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Abstract. Codatatypes are absent from many programming languages and proof
assistants. We make a case for their importance by revisiting a classic result: the
completeness theorem for first-order logic established through a Gentzen system.
The core of the proof establishes an abstract property of possibly infinite deriva-
tion trees, independently of the concrete syntax or inference rules. This separation
of concerns simplifies the presentation. The abstract proof can be instantiated for
a wide range of Gentzen and tableau systems as well as various flavors of first-
order logic. The corresponding Isabelle/HOL formalization demonstrates the re-
cently introduced support for codatatypes and the Haskell code generator.

1 Introduction

Gödel’s completeness theorem [11] is a major result about first-order logic (FOL). It
forms the basis of a wide range of results and techniques in various areas, including
mathematical logic, automated deduction, and program verification. It can be stated
as follows: If a set of formulas is syntactically consistent (i.e., no contradiction arises
from it), then it has a model. The theorem enjoys many accounts in the literature that
generalize and simplify the original proof; indeed, a textbook on mathematical logic
would be incomplete without a proof of this fundamental theorem.

Formal logic has always been a battleground between semantic and syntactic meth-
ods. Generally, mathematicians belong to the semantic school, whereas computer sci-
entists tend to take the other side of the argument. The completeness theorem, which
combines syntax and semantics, is also disputed, with the result that each school has
its own proof. In his review of Gallier’s Logic for Computer Science [10], Pfenning, a
fellow “syntactician,” notes the following [27]:

All too often, proof-theoretic methods are neglected in favor of shorter, and
superficially more elegant semantic arguments. [In contrast, in Gallier’s book]
the treatment of the proof theory of the Gentzen system is oriented towards
computation with proofs. For example, a pseudo-Pascal version of a complete
search procedure for first-order cut-free Gentzen proofs is presented.

In the context of completeness, the “superficially more elegant semantic arguments” are
proofs that rely on Hilbert systems. These systems have several axioms but only one or
two deduction rules, providing minimal support for presenting the structure of proofs or
for modeling proof search. A completeness proof based on Hilbert systems follows the
Henkin style: It employs a heavy bureaucratic apparatus to establish facts about deduc-
tion and conservative language extensions, culminating with a nonconstructive step: an
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application of Zorn’s lemma to extend any syntactically consistent set of formulas to a
maximally consistent one, from which a model is produced.

In contrast, a proof of completeness based on more elaborate Gentzen or tableau
systems follows the Beth–Hintikka style (perhaps more properly called Beth–Hintikka–
Schütte–Kanger style [19]). It performs a search that builds either a finite deduction
tree yielding a proof (or refutation, depending on the system) or an infinite tree from
which a countermodel (or model) can be extracted. Such completeness proofs have an
intuitive content that emphasizes the tension of the argument: The deduction system
exhaustively attempts to prove the goal; a failure yields, at the limit, a countermodel.

The intuitive appeal of the Beth–Hintikka approach comes at a price: It requires
reasoning about infinite derivation trees and infinite paths. Unfortunately, convenient
means to reason about infinite (or lazy) data structures are lacking in mainstream math-
ematics. An otherwise extremely rigorous textbook such as Bell and Machover’s [1]
becomes slightly informal when defining possibly infinite refutation tableau trees:

A tableau is a set of elements, called nodes, partially ordered and classified into
levels as explained below. With each node is associated a finite set of formulas.
We shall usually identify a given node with its associated set of formulas; this
is somewhat imprecise (since in fact the same set of formulas can be associated
with different nodes) but will not cause confusion.

Each node belongs to a unique level, which is labeled by some natural num-
ber. There is just one node of level 0, called the initial node of the tableau. Each
node at level n+1 is a successor of a unique node, which must be of level n.

At best, the trees are defined rigorously (e.g., as prefix-closed sets), but the actual
reasoning relies on the intuitive understanding of trees, as Gallier does. One could argue
that trees are intuitive and do not need a formal treatment, but the same holds for the
syntax of formulas, which is treated very rigorously in most of the textbooks.

The lack of apparatus for reasoning about infinite structures is reflected in the realm
of mechanical theorem proving. While many provers include mechanisms for defining
freely generated datatypes, few have dedicated support for potentially infinite structures
such as lazy trees. On the other hand, functional programmers routinely manipulate lazy
data structures. Notably, lazy evaluation is the primary strategy in Haskell.

This paper presents a rigorous Beth–Hintikka-style proof of the completeness theo-
rem, based on a Gentzen system. Besides the use of codatatypes, the other main novel
aspect of the proof is its modularity. The core tree construction argument is isolated
from the proof system and concrete formula syntax (Section 3). The abstract proof can
be instantiated for a wide range of Gentzen and tableau systems as well as various fla-
vors of FOL—e.g., with or without predicates, equality, or sorts (Sections 4 and 5).
This modularization replaces the textbook proofs by analogy. The core of the argument
amounts to reasoning about a functional program over lazy data structures.

