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Compound Poisson (CP) approximation appears naturally in situations where
one deals with a large number of rare events. It has important applications
in insurance, extreme value theory, reliability theory, mathematical biology, etc.
(cf. [10, 13, 101, 127, 144]). The topic is an integral part of Kolmogorov’s problem
concerning infinitely divisible approximation to the distribution of a sum of
independent r.v.s. It has attracted a considerable body of research.

However, existing surveys are surprisingly sketchy and typically present only
results related to Stein’s method, cf. [17, 18, 39]. A number of results obtained
during the last three decades and even some classical results appear missed in
existing surveys.

The paper aims to fill that gap. We present a comprehensive list of results
on the topic of compound Poisson approximation and formulate a number of
open problems. The main attention is given to results that are missed in existing
surveys.

1. Preliminaries

1.1. Notation

Let IN denote the set of natural numbers, and let Z+ :=IN ∪{0}.
Given r.v.s X1, ..., Xn , we will denote

Sn = X1 + · · ·+Xn .

Let Π(λ) denote a Poisson distribution with parameter λ; we usually denote
by πλ a Poisson Π(λ) random variable (r.v.).

Random variable Y has a compound Poisson distribution Π(λ,X) ≡ Π(λ,
L(X)) if

Y
d
= X0 + ...+Xπλ

, (1.1)
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where Poisson Π(λ) random variable πλ is independent of {Xi}i≥1 , X0 = 0,

random variables X,X1, X2, ... are independent, Xi
d
= X (i≥1).

The characteristic function (ch.f.) of Π(λ,X) is

exp(λ(ϕ
X
(t)−1)),

where ϕ
X

is a ch.f. of L(X). We call L(X) a compounding or multiplicity
distribution.

If IE|X|<∞, then IEY =λIEX. If IEX2<∞, then varY =λIEX2 .
Given a set of non-negative numbers {λj}j≥1 such that λ :=

∑
j≥1 λj<∞,

denote

Z =

∞∑
j=1

jπλj , (1.2)

where {πλj} are independent Poisson Π(λj) variables (πλj ≡0 if λj=0). Then
Z is a compound Poisson random variable with characteristic function

IE exp (itZ) = exp

( ∞∑
j=1

λj(e
itj−1)

)
. (1.3)

In other words, Z
d
= X0 + ...+Xπλ

, where IP(X=j) = λj/λ.
A compound Poisson distribution with a geometric multiplicity distribution

is called sometimes a Pólya-Aeppli distribution, cf. [113], p. 410.
Random variable Sr,p has a Negative Binomial NB(r, p) distribution with

parameters p∈(0, 1) and r>0 if

IP(Sr,p=j) =
Γ(r+j)

Γ(r) j!
(1−p)rpj (j≥0), (1.4)

where

Γ(y) =

∫ ∞

0

xy−1e−xdx.

The characteristic function of NB(r, p) is

(1−p)r/(1−peit)r .

Hence
IESr,p = rp/(1−p), varSr,p = rp/(1−p)2 .

It is known that the Negative Binomial distribution is a particular compound
Poisson distribution.

If n ∈ IN, then Sn,p
d
= ξ1 + ... + ξn , where ξ1, ..., ξn are independent r.v.s

with geometric Γ0(p) distribution.
Random variables {Xn,1, ..., Xn,n} are called infinitesimal if

lim
n→∞

max
1≤j≤n

IP(|Xn,j |>ε) = 0 (∀ε>0). (1.5)
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Exponent of a measure. Let I ≡ Io denote the distribution concentrated at
0, i.e.,

I({0})=1, I(IR\{0})=0.

In the multivariate case I denotes the distribution concentrated at 0̄ = (0, . . . , 0).
Similarly, Ia is the distribution concentrated at a.

Given a finite measure Q, we denote

exp(Q) =
∑
j≥0

Q∗j/j!

Here powers Q∗j are understood in the convolution sense, Q∗0 = I, where I
is a degenerate distribution concentrated at zero.

Note that for any a∈R

exp(aI) = eaI, exp(Q−aI) = e−a exp(Q).

Poisson distribution Π(λ) can be presented as

Π(λ) = exp (λ(I1−I)) = e−λ exp(λI1),

compound Poisson distribution Π(λ,X) with PX := L(X) can be presented
as

Π(λ,X) = exp (λ(PX−I)) = e−λ exp(λPX).

Measure Q is called a unit measure or a signed measure if Q(IR) = 1 but
there exists a measurable set A such that Q(A) < 0.

The definition of Π(λ,X), where λ ≥ 0, can be extended to the case of a
signed compound Poisson (SCP) measure Π(−λ,X). Though probabilistic in-
terpretation requires introduction of generalized “random variables”, the struc-
ture of Π(−λ,X) is the same as that of Π(λ,X):

Π(−λ,X) = exp (−λ(PX−I)) = eλ exp(−λPX).

With some abuse of notation we denote by π−λ a signed Poisson “random
variable” meaning we use a signed Poisson measure exp (−λ(I1−I)).

Accompanying distribution. Given a r.v. X, let π1, X0 = 0, X1, X2, ... be

independent r.v.s, where π1 is a Poisson Π(1) r.v., Xi
d
= X (i≥1). Set

X̃ =

π1∑
j=1

Xj . (1.6)

Then L(X̃) is called an “accompanying distribution”, X̃ is called an accompa-
nying X r.v. (terminology of Gnedenko [92]). The definition is valid for random
elements taking values in a general measurable space as well.

Clearly,

L(X̃) = Π(1, X) = exp (L(X)−I) , IEeitX̃ = exp
(
IEeitX−1

)
.
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If IE|X|<∞, then IEX̃ = IEX. If IEX2<∞ and IEX=0, then var X̃ = varX.
If

X
d
= τX ′, (1.7)

where τ is independent of X ′, L(τ) = B(p), then (cf. (6.26) in [144])

L(X̃) = Π(p,X ′) = exp(p(L(X ′)−I)) , IEeitX̃ = exp
(
p(IEeitX

′−1)
)
. (1.8)

Given a sequence {X1, ..., Xn} or a triangular array {X1 ≡ Xn,1, ..., Xn ≡
Xn,n}n≥1 of random variables, recall that Sn = X1 + · · ·+Xn . By

S̃n = X̃1 + · · ·+ X̃n (1.9)

we denote the sum of independent accompanying random variables. Clearly,

L(S̃n) = exp

(
n∑

i=1

(L(Xi)−I)

)
. (1.9∗)

This presentation can be combined with (1.7), cf. (3.1).
If X,X1, ..., Xn are identically distributed r.v.s, then L(S̃n) = Π(n,X).
A sequence of random variables {Xk}k≥1 is called m-dependent if X1, . . . , Xs

and Xt, Xt+1, . . . , Xn are independent for arbitrary s, t such that 1≤s<t<∞,
t−s>m. Observe that by grouping consecutive summands one can present the
sum of m-dependent random variables as a sum of 1-dependent ones.

