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T
hanks to the efforts of the robotics and autonomous 
systems community, the myriad applications and 
capacities of robots are ever increasing. There is 
increasing demand from end users for 
autonomous service robots that can 

operate in real environments for extended periods. 
In the Spatiotemporal Representations and 
Activities for Cognitive Control in Long-Term 
Scenarios (STRANDS) project (http://strands-
project.eu), we are tackling this demand 
head-on by integrating state-of-the-art 
artificial intelligence and robotics research 
into mobile service robots and deploying 
these systems for long-term in  stallations in 
security and care environments. Our robots 
have been operational for a combined 
duration of 104 days over four deployments, 
autonomously performing end-user-defined 
tasks and traversing 116 km in the process. In 
this article, we describe the approach we used 
to enable long-term autonomous operation in 
everyday environments and how our robots are 
able to use their long run times to improve their 
own performance.

Long-Term Autonomy in STRANDS
Autonomous robots come in myriad forms and can be used 
in a range of applications. With these differences, long-term 
autonomy (LTA) has a variety of meanings. For example, NASA’s 
Opportunity rover has been autonomous for more than ten years on the surface of Mars; wave gliders 
can automatically monitor stretches of ocean for months at a time; and autonomous cars have completed 
journeys of thousands of kilometers. In this article, we restrict our contributions to mobile robots operat-
ing in everyday, indoor environments, such as offices and hospitals, and capable of performing a variety of 
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service tasks. Across the various robots described previously, 
there are commonalities in low-level, short-term control algo-
rithms (e.g., closed-loop motor control). Beyond this, the 
algorithms used to provide long-term, task-specific autono-
mous capabilities—and the hardware these algorithms 
 control—vary greatly, according to application and environ-
mental requirements. The challenges that distinguish indoor 
service robots from other LTA robots relate to both their envi-
ronment and their task capabilities. Indoor task environments 
are less physically risky than outdoor environments, but they 
have a comparatively higher degree of short- to medium-term 
physical variability, e.g., moving objects such as people, doors, 
and furniture. You might argue that traffic is highly variable, 
but roads are generally similar to each other and the move-
ment of vehicles is generally more predictable than the move-
ment of people. In terms of application requirements, 
multipurpose service robots must be capable of predictable 
scheduled behavior while also being retaskable on demand 
with high availability and must be able to navigate in rela-
tively confined, dynamic environments. This is in contrast 
to the largely restricted-purpose systems mentioned previ-
ously, such as rovers and wave gliders. Taken together, the 
set of requirements for indoor service robots presents 
unique challenges, and, thus, LTA in this context warrants 
dedicated research.

Given the state of the art, we consider long-term for a 
mobile service robot to mean at least multiple weeks of 
continuous operation. In very general terms, such LTA 
operation requires a robot’s hardware and software to be 
robust enough to overcome failure to enable such opera-
tion. Such robustness can be provided by both design-time 
and run-time approaches. It is essential that LTA systems 
actively manage consumable resources (e.g., a battery) and 
that any autonomy-supporting capabilities (e.g., localiza-
tion) are not adversely affected by long run times. While 
this latter point is common sense and may be common 
practice in many other technologies (from operating sys-
tems to cars), it has only recently been considered in auton-
omous robotics.

One reason it is challenging to design a service robot to 
meet the requirements of LTA is the impossibility of antici-
pating all situations in which it may find itself. If we can 
enable robots to run for long periods of time, however, then 
they will have opportunities to learn about the structure and 
dynamics of such situations. By exploiting the results of such 
learning, the robots should be able to increase their robust-
ness further, leading to a virtuous cycle of improved perfor-
mance and greater autonomy. It is this latter point that 
motivates STRANDS: To go beyond robots that simply sur-
vive to those that can improve their performance in the long 
term. It is within this context that this article makes its main 
contribution: the STRANDS Core System, a robotic software 
architecture that was designed for LTA service robot applica-
tions and has been evaluated across four end-user deploy-
ments. The STRANDS Core System contains a mix of 
common sense and novel elements that have enabled it to 

support more than 100 days of autonomous operation. This 
is the first time all of these elements have been presented 
together, and this is the first presentation of metrics describ-
ing performance across deployments. Our approach is 
inspired by the work of Willow Garage [1] and the CoBot 
project [2], plus the pioneering work on the Rhino and 
Minerva systems (e.g., [3]). Our work is distinguished from 
previous work by the combination of multiple service capa-
bilities in a single system capable of weeks-long continuous 
autonomous operation in dynamic indoor environments 
while using various forms of learning to improve system per-
formance. Many other projects address one or two of these 
elements but not all four simultaneously.

