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Abstract—To derive low-complexity multiple-input–multiple-output4
(MIMO) detectors, we combine two complementary approaches, i.e., lat-5
tice reduction (LR) and list within the framework of the successive interfer-6
ence cancellation (SIC)-based detection. It is shown that the performance7
of the proposed detector, which is called the SIC-based detector with list8
and LR, can approach that of the maximum-likelihood (ML) detector with9
a short list length. For example, the signal-to-noise ratio (SNR) loss of the10
proposed detector, compared with that of the ML detector, is less than 1 dB11
for a 4 × 4 MIMO system with 16-state quadrature amplitude modulation12
(QAM) at a bit error rate (BER) of 10−3 with a list length of 8.13

Index Terms—Lattice reduction (LR)-based detection, list detection,14
successive interference cancellation (SIC), multiple-input–multiple-output15
(MIMO) detection.16

I. INTRODUCTION17

In wireless communications, it is well known that the channel18
capacity can linearly increase with the number of antennas (provided19
that the numbers of transmit and receive antennas are the same) [1],20
[2]. Thus, to increase the channel capacity, the transmitter and receiver21
can be equipped with multiple antennas, and the resulting channel22
becomes a multiple-input–multiple-output (MIMO) channel. Various23
space-time architectures for signal transmission over MIMO channels24
are proposed to effectively exploit spatial and temporal diversity gain25
in [3] and [4].26

In general, since more symbols are transmitted in MIMO systems,27
the detection complexity can be high. For example, the complexity of28
maximum-likelihood (ML) detection exponentially increases with the29
number of transmit antennas. Thus, various approaches are devised to30
reduce the complexity. The successive interference cancellation (SIC)31
approach is employed in [4]. The relation between SIC-based MIMO32
detection and the decision feedback equalizer (DFE) is exploited in [5].33
In [6], the partial maximum a posteriori probability (MAP) principle is34
derived to discuss the optimality of SIC-based detection. List detectors35
are also considered for MIMO detection to obtain a soft decision in [7]36
and [8] based on [9].37

In [10], a lattice reduction (LR)-based MIMO detector used as38
a low-complexity MIMO detector is first discussed. In [11], more39
LR-based MIMO detectors are proposed. It is shown that the per-40
formance of LR-based MIMO detectors using minimum mean squareAQ1 41
error (MMSE)-SIC approaches ML performance. An overview of LR-42
based detection can be found in [12]. In [13] and [14], it is shown that43
LR-based detection can achieve full diversity. This is an important ob-44
servation as most low-complexity suboptimal MIMO detectors could45
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not exploit full diversity. It is noteworthy that a soft decision can also 46
be obtained from the LR-based detection [15]. 47

Although the Lenstra–Lenstra–Lovasz (LLL) algorithm, which is 48
one of the LR algorithms, has a polynomial (average) complexity (for 49
a certain class of random channel matrices) [16], [17], the complexity 50
increases relatively rapidly with the number of basis vectors (or the 51
number of transmit antennas). Thus, for a large MIMO system, the 52
computational complexity of the LR-based detection would still be 53
high. To further reduce the complexity, we can decompose a large 54
MIMO detection problem into multiple small MIMO subdetection 55
problems with SIC, as in [6]. Due to SIC, this approach would suffer 56
from error propagation. To mitigate error propagation, the list detection 57
approach can be adopted. The resulting detector has low complexity as 58
the number of basis vectors in the subdetection problem is small. Due 59
to list detection, the proposed detector can enjoy the tradeoff between 60
complexity and performance, i.e., it has better mitigation against error 61
propagation as the list length increases at the expense of increasing 62
complexity. 63

II. SYSTEM MODEL 64

Suppose that there are K transmit antennas and N receive antennas. 65
The N × 1 received signal vector r is given by 66

r = Hs + n (1)

where H, s, and n are the N × K channel matrix, K × 1 transmitted 67
signal vector, and N × 1 noise vector, respectively. We assume that 68
n is a zero-mean circular complex Gaussian random vector with 69
E[nnH ] = N0I. Let S denote the signal alphabet for symbols, i.e., 70
sk ∈ S, where sk is the kth element of s, and its size is denoted by M , 71
i.e., M = |S|. 72