A sequence of random variables X1, X2, . . . Xn is strictly stationary if for ar-
bitrary integer numbers r, k, i1<i2<. . .<ir the distribution of Xk+i1 , . . . , Xk+ir

does not depend on k. In particular, r.v.s X1, X2, . . . Xn are identically dis-
tributed.

For any x∈ IR, k∈ IN,

x(k) = x(x−1) · · · (x−k+1)

is called the kth factorial of x. We set x(0) = 1.
If X is a random variable, then IEX(k) is called the kth factorial moment

of X. Factorial moments appear in Taylor’s expansion of the factorial moment
generating function

IE(1+t)X = 1 + tIEX +
t2

2!
IEX(2) +

t3

3!
IEX(3) + · · ·

The so-called factorial cumulants (factorial semi-invariants) κk come from Tay-
lor’s expansion of the logarithm of the factorial moment generating function

ln IE(1+t)X = tκ1 +
t2

2!
κ2 +

t3

3!
κ3 + · · · , (1.10)

see [113], p. 53–55.
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We denote by

Q+
Y (h) ≡ Q+

L(Y )(h) = sup
x

IP(x≤Y ≤x+h)

the concentration function of L(Y ). Sometimes we may use the following variant
of the concentration function:

QY (h) ≡ QL(Y )(h) = sup
x

IP(x<Y ≤x+h).

We may use the same symbol C to denote different absolute constants (with
or without indexes). Symbols C(F ), CF , CX denote constants that depend on
the distribution function (d.f.) F of L(X).

As usual, an∼bn means that limn→∞ an/bn = 1.
We write f(n) = O(g(n)) if f(n)/g(n)≤C<∞ for all large enough n.
For any x∈R let [x] and {x} denote the integer and the fractional parts of

x. Below multiplication is superior to division.

1.2. Metrics

Historically, the accuracy of approximation was first studied in terms of the
uniform distance (sometimes called the Kolmogorov distance).

The uniform distance dK(X;Y ) ≡ dK(FX ;FY ) between the distributions of
random variables X and Y with distribution functions FX and FY is defined
as

dK(FX ;FY ) = sup
x

|FX(x)− FY (x)|

(in the multi-dimensional case FX , FY denote multivariate distribution func-
tions). Note that a version of multivariate Kolmogorov’s distance based on com-
paring values of distributions on convex polyhedra has been proposed in [96].

In the case of integer-valued r.v.s it is natural to evaluate the accuracy of
approximation in terms of a stronger total variation distance. Recall that the
total variation distance dTV(X;Y ) between the distributions of r.v.s X and Y
is defined as

d
TV
(X;Y ) ≡ d

TV
(L(X);L(Y )) = sup

A∈A
|IP(X∈A)− IP(Y ∈A)| ,

where A is a Borel σ-field. Evidently, dK(X;Y ) ≤ d
TV
(X;Y ).

According to Dobrushin’s theorem (see [77, 32]),

dTV(X;Y ) = inf
X′,Y ′

IP(X ′ �= Y ′),

where the infimum is taken over all random pairs (X ′, Y ′) such that L(X ′) =
L(X), L(Y ′) = L(Y ).

The total variation distance can be expressed as

d
TV
(X;Y ) = sup

f
|IEf(X)−IEf(Y )|
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where the supremum is over the class of measurable functions taking values in
[0; 1] (see, e.g., [68], ch. 1.3, or [144], ch. 14.4).

If X and Y take values in the set Z of integer numbers, then

dTV(X,Y ) =
1

2

∑
j

|IP(X=j)− IP(Y =j)|.

The Gini–Kantorovich distance dG(X;Y ) ≡ dG(L(X);L(Y )) between the
distributions of r.v.s X and Y with finite first moments (known also as the
Kantorovich–Wasserstein distance) is given by

d
G
(X;Y ) = sup

g∈L1

|IEg(X)− IEg(Y )| , (1.11)

where L1 = {g : |g(x)−g(y)| ≤ |x−y|} is the set of Lipschitz functions. Note
that

d
G
(X;Y ) = inf

X′,Y ′
IE|X ′ − Y ′|,

where the infimum is taken over all random pairs (X ′, Y ′) such that L(X ′) =
L(X), L(Y ′) = L(Y ) [158, 183]. If X and Y take values in Z+, then [172, 74]

d
G
(X;Y ) =

∑
i≥1

|IP(X≥ i)− IP(Y ≥ i)|.

Distance d
G

was introduced by Gini [89]; Kantorovich [114] has introduced
a class of distances that includes dG . A generalization of dG is distance

dt(X;Y ) ≡ dt(L(X);L(Y )) = inf
X′,Y ′

IE1/t|X ′ − Y ′|t (t>1).

where the infimum is taken over all random pairs (X ′, Y ′) such that L(X ′) =
L(X), L(Y ′) = L(Y ).

If distributions P1 and P2 have densities f1 and f2 with respect to a
measure μ, set

d2
H
(P1;P2) :=

1

2

∫ (
f
1/2
1 − f

1/2
2

)2

dμ = 1−
∫ √

f1f2 dμ

Then d
H

denotes the Hellinger distance. It is known that

d2
H
≤ dTV ≤ dH

√
2−d2

H
.

Denote

χ2(P1;P2) =

∫
suppP2

(dP1/dP2 − 1)
2
dP2 .

By the Cauchy-Bunyakovski inequality,

2d
TV
(P1;P2) ≤ χ(P1;P2).
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Let

d2
KL

(P1;P2) =

∫
suppP2

ln(dP1/dP2) dP1

denote the Kullback–Leibler divergence. According to a Pinsker-type inequality,

d
TV

≤ d
KL

/
√
2 . (1.12)

Though d2KL is not a metric, it plays a role in statistics (cf. [103]) and in the
theory of large deviations (cf. [144], formula (14.40), and ex. 41 on p. 324).