Application Scenarios
To ensure our research meets the demands of end users, our 
work is evaluated in two application scenarios—security and 
care. Space does not permit a detailed explanation of the 
tasks in each scenario; instead, we cite other works that 
include further information on the tasks and technology 
from each scenario.

Our security plan was developed with G4S Technology. The 
aim of this system was to have a robot monitor an indoor office 
environment and generate 
alerts when it observed 
prohibited or unusual 
events. We completed two 
security deployments in 
which a mobile robot rou-
tinely created models of 
the environment’s three-
dimensional (3-D)  struc-
ture [4], objects [5], and 
people [6]; modeled their 
changes over time; and 
used these models to detect 
anomalous situations and 
patterns. For example, we 
developed robot behaviors 
to detect when a human 
moves through the envi-
ronment in an unusual 
manner [6], to build models of the arrangement of objects on 
desks [7], and to check whether fire exits have been left open. 
Long-term deployments are essential for these services to 
gather sufficient data to build appropriate models.

Our care scenario was developed with the Akademie für 
Alterforschung at the Haus der Barmherzigkeit. In this 
arrangement, the robot supported staff and patients in a large 
elder-care facility. We completed two care deployments in 
which a mobile robot guided visitors, provided information to 
residents, and assisted in walking-based therapies. In the care 
scenario, the robot serves users more directly, and, therefore, 
long-term system robustness is crucial, as is adapting to the 
routines of the facility. More information on this plan is 
 available in [8] and [9].
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Robot Technology
The systems reported in this article are developed in Robot 
Operating System (ROS), available under open-source licenses 
and binary packaged for Ubuntu (http://strands-project.eu/

software.html) [2]. While 
the majority of our work is 
platform-neutral, all of 
our deployed systems are 
based on the MetraLabs 
SCITOS A5 robot (Fig-
ure 1). This is an industry-
standard mobile robot 
capable of long run times 
(12 h on one charge) and 
autonomous charging. Our 
robots each have SICK 
S300 lasers in their bases 
(for localization, leg detec-
tion, and so on) and two 
Asus Xtion PRO RGB-D 
cameras, one at chest height 

pointing downward (for obstacle avoidance) and the other on a 
pan-tilt unit (PTU) above the robot’s head. The SCITOS has an 
embedded computer with an Intel Core i7 processor with 8 GB 
of random-access memory (RAM), to which we networked 
two additional computers, each with an Intel Core i7 processor 
and 16 GB of RAM.

The STRANDS Core System
The STRANDS Core System (Figure 2) is an application-neu-
tral architecture for LTA in mobile robots. It is a combination of 
widely used components and components designed specifically 
for LTA. As mentioned previously, hardware and software 
robustness is essential for LTA. Hardware robustness is beyond 
the scope of our research; thus, we assume our software is 
running on an appropriate robot and computational platform. 
We address software component robustness through a mix of 

strategies. During development, we encourage components to 
be designed in a way that makes the minimal assumptions 
about the existence of other components and services (e.g., by 
checking service existence before running). We also pay partic-
ular attention to error handling to ensure component-local 
errors and exceptions do not propagate unnecessarily. This 
allows components and whole subsystems to be brought up 
and down automatically. At run-time, we use built-in ROS 
functionality to automatically relaunch crashed components, 
and most subsystems run only when required, thus saving the 
energy and processing power and reducing opportunities for 
errors. We also use run-time topic monitoring to detect prob-
lems (e.g., low publish rates) and trigger component restarts. 
Finally, we run a continuous integration server that tests 
 components and the whole system in isolation, on recorded 
data, and in simulation.

The overall performance of a mobile robot is constrained 
by its localization and navigation systems, so we use widely 
adopted ROS packages to provide state-of-the-art perfor-
mance. At the start of a deployment, we build a fixed map from 
laser scans, localize in it with adaptive Monte Carlo localiza-
tion, and navigate using the dynamic window approach 
(DWA) over 3-D obstacle information [3]. See http://wiki.ros 
.org/navigation for details on these techniques. While our use 
of a fixed map appears at odds with LTA in a dynamic environ-
ment, our environments are dominated by static features (e.g., 
walls), which prevent the robot’s localization performance 
from degrading. We also take advantage of the robot’s need to 
regularly dock with a charging station by resetting the robot’s 
position to this known location while it is docked. This limits 
localization drift to that which can occur during time away 
from the dock.