We assume that N ≥ K and consider the QR factorization of the 73
channel matrix as H = QR, where Q is unitary, and R is upper 74
triangular. We have 75

x = QHr = Rs + QHn. (2)

Since the statistical properties of QHn are identical to those of n, 76
QHn will be denoted by n. If N = K, there are no zero rows in R; 77
otherwise, the last N − K rows become zero. Thus, the last N − K 78
elements of x would be ignored for the detection if N > K. If there 79
is no risk of confusion, hereinafter, we assume that the sizes of x, R, 80
and n are K × 1, K × K, and K × 1, respectively. 81

III. SIC-LIST-LR BASED DETECTION 82

The LR-based detectors in [10] and [11] have near-ML performance 83
with relatively low complexity. It is shown that those LR-based detec- 84
tors can achieve full diversity gain, just like the ML detector in [13] 85
and [14]. Unfortunately, however, the complexity of LR can rapidly 86
increase with the number of basis vectors, which implies that the 87
complexity of the LR-based detectors may not be reasonably low for a 88
large MIMO system. To avoid this problem, in this section, we propose 89
an SIC-list-LR-based detection method within the framework of the 90
partial MAP detection in [6]. The main idea of this method is to break 91
a high-dimensional MIMO detection problem into multiple lower 92
dimensional MIMO subdetection problems so that the complexity 93
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associated with LR can be reduced. The notion of the partial MAP94
detection [6] is applied to include multiple lower dimensional MIMO95
subdetection problems, together with the list detection approach.96

To perform the proposed LR and list-based detection, we consider97
the partition of x as follows:98

[

x1

x2

]

=

[

R1 R3

0 R2

][

s1

s2

]

+

[

n1

n2

]

(3)

where xi, si, and ni are the Ki × 1 ith subvectors of x, s, and n, i =99
1, 2, respectively. Note that K1 + K2 = K. From (3), we can have two100
lower dimensional MIMO subdetection problems to detect s1 and s2.101
It is straightforward to extend the partition into more than two groups.102
However, for the sake of simplicity, we only consider the partition into103
two groups, as in (3).104

A. Algorithm Description105

In the proposed SIC-list-LR-based detection, the subdetection of s2106
is carried out first using the LR-based detector. Then, a list of candidate107
vectors of s2 is generated. With the list of s2, the subdetection of s1 is108
performed with the LR-based detector. The candidate vector in the list109
is used for the SIC to mitigate the interference from s2. The proposed110
SIC-list-LR-based detection is summarized here.111

S1) The LR-based detection of s2 is performed with the received112
signal x2, i.e.,113

c̃2 = LRDet(x2) (4)

where LRDet is the function of the LR detection operation,114
which will be discussed in Section III-B, and c̃2 is the estimated115
vector of s2 in the corresponding LR domain. Note that there is116
no interference from s1 in detecting s2.117

S2) A list of candidate vectors in the LR domain is generated by118

C2 = List(c̃2) (5)

where List is a function that chooses the Q closest vectors to119
c̃2(1 ≤ Q ≤ MK2) in the LR domain. We will discuss the list120
generation in Section III-C.121

S3) The list of candidates of s2, which is denoted by S2,122
can be converted from C2. For convenience, denote S2 =123
{s̃(1)

2 , s̃(2)
2 , . . . , s̃(Q)

2 }.124
S4) Once S2 is available, the LR-based detection of s1 can be carried125

out with SIC, i.e.,126

c(q)
1 = LRDet

(

x1 −R3s̃
(q)
2

)

(6)

where s̃(q)
2 is the qth decision vector of s2 from list S2.127

S5) Let s̃(q)
1 denote the signal vector corresponding to c̃(q)

1 in the LR128

domain and s̃(q) = [(s̃(q)
1 )T (s̃(q)

2 )T ]T ; the final decision of s129
is found as130

s̃ = arg min
q=1,2,...,Q

∥

∥x−Rs̃(q)
∥

∥

2
. (7)

Note that a soft decision is also available from the list generated131
in S5. There are Q candidate vectors for s, and they can be used to132
approximate the log-likelihood ratio as a soft decision, as in [18]. In the133
succeeding sections, we will explain the proposed detection in detail.134

B. LR-Based Detection135

In this section, we describe the LR-based detection used in steps S1)136
and S4).137

TABLE I
SIGNALS AND PARAMETERS FOR THE LR-BASED

DETECTION IN (4) AND (6)

Fig. 1. List in different domains. (Left) C2 in the LR domain, which is
orthogonal and where the black dot represents c̃2. (Right) S2 in the original
domain, where the black dot represents s̃2.

Let C denote the set of complex integers or Gaussian integers 138
C = Z + jZ, where Z is the set of integers, and j =

√
−1. We assume 139

that {αs + β|s ∈ S} ⊆ C, where α and β are the scaling and shifting 140
coefficients, respectively. For example, for M -QAM, if M = 22m, 141
we have 142

S = {s = a + jb|a, b ∈ {±A,±3A, . . . ,±(2m − 1)A}}

where A =
√

(3Es/2(M − 1)), and Es = E[|s|2] is the symbol 143
energy. Thus, α = 1/(2A), and β = ((2m − 1)/2)(1 + j). Note that 144
the pair of α and β is not uniquely decided. 145

Consider the MIMO detection with the following signal: 146

y = Az + v (8)

where A is a MIMO channel matrix, z ∈ SKi is the signal vector, and 147
v is a zero-mean Gaussian noise with E[vvH ] = N0I. We scale and 148
shift y as 149

d =αy + βA1

=A(αz + β1) + αv

=Ab + αv (9)

where 1 = [1 1 · · · 1]T , and b = αz + β1 ∈ CKi . Let 150

Ā = AU (10)

where U is a unimodular matrix.1 Using any LR algorithm, including 151
the LLL algorithm [16], we can find the value of U that makes the 152
column vectors of Ā shorter. It follows that 153

d =AUU−1b + αv

= Āc + αv (11)

where c = U−1b. Note that, as the basis vectors are complex, we can 154
use complex LR algorithms [19] or convert a complex matrix into a 155
real matrix, as in [11]. The MMSE filter for estimating c is given by 156

WMMSE = min
W

E
[

∥

∥WH(d− d̄) − (c− c̄)
∥

∥

2
]

=
(

Ācov(c)ĀH + |α|2N0I
)−1

Ācov(c)

=
(

AAHα2Es + |α|2N0I
)−1

AU−Hα2Es (12)

1A unimodular matrix is a square integer matrix with determinant ±1.
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Fig. 2. Error probability with the list of c2 for various list lengths.

where d̄ = E[d] = βA1, c̄ = E[c] = U−1β1, and cov(c) =157
|α|2U−1U−HEs since158

cov(c) = cov(U−1b) = α2EsI.

The estimate of c is given by159

c̃ = c̄ + WH
MMSE(d− d̄). (13)

In Table I, the signals and parameters for the LR-based MMSE de-160
tection for each step are shown. Note that other approaches, including161
the LR-based MMSE-SIC detector in [11] or non-LR-based detectors,162
can also be used for subdetection.163

C. List Generation in the LR Domain164

To avoid or mitigate the error propagation, the use of a list of165
candidate vectors of s2 in detecting s1 is crucial. Using the ML metric,166
we can find the candidate vectors for the list S2. Let167

f
(

r
∣

∣

∣
ŝ(1)
2

)

≥ f
(

r
∣

∣

∣
ŝ(2)
2

)

≥ · · · ≥ f
(

r
∣

∣

∣
ŝ(MK2 )
2

)

where f(r|s) is the likelihood function of s for a given r, and ŝ(q)
2 is the168

symbol vector that corresponds to the qth largest likelihood. With log-169
likelihood values, we can also find the candidate vectors as follows:170

∥

∥

∥
r−R2ŝ

(1)
2

∥

∥

∥

2

≤
∥

∥

∥
r−R2ŝ

(2)
2

∥

∥

∥

2

≤ · · · ≤
∥

∥

∥
r−R2ŝ

(MK2 )
2

∥

∥

∥

2

.