Given ε≥0, the Dudley divergence is defined as

ρε(P1;P2) = inf
X,Y

IP(|X−Y |>ε),

where the infimum is taken over all random pairs (X,Y ) such that L(X) = P1,
L(Y ) = P2. The Dudley divergence is a generalization of the total variation
distance: d

TV
(P1;P2) = ρ0(P1;P2).

Lévy’s metric is defined as

dL(X;Y ) = inf{ε>0: IP(X<x−ε)−ε ≤ IP(Y <x) ≤ IP(X<x+ε)+ε (∀x∈R)}.

It is weaker than Kolmogorov’s distance: dL(X;Y ) ≤ dK(X;Y ). Convergence
in dL entails weak convergence of distributions.

Certain other distances can be found in [132, 144, 161, 165]. For the relations
between metrics see, e.g., [88, 179].

2. Compound Poisson limit theorem

Compound Poisson limit theorem plays important role in the theory of sums of
r.v.s. From a theoretical point of view, the interest to the topic arises in con-
nection with Kolmogorov’s problem concerning the accuracy of approximation
of the distribution of a sum of independent r.v.s by infinitely divisible laws (see
[6, 129, 153, 156] and references therein). Recall that the class of infinitely divis-
ible distributions coincides with the class of weak limits of compound Poisson
distributions (Khintchine [117], Theorem 26).

The topic has applications in extreme value theory, insurance, reliability
theory, patterns matching, etc. (cf. [10, 13, 17, 127, 144]). For instance, in
(re)insurance applications the sum Sn =

∑n
i=1Yi1I{Yi > xi} of integer-valued

r.v.s allows to account for the total loss from the claims {Yi} that exceed ex-
cesses {xi}. If the probabilities IP(Yi>xi) are small, L(Sn) can be accurately
approximated by a Poisson or a compound Poisson law.

In extreme value theory one deals with the number of extreme (rare) events
represented by a sum of 0-1 r.v.s (indicators of rare events). The indicators
can be dependent. A well-known approach consists of grouping observations
into blocks which can be considered almost independent [26]. The number of
r.v.s in a block is an integer-valued r.v., hence the number of rare events is
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a sum of almost independent integer-valued r.v.s that are non-zero with small
probabilities.

In molecular biology long match patterns between DNA sequences may indi-
cate “valuable” fragments. A natural question is if such long patterns appear by
chance. Information on the distribution of the number of long match patterns
(NLMP) between sequences of independent r.v.s can help answering that ques-
tion. The distribution of NLMP can often be approximated by a Poisson or a
compound Poisson law.

More information concerning applications can be found in [10, 13, 85, 127].

2.1. Basic properties of a compound Poisson distribution

Recall that compound Poisson (CP) distribution Π(λ, ζ) ≡ Π(λ,L(ζ)) is the
distribution of a random variable

πλ∑
i=0

ζi, (1.1+)

where ζ0≡0, πλ, ζ, ζ1, ζ2, ... are independent r.v.s, ζi
d
= ζ (i≥1), L(πλ) = Π(λ).

Typically ζ �=0 w.p. 1. The requirement ζ �=0 w.p. 1 may be omitted. Indeed,
denote p = IP(ζ �= 0). By Khintchine’s formula ([115], ch. 2), any random
variable ζ obeys

ζ
d
= τpζ

′, (2.1)

where τp and ζ ′ are independent r.v.s, L(ζ ′) = L(ζ|ζ �=0), L(τp) = B(p).
Note that

Π(λ, τpζ
′) = Π(λp, ζ ′), (2.2)

i.e., (1.1+) can be rewritten as

πλ∑
i=0

ζi
d
=

πλp∑
i=0

ζ ′i (1.1∗)

(cf. (1.8)). Therefore, one usually deals with Π(t, ζ), where IP(ζ �=0) = 1.
Denote PX = L(X). Recall that Π(λ,X) = Π(λ, PX) can be presented as

exp (λ(PX−I)) = e−λ exp (λPX) = e−λ
∞∑
k=0

λkP ∗k
X /k! (2.3)

If Y is a compound Poisson r.v. and c is a constant, then cY is obviously
a compound Poisson r.v..

A sum of two independent compound Poisson random variables is a com-
pound Poisson random variable.

Note that compound Poisson distribution is infinitely divisible. A random
variable X with support on [0;∞] and IP(X =0)> 0 is infinitely divisible if
and only if it is compound Poisson [102]. Π(λ, ζ) is not absolutely continuous
since there is an atom at zero.
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2.2. Compound Poisson limit theorem for independent summands

In this section we present compound Poisson limit theorems for a sum Sn =
X1 + ...+Xn of independent random variables.

Let {Xn,1, ..., Xn,n}n≥1 be a triangle array of independent random variables.
In the sequel we often write X1, ..., Xn instead of Xn,1, ..., Xn,n .

The topic of compound Poisson approximation to the distribution of a sum
Sn of random variables representing “rare” events plays important role in insur-
ance, extreme value theory, reliability theory, mathematical biology, etc. (see,
e.g., [85, 147] and references therein); it is an integral part of the topic of in-
finitely divisible approximation within the framework of Kolmogorov’s problem.

For instance, in extreme value theory one is interested in the distribution of
the k-th largest sample element Xn:k .

Given x∈ IR, let Nn(x) =
∑n

i=1 1I{Xi>x} denote the number of exceedances
of x. Then

{Xn:k ≤ x} = {Nn(x) < k}.
In particular, {

max
1≤i≤n

Xi≤x
}
= {Nn(x)=0},

{Xn:2≤x} = {Nn(x)≤1}, etc. Thus, results concerning the distribution of sam-
ple extremes can be derived from the corresponding results concerning Nn(x).

The distribution of Nn(x) can often be approximated by a compound Poisson
law.

Random variables that are zero with large probabilities.
Khintchine ([115], ch. 2.3) was probably the first to prove a compound Poisson

limit theorem. Below we present Khintchine’s result.
Suppose that r.v.s X,X1, ..., Xn are independent and identically distributed

(i.i.d.) in each row (L(X) may depend on n). Denote

p≡p(n)=IP(X �=0).