We manually build a topological map on top of the fixed 
continuous map. We place topological nodes at key places in the 
environment for navigation (e.g., either side of a door) or for 
tasks (e.g., by a desk to observe). The topological map from our 
2015 security deployment is shown in Figure 3. Edges in the 

Figure 1. Two of the STRANDS MetraLabs SCITOS A5 robots in their application environments. (a) The robot Bob at G4S’s Challenge 
House in Tewkesbury, United Kingdom. (b) The robot Henry in the reception area of Haus der Barmherzigkeit, Vienna.

(a) (b)
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topological map are parametrized by the 
action required to move along them. In 
addition to DWA navigation, our system 
can perform door passing, docking with 
a charging station, and adaptive naviga-
tion near humans [10].

In our experience, navigation per-
formance is a major determinant of 
the autonomous run time of a mobile 
robot. This is because navigation fail-
ures (e.g., getting stuck near obstacles) 
can result in the robot being unable to 
return to its charging station. The ele-
ments of the STRANDS Core System 
support LTA in the following ways: By 
constraining the robot’s movements to 
the topological map, we are able to 
restrict navigation to known good 
areas of the environment. We addi-
tionally restrict movement by marking 
areas of the static map as “no go” 
zones that  cannot be planned through. 
Despite these restrictions, navigation 
failures still occur due to environmental dynamics (e.g., peo-
ple walking in front of the robot). Therefore, edge traversals 
in the topological map are executed by a monitored naviga-
tion layer that can perform a range of recovery actions in the 

event of failure (see the “Monitored Navigation” section). 
Topological route planning and execution is one area where 
our core system adapts to long-term experience, as described 
in the “Adaptive Topological Navigation” section.
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Figure 2. A schematic overview of the STRANDS Core System. 2-D: two-dimensional.

Figure 3. The map of the deployment area in Challenge House in Tewkesbury, United Kingdom, 
with the topological map superimposed. Also displayed are the locations where the robot 
successfully recovered from a navigation failure. Locations where the bumper was triggered are 
red, and green locations indicate nonbumper fails; the robot asked humans for help at these 
locations. Places where recoveries were performed by reversing along the previous path are 
marked in yellow, and recoveries performed by simply retrying are shown in blue. 
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The main unit of behavior in our system is a task. Tasks rep-
resent something the robot can do (e.g., check whether a fire 

door is open, deliver infor-
mation via a graphical user 
interface), and tasks have 
an associated topologi-
cal location, a maximum 
duration, and a time win-
dow for execution. Our 
executive framework [11] 
schedules tasks to be exe-
cuted within their time 
windows and manages 
task-directed navigation 
and execution. To prevent 
task failures from inter-
fering with long-term op -
erations, our framework 
detects task time-outs and 

failures, at which point it will stop or restart robot behaviors as 
necessary. Maintenance actions such as charging, batch learn-
ing, and database backups are all handled as tasks, allowing the 
executive framework to control most of the robot’s behavior. 

This is essential for LTA as it enables the system to actively 
manage its limited resources. A plot of tasks from the 2015 
security deployment can be seen in Figure 4.

Our system relies on separate pipelines for perceiving differ-
ent elements of its environment: real-time multiperson RGB-D 
detection and tracking [12], visual object instance and category 
modeling and recognition [13], and 3-D spatiotemporal map-
ping [4]. This article does not cover our work on perceptually 
challenging tasks. Instead, we refer readers to other sources 
where we have exploited these perception pipelines, e.g., [5], 
[7], and [10].