The proof is formalized in Isabelle/HOL [26] (Section 6). The tree construction
makes use of a new definitional package for codatatypes [35], which automates the
derivation of characteristic theorems from specifications of the constructors. Through
Isabelle’s code generator [13], the corecursive construction gives rise to a Haskell pro-
gram that implements a semidecision procedure for validity instantiable with various
proof systems, yielding verified sound and complete provers.
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Conventions. Isabelle/HOL is a proof assistant based on classical higher-order logic
(HOL) with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. HOL no-
tations are a mixture of functional programming and mathematical syntaxes.

In this paper, HOL is viewed not as a formal system but rather as a framework for
expressing mathematics, much like set theory is employed by working mathematicians.
In keeping with the standard semantics of HOL, types α are identified with sets.

2 A Gentzen System for First-Order Logic

We fix a first-order language: a countably infinite set var of variables x, y, z and count-
able sets fsym and psym of function symbols f and predicate symbols p together with
assignments ar : fsym→ nat and ar : psym→ nat of numeric arities. Terms t ∈ term are
symbolic expressions built inductively from variables by application of function sym-
bols f ∈ fsym to tuples of arguments whose lengths respect the arities: f (t1, . . . , t ar f ).
Atoms a ∈ atom are symbolic expressions of the form p(t1, . . . , t ar p), where p ∈ psym
and t1, . . . , t ar p ∈ term. Formulas ϕ, ψ are defined as follows:

datatype fmla = Atm atom | Neg fmla | Conj fmla fmla | All var fmla

Thus, a formula may be an atom, a negation, a conjunction, or a universal quantification.
A structure S =

(
S, (Ff ) f ∈ fsym, (Pp)p∈ psym

)
for the given language consists of

a carrier set S, together with a function Ff : Sn → S for each n-ary f ∈ fsym and a
predicate Pp : Sn → bool for each n-ary p ∈ psym. The notions of interpretation of
a term t and satisfaction of a formula ϕ by a structure S with respect to a variable
valuation ξ : var→ S are defined in the standard way. For terms:

JxKS
ξ = ξ x J f (t1, . . . , tn)KS

ξ = Ff
(
Jt1KS

ξ , . . . , JtnKS
ξ

)
For atoms: S |=ξ p(t1, . . . , tn) iff Pp

(
Jt1KS

ξ , . . . , JtnKS
ξ

)
. For formulas:

S |=ξ Atm a iff S |=ξ a S |=ξ Conj ϕ ψ iff S |=ξ ϕ ∧ S |=ξ ψ

S |=ξ Neg ϕ iff S 6|=ξ ϕ S |=ξ All x ϕ iff ∀a∈S. S |=ξ[x←a] ϕ

The following substitution lemma relates the notions of satisfaction and capture-
avoiding substitution ϕ[t/x] of a term t for a variable x in a formula ϕ:

Lemma 1. S |=ξ ϕ[t/x] iff S |=ξ[x← JtKS
ξ ] ϕ.

A sequent is a pair Γ B ∆ of finite formula sets. Satisfaction is extended to sequents:
S |=ξ ΓB ∆ iff (∀ϕ∈Γ. S |=ξ ϕ) ⇒ (∃ψ∈∆. S |=ξ ψ).

The proof system on sequents is defined inductively as follows, where Γ, ϕ abbrevi-
ates the set Γ∪{ϕ} and Γ, ϕ, ψ abbreviates Γ∪{ϕ, ψ}:

AX
Γ, Atm a B ∆, Atm a

Γ B ∆, ϕ
NEGL

Γ, Neg ϕ B ∆

Γ, ϕ B ∆
NEGR

Γ B ∆, Neg ϕ

Γ, ϕ, ψ B ∆
CONJL

Γ, Conj ϕ ψ B ∆

Γ B ∆, ϕ Γ B ∆, ψ
CONJR

Γ B ∆, Conj ϕ ψ

Γ, All x ϕ, ϕ[t/x] B ∆

ALLL
Γ, All x ϕ B ∆

Γ B ∆, ϕ[y/x] ALLR
(y fresh)Γ B ∆, All x ϕ
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The rules are applied from bottom to top. One chooses a formula from either side of
the sequent, the eigenformula, and applies a rule according to the topmost connective or
quantifier. For a given choice of eigenformula, at most one rule is applicable. The aim
of applying the rules is to prove the sequent by building a finite derivation tree whose
branches are closed by an axiom (AX). The completeness theorem

` ΓB ∆ ∨ (∃S , ξ. S 6|=ξ ΓB ∆)

states that any sequent Γ B ∆ either is provable (denoted by `) or has a countermodel,
i.e., a structure S and a valuation ξ that falsify it.

3 Abstract Completeness

The proof of the completeness theorem is divided in two parts. The first part, described
in this section, focuses on the core of the completeness argument in an abstract, syntax-
free manner. This level captures the tension between the existence of a proof or of of
an abstract notion of countermodel; the latter is introduced via what we call an escape
path—an infinite sequence of states that “escapes” the proof attempt. The tension is
distilled in a completeness result: Either there exists a finite derivation tree or there
exists an infinite derivation tree with a suitable escape path. The second part maps
the abstract escape path to a concrete, proof-system-specific countermodel. Section 4
performs this connection for the Gentzen system of Section 2.