Theorem 2.1. [115] Suppose that there exists λ>0 and a random variable X ′

such that p∼λ/n and
L(X|X �=0) ⇒ L(X ′) (2.4)

as n→∞. Then
L(Sn) ⇒ Π(λ,X ′) (n→∞). (2.5)

To be precise, Khintchine [115] assumed L(X|X �=0) = L(X ′) but the argu-
ment holds in the situation presented above.

The proof of (2.5) is based on Khintchine’s formula (2.1). As a consequence,

Sn
d
= τ1X

′
1 + ...+ τnX

′
n, (2.6)

where τ1, X
′
1, ..., τn, X

′
n are independent r.v.s,

L(X ′
i) = L(X|X �=0), L(τi) = B(p) (∀i).
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Since {X ′
i} are i.i.d.r.v.s,

Sn
d
=

νn∑
i=1

X ′
i, (2.7)

where Binomial B(n, p) r.v.

νn = τ1 + ...+ τn (2.8)

is independent of {X ′
1, ..., X

′
n}.

Estimates of the accuracy of compound Poisson approximation follow from
the estimates of the accuracy of pure Poisson approximation thanks to the fol-
lowing observation ([119], formula (30)): since {X ′

i} are identically distributed
r.v.s,

d
TV

( νn∑
i=1

X ′
i;

πλ∑
i=1

X ′
i

)
≤ d

TV
(νn;πλ). (2.9)

A similar result is valid in terms of d
G
, cf. [144], Lemma 5.4. A (2.9)-type bound

is valid for unit measure approximations, cf. [68], Section 2.3.
Note that weak convergence νn ⇒ πλ is equivalent to the convergence

dTV(νn;πλ) → 0 as n → ∞. Thus, Khintchine’s compound Poisson limit the-
orem is a consequence of the Poisson limit theorem: if p∼ λ/n, where λ > 0,
then weak convergence νn⇒πλ together with (2.4) entails (2.5).

The following proposition states that (2.4) is necessary for (2.5) assuming
p∼λ/n. Proposition 2.2 is a consequence of Theorem 2.3 below.

Proposition 2.2. Suppose that ∃ limn→∞ np := λ. If there exist a r.v. S such
that Sn ⇒ S as n→∞, then there exist a r.v. X ′ such that L(S) = Π(λ,X ′).
If λ>0, then (2.4) holds.

Example 2.1. Let {X,X1, ..., Xn}n≥1 be a triangular array of i.i.d.r.v.s,

IP(X=0) = 1−λ/n, IP(X=1) = λ/2n, IP(X=2) = λ/2n.

Set Sn = X1 + ...+Xn . Then X ′ d
= 1+η and

L(Sn) ⇒ Π(λ, 1+η) (n→∞),

where η is a Bernoulli B(1/2) r.v.. �
Non-i.i.d. r.v.s that are zero with large probabilities.
We consider now a special case where {Xi} are non-i.d. r.v.s but {X ′

i} are.
Denote

pi = IP(Xi �=0), τi = 1I{Xi �=0} (i≥1), λ = p1 + ...+ pn .

According to Khintchine’s formula (2.1),

Xi
d
= τiX

′
i,

where X ′
i are independent r.v.s, L(X ′

i) = L(Xi|Xi �=0), L(τi) = B(pi).
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We consider the case where {X ′
i} are i.i.d.r.v.s. Clearly, (2.7) still holds,

where νn = τ1 + ... + τn is independent of {X ′
1, ..., X

′
n}. If νn ⇒ Π(λ) as

n→∞, then (cf. (2.9))

Sn ⇒ Π(λ,X ′) (n→∞).

Thus, a compound Poisson limit theorem is a consequence of a Poisson limit
theorem.

If {X ′
i} are non-i.d. r.v.s, then

Sn
d
= τ1X

′
1 + ...+ τnX

′
n

can be approximated by a compound Poisson random variable

S̃n = X̃1 + · · ·+ X̃n (1.9∗)

where {X̃i} are independent compound Poisson Π(pi, X
′
i) r.v.s, cf. (3.6), (3.8).

In the assumption that {Xn,1, ..., Xn,n}n≥1 is a triangular array of indepen-
dent integer-valued random variables satisfying the infinitesimality assumption
(1.5), Grigelionis [100] presents the following sufficient condition for the weak
convergence (2.5). Denote pi ≡ pi(n) = IP(Xn,i �= 0). If there exists λ>0 and
a random variable X ′ such that

lim
n→∞

n∑
j=1

pi = λ, lim
n→∞

n∑
j=1

IP(Xn,j=k) = λIP(X ′=k) (∀k �=0),

then L(Sn) ⇒ Π(λ,X ′) as n→∞.
Wang [189] presents sufficient conditions for convergence of an unbounded

function of a sum Sn of non-negative integer-valued r.v.s to a corresponding
function of a compound Poisson random variable, see also Chen & Roos [38].

2.3. Compound Poisson limit theorem for dependent r.v.s

Let {X,X1, ..., Xn}n≥1 be a triangle array of dependent r.v.s, strictly stationary
in each row (L(X) may depend on n).

Recall the definitions of mixing (weak dependence) coefficients:

αn(l) = sup | IP(AB)−IP(A)IP(B)|, ϕn(l) = sup |IP(B|A)− IP(B)|,
βn(l) = sup IE sup

B
|IP(B|F1,m)−IP(B)|,

where the supremum is taken over m≥ 1, A ∈F1,m, B ∈Fm+l+1,n such that
IP(A)>0, Fl,m denotes the σ–field generated by {Xi}l≤i≤m .

Condition Δ is said to hold if αn(ln) → 0 for some sequence {l = ln} of
natural numbers such that 0≤ ln�n.

If condition Δ holds, then there exists a sequence {r=rn} of natural num-
bers such that

n�rn� ln , nr−1
n α2/3

n (ln) → 0 (2.10)
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as n→∞ — for instance, one can take rn =
[
max{

√
nln ;n

√
αn(ln) ; 1}

]
. We

denote by R the class of all such sequences {rn}. In Theorem 2.3 below we
assume condition Δ.

In applications {Xi} are typically non-negative r.v.s; they usually represent
“rare” events. Therefore, in this section we assume that Xi≥0 (∀i).

Denote

p ≡ p(n) = IP(X �=0).

A common approach is to assume that there exists the limit

lim
n→∞

IP(Sn=0) = e−λ (∃λ>0). (2.11)

Condition (2.11) means that r.v.s are “properly” normalised. If {Xi} are inde-
pendent, then (2.11) is equivalent to

np ∼ λ (n→∞). (2.12)

The same is true if {Xi} are dependent but condition (D′) holds (see, e.g.,
[147]).

Note that (2.11) and Δ yield

lim
n→∞

p(n) = 0

(cf. ex. 15 in [144], p. 11).

Weaker than (2.12) is assumption

lim sup
n→∞

np < ∞. (2.13)

Note that (2.11) does not imply (2.13) — Denzel & O’Brien [75] present an
example of an α–mixing sequence such that (2.11) holds though (2.13) does
not. On the other hand, (2.13) follows from (2.11) if the sequence {X1, ..., Xn}
is ϕ–mixing (cf. ex. 16 in [144], p. 11).

Theorem 2.3. Assume conditions Δ, (2.11) and (2.13). If there exists a se-
quence {r=rn}∈R such that

L(Sr|Sr �=0) ⇒ L(ζ) (n→∞), (2.14)

then

L(Sn) ⇒ Π(λ, ζ). (2.15)

The limit in (2.15) does not depend on the choice of a sequence {rn}∈R.

If Sn converges weakly to a random variable S, then there exists λ≥0 and
a random variable ζ such that L(S) = Π(λ, ζ), where λ = − ln IP(S = 0). If
λ> 0, then (2.11) holds, and there exist a sequence {rn}∈R such that (2.14)
holds true.



284 V. Čekanavičius and S. Y. Novak

Theorem 2.3 is essentially Theorem 5.1 from [144]. It states that conditions
(2.11), (2.14) are necessary and sufficient for the weak convergence of L (Sn)
to a compound Poisson law.

A random variable ζ taking values in IN is called the limiting cluster size
if (2.14) holds. The notion of the limiting cluster size plays important role in
extreme value theory (see, e.g., [144], ch. 5, 6). If {Xi} are 0-1 random variables,
then the class of limiting cluster size distributions coincides with the family of
all integer-valued distributions [34].

Condition (2.14) suggests the following estimator of L(ζ):

P̂n(ζ= ·) =
[n/r]∑
j=0

1I{Sr,j= ·}
/ [n/r]∑

j=0

1I{Sr,j �=0},

where Sr,j =
∑(j+1)r∧n

m=jr+1 Xm , see Hsing [108]. Results concerning consistent
estimation of L(ζ) can be found, e.g., in [108, 109, 163].

Example 2.2. Let {ξi} be a sequence of i.i.d.r.v.s. Suppose that {un} is a

sequence of threshold levels such that limn→∞ IP
(

max
1≤i≤n

ξi≤un

)
= e−λ (∃λ>

0). Set
Xi = 1I{max{ξi; ξi+1}>un}. (2.16)

Then (2.14) holds with ζ ≡ 2, {r} ∈ R. Hence Sn ⇒ 2π(λ), i.e., L(Sn) ⇒
Π(λ, 2). �

3. Accuracy of CP approximation: rare events

Compound Poisson approximation appears naturally in situations where rare
events form clusters and the number of clusters is asymptoticaly Poisson (which
is typically the case).

This section presents results on the accuracy of compound Poisson to the
distribution of a sum of r.v.s representing rare events.

3.1. Independent random variables

The task of evaluating the accuracy of compound Poisson approximation to the
distribution of a sum of r.v.s that are non-zero with small probabilities (i.e., are
rare) have been approached by many authors, cf. [129, 136, 144, 154, 195], etc.

Let {Xi} be independent r.v.s that are non-zero with small probabilities,
i.e., {Xi} represent rare events. Set Sn = X1 + ...+Xn ,

pi = IP(Xi �=0) (i≥1), λ = p1 + ...+ pn.

According to Khintchine’s formula (2.1),

Xi
d
= τiX

′
i, (2.1∗)
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where τi and X ′
i are independent r.v.s, L(X ′

i) = L(Xi|Xi �=0), L(τi) = B(pi).
Relation (2.1∗) can be rewritten as

L(Xi) = (1−pi)I + piL(X ′
i).

Hence (2.6) holds:

Sn
d
= τ1X

′
1 + ...+ τnX

′
n .

Some authors call L(Sn) a “compound Binomial distribution,” cf. [63].
Concerning the sum S̃n of independent accompanying random variables (cf.

(1.8), (1.9)), note that

L(S̃n) = exp

(
n∑

i=1

pi(L(X ′
i)−I)

)
= Π(λ,L(X ′

η)), (3.1)

where λ = p1 + ... + pn , r.v. η is independent of X ′
1, ..., X

′
n, IP(η = j) =

pj/λ (1≤j≤n).
The i.i.d. case.
Consider the situation where Xi

d
= X (∀i). Denote

νn = τ1 + ...+ τn .

Then

Sn
d
=

νn∑
i=1

X ′
i , S̃n

d
=

πλ∑
i=1

X ′
i , (3.2)

where Poisson Π(λ) r.v. πλ is independent of {X ′
i}.

Estimates of the accuracy of compound Poisson approximation follow from
the estimates of the accuracy of pure Poisson approximation thanks to (2.9):

dTV

(
Sn;

πλ∑
i=1

X ′
i

)
≡ dTV

( νn∑
i=1

X ′
i;

πλ∑
i=1

X ′
i

)
≤ dTV(νn;πλ). (2.9∗)

Inequality (2.9∗) and Theorem 4.12 in [144] yield

d
TV
(Sn; S̃n) ≤ 3θ/4e + 4δ∗, (3.3)

where θ =
∑n

i=1 p
2
i /λ, δ

∗ = (1−e−λ)
∑n

i=1 p
3
i /λ .

According to [144], Lemma 5.4,

d
G
(Sn; S̃n) ≤ d

G
(νn;πλ)IE|X ′|. (3.4)

A combination of (3.4) and formula (4.53) in [144] entails

dG(Sn; S̃n) ≤
(
λ ∧ 4

3

√
2λ/e

)
θIE|X ′|. (3.5)

Other estimates of the accuracy of pure Poisson approximation can be applied
too, cf. [147].
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The case of i.i.d. {X ′
i}.

We now consider the situation where

X ′
i

d
= X ′ (∀i)

while {τi} are not required to be i.i.d.. In such a situation (3.2) still holds,
and estimates of the accuracy of compound Poisson approximation to L(Sn)
follows from the estimates of the accuracy of pure Poisson approximation thanks
to (2.9∗), see [154, 136, 24, 147]. In particular, (3.3) and (3.5) hold.

The task of deriving estimates of the accuracy of compound Poisson approxi-
mation to L(Sn) appears demanding if r.v.s {X ′

i} are not identically distributed.
The non-i.i.d. case.
If r.v.s {X ′

i} are independent but not identically distributed, it appears nat-
ural to approximate each Xj by an “accompanying” r.v. X̃j , and the sum
τ1X

′
1 + ...+ τnX

′
n by a compound Poisson random variable

S̃n = X̃1 + ...+ X̃n ,

where {X̃j} are independent compound Poisson Π(1, Xi) = Π(pi, X
′
i) random

variables, cf. (1.8). Recall that S̃n is a compound Poisson random variable.
A simple estimate of the accuracy of compound Poisson approximation to

L(Sn) follows from the property of dTV and a well-known fact that dTV(B(p);
Π(p)) ≤ p2:

d
TV
(Sn; S̃n) ≤

n∑
i=1

d
TV
(Xi; X̃i) ≤

n∑
i=1

d
TV
(τi;πpi) ≤

n∑
i=1

p2i . (3.6)

Similar estimates can be derived in terms of some other distances.
The explicit proof of estimate (3.6) has been given by Le Cam [128], who

attributed the idea of the proof to Khintchine [115].
Let X1, ..., Xn be independent non-negative r.v.s, and let

Po = exp

(
1

2

n∑
i=1

pi(1−pi)(Vi−I)

)
.

If all pi<1, then

dK(Sn; S̃n) ≤
π2

8

n∑
i=1

cip
2
i

1−pi
QPo(IEX

′
i) (3.7)

[168], where ci = 1 if Vi = I, ci = 2 otherwise. A numerical example in [105]
shows that inclusion of concentration function in the estimate can significantly
improve the estimate.

Zaitsev [195] has derived an estimate of the accuracy of compound Poisson
approximation that can be sharper than (3.6) if λ is “large”. Denote

p∗n := max
i≤n

pi .
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Theorem 3.1. [195] There exists an absolute constant C such that

dK(Sn; S̃n) ≤ Cp∗n . (3.8)

Inequality (3.8) is instrumental in the work on the so-called second Kol-
mogorov’s problem, see [6, 94, 197, 200, 204].

The following estimate is due to Roos [169]. Denote

P̄ (·) = 1

λ

n∑
j=1

piIP(X
′
i∈·),

Assume that L(X ′
i) is absolutely continuous with respect to P̄ for every i. Let

fi denote the density of L(X ′
i) with respect to P̄ , and set ρi =

∫
f2
i dP̄ . Then

d
TV
(Sn; S̃n) ≤ 8.8

n∑
i=1

p2i min
{
1; ρi/λ

}
. (3.9)

By Khintchine’s formula (see [115] or formula (14.5) in [144]), any distribution
can be presented as

L(X) = (1−p)U + pV, (3.10)

where 0≤p≤1, U and V are two distributions. One can choose U = L(X|a≤
X ≤ b), where [a; b] is a finite interval. By shifting U , one can ensure that
the mean of the shifted distribution is zero. The derivation of estimates of the
accuracy of compound Poisson and infinitely divisible approximations in [119,
129, 157] is based on (3.10).

Let {Xi} be independent r.v.s with distributions {Pi} obeying

Pi = (1−pi)Ui + piVi (i = 1, . . . , n). (3.10∗)

In other words,

Xi
d
= (1−τi)X

o
i + τiX

′
i , (3.10�)

where L(τi) = B(pi), L(Xo
i ) = Ui, L(X ′

i) = Vi , random variables {τi , Xo
i , X

′
i}

are independent. Note that L(Sn) =
∏∗n

i=1 Pi . Set

G =

∗n∏
i=1

((1−pi)I + piVi), G∗ = exp

(
n∑

i=1

pi(Vi−I)

)
.

Then G = L(
∑n

i=1 τiX
′
i), while G∗ =

∏∗n
i=1 Π(pi, Vi) is the accompanying

distribution.
Recall that

L(S̃n) = exp
( n∑

i=1

(Pi−I)
)

is the distribution of a sum of accompanying {Xi} r.v.s; QX(·) denotes the
concentration function of L(X).
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Let g(x) be a non-negative even function that is positive for x �=0 and does
not decrease for x≥0. Assume that function x/g(x) is non-decreasing for x>0,
and suppose that

IEXo
i = 0, σ2 =

n∑
i=1

(1−pi)IEX
o
i
2, β =

n∑
i=1

(1−pi)IEX
o
i
2g(Xo

i ) < ∞.

Theorem 3.2. [200] Assume that σ>0. There exists an absolute constant C
such that

dK(Sn; S̃n) ≤ C

(
p∗n + αmin{QG(σ);QG∗(σ)}

)
, (3.11)

where α = min
{
1;β/σ2g(σ)

}
.

Estimate (3.11) generalizes (3.8).
Integer-valued random variables.
Let {Xi} be non-negative integer-valued random variables. Then

X =

∞∑
j=1

j1I{X=j}, Sn =

∞∑
j=1

j

n∑
i=1

1I{Xi=j}.

Denote

λj =
n∑

i=1

IP(Xi=j) (j≥1), λ =
∑
j≥1

λj =
n∑

i=1

IP(Xi≥1) .

Set

Z =

∞∑
j=1

jπλj .

Erhardsson ([81], Example 3.7), has shown that

d
TV
(Sn;Z) ≤ M(λ)

n∑
j=1

IE2Xj (3.12)

if IEX2
i <∞ (∀i), where

M(λ) ≤ min
{
1;λ−1

1

}
eλ . (3.13)

If iλi ≥ (i+1)λi+1 (∀i), then [14]

M(λ) ≤ min

{
1;

1

λ1−2λ2

(
1

4(λ1−2λ2)
+ ln+(2(λ1−2λ2))

)}
, (3.14)

where ln+ denotes a positive part of the natural logarithm.
Denote θ′ =

∑
i≥2 i(i−1)λi/

∑
i≥1 iλi . If θ′ < 1/2, then [16]

M(λ) ≤ 1
/
(1−2θ′)

∑
i≥1

iλi . (3.15)
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Results similar to (3.6), (3.12) have been presented in [15, 36]. In particular,
Boutsikas & Vaggelatou [36] show that

d
TV
(Sn;Z) = O(p+ n2p4)

if X,X1, ... are i.i.d.r.v.s, IEX2<∞, p< ln 2 and∑
k∈Z

|Π(np,X ′){k} − 2Π(np,X ′){k−1}+Π(np,X ′){k−2}| = O(1/np),

where p = IP(X �=0), L(X ′) = L(X|X �=0).
Assume now that r.v.s X1, . . . , Xn take values in a finite set {0, 1, . . . , N}

of natural numbers. A lower bound to dTV(Sn; S̃n) has been established by
Barbour et al. [14]:

d
TV
(Sn; S̃n) ≥

1

32N2
min

(
1; (IESn)

−1
) n∑
j=1

IE2Xj .

Concerning lower bounds to the accuracy of Poisson approximation to the Bi-
nomial distribution, see Sason [173] and references therein.
Open problem.
3.1. Evaluate absolute constant C in Zaitsev’s inequality (3.8).

3.2. Asymptotic expansions

Construction of asymptotic expansions is based on the following considerations.
Recall (2.1∗). Let fi denote the characteristic functions of X ′

i. The charac-
teristic function of Sn can be formally written as

IE exp(itSn) =

n∏
i=1

(1+pi(fi−1)) = exp

(
n∑

i=1

ln(1+pi(fi−1))

)

= exp

(
n∑

i=1

∞∑
j=1

(−1)j+1pji (fi−1)j/j

)
. (3.16)

This leads to the asymptotic expansion

exp

(
n∑

i=1

pi(fi − 1)

)(
1− 1

2

n∑
i=1

p2i (fi−1)2 + · · ·
)
. (3.17)

If we leave more terms in the exponent (3.16), then we arrive at the asymp-
totic expansion involving a signed compound Poisson measure:

exp

(
n∑

i=1

k∑
j=1

(−1)j+1pji (fi−1)j

j

)(
1 +

n∑
i=1

∞∑
j=k+1

(−1)j+1pji (fi−1)j

j
+ · · ·

)
.

(3.18)
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This is not the only possible asymptotic expansion. Assume that 0<pi<1.
Then (3.16) can be written as

exp

(
n∑

i=1

(ln(1−pi) + ln(1+pifi/(1−pi)))

)

= exp

(
n∑

i=1

∞∑
j=1

(−1)j+1

(
pi

1−pi

)j

(f j
i −1)/j

)
.

Leaving a finite number of summands in the exponent, we get yet another pos-
sible SCP approximation.

Asymptotic expansions can be traced back to Uspensky [182], see also Her-
rmann [104]. Herrmann’s paper went largely unnoticed; SCP approximations
have been rediscovered in 1983 by Kornya [122] and Presman [153].

The following first-order asymptotic expansion in (3.8) is due to Čekanavičius
[50]:

dK(L(Sn);G1) ≤ Cp∗n
2 , (3.19)

where

G1 = L(S̃n) ∗
(
I− 1

2

n∑
i=1

p2i (L(X ′
i)− I)∗2

)
(3.20)

= L(S̃n)−
1

2

n∑
i=1

p2i

(
L(S̃n+X ′

i+X ′′
i )− 2L(S̃n+X ′

i) + L(S̃n)
)
,

X ′′
i

d
= X ′

i, all r.v.s are independent.
An asymptotic expansion in (3.6) has been given by Čekanavičius [54]:

d
TV
(L(Sn);G1) ≤

8

3

( n∑
j=1

p2j

)3/2

+ 2
( n∑
j=1

p2j

)2

. (3.21)

Some other expansions have been presented in [54]. In particular, it was shown
that

d
TV
(L(Sn);G

′
1) ≤ 2

( n∑
j=1

p2j

)2

, (3.22)

where

G′
1 = L(S̃n) +

n∑
k=1

(L(Xj)−L(X̃j)) ∗ L(S̃n−X̃j),

X̃j denotes an accompanying Xj random variable, see (1.9). The rate of ap-
proximation in (3.22) is better than that in (3.21).

Note that the first-order Poisson asymptotic expansion ensures the accuracy
of approximation of order O(p2) in terms of the total variation distance [11, 146]
and of order O(p2

√
np ) in terms of the Gini-Kantorovich distance [148].
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Next we consider SCP approximations. Given a fixed natural number s,
denote

Hn,s = exp

(
n∑

i=1

s∑
j=1

pji (−1)j+1(L(X ′
i)−I)∗j/j

)
, (3.23)

Kn,s = exp

(
n∑

i=1

s∑
j=1

(−1)j+1

(
pi

1−pi

)j

(L(X ′
i)

∗j−I)/j

)
, (3.24)

τ(i, s) = (2pi)
s+1/(s+1)(1−2pi).

Recall that p∗n = max pi . If p∗n<1/2, then (Hipp [106])

d
TV
(L(Sn);Hn,s) ≤ exp

(
n∑

i=1

τ(i, s)

)
− 1, (3.25)

dTV(L(Sn);Kn,s) ≤ exp

(
n∑

i=1

2

s+1

(
pi

1−pi

)s+1
1−pi
1−2pi

)
− 1. (3.26)

Estimates (3.25) and (3.26) are of order O(
∑n

i=1 p
s+1
i ) whenever

∑n
i=1 p

s+1
i =

O(1). Therefore, (3.25), (3.26) improve (3.21) even if s = 2. For instance, if
pi = n−1/2 for all i, then the right-hand side (RHS) of (3.21) is O(1), while the
RHS of (3.25), (3.26) are O(n−1/2).

Roos [168] has obtained an estimate involving a concentration function.
Let τ(i, s) be defined as above,

δ =

n∑
i=1

(eτ(i,s)−1 − 1),

and let P0, ci be defined as in (3.7).