The data observed and generated (e.g., as intercomponent 
communication) by an LTA system is crucial for both learning 
and for monitoring and debugging the system. We  therefore use 
tools based on MongoDB (http://wiki.ros.org/mongodb_store) 
to save ROS messages to a document- oriented database. Data-
base contents (e.g., observations of doors being opened or 
closed) can then be interpreted by the Frequency Map 
Enhancement (FreMEn) component [14], which integrates 
sparse and irregular observations into spatiotemporal models 
representing (pseudo) periodic environment variations. These 
can be used to predict future environment states (see the “Adap-
tive Topological Navigation” section).
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Figure 4. A plot of the tasks performed by the robot during the 2015 security deployment. White space represents times when the 
robot was not performing any tasks, which indicates that the robot was charging or a failure had occurred.
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Metrics
So far, we have performed two evaluation deployments for 
each of the security and care scenarios. For each deployment, 
we monitored overall system performance against two metrics: 
the total system lifetime (TSL) and the autonomy percentage 
(A%). The TSL measures how long the system is available for 
autonomous operation and is reset if the system experiences 
an unrecoverable failure or needs an unrequested expert inter-
vention (i.e., something that cannot easily be done by an end 
user on site). The A% measures how long the system was 
actively performing tasks as a proportion of the time it was 
allowed to operate autonomously; in our deployments, this is 
typically restricted to office hours. The motivation of the A% is 
that it is of little value to achieve a long TSL if the system does 
nothing. Neither the TSL nor the A% measures the quality of 
the services being provided. As this article focuses on LTA, we 
restrict our presentation to task-neutral but LTA-specific met-
rics. End-user evaluations of task- specific performance are 
ongoing and will be published in the future (see [8] and [9] 
for early evaluations from the care scenario).

Table 1 presents our systems’ LTA performance in 2014 
and 2015. In 2014, we aimed for 15 days for the TSL; however, 
the longest run we achieved was seven days. Most of our sys-
tem failures were caused by the lack of robustness of our ini-
tial software, leading to unrecoverable component behavior 
(crashes or deadlock states). This was fixed for our 2015 
deployments by following the development approaches out-
lined in “The STRANDS Core System” section. In 2015, we 
targeted 30 days for the TSL, coming close with 28 days in the 
security deployment. This long run was terminated when the 
robot’s motors failed to respond to commands, an issue that 
has since been fixed with a firmware update. In the 2015 
deployments, most failures were due to computer-related 
issues beyond the direct contributions of the project (e.g., 
USB drivers, power cables, network problems, and so on). Of 
the seven runs in 2015, one run was ended due to user 
intervention (a decorator powered off the robot), two due to 
bugs in our software, and the remaining four due to faults in 
software or hardware beyond our components.

The variations across deployments in terms of the num-
ber of tasks completed and distance traveled are largely 
attributable to the different types of tasks performed by the 
robots and the different environments in which they were 

deployed. For example, information-serving tasks may take 
several minutes with very little travel, but door- checking 
tasks will be brief but will require the robot to travel both 
before and during the task.

Systems in the literature have delivered more autonomous 
time and distance cumulatively (i.e., accumulated across multi-
ple robots and system runs), but we believe the 28-day run is 
the longest single continuous autonomous run of an indoor 
mobile service robot capable of multiple tasks. The most 
 relevant comparison we can make is to the CoBots, which 
reported a total of 1,279.5 h of autonomy time, traversing 
1,006.1 km [2]. This was achieved by four robots in 3,199 sep-
arate continuous autonomous runs over three years, at an aver-
age of 23 min and 0.31 km per run. They did not report the 
longest single continuous run (either in time or distance), but 
even an extremely long run for a CoBot would only be mea-
sured in hours, not days, because the CoBot does not have 
autonomous charging capabilities. In contrast, the STRANDS 
systems performed a total of 43 separate continuous runs, 
yielding a total of 2,545 h and 116 km over the four deploy-
ments, at an average of 2.7 km and 58 h 12 min per run. The 
varied durations of individual runs can be seen in Figure 5. 
Note that we use this data to provide a point of comparison. 

Table 1. LTA metrics from the first four STRANDS system deployments.

Care 2014 Security 2014 Care 2015 Security 2015 Total

Total Distance Traveled (km) 27.94 20.64 23.41 44.25 116.24

Total Tasks Completed 1,985 963 865 4,631 8,444

Maximum TSL 7 d, 3 h 6 d, 19 h 15 d, 6 h 28 d, 0 h

Cumulative TSL 20 d, 19 h 21 d, 0 h 27 d, 8 h 35 d, 3 h 104 d, 7 h

Individual Continuous Runs 18 18 5 2 43

A% 38.80% 18.27% 53.51% 51.10%
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Figure 5. A histogram of individual continuous run lengths over 
the four STRANDS deployments. 
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The two projects are targeting different metrics (i.e., total dis-
tance for CoBots and single-run duration for STRANDS); 
thus, the  systems naturally have different perfor-
mance characteristics.