Rule Systems. We abstract away the syntax of formulas and sequents and the specific
rules of the proof system. We fix countable sets state and rule for sets and rules. We
assume that the meaning of the rules is given by an effect relation eff : rule→ state→
state fset→ bool, where α fset denotes the set of finite subsets of α. The reading of
eff r s ss is as follows: Starting from state s, applying rule r expands s into the states ss.

A state represents a formal statement in the logic. The triple R = (state, rule, eff)
forms a rule system.

Example 1. The Gentzen system from Section 2 can be presented as a rule system. The
set state is the set of sequents, and rule consists of the following: a rule AXa for each
atom a; rules NEGLϕ and NEGRϕ for each formula ϕ; rules CONJLϕ,ψ and CONJRϕ,ψ

for each pair of formulas ϕ and ψ; a rule ALLLx,ϕ,t for each variable x, formula ϕ, and
term t; and a rule ALLRx,ϕ for each variable x and formula ϕ.

The eigenformula is part of the rule. Hence we have a countably infinite number of
rules. The effect is defined as follows, where semicolons (;) separate set elements:

eff AXa (Γ,Atm aB ∆,Atm a) /0 eff NEGRϕ (ΓB ∆, Neg ϕ) {Γ, ϕB ∆}
eff NEGLϕ (Γ,Neg ϕB ∆) {ΓB ∆, ϕ} eff CONJLϕ,ψ (Γ,Conj ϕ ψB ∆) {Γ, ϕ, ψB ∆}
eff CONJRϕ,ψ (ΓB ∆, Conj ϕ ψ) {ΓB ∆, ϕ; ΓB ∆, ψ}
eff ALLLx,ϕ,t (Γ,All x ϕB ∆) {Γ,All x ϕ, ϕ[t/x]B ∆}
eff ALLRx,ϕ (ΓB ∆, All x ϕ) {ΓB ∆, ϕ[y/x]} where y is fresh for Γ and All x ϕ

Derivation Trees. Possibly infinite trees are represented by the following codatatype:

codatatype α tree = Node (lab: α) (sub: (α tree) fset)
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AXp(y)
∀x. p(x), p(y) B p(y)

ALLLx,p(x),y
∀x. p(x) B p(y)

AXp(z)
∀x. p(x), p(z) B p(z)

ALLLx,p(x),z
∀x. p(x) B p(z)

CONJRp(y), p(z)
∀x. p(x) B p(y)∧ p(z)

Fig. 1. A proof

This definition introduces a constructor Node : α→ (α tree) fset→ α tree and two
selectors lab : α tree→ α, sub : α tree→ (α tree) fset. They have the form Node a Ts,
where a is the tree’s label and Ts is the finite set of its (immediate) subtrees. The
codatatype keyword indicates that, unlike for inductive datatypes, this tree formation
rule may be applied an infinite number of times.

A step combines the current state and the rule to be applied: step = state× rule.
Derivation trees are defined as trees labeled by steps, dtree= step tree, where the root’s
label (s, r) represents the proved goal s and the first (backward) applied rule r. The well-
formed derivation trees are captured by the predicate wf : dtree→ bool defined by the
coinductive rule3

eff r s (image (fst◦ lab) Ts) ∀T ∈Ts. wf T
WF

wf (Node (s, r) Ts)

Thus, the predicate wf is the greatest (weakest) solution to

wf (Node (s, r) Ts)⇐⇒ eff r s (image (fst◦ lab) Ts) ∧ (∀T ∈Ts. wf T )

The term image f A denotes the image of set A through function f , and fst is the left
projection operator.

The first assumption requires that the rule r from the root be applied to obtain the
subtrees’ labels. The second assumption requires that wellformedness hold for the im-
mediate subtrees. The coinductive nature of the definition ensures that these properties
hold for arbitrarily deep subtrees of T , even if T has infinite paths.

Proofs. The finite derivation trees—the trees that would result from an inductive data-
type definition with the same constructors—can be carved out of the codatatype dtree
by the predicate finite defined inductively (i.e., as a least fixpoint) by the rule

∀T ∈Ts. finite T
FIN

finite (Node (s, r) Ts)

A proof of a state s is a finite well-formed derivation tree with the state s at its root. An
infinite well-formed derivation tree represents a failed proof attempt.

Example 2. Given the instantiation of Example 1, Figure 1 shows a finite derivation
tree for the sequent All x (p(x)) B Conj (p(y)) (p(z)) written using the familiar syntax
for logical symbols. Figure 2 shows an infinite tree for the same sequent.

3 Double lines distinguish coinductive rules from their inductive counterparts.
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AXp(y)
∀x. p(x), p(y) B p(y)

ALLLx,p(x),y
∀x. p(x) B p(y)

...
ALLLx,p(x),y

∀x. p(x), p(y) B p(z)
ALLLx,p(x),y

∀x. p(x), p(y) B p(z)
ALLLx,p(x),y

∀x. p(x) B p(z)
CONJRp(y), p(z)

∀x. p(x) B p(y)∧ p(z)

Fig. 2. A failed proof attempt

Escape Paths. An infinite path in a derivation tree can be regarded as a way to “escape”
the proof. To represent infinite paths independently of trees, we introduce the codatatype
of streams over a type α with the constructor SCons and the selectors shead and stail:

codatatype α stream = SCons (shead: α) (stail: α stream)

The predicate ipath : step stream → dtree → bool, which ascertains whether a
stream of steps is an infinite path in a tree, is defined coinductively:

T ∈ Ts ipath T σ
IPATH

ipath (Node (s, r) Ts) (SCons (s, r) σ)

An escape path is a stream of steps that can form an infinite path in a derivation
tree. They are defined coinductively as the predicate epath : step stream→ bool, which
requires that every element in the given stream be obtained by applying an existing rule
and choosing one of the resulting states:

eff r s ss s′ ∈ ss epath (SCons (s′, r ′) σ)
EPATH

epath (SCons (s, r) (SCons (s′, r ′) σ))

The following lemma is easy to prove by coinduction.

Lemma 2. For any σ and T , if wf T and ipath σ T , then epath σ.

Example 3. The stream

(∀x. p(x)B p(y)∧ p(z)) · (∀x. p(x)B p(z)) · (∀x. p(x), p(y)B p(z))∞

where s ·σ= SCons s σ and s∞ = s · s · . . . is an escape path for the tree of Figure 2.

Since the trees are finitely branching, König’s lemma applies. Its proof occasions a
warm-up corecursive definition.

Lemma 3. If T is infinite, there exists an infinite path σ in T .

Proof. By the contrapositive of FIN, if Node (s, r) Ts is infinite, there exists an infinite
subtree T ∈ Ts. Let f : {T ∈ dtree. ¬ finite T} → {T ∈ dtree. ¬ finite T} be a func-
tion witnessing this fact—i.e., f T is an immediate infinite subtree of T . The desired
infinite path p : {T ∈dtree. ¬ finite T} → step stream can be defined by primitive co-
recursion over the codatatype of streams: p T = SCons (lab T ) (p (f T )). The predicate
ipath (p T ) T holds by straightforward coinduction on the definition of ipath. ut
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...
ALLLx,p(x),t4∀x. p(x), p(t1), p(t2), p(t3) B q(y)
ALLLx,p(x),t3∀x. p(x), p(t1), p(t2) B q(y)

ALLLx,p(x),t2∀x. p(x), p(t1) B q(y)
ALLLx,p(x),t1∀x. p(x) B q(y)

Fig. 3. A derivation tree with a countermodel path

Countermodel Paths. A countermodel path is a structure that witnesses the unprov-
ability of a state s. Any escape path starting in s is a candidate for a countermodel path,
given that it indicates a way to apply the proof rules without reaching any result. For it
to be a genuine countermodel path, all possible proofs must have been attempted. More
specifically, whenever a rule becomes enabled along the escape path, it is eventually
applied later in the sequence. For FOL with sequents as states, such paths can be used
to produce actual countermodels by interpreting as true (resp. false) all statements made
along the path on the left (resp. right) of the sequents.

A rule r is enabled in a state s if it has an effect (i.e., ∃ss. eff r s ss). This is written
enabled r s. For any rule r, stream σ, and predicate P : α stream→ bool:

• takenr σ iff r is taken at the start of the stream (i.e., shead σ= (s, r) for some s);
• enabledAtr σ iff r is enabled at the beginning of the stream (i.e., if sheadσ=(s, r ′),

then enabled r s);
• ev P σ (“eventually P”) iff P is true for some suffix of σ;
• alw P σ (“always P”) iff P is true for all suffixes of σ.

A stream of steps σ is saturated if, at each point, any enabled rule is taken at a later
point: ∀r∈ rule. alw (λσ′. enabledAtr σ

′⇒ ev takenr σ
′) σ. A countermodel path for

a state s is a saturated escape path σ starting at s (i.e., shead σ= (s, r) for some r).

Example 4. The escape path given in Example 3 is not saturated, because the rule
ALLLx,p(x),z is enabled starting from the first position but never taken.

Example 5. The escape path associated with the tree of Figure 3 is a countermodel
path for ∀x. p(x) B q(y), assuming that each possible term occurs infinitely often in the
sequence t1, t2, . . . . The only enabled rules along the path are of the form ALLLx,p(x),_,
and each is always eventually taken.

Completeness. For the proof of completeness, we assume that the set of rules satisfies
the following properties:

• Availability: At each state, at least one rule is enabled (i.e., ∀s. ∃r. enabled r s).
• Persistence: At each state, if a rule is enabled but not taken, it remains enabled (i.e.,
∀s, r, r ′, s′, ss. enabled r ′ s ∧ r′ 6= r ∧ eff r s ss ∧ s′ ∈ set ss ⇒ enabled r ′ s′).

The above conditions are local properties of the rules’ effect, not global properties of
the proof system. This makes them easy to verify for particular systems.
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Saturation is a stronger condition than the standard properties of fairness and justice
[9]. Fairness would require the rules to be continuously enabled to guarantee that they
are eventually taken. The property of justice is stronger in that it would require the rules
to be enabled infinitely often, but not necessarily continuously. Saturation goes further:
If a rule is ever enabled, it will certainly be chosen at a later point. Saturation may seem
too strong for the task at hand; however, in the presence of persistence, the notions of
fairness, justice, and saturation all coincide.

Theorem 4. Given a rule system that fulfills availability and persistence, every state
admits a proof or a countermodel path.

Proof. The proof uses the following combinators:

• stake : α stream→ nat→ α list maps ρ and n to the list of the first n elements of ρ;
• smap : (α→ β)→ α stream→ β stream maps f to every element of the stream;
• nats : nat stream denotes the stream of natural numbers: 0 ·1 ·2 ·3 · . . . ;
• flat : (α list) stream→α stream maps a stream of finite nonempty lists to the stream

obtained by concatenating these lists;
• sdropWhile : (α→ bool)→ α stream→ α stream removes the maximal prefix of

elements that fulfill a given predicate from a given stream (or an irrelevant default
value if the predicate fails for the entire stream).

We start by constructing a stream of rules fenum in a fair fashion, so that every rule
occurs infinitely often in fenum. Let enum be a stream such that its elements cover the
entire set rule. Take fenum = flat (smap (stake enum) (stail nats)). Thus, if enum =
r1 · r2 · r3 · . . . , then fenum= r1 · r1 · r2 · r1 · r2 · r3 · . . . .

Let s be a state. Using fenum, we build a derivation tree T0 labeled with s such that
all its infinite paths are saturated. Let fair be the subset of rule stream consisting of the
fair streams. Clearly, any suffix of an element in fair will also belong to fair. Given ρ ∈
fair and s∈ state, we assume sdropWhile (λr. ¬ enabled r s) ρ has the form SCons r ρ′,
making r the first enabled rule in ρ. Such a rule exists because, by availability, at least
one rule is enabled in s and, by fairness, all the rules occur in ρ. Since enabled r s,
we can pick a state set ss such that eff r s ss. We define mkTree : fair→ state→ dtree
corecursively as mkTree ρ s = Node (s, r) (image (mkTree ρ′) ss).

We prove that, for all ρ ∈ fair and s, the derivation tree mkTree ρ s is well-formed
and all its infinite paths are saturated. Wellformedness is obvious because at each point
the continuation is built starting with the effect of a rule. For saturation, we show that if
rule r is enabled at state s and ipath (mkTree ρ s) σ, then r appears along σ (i.e., there
exists a state s′ such that (s′, r) is in σ). This follows by induction on the position of r
in ρ, pos r ρ—formally, the length of the shortest list ρ0 such that ρ = ρ0 @SCons r _,
where @ denotes concatenation. Let r′ be the first rule from ρ enabled at state s. If r = r′,
then mkTree ρ s has label (s, r) already. Otherwise, ρ has the form ρ1 @ [r′]@ρ′, with r
not in ρ1, hence pos r ρ′ < pos r ρ. From the definitions of ipath and mkTree, it follows
that ipath (mkTree ρ′ s′) (stail σ) holds for some s′ ∈ ss such that eff r s′ ss. By the
induction hypothesis, r appears along stail σ, hence along σ, as desired. In particular,
T0 =mkTree fenum s is well-formed and all its infinite paths are saturated.

Finally, if T0 is finite, it is the desired finite derivation tree. Otherwise, by Lemma 3
(König) it has an infinite path. This path is necessarily saturated; by Lemma 2, it is the
desired countermodel path. ut



9

Theorem 4 captures the abstract essence of arguments from the literature, although
this is sometimes hard to grasp under the thick forest of syntactic details and concrete
strategies for fair enumeration: A fair tree is constructed, which attempts a proof; in
case of failure, the tree exhibits a saturated escape path.

If we are not interested in witnessing the proof attempt closely, Theorem 4 can be
established more directly, by constructing the fair path without going through an inter-
mediate fair tree. The key observation is that if a state s has no proof and eff r s ss, there
must exist a state s′ ∈ ss that has no proof (otherwise we would compose by r the proofs
of all s′ into a proof of s). Let pick r s ss denote such an s′. We proceed directly to the
construction of a saturated escape path as a corecursive predicate mkPath : fair→{s ∈
state. s has no proof} → step stream following the same idea as for the previous tree
construction (function mkTree): mkPath ρ s = SCons (s, r) (mkPath ρ′ (pick r s ss)),
where again SCons r ρ′ = sdropWhile (λr. ¬ enabled r s) ρ and ss is such that eff r s ss.
Fairness of mkPath ρ s follows by a similar argument as before for fairness of the tree.

Omitting the Availability Assumption. The above result assumes availability and
persistence. Among these assumptions, persistence is essential: It ensures that the con-
structed fair path is saturated, meaning that every rule available at any point is eventually
applied. Availability can be added later to the system without affecting its behavior by
introducing a special “idle” rule.

