, A. Aldoma, A. Svejda, and M. Vincze, “RGB-D object
modelling for object recognition and tracking,” in Proc. IEEE Int. Conf.
Intelligent Robots and Systems, Hamburg, Germany, 2015, pp. 96–103.
[14] T. Krajník, J. P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett,
“Spectral analysis for long-term robotic mapping,” in Proc. IEEE Int.
Conf. Robotics Automation, Hong Kong, 2014, pp. 3706–3711.
[15] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic plan-
ning for Markov decision processes with co-safe LTL specifications,” in
Proc. IEEE Int. Conf. Intelligent Robots and Systems, Chicago, IL, 2014,
pp. 1511–1516.

Table 3. Accuracy of activity cluster prediction on
week 5 data from partial input trajectories.
Training Weeks
(Number of
Trajectories)

Number of
Clusters Recall Precision F-Score

Week 0 (342) 9 0.24 0.72 0.29

Weeks 0–1 (511) 12 0.43 0.54 0.44

Weeks 0–2 (707) 12 0.43 0.56 0.43

Weeks 0–3 (811) 10 0.43 0.71 0.49

Weeks 0–4 (1,016) 14 0.48 0.63 0.53

156 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2017

[16] J. M. Santos, T. Krajnk, J. P. Fentanes, and T. Duckett, “Lifelong infor-
mation-driven exploration to complete and refine 4-d spatio-temporal
maps,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 684–691, July 2016.

Nick Hawes, School of Computer Science, University of
Birmingham, United Kingdom. E-mail: n.a.hawes@cs.bham
.ac.uk.

Chris Burbridge, School of Computer Science, University of
Birmingham, United Kingdom. E-mail: c.j.c.burbridge@cs
.bham.ac.uk.

Ferdian Jovan, School of Computer Science, University of Bir-
mingham, United Kingdom. E-mail: fx345@cs.bham.ac.uk.

Lars Kunze, School of Computer Science, University of Bir-
mingham, United Kingdom. E-mail: l.kunze@cs.bham.ac.uk.

Bruno Lacerda, School of Computer Science, University of
Birmingham, United Kingdom. E-mail: b.lacerda@cs.bham
.ac.uk.

Lenka Mudrová, School of Computer Science, University of
Birmingham, United Kingdom. E-mail: lxm210@cs.bham
.ac.uk.

Jay Young, School of Computer Science, University of Bir-
mingham, United Kingdom. E-mail: j.young@cs.bham.ac.uk.

Jeremy Wyatt, School of Computer Science, University of Bir-
mingham, United Kingdom. E-mail: jlw@cs.bham.ac.uk.

Denise Hebesberger, Akademie für Altersforschung am
Haus der Barmherzigkeit, Austria, and Donau-Universitaet
Krems, Austria. E-mail: Denise.Hebesberger@hausderbarm
herzigkeit.at.

Tobias Körtner, Akademie für Altersforschung am Haus der
Barmherzigkeit, Austria, and Donau-Universitaet Krems,
Austria. E-mail: tobias.koertner@altersforschung.ac.at.

Rares Ambrus, KTH Royal Institute of Technology, Sweden.
E-mail: rares.ambrus@gmail.com.

Nils Bore, KTH Royal Institute of Technology, Sweden. E-mail:
nbore@kth.se.

John Folkesson, KTH Royal Institute of Technology, Sweden.
E-mail: johnf@kth.se.

Patric Jensfelt, KTH Royal Institute of Technology, Sweden.
E-mail: patric@kth.se.

Lucas Beyer, Rheinisch-Westfälische Technische Hochschule
Aachen, Germany. E-mail: beyer@vision.rwth-aachen.de.

Alexander Hermans, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany. E-mail: hermans@vision
.rwth-aachen.de.

Bastian Leibe, Rheinisch-Westfälische Technische Hochschule
Aachen, Germany. E-mail: leibe@umic.rwth-aachen.de.

Aitor Aldoma, Technische Universität Wien, Austria. E-mail:
aldoma@acin.tuwien.ac.at.

Thomas Fäulhammer, Technische Universität Wien, Austria.
E-mail: faeulhammer@acin.tuwien.ac.at.

Michael Zillich, Technische Universität Wien, Austria. E-mail:
zillich@acin.tuwien.ac.at.

Markus Vincze, Technische Universität Wien, Austria. E-mail:
vincze@acin.tuwien.ac.at.

Eris Chinellato, Faculty of Science and Technology, Middlesex
University London, United Kingdom. E-mail: e.chinellato@
mdx.ac.uk.

Muhannad Al-Omari, University of Leeds, United Kingdom.
E-mail: scmara@leeds.ac.uk.

Paul Duckworth, University of Leeds, United Kingdom.
E-mail: scpd@leeds.ac.uk.

Yiannis Gatsoulis, University of Leeds, United Kingdom.
E-mail: y.gatsoulis@leeds.ac.uk.

David C. Hogg, University of Leeds, United Kingdom. E-mail:
d.c.hogg@leeds.ac.uk.

Anthony G. Cohn, University of Leeds, United Kingdom.
E-mail: A.G.Cohn@leeds.ac.uk.

Christian Dondrup, University of Lincoln, United Kingdom.
E-mail: cdondrup@gmail.com.

Jaime Pulido Fentanes, University of Lincoln, United Kingdom.
E-mail: jpulidofentanes@lincoln.ac.uk.

Tomáš Krajník, University of Lincoln, United Kingdom.
E-mail: tkrajnik@lincoln.ac.uk.

João M. Santos, University of Lincoln, United Kingdom.
E-mail: jsantos@lincoln.ac.uk.

Tom Duckett, University of Lincoln, United Kingdom. E-mail:
tduckett@lincoln.ac.uk.

Marc Hanheide, University of Lincoln, United Kingdom.
E-mail: marc@hanheide.net.�

