
Evolving a DSL implementation

Laurence Tratt

Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom.
laurie@tratt.net, http://tratt.net/laurie/

Abstract. Domain Specific Languages (DSLs) are small languages de-
signed for use in a specific domain. DSLs typically evolve quite radically
throughout their lifetime, but current DSL implementation approaches
are often clumsy in the face of such evolution. In this paper I present a
case study of an DSL evolving in its syntax, semantics, and robustness,
implemented in the Converge language. This shows how real-world DSL
implementations can evolve along with changing requirements.

1 Introduction

Developing complex software in a General Purpose Language (GPL) often leads
to situations where problems are not naturally expressible within the chosen
GPL. This forces users to find a workaround, and encode their solution in as
practical a fashion as they are able. Whilst such workarounds and encodings are
often trivial, they can be exceedingly complex. DSLs aim to tackle the lack of
expressivity in GPLS by allowing users to use mini-languages defined for specific
problem areas. [1] define DSLs as ‘languages tailored to a specific application do-
main. They offer substantial gains in expressiveness and ease of use compared
with GPLs in their domain of application’. [2] describes the typical costs of a
DSL, noting that a small extra initial investment in a DSL implementation typ-
ically leads to long term savings, in comparison to alternative routes. Exactly
what identifies a particular language as being a ‘DSL’ is subjective, but intu-
itively I define it as a language with its own syntax and semantics, and which is
smaller and less generic than a typical GPL such as Java.

Traditionally DSLs – for example the UNIX make program or the yacc pars-
ing system – have been implemented as stand alone systems. The resulting high
implementation costs, primarily due to the difficulties of practical reuse, have
hindered the development of DSLs. Implementing DSLs as stand alone systems
also leads to problems when DSLs evolve. DSLs tend to start out as small, declar-
ative languages [3], but most tend to acquire new features as they are used in
practise; such features tend to be directly borrowed from GPLs [2]. So while
DSL implementations tend over time to resemble programming language imple-
mentations, they frequently lack the quality one might expect in such a system
due to the unplanned nature of this evolution.

Recently, dedicated DSL implementation approaches such as Stratego [4],
the commercial XMF [5], Converge [6], and others (e.g. [7–9]) have substantially
reduced implementation costs through the embedding of DSLs in host languages.

As noted in [3, 2], DSLs tend to start small but grow rapidly when users
find them useful, and desire more power. Specifically, such evolution often takes
the form of functionality influenced by that found in GPLs. Continual evolution
of DSL implementations is often difficult because such evolution is generally
both unplanned and unanticipated, and therefore leads to the implementation
becoming increasingly difficult to maintain [2]. In this paper I present a case
study of a DSL for state machines implemented within Converge. I then show
how this example can be easily evolved to a substantially more powerful version
without compromising the quality of the implementation, and indeed improving
the user experience. The evolution in this paper is intended to show typical
unplanned evolution, where an implementation is gradually edited to reflect new
and changing requirements.

This paper is structured as follows. First I present a brief overview of Con-
verge, and its DSL related features (section 2). I then outline the case study and
present an initial implementation (section 3) before extending its functionality
(section 4) and increasing its robustness (section 5).

2 Converge

This section gives a brief overview of basic Converge features that are relevant to
the main subject of this paper. Whilst this is not a replacement for the language
manual [10], it should allow readers familiar with a few other programming lan-
guages the opportunity to quickly come to grips with the most important areas
of Converge, and to determine the areas where it differs from other languages.

2.1 Fundamental features

Converge’s most obvious ancestor is Python [11] resulting in an indentation based
syntax, a similar range and style of datatypes, and general sense of aesthetics.
The most obvious initial difference is that Converge is a slightly more static
language: all namespaces (e.g. a modules’ classes and functions, and all variable
references) are determined statically at compile-time. Converge’s scoping rules
are different from many other languages, and are intentionally very simple. Es-
sentially Converge’s functions are synonymous with both closures and blocks.
Converge is lexically scoped, and there is only one type of scope. Variables do
not need to be declared before their use: assigning to a variable anywhere in a
block makes that variable local throughout the block, and accessible to inner
blocks. Variable references search in order from the innermost block outwards,
ultimately resulting in a compile-time error if a suitable reference is not found.
Fields within a class are not accessible via the default scoping mechanism: they
must be referenced via the self variable which is the first argument in any bound

function (functions declared within a class are automatically bound functions).
The overall justification for these rules is to ensure that, unlike similar languages
such as Python, Converge’s namespaces are entirely statically calculable.

Converge programs are split into modules, which contain a series of defi-

nitions (imports, functions, classes and variable definitions). Each module is
individually compiled into a bytecode file, which can be linked to other files to
produce an executable which can be run by the Converge VM. If a module is
the main module of a program (i.e. passed first to the linker), Converge calls
its main function to start execution. The following module shows a caching Fi-
bonacci generating class, and indirectly shows Converge’s scoping rules (the i

and fib cache variables are local to the functions they are contained within),
printing 8 when run:

import Sys

class Fib_Cache:
func init():
self.cache := [0, 1]

func fib(x):
i := self.cache.len()
while i <= x:
self.cache.append(self.cache[i - 2] + self.cache[i - 1])
i += 1

return self.cache[x]

func main():
fib_cache := Fib_Cache.new()
Sys::println(fib_cache.fib(6))

2.2 Compile-time meta-programming

For the purposes of this paper, compile-time meta-programming can be largely
thought of as being equivalent to macros; more precisely, it allows the user of a
programming language a mechanism to interact with the compiler to allow the
construction of arbitrary program fragments by user code. Compile-time meta-
programming allows users to e.g. add new features to a language [7] or apply ap-
plication specific optimizations [9]. Converge’s compile-time meta-programming
facilities were inspired by those found in Template Haskell (TH) [12], and are
detailed in depth in [6]. In essence Converge provides a mechanism to allow its
concrete syntax to naturally create Abstract Syntax Trees (ASTs), which can
then be spliced into a source file.

The following program is a simple example of compile-time meta-programming,
trivially adopted from its TH cousin in [8]. expand power recursively creates an
expression that multiplies x n times; mk power takes a parameter n and creates
a function that takes a single argument x and calculates x

n; power3 is a specific
power function which calculates n

3:

func expand_power(n, x):
if n == 0:
return [| 1 |]

else:
return [| ${x} * ${expand_power(n - 1, x)} |]

func mk_power(n):
return [|
func (x):
return ${expand_power(n, [| x |])}

|]

power3 := $<mk_power(3)>

The user interface to compile-time meta-programming is inherited directly
from TH. Quasi-quoted expressions [| ... |] build ASTs that represent the
program code contained within them whilst ensuring that variable references
respect Converge’s lexical scoping rules. Splice annotations $<...> evaluate the
expression within at compile-time (and before VM instruction generation), re-
placing the splice annotation itself with the AST resulting from its evaluation.
This is achieved by creating a temporary module containing the splice expression
in a function, compiling the temporary module into bytecode, injecting it into
the running VM, and then evaluating the function therein. Insertions ${...}
are used within quasi-quotes; they evaluate the expression within and copy the
resulting AST into the AST being generated by the quasi-quote.

When the above example has been compiled into VM instructions, power3
essentially looks as follows:

power3 := func (x):
return x * x * x * 1

2.3 DSL blocks

A DSL can be embedded into a Converge source file via a DSL block. Such a
block is introduced by a variant on the splice syntax $<<expr>> where expr

should evaluate to a function (the DSL implementation function). The DSL
implementation function is called at compile-time with a string representing the
DSL block, and is expected to return an AST which will replace the DSL block
in the same way as a normal splice: compile-time meta-programming is thus the
mechanism which facilitates embedding DSLs. Colloquially one uses the DSL
implementation function to talk about the DSL block as being ‘an expr block’.
DSL blocks make use of Converge’s indentation based syntax; when the level of
indentation falls, the DSL block is finished.

An example DSL block for a railway timetable DSL is as follows:

func timetable(dsl_block, src_infos):
...

$<<timetable>>:
8:25 Exeter St. Davids
10:20 Salisbury
11:49 London Waterloo

As shall be seen later, DSL blocks have several useful features, particularly re-
lating to high quality error reporting. Although in this paper I only discuss DSL
blocks, Converge also supports DSL phrases which are essentially intra-line DSL
inputs, suitable for smaller DSLs such as SQL queries.

3 Initial case study

The example used in this paper is that of a generic state machine. Although state
machines are often represented graphically, they are easily represented textually.
I start with a particularly simple variant of state machines which represents the
basics: states and transitions with events. For example, Figure 1 shows a state
machine which we wish to represent textually so that we can have a running
state machine we can fire events at and examine its behaviour. In the rest of this
section, I show the complete definition of a simple textual state machine DSL.

Fig. 1. Simple state machine of a door.

3.1 DSL grammar

Since we use DSL blocks within Converge, much of the potential difficulty with
embedding a DSL is automatically taken care of. The first action of a DSL author
is therefore to define a grammar his DSL must conform to. Converge allows DSL
authors to parse the text of a DSL block in any way they choose. However most
DSLs can be defined in a way which allows them to make use of Converge’s
flexible tokenizer (sometimes called a lexer), and its built-in Earley parser. This
allows the implementation work for a DSL to be minimised as Earley parsing
can deal with any context free grammar, without the restrictions common to
most parsing approaches [13]. Expressing a suitable grammar for simple state
machines is thus simple:

parse := $<<DSL::mk_parser("system", ["state", "transition", "and", \
"or", "from", "to"], [])>>:
system ::= element ("NEWLINE" element)*
element ::= state

| transition
state ::= "STATE" "ID"
transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event
event ::= ":" "ID"

|

As this code fragment suggests, grammars are themselves a DSL in Converge.
The above example creates a parser which uses Converges default tokenizer,
adds new keywords (state, transition etc.) and using a specified top-level
rule system.

3.2 Creating a parse tree

The DSL implementation function is passed a DSL block string which it should
parse against the DSL’s grammar. Since DSL implementation functions tend to
follow the same form, Converge provides a convenience function CEI::dsl parse

which performs parsing in one single step. The state machine DSL implementa-
tion function and an example DSL block look as follows:

func sm(dsl_block, src_infos):
parse_tree := CEI::dsl_parse(dsl_block, src_infos, ["state", \
"transition", "and", "or", "from", "to"], [], GRAMMAR, "system")
return SM_Translator.new().generate(parse_tree)

Door := $<<sm>>:
state Opened
state Closed

transition from Opened to Closed: close
transition from Closed to Opened: open

The CEI (Compiler External Interface) dsl parse convenience function takes
a DSL block, a list of src infos, a list of extra keywords above and beyond
Converge’s standard keywords, a list of extra symbols, a grammar, and the
name of the grammar’s start rule. It returns a parse tree (that is, a tree still
containing tokens). Parse trees are Converge lists, with the first element in the
list representing the production name, and the resulting elements being either
tokens or lists representing the production. Tokens have two slots of particular
interest: type contains the tokens type (e.g. ID); value contains the particular
value of the token (e.g. foo). A subset of the parse tree for the above DSL block
is as follows:

["system", ["element", ["state", <STATE state>, <ID Opened>]],
<NEWLINE>, ["element", ["state", <STATE state>, <ID Closed>]], ...]

3.3 Translating the parse tree to an AST

The second, final, and most complex action a DSL author must take is to trans-
late the parse tree into a Converge AST, using quasi-quotes and so on. Con-
verge provides a simple framework for this translation, where a translation class
(SM Translator in the above DSL implementation function) contains a function
t production name for each production in the grammar. For the simple state
machine DSL, we wish to translate the parse tree into an anonymous class which
can be instantiated to produce a running state machine, which can then receive
and act upon events. The starting state is taken to be the first state in the
DSL block. Transitions may have an event attached to them or not; if they have
no event, they are unconditionally, and non-deterministically, taken. A slightly
elided version of the translation is as follows:

1 class SM Translator(Traverser::Strict Traverser):
2 func t system(self, node):
3 sts := [all translated states]

4 tns := [all translated transitions]
5

6 return [|
7 class:
8 states := ${CEI::ilist(sts)}
9 transitions := ${CEI::ilist(tns)}

10

11 func init(self):
12 self.state := ${sts[0]}
13 while self.transition("")
14

15 func event(self, e):
16 if not self.transition(e):
17 raise Exceptions::User Exception.new(Strings::format(\
18 "Error: No valid transition from state."))
19 while self.transition("")
20

21 func transition(self, e):
22 for tn := self.transitions.iter():
23 if tn.from == self.state & tn.event == e:
24 Sys::println("Event ", e, \
25 " causes transition to state ", tn.to)
26 self.state := tn.to
27 break
28 exhausted:
29 return fail
30 |]
31

32 func t element(self, node):
33 return self. preorder(node[1])
34

35 func t state(self, node):
36 // state ::= "STATE" "ID"
37 return CEI::istring(node[2].value)
38

39 func t transition(self, node):
40 // transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event
41 return [| Transition.new(${CEI::istring(node[3].value)}, \
42 ${CEI::istring(node[5].value)}, ${self. preorder(node[-1])}) |]
43

44 func t event(self, node):
45 // event ::= ":" "ID"
46 // |
47 if node.len() == 1:
48 return [| "" |]
49 else:
50 return CEI::istring(node[2].value)
51

52 class Transition:
53 func init(self, from, to, event):
54 self.from := from
55 self.to := to
56 self.event := event

At a high level, this translation is relatively simple: states are transformed into
strings; transitions are transformed into instantiations of the Transition class.
The resulting anonymous class thus knows the valid states and transitions of
the state machine, and given an event can transition to the correct state, or

report errors. Certain low-level details require more explanation. The calls to
self. preorder reference a method which, given a node in a parse tree, calls the
appropriate t function. The CEI module defines functions for every Converge
AST type allowing them to be created manually when quasi-quotes do not suffice.
For example a call such as CEI::istring("foo") (e.g. lines 37) returns an AST
string whose content is ‘foo’. The reference to the Transition class in line 41
is possible since quasi-quotes can refer to top-level module definitions, as these
inherently cross compile-time staging boundaries.

3.4 Using the DSL

Given the complete, if simplistic, definition of state machine DSL we now have,
it is possible to instantiate a state machine and fire test events at it:

door := Door.new()
door.event("close")
door.event("open")

which results in the following output:

Event close causes transition to state Closed
Event open causes transition to state Opened

As this section has shown, we have been able to create a functioning DSL with its
own syntax, whose complete definition is less than 75 lines of code. I assert that
a corresponding implementation of this DSL as a stand-alone application would
be considerably larger than this, having to deal with external parsing systems,
IO, error messages and other boiler-plate aspects which are largely invisible in
the Converge DSL implementation approach.

4 Extending the case study

As noted in [3, 2], DSLs tend to start small but grow rapidly when users find
them useful, and desire more power. In a traditional stand alone implementation,
such changes might be difficult to integrate. In this section I show how we can
easily extend the Converge DSL implementation.

4.1 An extended state machine

As an example of a more complex type of state machine, we define a state
machine of a vending machine which dispenses drinks and sweets:

drinks := 10
sweets := 20

state Waiting
state Vend_Drink
state Vend_Sweet
state Empty

transition from Waiting to Vend_Drink: Vend_Drink \
[drinks > 0] / drinks := drinks - 1
transition from Vend_Drink to Waiting: Vended [drinks > 0 or sweets > 0]

transition from Waiting to Vend_Sweet: Vend_Sweet \
[sweets > 0] / sweets := sweets - 1
transition from Vend_Sweet to Waiting: Vended [sweets > 0 or drinks > 0]

transition from Vend_Sweet to Empty: Vended [drinks == 0 and sweets == 0]
transition from Vend_Drink to Empty: Vended [drinks == 0 and sweets == 0]

This state machine makes use of variables, guards, and actions. Variables can
hold integers or strings, and must be assigned an initial value. Guards such as
[drinks > 0] are additional constraints to events; they must hold in order for
a transition to be taken. Actions such as sweets := sweets - 1 are executed
once a transitions constraints have been evaluated and the transition has been
taken.

4.2 Extending the grammar

As before, the DSL author’s first action is to define – or in this case, to extend
– the grammar of his DSL. An elided extension to the previous grammar is as
follows:

element ::= state
| transition
| var_def

transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event guard action
var_def ::= "ID" ":=" const
guard ::= "[" B "]"

|
action ::= "/" C

::=
B ::= B "AND" B %precedence 5

| B "OR" B %precedence 5
| B "==" B %precedence 10
| B ">" B %precedence 10
| E

C ::= A (";" A)*
A ::= "ID" ":=" E

| E
E ::= E "+" E

| E "-" E
| var_lookup
| const

The %precedence markings signify to the Earley parser which of several al-
ternatives is to be preferred in the event of an ambiguous parse, with higher
precedence values having greater priority. Essentially the extended grammar im-
plements a syntax in a form familiar to many state machine users. Guards are
conditions or expressions; actions are sequences of assignments or expressions;
and expressions include standard operators.

4.3 Extending the translation

The first thing to note is that the vast majority of the translation of section
3.3 can be used unchanged in our evolved DSL. The anonymous state machine
class gains a vars slot which records all variable names and their current values,
and get var / set var functions to read and update vars. Transitions gain
guard and action slots which are functions. transition is then updated to call
these functions, passing the state machine to them, so that it can read and write
variables. The updated transition function is as follows:

func transition(self, e):
for tn := self.transitions.iter():
if tn.from == self.state & tn.event == e & tn.guard(self):
Sys::println("Event ", e, " causes transition to state ", tn.to)
self.state := tn.to
tn.action(self)
break

exhausted:
return fail

The remaining updates to the translation are purely to translate the new pro-
ductions in the grammar. The full translation is less than 200 lines of code, but in
the interests of brevity I show a representative subset; the translation of guards,
and the translation of variable lookups and constants.

1 func t guard(self, node):
2 // guard ::= "[" B "]"
3 // |
4 if node.len() == 1:
5 guard := [| 1 |]
6 else:
7 guard := self. preorder(node[2])
8 return [|
9 func (&sm):

10 return ${guard}
11 |]
12

13 func t B(self, node):
14 // B ::= B "AND" B
15 // | B "OR" B
16 // | B "==" B
17 // | B ">" B
18 // | E
19 if node.len() == 4:
20 lhs := self. preorder(node[1])
21 rhs := self. preorder(node[3])
22 ndif node[2].type == "AND":
23 return [| ${lhs} & ${rhs} |]
24 elif node[2].type == "OR":
25 return [| ${lhs} | ${rhs} |]
26 elif node[2].type == "==":
27 return [| ${lhs} == ${rhs} |]
28 elif node[2].type == ">":
29 return [| ${lhs} > ${rhs} |]
30 else:
31 return self. preorder(node[1])

32

33 func t const(self, node):
34 // const ::= "INT"
35 // | "STRING"
36 ndif node[1].type == "INT":
37 return CEI::iint(Builtins::Int.new(node[1].value))
38 elif node[1].type == "STRING":
39 return CEI::istring(node[1].value)
40

41 func t var lookup(self, node):
42 // var lookup ::= "ID"
43 return [| &sm.get var(${CEI::istring(node[1].value)}) |]

The majority of this translation is simple, and largely mechanical. Guards are
turned into functions (lines 8–11) which take a single argument (a state machine)
and return true or false. An empty guard always evaluates to 1 (line 5), which
can be read as ‘true’. The translation of guards (lines 20–29) is interesting, as it
shows that syntactically distinct DSLs often have a very simple translation into a
Converge AST, as Converge’s expression language is unusually rich in expressive
power by imperative programming language standards (including features such
as backtracking which we do not use in this paper). State machine constants
(strings and integers) are directly transformed into their Converge equivalents
(lines 36–39).

4.4 Communication between AST fragments

One subtle aspect of the translation deserves special explanation, which are
the two &sm variables (lines 43 and 9). These relate to the fact that the state
machine which is passed by the transition function to the generated guard
function (lines 8-11) needs to be used by the variable lookup translation (line
43). The effect we wish to achieve is that the translated guard function looks
approximately as follows:

func (sm):
return sm.get_var("x") < 1

By default, Converge’s quasi-quote scheme generates hygienic ASTs. The con-
cept of hygiene is defined in [14], and is most easily explained by example.
Consider the Converge functions f and g:

func f():
return [| x := 4 |]

func g():
x := 10
$<f()>
Sys::println(x)

The question to ask oneself is simple: when g is executed, what is printed to
screen? In older macro systems, the answer would be 4 since when, during com-
pilation, the AST from f was spliced into g, the assignment of x in f would
‘capture’ the x in g. This is a serious issue since it makes embeddings and macros

‘treacherous [, working] in all cases but one: when the user ... inadvertently picks
the wrong identifier name’ [14].

Converge’s quasi-quote scheme therefore preemptively α-renames variables
to a fresh name – guaranteed by the compiler to be unique – thus ensuring
that unintended variable capture can not happen. While this is generally the
required behaviour, it can cause practical problems when one is building up an
AST in fragments, as we are doing in our state machine translation. In normal
programming, one of the most common way for local chunks of code to interact
is via variables; however, hygiene effectively means that variables are invisible
between different code chunks. Thus, by default, there is no easy way for the
variable passed to the generated guard function (lines 8-11) to be used by the
variable lookup translation (line 43).

The traditional meta-programming solution to this problem is to manually
generate a fresh name, which must then be manually passed to all translation
functions which need it. A sketch of a solution for Converge would be as follows:

func _t_guard(self, node):
// guard ::= "[" B "]"
// |
sm_var_name := CEI::fresh_name()
if node.len() == 1:
guard := [| 1 |]

else:
guard := self._preorder(node[2], sm_var_name)

return [|
func (${CEI::iparam(CEI::ivar(sm_var_name))}):
return ${guard}

|]

func _t_var_lookup(self, node, sm_var_name):
// var_lookup ::= "ID"
return [| ${CEI::ivar(sm_var_name)}.get_var(\
${CEI::istring(node[1].value)}) |]

This idiom, while common in other approaches, is intricate and verbose. Indeed,
the quantity and spread of the required boilerplate code can often overwhelm
the fundamentals of the translation.

Converge therefore provides a way to switch off hygiene in quasi-quotes;
variables which are prefixed by & are not α-renamed. Thus the sm variable in
line 43 dynamically captures the sm variable defined in line 9, neatly obtaining
the effect we desire. This is a very common translation idiom in Converge, and
is entirely safe in this translation1.

5 Evolving a robust DSL

In the previous section, I showed how a Converge DSL can easily evolve in
expressive power. The DSL defined previously suffers in practice from one fun-

1 Although I do not show it in this paper, translations which integrate arbitrary user
code can cause this idiom to become unsafe; Converge provides a relatively simple
work around for such cases.

damental flaw. When used correctly, it works well; when used incorrectly, it is
difficult to understand what went wrong. This is a common theme in DSLs: ini-
tial versions with limited functionality are used only by knowledgeable users; as
the DSLs grow in power, they are used by increasingly less knowledgeable users.
This has a dual impact: the more powerful the DSL it is, the more difficult it is
to interpret errors; and the less knowledgeable the user, the less their ability to
understand whether they caused the error, if so, how to fix it.

In this section, I show how Converge DSLs can easily add debugging support
which makes the use of complex DSLs practical.

5.1 DSL errors

Returning to the vending machine example of section 4.1, let us change the
guard on the first transition from drinks > 0 to drinks > "foo". The vending
machine state machine is contained in a file ex.cv and the state machine DSL
definition in SM.cv. As we might expect, this change causes a run-time exception,
as Converge does not define a size comparison between integers and strings. The
inevitable run-time exception and traceback look as follows:

Traceback (most recent call at bottom):
1: File "ex2.cv", line 29, column 22
2: File "SM.cv", line 118, column 27
3: File "SM.cv", line 124, column 57
4: File "SM.cv", line 235, column 21
5: (internal), in Int.>

Type_Exception: Expected arg 2 to be conformant to Number but got
instance of String.

This traceback gives very little clue as to where in the DSL the error occurred.
Looking at line 235 of SM.cv merely pinpoints the t B translation function.
Since we know in this case that comparing the size of a number and a string is
invalid, we can rule out the translation itself being incorrect. The fundamental
problem then becomes that errors are not reported in terms of the users input.
Knowing that the error is related to an AST generated from the t B translation
function is of limited use as several of the vending machines guards also involve
the greater than comparison.

5.2 Src infos

DSL implementation functions take two arguments: a string representing the
DSL block and a list of src infos. A src info is a (src path, char offset) pair
which records a relationship with a character offset in a source file. The Converge
tokenizer associates a src info with every token; the parse tree to AST conversion
carries over the relevant src infos; and the bytecode compiler associates every
bytecode instruction with the appropriate src infos. As this suggests, the src info
concept is used uniformly throughout the Converge parser, compiler, and VM.

From this papers perspective, an important aspect of src infos is that tokens,
AST elements, and bytecode instructions can be associated with more than one

src info. Converge provides a simple mechanism for augmenting the src infos
that quasi-quoted code is associated with. Quasi-quotes have an extended form
[<e >| ... |] where e is an expression which must evaluate to a list of src
infos. As we shall see, a standard idiom is to read src infos straight from tokens
(via its src infos slot) into the extended quasi-quotes form.

5.3 Augmenting quasi-quoted code

Using the extended form of quasi-quotes, we can easily augment the translation
of section 4.3 to the following:

func _t_B(self, node):
// B ::= B "<" B
...
elif node[2].type == ">":
return [<node[2].src_infos>| ${lhs} > ${rhs} |]

...

In other words, we augment the quasi-quoted code with src infos directly relating
it to the specific location in the user’s DSL input where the size comparison was
made. When we re-compile and re-run the altered vending machine DSL, we get
the following backtrace:

Traceback (most recent call at bottom):
1: File "ex2.cv", line 29, column 22
2: File "SM.cv", line 118, column 27
3: File "SM.cv", line 124, column 57
4: File "SM.cv", line 235, column 21

File "ex2.cv", line 15, column 74
5: (internal), in Int.>

Type_Exception: Expected arg 2 to be conformant to Number but got
instance of String.

The way to read this is that the fourth entry in the backtrace is related to two
source locations: one is the quasi-quoted code itself (in SM.cv) and the other is
a location within the vending machine DSL (in ex2.cv). This allows the user to
pinpoint precisely where within their DSL input the error occurred, which will
then allow them – one hopes – to easily rectify it. This is a vital practical aid,
making DSL debugging feasible where it was previously extremely challenging.
Because of the extended form of quasi-quotes, augmenting a DSL translation
with code to record such information is generally a simple mechanical exercise.

5.4 Statically detected errors

Src infos are not only useful for aiding run-time errors. Converge also uses the
same concept to allow DSL implementations to report errors during the trans-
lation of the DSL. For example, as our state machine DSL requires the up-front
declaration of all variables to be used within it, we can easily detect references to
undefined variables. The CEI::error function takes an arbitrary error message,
and a list of src infos and reports an error to the user. Given that the translation
class defines a slot var names which is a set of known variables, we can then
alter the t var lookup function as follows:

func _t_var_lookup(self, node):
// var_lookup ::= "ID"
if not self.var_names.find(node[1].value):
CEI::error(Strings::format("Unknown state-machine variable ’%s’.", \
node[1].value), node[1].src_infos)

return [<node[1].src_infos>| &sm.get_var(\
${CEI::istring(node[1].value)}) |]

When an unknown variable is encountered, an error message such as the following
is printed, and compilation halts:

Error: Line 53, column 66: Unknown state-machine variable ’amuont’.

6 Related work

Several approaches have been suggested for DSL implementation. Hudak pre-
sented the notion of Domain Specific Embedded Languages (DSELs) [2] where
DSLs are implemented using a languages normal features. The advantage of this
approach is that it allows an otherwise entirely ignorant language to be used to
embed DSLs, and also allows DSLs to be relatively easily combined together.
The disadvantage is that the embedding is indirect, and limited to what can
be easily expressed using these pre-existing components. DSLs implemented in
Converge have considerably more syntactic flexibility.

TXL [15] and ASF+SDF are similar, generic source to source transformation
languages [16]. Both are are mature and efficient; TXL has been used to process
billions of lines of code [15]. Furthermore such approaches are inherently flexible
as they can be used with arbitrary source and target languages; unlike Converge,
they can embed DSLs into any host language. However this flexibility means that
they have little knowledge of the host language’s semantics beyond the simple
structure recorded in parse trees. This makes safe embeddings hard to create,
whereas Converge based systems can use the compilers inherent knowledge of
the host language to avoid such issues.

MetaBorg uses a combination of tools to allow language grammars to be
extended in an arbitrary fashion using a rule rewriting system [4]. Although
MetaBorg by default operates on parse trees in the same way as TXL, it comes
with standard support for representing some of the semantics of languages such
as Java. This allows transformation authors to write more sophisticated trans-
formations, and make some extra guarantees about the safety of their transfor-
mations. Although MetaBorg is in theory capable of defining any embedding, its
authors deliberately narrow their vision for MetaBorg to a ‘method for promoting
APIs to the language level.’ This is a sensible restriction since DSLs that result
from promoting a particular API to the language level will tend to shadow that
API; therefore instances of the DSL will generally translate fairly directly into
API calls which limits the potential for safety violations. In contrast, Converge
provides coarser-grained support for implementing larger DSLs.

Macro systems have long been used to implement DSLs. Lisp was the first
language with a macro system, and although its syntax is inherently flexible, it is

not possible to change it in a completely arbitrary fashion as Converge allows –
Lisp DSLs are limited to what can be naturally expressed in Lisp’s syntax. Fur-
thermore whilst this mechanism has been used to express many DSLs, its tight
coupling to Lisp’s syntactic minimalism has largely prevented similar approaches
being applied to other, more modern programming languages [17]. Therefore de-
spite Lisp’s success in this area, for many years more modern systems struggled
to successfully integrate similar features [6]. More recently languages such as
Template Haskell [12] (which is effectively a refinement of the ideas in MetaML
[18]; see [6] for a more detailed comparison of these languages with Converge)
have shown how sophisticated compile-time meta-programming systems can be
implemented in a modern language. However such languages still share Lisp’s
inability to extend the languages syntax.