Therefore, the ML-based list becomes171

S2 =
{

ŝ(1)
2 , ŝ(2)

2 , . . . , ŝ(Q)
2

}

. (14)

However, for each log-likelihood value, we need to perform a172
matrix–vector multiplication. Thus, the resulting computational com-173
plexity could be high.174

To avoid high computational complexity in generating the list, we175
can find a suboptimal list in the LR domain that can be obtained with176
a low complexity. Consider (9). According to Table I, let A = R2,177
d = αx2 + βA1, and b = αs2 + β1. Then, from (10), we have178

‖r−R2s2‖ ∝ ‖d−Ab‖ = ‖d− Āc‖. (15)

Fig. 3. BER performance of a 4 × 4 MIMO system with 16-QAM signaling.

Fig. 4. BER performance of a 4 × 4 MIMO system with 64-QAM signaling.

It is noteworthy that the metric on the right-hand side of (15) 179
is defined in the LR domain. Let s̃2 be the signal vector in SK2 180

corresponding to c̃2, and assume that s̃2 is sufficiently close to ŝ(1)
2 . 181

Then, we can have d * Āc̃2. From this, the ML metric (ignoring a 182
scaling factor) for constructing the list in the LR domain becomes 183

‖d− Āc‖ * ‖Āc̃2 − Āc‖ = ‖c̃2 − c‖ĀHĀ (16)

where ‖x‖A =
√

xHAx is a weighted norm. The list in the LR 184
domain becomes 185

C2 =
{

c2

∣

∣‖c̃2 − c‖ĀHĀ < rĀ(Q)
}

(17)

where rĀ(Q) > 0 is the radius of an ellipsoid centered at c̃2, which 186
contains Q elements in the LR domain. If the column vectors of Ā 187
or the basis vectors in the LR domain are orthogonal, ĀHĀ becomes 188
diagonal. Furthermore, if they have the same norm, ĀHĀ ∝ I. Thus, 189
for nearly orthogonal basis vectors of almost equal norm, the list of c2 190
can be approximated as 191

C2 * C̃2 =
{

c2

∣

∣‖c̃2 − c‖ < r(Q)
}

(18)
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TABLE II
IMPACT OF THE MAXIMUM NUMBER OF COLUMN SWAPS IN THE LR ON BER (BER RAPIDLY DECREASES

WITH THE NUMBER OF COLUMN SWAPS. ONLY A FEW NUMBER OF COLUMN SWAPS IS REQUIRED)

Fig. 5. BER performance comparison of a 4 × 4 MIMO system with 16-QAM
signaling.

where r(Q) > 0 is the radius of a sphere centered at c̃2, which192
contains Q elements. Since the LR provides a set of nearly orthogonal193
basis vectors for the LR-based detection, we can see that the column194
vectors in Ā in (10) are nearly orthogonal, as shown in Fig. 1, with195
a two-basis system. Let S̃2 denote the list in the original domain196
obtained from C̃2 as in step S3). Since no matrix–vector multiplications197
are required to generate C̃2 or S̃2, we can use S̃2 as the list in the198
proposed detector to reduce computational complexity.199

IV. SIMULATION RESULT200

In this section, we present simulation results. We mainly focus201
on the case of K = 4, particularly the case of K1 = K2 = 2. The202
elements of H are independent zero-mean circular complex Gaussian203
random variables with unit variance. This case is particularly interest-204
ing as the Gaussian reduction, which can find the two shortest vectors205
in two-basis systems [10], [20], can be used for LR.206

In the proposed SIC-list-LR-based detection, list length Q plays207
a key role in the tradeoff between complexity and performance. In208
general, it is desirable that the list has the true transmitted vector of c2.209
If not, the proposed detector will have an incorrect decision. If Q in-210
creases, the error probability that S2(C2) does not have the correct vec-211
tor of s2(c2), which is denoted by Pe(S2) or Pe(C2), decreases. Error212
probability Pe(C2) is considered for the MIMO system with 16-state213
quadrature amplitude modulation (16-QAM), and N = K = 4. Sim-214
ulation results are shown in Fig. 2, where the error probabilities are215
shown with two different lists in (17) and (18). As the list in (18)216
is suboptimal, the performance is worse. However, this performance217
degradation is not significant as the column vectors of Ā are nearly218
orthogonal.219

The bit error rate (BER) performance of a 4 × 4 MIMO system220
with 16-QAM signaling is shown in Fig. 3. In this case, a near-ML221
performance can be achieved when Q ≥ 8. For example, the signal-222

Fig. 6. Complexity comparison of a 4 × 4 MIMO system with 16-QAM
signaling.

to-noise ratio (SNR) loss of the proposed detector, compared with that 223
of the ML detector, is less than 1 dB at a BER of 10−3 when Q = 8. 224

Fig. 4 shows the simulation results with 64-state quadrature ampli- 225
tude modulation (16-QAM). This result again confirms that the pro- 226
posed SIC-list-LR-based detector can provide a near-ML performance 227
with low complexity. At a BER of 10−3, the SNR loss is less than 1 228
dB, compared with that of the ML detector when Q = 12. As the SNR 229
or Eb/N0 increases, the SNR loss increases. However, by increasing 230
list length Q, this loss can be reduced as the list length can exploit 231
the tradeoff between performance and complexity. Note that a full 232
diversity may not be achieved by the proposed detector with a fixed list 233
length, as shown in Figs. 3 and 4. The relationship between diversity 234
order and list length needs to be investigated in the near future. 235

In the LR-based detection, since the number of column swaps in 236
the LR operation is not fixed, the complexity can vary from a channel 237
matrix to another. Thus, in practice, the maximum number of column 238
swaps can be fixed to limit the maximum complexity for two-basis 239
systems. It is shown in [10] that the two shortest vectors can be found 240
within two iterations for more than 99% of 2 × 2 random matrices 241
(of Rayleigh fading). However, when the number of column swaps 242
is limited, the basis vectors may not be properly reduced for some 243
channels, and the BER performance could be degraded because of it. 244
To see the impact of the maximum number of column swaps, a 245
simulation is considered with 16-QAM. Table II presents the BER 246
performance when the maximum number of column swaps Ncs is 247
limited. It is shown that the performance degradation is negligible, 248
even though Ncs = 1. 249

For comparison purposes, we consider the BER performance of the 250
LR-based MMSE-SIC detector, which is the best LR-based detector 251
among the LR-based detectors proposed in [11]. The BER perfor- 252
mance results are shown in Fig. 5. It is shown that the proposed 253
detector can provide a performance that is better by about 1 dB than 254
the LR-based MMSE-SIC detector at a BER of 10−2. Again, we 255
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can confirm that the combination of the LR-based detection and list256
detection can improve the performance of the LR-based detector and257
is an effective means to approach the ML performance.258

For complexity comparison, we can take the upper bound on259
the average number of LLL iterations in [17], which is given by260
N̄cs = K2 log K/(N − K + 1). (We ignore some minor terms to261
simplify the comparison.) For 4 × 4 MIMO channels, we have N̄cs =262
K2 log K/(N − K + 1) = 16 log 4 for the LR-based MMSE-SIC263
detector and N̄cs = 2(K/2)2 log((K/2)/((N/2) − (K/2) + 1)) =264
8 log 2 for the proposed detector. This shows complexity reduction265
by more than half in terms of LLL iterations. Note that the proposed266
detector has additional complexity to build a list, which may offset the267
complexity advantage of the proposed detector over conventional LR-268
based detectors [11]. To further see the complexity of each detector,269
simulations are considered under the same environment, as shown in270
Fig. 5. Fig. 6 shows the estimated flops using MATLAB execution time271
that was obtained over all operations for each detector through simu-272
lations. The execution time is averaged over hundreds of thousands of273
channel realizations. The Sphere Schnorr–Euchner algorithm [21] is274
used for the ML decoding, whereas the LLL-reduced algorithm with275
reduction factor δ = 3/4 [16] is chosen for the LR-based MMSE-SIC276
detector [11]. (This is the same as that in Fig. 5.) No limitation on the277
number of iterations is imposed for any LR algorithm. The proposed278
LR-based list detector clearly requires the lowest execution time. We279
can also see that the execution time of the proposed detector is slightly280
higher than half of the execution time of the LR-based MMSE-SIC281
detector where the LLL-reduced algorithm is used.282

V. CONCLUDING REMARK283

In this paper, we have derived an SIC-list-LR-based detector for284
MIMO detection using two complementary techniques, i.e., LR and285
list detection, within a framework of SIC-based detection. It was286
shown that the proposed detector has a near-ML performance with low287
complexity. The list length plays a key role in the tradeoff between288
performance and complexity. The performance is improved for a289
longer list length, whereas the complexity increases with list length Q.290
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