Monitored Navigation
Given the huge variety of situations an LTA service robot 
will encounter, it is impossible to develop a navigation 
algorithm that will successfully account for all of them. We 

therefore developed a framework 
that executes topological navigation 
actions and monitors them for fail-
ure. If a failure is detected, then the 
framework steps through a list of 
recovery behaviors until either the 
navigation action completes success-
fully or the list is exhausted, in which 
case, failure is reported back to the 
calling component. Failure types can 
be mapped to specific lists of recov-
eries. When the robot’s bumper is 
pressed, a  hardware cut-off prevents 
it from moving forward, which 
means that the robot must ask to be 
pushed away from obstructions by 
nearby humans. If the local DWA 
planner fails to find a path, then sim-
ply clearing the navigation costmap 
to remove transient obstacles may 
suffice. We also developed a back-
track behavior that uses the PTU-
mounted depth camera to sense 
backward while the robot reverses 
along the path it took to the failure 
location. This is triggered when navi-
gation fails and clearing the  costmap 
does not overcome the failure.

Table 2 and Figure 6 present the 
recovery behaviors used in our 2015 
deployments. Successful recoveries 
are those that were not followed by 
another failure within one minute or 

1 m of travel; otherwise, they are unsuccessful. A successful 
recovery may be preceded by any number of unsuccessful 
recoveries. A sequence of unsuccessful recoveries can come 
from the monitored navigation system as it attempts recov-
eries that then fail or from the task execution framework 
unsuccessfully trying to navigate the robot to another task 
after a previous failure. Figure 3 shows where all the suc-
cessful recoveries from our 2015 security deployment 
occurred. They are largely clustered around areas where it 

Figure 6. Per-recovery counts for the 2015 (a) security and (b) care deployments.
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Table 2. Classes of navigation failure, their associated recoveries, and the overall counts of successful  
and unsuccessful recoveries from these failures. Per-recovery counts are shown in Figure 6.

Failure Recoveries Successful Unsuccessful Total

Bumper pressed Request help via screen and voice.  
Repeated request until recovered.

177 148 325

Navigation failure (no valid  
local or global path)

Sleep then retry; backtrack to last  
good position; request help via  
screen and voice. Repeated request  
until recovered.

707 993 1,700

Stuck on carpet Increased velocities commanded to  
motors

16 247 263
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was difficult to navigate, such as near doors and close to 
desks. This novel approach contributed significantly to the 
LTA performance of our systems, as each recovered failure 
could have potentially caused the end of a continuous run.

Adaptive Topological Navigation
While monitored navigation helps the robot recover from 
navigation failures, it does not help it to avoid them. To 
avoid navigation failures in the future, the robot’s navigation 
experience is aggregated into a Markov decision process 
(MDP) automatically built from the topological map [15]. 
Using the MDP allows the system to model uncertainty over 
the success of the robot traversing an edge in the map and 
its expected duration. By learning models for these suc-
cess probabilities and durations online, the robot is able to 
continually adapt its behavior to the environment in 
which it is deployed. Every time the robot navigates an 
edge, the duration and success of the traversal is logged to 
the robot’s database. These logs are processed by FreMEn 
to produce a temporal predictive model that allows the 
actions of the MDP to be assigned probabilities and travel 
durations appropriate for the time of execution [11]. This 
MDP is then solved for a target location to produce a poli-
cy for topological navigation that prefers low-duration 
edges with high success probabilities (see [15] for details). 
This improves the system’s robustness by making it avoid 
areas where it previously encountered navigation failures. 
This is only  possible in an LTA setting where the robot 
runs repeatedly in the same  environment.

Predicting Human–Robot Interaction
In the Haus der Barmherzigkeit care facility, our robot acted 
as an information terminal, using its touch screen to present 
the weather, daily menu, news, and so on, to staff and resi-
dents with potentially severe dementia. This behavior was 
scheduled as a task at different topological nodes in the care 
home. As we did not know in advance the locations and 
times people would prefer to interact with the robot, we 
allowed it to adapt its routine based on long-term experience. 
To achieve this, each node in the topological map was associ-
ated with a FreMEn model that represented the probability 
of someone interacting with the robot’s screen at a given 
time. This was built from logs of screen interactions stored in 
MongoDB. These FreMEn models were used to predict the 
likelihood of interactions at given times and locations. These 
predictions were used by the robot to schedule where and 
when it should provide information during the day.