Nemerle uses its macro system to augment the compilers grammar as com-
pilation is in progress [19]. However only relatively simple, local additions to
the syntax are possible and the grammar extensions must be pre-defined; it is
not intended, or suitable, for implementing complex DSLs. In comparison to Ne-
merle, MetaLua allows more flexible additions to the grammar being compiled
but has no support for e.g. hygiene as in Converge, which makes implementing
large DSLs problematic [20].

7 Conclusions

In this paper, I showed a case study of a state machine DSL evolving in terms of
functionality and robustness. There are many other areas in which the DSL could
evolve, including showing how DSL code can naturally interact with ‘normal’
Converge code. However I hope this papers’ case study gives a clear indication
as to how a dedicated DSL implementation approach can make DSL evolution
– in whatever form it takes – practical.

I am grateful to the anonymous referees whose comments have helped to
improve this paper. Any remaining mistakes are my own.

This research was partly funded by Tata Consultancy Services.

Free implementations of Converge (under a MIT / BSD-style license) can
be found at http://convergepl.org/, and are capable of executing all of the
examples in this paper,.

References

1. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. Technical report, Centrum voor Wiskundeen Informatica (December
2003)

2. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth
International Conference on Software Reuse. (June 1998) 134–142

3. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. Volume 35 of SIGPLAN Notices. (June 2000) 26–36

4. Bravenboer, M., Visser, E.: Concrete syntax for objects. Domain-specific language
embedding and assimilation without restrictions. In Schmidt, D.C., ed.: Proc.
OOPSLA’04, Vancouver, Canada, ACM SIGPLAN (October 2004)

5. Clark, T., Evans, A., Sammut, P., Willans, J.: An executable metamodelling facility
for domain specific language design. In: Proc. 4th OOPSLA Workshop on Domain-
Specific Modeling. (October 2004)

6. Tratt, L.: Compile-time meta-programming in a dynamically typed OO language.
In: Proceedings Dynamic Languages Symposium. (October 2005) 49–64

7. Sheard, T., el Abidine Benaissa, Z., Pasalic, E.: DSL implementation using staging
and monads. In: Proc. 2nd conference on Domain Specific Languages. Volume 35
of SIGPLAN., ACM (October 1999) 81–94

8. Czarnecki, K., O’Donnell, J., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, Template Haskell, and C++. 3016 (2004) 50–71

9. Seefried, S., Chakravarty, M., Keller, G.: Optimising Embedded DSLs using Tem-
plate Haskell. In: Third International Conference on Generative Programming
and Component Engineering, Vancouver, Canada, Springer-Verlag (October 2004)
186–205

10. Tratt, L.: Converge Reference Manual. (July 2007)
http://www.convergepl.org/documentation/ Accessed Aug 16 2007.

11. van Rossum, G.: Python 2.3 reference manual (2003)
http://www.python.org/doc/2.3/ref/ref.html Accessed Aug 31 2005.

12. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings
of the Haskell workshop 2002, ACM (2002)

13. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2) (February 1970)

14. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Symposium on Lisp and Functional Programming, ACM (1986) 151–161

15. Cordy, J.R.: TXL - a language for programming language tools and applications.
In: Proc. LDTA 2004, ACM 4th International Workshop on Language Descriptions,
Tools and Applications. (April 2004)

16. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the asf+sdf compiler. Volume 24., New York, NY, USA, ACM Press
(2002) 334–368

17. Bachrach, J., Playford, K.: D-expressions: Lisp power, Dylan style (1999)
http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf Accessed Nov 22 2006.

18. Sheard, T.: Using MetaML: A staged programming language. (September 1998)
207–239

19. Skalski, K., Moskal, M., Olszta, P.: Meta-programming in Nemerle (2004)
http://nemerle.org/metaprogramming.pdf Accessed Nov 5 2007.

20. Fleutot, F., Tratt, L.: Contrasting compile-time meta-programming in metalua
and converge. In: Workshop on Dynamic Languages and Applications. (July 2007)