Lemma 5. A rule system R = (state, rule, eff) that fulfills persistence can be trans-
formed into an equivalent rule system Ridle = (state, ruleidle, effidle) that fulfills both
persistence and availability, with ruleidle = rule ∪ {IDLE} and effidle behaving like eff
on rule and effidle IDLE s ss⇐⇒ ss = {s}.

Proof. Availability for the modified system follows from the continuous enabledness of
IDLE. Persistence follows from the persistence of the original system together with the
property that IDLE is continuously enabled and does not alter the state. The modified
system is equivalent to the original one because IDLE does not alter the state. ut

Theorem 6. Given a rule system R that fulfills persistence, every state admits a proof
over R or a countermodel path over Ridle.

Proof. We first apply Theorem 4 to the system Ridle to obtain that every state admits
either a proof or a countermodel path, both in this system. And since R and Ridle are
equivalent, any proof of Ridle yields one of R. ut

4 Concrete Completeness

The abstract completeness proof is parameterized by a rule system. This section con-
cretizes the result for the Gentzen system from Section 2 to derive the standard com-
pleteness theorem. Example 1 recast it as a rule system; we must verify that it fulfills
persistence and interpret abstract countermodel paths as actual FOL countermodels.

The Gentzen rules are persistent because they preserve the context surrounding the
eigenformulas. For example, an application of AXa (which affects only the atom a)
leaves any potential enabledness of ALLLx,ϕ,t (which affects only formulas with All at
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the top) unchanged; moreover, AXa does not overlap with AXb for a 6= b. The only
subtlety concerns ALLRx,ϕ, which requires the existence of a fresh y. But since the
sequents are finite, we can always find a fresh variable in the infinite set var.

On the other hand, availability does not hold for the proof system; for example, the
sequent p(x) B q(x) has no enabled rule. Hence, we need Theorem 6 and its IDLE rule.

Lemma 7. If Γ B ∆ admits a countermodel path, there exist a structure S and a
valuation ξ : var→ S such that S 6|=ξ Γ B ∆.

Proof. Let σ be a countermodel path for Γ B ∆ (i.e., a saturated escape path having
Γ B ∆ as the state from the head). Let Γ̃ be the union of the left-hand sides of sequents
occurring in σ, and let ∆̃ be the union of the corresponding right-hand sides. Clearly,
Γ ⊆ Γ̃ and ∆ ⊆ ∆̃. The pair (Γ̃, ∆̃) can be shown to be well-behaved with respect to all
the connectives and quantifiers in the following sense:

1. For all atoms a, Atm a /∈ Γ̃∩ ∆̃.
2. If Neg ϕ ∈ Γ̃, then ϕ ∈ ∆̃.
3. If Neg ϕ ∈ ∆̃, then ϕ ∈ Γ̃.
4. If Conj ϕ ψ∈ Γ̃, then ϕ∈ Γ̃ and ψ∈ Γ̃.

5. If Conj ϕ ψ ∈ ∆̃, then ϕ ∈ ∆̃ or ψ ∈ ∆̃.
6. If All x ϕ ∈ Γ̃, then ϕ[t/x] ∈ Γ̃ for all t.
7. If All x ϕ ∈ ∆̃, there exists a variable y

such that ϕ[y/x] ∈ ∆̃.

These properties follow from the saturation ofσwith respect to the corresponding rules.
The proofs are routine. For example, if All x ϕ ∈ Γ̃ and t is a term, ALLLx,ϕ,t is enabled
in σ and hence eventually taken, ensuring that ϕ[t/x] ∈ Γ̃.

We construct the concrete countermodel S = (S, F, P) as follows. We let the do-
main S be the set term and ξ be the embedding of variables into terms. For each n-ary f
and p and each t1, . . . , tn ∈ S , we define Ff (t1, . . . , tn) = f (t1, . . . , tn) and Pp (t1, . . . , tn)
⇐⇒ p(t1, . . . , tn) ∈ Γ̃.

To prove S 6|=ξ Γ B ∆, it suffices to show that ∀ϕ∈ Γ̃. S |=ξ ϕ and ∀ϕ∈ ∆̃. S 6|=ξ ϕ.
These two facts follow together by induction on the depth of ϕ. In the base case, if
Atm a ∈ Γ̃, then S |=ξ Atm a follows directly from the definition of S ; moreover, if
Atm a ∈ ∆̃, then by property 1 Atm a 6∈ Γ̃, hence again S 6|=ξ Atm a follows from the
definition of S. The only nontrivial inductive case is All, which requires the Lemma 1
(substitution). Assume All x ϕ ∈ Γ̃. By property 6, we have ϕ[t/x] ∈ Γ̃ for any t. Hence,
by the induction hypothesis, S |=ξ ϕ[t/x]. By Lemma 1, S |=ξ[x←t] ϕ for all t; that is,
S |=ξ All x ϕ. The second fact, for ∆̃, follows similarly from property 7. ut
Theorem 8. For any sequent Γ B ∆, we have ` Γ B ∆ ∨ (∃S , ξ.S 6|=ξ Γ B ∆).

Proof. From Theorem 6 and Lemma 7. ut

5 Further Concrete Instances

Theorem 6 is applicable to classic FOL Gentzen systems from the literature, in sev-
eral variants: with sequent components represented as lists, multisets or sets, one-sided
or two-sided, and so on. This includes the systems G′, GCNF′, G, and G= (the lat-
ter for FOL with equality) from Gallier [10] and the systems G1, G2, G3, GS1, GS2,
and GS3 from Troelstra and Schwichtenberg [36]. Persistence is easy to check. The
syntax-independent part of the argument is provided by Theorem 6, while an ad hoc
step analogous to Lemma 7 is required to build a concrete countermodel.



11

Several FOL refutation systems based on tableaux or resolution are instances of
the abstract theorem, providing that we read the abstract notion of “proof” as “refuta-
tion” and “countermodel” as “model.” Nondestructive tableaux [14]—including those
presented in Bell and Machover [1] and in Fitting [8]—are usually persistent when
regarded as derivation systems. After an application of Theorem 6, the argument for
interpreting the abstract model is similar to that for Gentzen systems (Lemma 7).

Regrettably, abstract completeness is not directly applicable beyond classical logic.
It is generally not clear how to extract a specific model from a nonstandard logic from
an abstract (proof-theoretic) model. Another issue is that standard sequent systems for
nonclassical variations of FOL such as modal or intuitionistic logics do not satisfy per-
sistence. A typical right rule for the modal operator � (“must”) is as follows [36]:

� Γ B ♦ ∆, ϕ
MUSTR

� Γ B ♦ ∆,� ϕ

To be applicable, the rule requires that all the formulas in the context surrounding the
eigenformula have � or ♦ at the top. Other rules may remove these operators, or intro-
duce formulas that do not have them, thus disabling MUSTR.

Recent work targeted at simplifying completeness arguments [25] organizes modal
logics as labeled transition systems, for which Kripke completeness is derived. In the
proposed systems, the above rule becomes

Γ, w R w′ B ∆, w′ : ϕ MUSTR′
(w′ fresh)Γ B ∆, w :� ϕ

The use of labels for worlds (w,w′) and the bookkeeping of the accessibility relation R
makes it possible to recast the rule so that only resilient facts are ever assumed about
the context. The resulting proof system satisfies persistence, enabling Theorem 6. The
Kripke countermodel construction is roughly as for classic FOL Gentzen systems.

6 Formalization and Implementation

The definitions, lemmas, and theorems presented in Sections 2 to 4 are formalized in
the proof assistant Isabelle/HOL. The instantiation step of Section 4 is formalized for a
richer version of FOL, with sorts and interpreted equality, as required by our motivating
application (efficient encodings of sorts in unsorted FOL [4]). The formal development
is publicly available [5].

The necessary codatatypes and corecursive definitions are realized using a recently
introduced definitional package [35]. The tree codatatype illustrates the support for
corecursion through permutative data structures (with non-free constructors) such as
finite sets, a feature that is not available in any other proof assistant.

For generating code, we make the additional assumption that the effect relation is
a partial function eff′ : rule→ state→ (state fset) option, where the Isabelle datatype
α option enriches a copy of α with a special value None. From this function, we build
the relational eff as the partial function’s graph. Isabelle’s code generator [12, 13] can
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then produce Haskell code for the computable part of our completeness proof: the ab-
stract prover mkTree, defined corecursively in the proof of Theorem 4. The code is
reproduced below:

data Stream a = SCons a (Stream a)
newtype FSet a = FSet [a]
data Tree a = Node a (FSet (Tree a))

fmap f (FSet xs) = FSet (map f xs)

sdropWhile p (SCons a σ) =
if p a then sdropWhile p σ else SCons a σ

mkTree eff ρ s =
Node (s, r) (fmap (mkTree eff ρ’) (fromJust (eff r s)))
where SCons r ρ’ = sdropWhile (\r -> not (isJust (eff r s))) ρ

Finite sets are represented as lists. The functions isJust :α option→ bool and fromJust :
α option→ α are the Haskell-style discriminator and selector for option. Since the Isa-
belle formalization is parametric over rule systems (state, rule, eff), the code for mkTree
explicitly takes eff as a parameter.

Although the code generator was not designed with codatatypes in mind, it is gen-
eral enough to handle them. Internally, it reduces Isabelle specifications to higher-order
rewrite systems [23] and generates functional code in Haskell, OCaml, Scala, or Stan-
dard ML. Partial correctness is guaranteed irrespective of the target language’s evalua-
tion strategy. However, for the guarantee to be non-vacuous for corecursive definitions,
one needs a language with a lazy evaluation strategy, such as Haskell.

The verified contract of the program reads as follows: Given an available and per-
sistent rule system (state, rule, eff), a fair rule enumeration ρ, and a state s representing
the formula to prove, mkTree eff ρ s yields a finite derivation tree of s if s is provable
in the system; otherwise, it produces an infinite fair derivation tree whose infinite paths
are all countermodel paths. These guarantees involve only partial correctness of ground
term evaluation.4

The generated code is a generic countermodel-producing semidecision procedure
parameterized by the the proof system. Moreover, the fair rule enumeration parameter ρ
can be instantiated to various choices that may perform better than the simple scheme
described in Section 3.