The schedule must satisfy two contradicting objectives 
common to many online active-learning tasks: exploration (to 
create and maintain the spatiotemporal models) and exploita-
tion (using the model to maximize the chance of interacting 
with people). Exploration requires the robot to visit locations 
at times when the chance  of obtaining an interaction is 
uncertain. Exploitation requires scheduling visits to maxi-
mize the chance of obtaining interactions. To tackle this trade-
off, the schedule was generated using Monte Carlo sampling 

from the location/time pairs according their FreMEn-predict-
ed interaction probability (exploitation) and entropy (explora-
tion). For more details see [16].

Figure 7 shows that the robot was able to increase the 
number of successful interactions (i.e., when information 
was offered and someone interacted with the screen) on aver-
age, per day, over the course of its deployment. Although we 
have no control group to compare against, our on-site obser-
vations indicate that the robot’s choices had a positive effect. 
This demonstrates the ability of the system to improve its 
application-specific behavior from long-term experience.

Activity Learning
In our security scenario, the robot had to learn models of nor-
mal human activity and then raise an alert if an observation 
deviated from this. We explored activity learning using walk-
ing trajectories [see Figure 8(b)]. Over the 2015 security 
deployment, the robot detected 42,850 individual tra jectories. 
As described in [6], we used qualitative spatiotemporal 
activity graphs (QSTAGs) to generalize from individual 
trajectories to spatial and temporal relations between trajecto-
ries and landmarks in a semantic map [see Figure 8(a)]. 
QSTAGs ignore minor quantitative variations across trajecto-
ries but capture larger, qualitative changes. Every night, the 
robot created QSTAGs for a subset of all trajectories observed 
during the day (based on their displacement ratio). It then 
clustered these to create classes of movement activities. Some 
examples of the results can be seen in Figure 9.

During the day, an observation of a trajectory sufficiently 
far from any cluster center triggered a task to approach the 
tracked human and request confirmation of their identity 
using a card reader. To enable a fast response, it is important 
that the robot can accurately match the start of the trajectory 
to a cluster. Table 3 shows how the accuracy of predicting the 
cluster of a trajectory from an initial segment (20%) improves 
as more data is gathered over the robot’s lifetime. This provides 
another example of how a robot can improve its application-
specific performance once it can operate over long periods. 

Figure 7. The results of the robot selecting interaction times and 
locations using FreMEn models learned during the 2015 care 
deployment.
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Figure 9. Trajectories belonging to three learned clusters in the region at the bottom left of Figure 8 (the direction of motion is red to 
green). These can be interpreted as two clusters of a desk-approaching activity and one cluster of a desk-leaving activity.

Figure 8. (a) The manually created semantic map from the 2015 security deployment. (b) Example human trajectories with lengths 
close to the average trajectory length of 2.44 m. Also pictured are the manually annotated room regions used for task planning, where 
the circles indicate the vertices of region polygons that were used to annotate the types of regions in the environment. The yellow 
regions indicate offices, the dark orange regions indicate meeting rooms, the light orange region is a kitchen, and the red region is a 
corridor. Blue to green lines indicate direction of movement. 

(a)

(b)
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Conclusions and Future Work
The STRANDS Core System features a mix of design- and run-
time approaches that allow it to deliver LTA in everyday envi-
ronments. A key strategy for delivering long-term robustness is 
the monitoring of system behavior, from the individual compo-
nent level up to navigation and task behaviors, as well as the 
ability to restart system elements on demand. This allows the 
system to cope with unexpected situations both internally and 
in the external environment. The system also uses the 
long-term experience of failures to learn to avoid these failures 
in the future. This approach improves navigation ability, and we 
hope to generalize this to other parts of the system. While these 
features provide a fundamental ability to operate autonomously 
for long durations in everyday environments, our robots cur-
rently have no way to manage failures that are more catastroph-
ic, harder to predict, or both. For example, our systems have 
suffered from computer component failure and subtle network-
ing issues. In the future, we would like to look at the use of 
redundancy and online reconfiguration, such as substituting a 
failing software or hardware component, coupled with more 
general failure detection approaches. Both of these topics have 
been extensively researched in robots and other systems.

Our robots are able to learn online from lengths of experi-
ences from which no other robots to date have access. The 
 discussed results demonstrate what we have always known 
from machine learning: More data improves performance. 
The novel element here is that a robot must be able to operate 
longer to gather additional data and must be able to make 
active choices about what data is gathered.

In the future, we will focus on the robot’s ability to 
understand human activities, which are the major causes of 
environmental dynamics at most scales, and to actively close 
gaps in the knowledge it has already obtained from weeks of 
autonomous run time.
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