7 Related Work

This paper joins a series of pearls aimed at reclaiming mathematical concepts and re-
sults for coinductive methods, including streams [29, 33], regular expressions [30, 32],
and automata [31]. Some developments pass the ultimate test of formalization, usually

4 There are subtle “moral correctness” aspects [7] concerning the transport of statements be-
tween Isabelle’s and Haskell’s type systems that are yet to be established for codatatypes, with
Isabelle’s domain package [16] as a potential mediator.
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in Agda and Coq, the codatatype-aware proof assistants par excellence: Eratosthenes’
sieve [3], real number basics [6], and temporal logic for red-blue trees [24].

So why write yet another formalized pearl involving coinduction? First, because we
finally could—with the new codatatype package, Isabelle has caught up with its rivals in
this area. Second, because, although codatatypes are a good match for the completeness
theorem, there seems to be no proof in the literature that takes advantage of this.

While there are many accounts of the completeness theorem for FOL and related
logics, most of them prefer the more mathematical Henkin style, which obfuscates the
rich structure of proof and failure. This preference has a long history. It is positively
motivated by the ability to support uncountable languages. More crucially, it is nega-
tively motivated by the lack of rigor perceived in the alternative: “geometric” reasoning
about infinite trees. Negri [25] gives a revealing account in the context of modal logic,
quoting reviews that were favorable to Kripke’s completeness result [20] but critical of
his informal argument based on infinite tableau trees.5 Kaplan [18] remarks that “al-
though the author extracts a great deal of information from his tableau constructions, a
completely rigorous development along these lines would be extremely tedious.”

A few textbooks venture in a proof-theoretic presentation of completeness, notably
Gallier’s [10]. Such a treatment highlights not only the structure, but also the algorith-
mic content of the proofs. The price is usually a lack of rigor, in particular a gap between
the definition of derivation trees and its use in the completeness argument. This lack of
rigor should not be taken lightly, as it may lead to serious ambiguities or errors: In the
context of a tableau completeness proof development, Hähnle [14] first performs an im-
plicit switch from finite to possibly infinite tableaux, and then claims that tableau chain
suprema exist by wrongly invoking Zorn’s lemma [14, Definition 3.16].6

The completeness theorem has been mechanized before in proof assistants. Schlöder
and Koepke, in Mizar [34], formalize a Henkin-style argument for possibly uncountable
languages. Building on an early insight by Krivine [21] concerning the expressibility of
the completeness proof in intuitionistic second-order logic, Ilik [17] analyzes Henkin-
style arguments for classic and intuitionistic logic with respect to standard and Kripke
models and formalizes them in Coq (without employing codatatypes).

At least three proofs were developed using HOL-based provers. Harrison [15], in
HOL Light, and Berghofer [2], in Isabelle, formalize Henkin-style arguments. Ridge
and Margetson [22, 28], in Isabelle, employ proof trees constructed as graphs of nodes
each carrying its level as a natural number. Their work has the merits of analyzing the
computational content of proofs in the style of Gallier [10] and discussing an OCaml
implementation. Our formalization improves over this work in a similar way in which
our presentation improves over Gallier’s: The newly introduced codatatype and corecur-
sion support in Isabelle provides the right abstraction mechanisms for reasoning about
infinite trees, avoiding boilerplate for tree manipulation based on numeric indexing.
Moreover, codatatypes are mapped naturally to Haskell types, allowing Isabelle’s code
generator to produce certified Haskell code. Finally, our proof is more abstract, applying
to several variants of FOL and beyond.

5 And Kripke’s degree of rigor in this early paper is not far from today’s state of the art in proof
theory; see, e.g., Troelstra and Schwichtenberg [36].

6 This is the only error we found in this otherwise excellent chapter on tableaux.
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8 Conclusion

The completeness theorem is a fundamental result about classical logic. Its proof is
presented in many variants in the literature. Few of these presentations emphasize the
algorithmic content, and none of them uses codatatypes. Gallier’s pseudo-Pascal code is
inspiring, but we find “pseudo-Haskell,” i.e., Isabelle/HOL with codatatypes, superior
to combine computational intuition and mathematical rigor.

Codatatypes are the key to formulate an account that is both rigorous and abundant
in algorithmic content. The definition of the abstract prover mkTree is stated rigorously,
is accessible to functional programmers, and replaces pages of verbose descriptions.

The advantages of machine-checked metatheory are well known from programming
language research, where new results are often formalized and proof assistants are used
in the classroom. This paper, like its predecessor [4], reported on some steps we have
taken to apply the same methods to formal logic and automated reasoning.
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29. Roşu, G.: Equality of streams is a Π0
2-complete problem. In: Reppy, J.H., Lawall, J.L. (eds.)

ICFP ’06. ACM (2006)
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