Theorem 3.3. [168] If all {Xi} are nonnegative, pi<1/2 and δ<1, then

dK(L(Sn);Hn,s) ≤
π2

4(1−δ)

n∑
i=1

ci(e
τ(i,s)−1)QP0(IEX

′
i). (3.27)

Estimate (3.27) has been generalized to the case of distributions that are
absolutely continuous with respect to a particular probability measure by Roos
[169].

3.3. Dependent random variables

Approximation under mixing conditions.
Let {X,X1, ..., Xn} be a stationary sequence of r.v.s that are non-zero with

small probabilities, and let Sn = X1 + ...+Xn .
Given 1≤r≤n, set k = [n/r], and let p = IP(X �=0), q = IP(Sr �=0).
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Let πn,r, ζ1, ζ2, . . . be independent random variables, ζ0 = 0, L(πn,r) =
Π(kq),

L(ζi) = L(Sr|Sr �=0) (i≥1).

Recall that αn, βn denote mixing coefficients defined in Section 2.3. Set

Yn =

πn,r∑
i=0

ζi.

The distribution of Sn can be approximated by a compound Poisson distribu-
tion L(Yn).

Theorem 3.4. If n>r>l≥0, then

d
TV
(Sn;Yn) ≤ κn,rrp+ (2kl+r′)p+ nr−1γn(l), (3.28)

dG(Sn;Yn) ≤ rpmin
{
np ;

4

3

√
2np/e

}
+ (2kl+r′)p+ nγn(l, (3.29)

where r′ = n− rk, κn,r = min{1− e−np ; 3/4e + (1− e−np)rp} and γn(l) =
min{4αn(l)

√
r ;βn(l)}.

Theorem 3.4 is effectively Theorem 5.2 from [144]. The proof involves Bern-
stein’s blocks method and an application of (2.9).

If {Xi} are independent Bernoulli B(p) r.v.s, then (3.28), (3.29) with r=1,
l=0 yield sharp estimates of the accuracy of pure Poisson approximation.

If random variables {Xi} are m–dependent, then one can choose l = m,
r = �√mn � (the smallest integer greater than or equal to

√
mn ) to get

dTV(Sn;Yn) ≤ 4p�
√
mn �. (3.28∗)

An estimate of the accuracy of Negative Binomial approximation to the dis-
tribution of a sum of stationary dependent Bernoullu r.v.s can be found, e.g.,
in [145].

Locally dependent random variables.
The notion of m-dependent random variables can be generalized to the case

of a family {Xa}a∈J of r.v.s, where J is an arbitrary index set.
Suppose that for every a∈J there exists “neighborhoods” {Aa}, {Ba} such

that Aa⊂Ba⊂J , Xa is independent of {Xb}b/∈Aa
, and the family {Xb}b∈Aa

is independent of {Xc}c/∈Ba
. Then random variables {Xa}a∈J are called locally

dependent .
Let S =

∑
a∈J Xa , where r.v.s {Xa} take values in Z+. The following

estimate of the accuracy of compound Poisson approximation to L(S) has been
given in [14], Theorem 7:

d
TV
(Sn; ν) ≤ 2en

∑
a∈J

IP(Xa �=0)IP

( ∑
b∈Ba

Xb �=0

)
, (3.30)
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where λ =
∑

a∈J IEXa(Ya)
−1 , Ya =

∑
b∈Aa

Xb , compound Poisson r.v. ν is

defined using measure μ(·) =
∑

a∈J IEXa(Ya)
−11I{Ya∈·}, 0/0 := 0.

If r.v.s {Xi} are independent and J={1, . . . , n}, then it is natural to choose
Ai =Bi = {i} . In that case Yi =Xi (∀i), λ = n, μ(·) =

∑
i≤n IP(Xi ∈ ·), and

(3.30) entails

d
TV
(Sn; S̃n) ≤ 2eλ

∑
i≤n

IP2(Xi �=0),

where S̃n is the sum of accompanying r.v.s.
Let J = {1, 2, . . . , n}. Suppose that there exist subsets I1j , I2j of J \{j} =

I1j∪I2j such that Xj and {Xi, i∈I2j} are independent. According to Barbour
et al. [13], Cor. 10.L.1,

d
TV
(Sn; S̃n) ≤

n∑
j=1

(
IP2(Xj �=0)

+
∑
i∈I1j

(
IP(Xi �=0 �=Xj) + IP(Xi �=0)IP(Xj �=0)

))
, (3.31)

where S̃n is the sum of accompanying random variables defined in (1.9).
If r.v.s X,X1, ..., Xn are identically distributed and I1j = ∅, then (3.31)

becomes (3.6). Similar estimates have been proved in [35, 36].
Associated random variables.
Let X1, . . . , Xn be non-negative integer-valued random variables. Random

variables are called associated if

cov(f(X1, . . . , Xn); g(X1, . . . , Xn)) ≥ 0

for every pair of non-decreasing functions f and g.
Random variables X1, . . . , Xn are called negatively associated if

cov(f(Xi, i∈A1); g(Xi, i∈A2)) ≤ 0

for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n} and non-decreasing
functions f, g.

Let I(i) be a subset of {1, 2, . . . , n} \ {i}. The choice of I(i) is arbitrary,
though I(i) is supposed to represent the area of “strong dependence” on Xi .
Set

X̂i =
∑

j∈I(i)
Xj , λj =

n∑
i=1

IEXi1I(Xi+X̂i=j)/j (j ≥ 1).

Denote λ =
∑

j≥1 λj ,

Z =
∑
j≥1

jπλj ,

where {πλj} are independent Poisson variables.
Factor M(λ) in Theorem 3.5 obeys (3.13)–(3.15).
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Theorem 3.5. [73] If X1, . . . , Xn are negatively associated r.v.s, then

dTV(Sn;Z) ≤ M(λ)

(
n∑

i=1

∑
j∈I(i)∪{i}

IEXiXj−varSn

)
.

If X1, X2, . . . , Xn are associated r.v.s, then

d
TV
(Sn;Z) ≤ M(λ)

(
varSn−

n∑
i=1

∑
j∈I(i)∪{i}

IEXiXj+2

n∑
i=1

∑
j∈I(i)

IEXiIEXj

)
.

If {Xi} are independent r.v.s, then one can take I(i) = ∅ and arrive at
(3.12).

Similar results for locally dependent r.v.s. have been proved in [78]. Applica-
tions of Theorem 3.5 to the urn model with overflow, extremes and k-runs can
be found in [73].

Locally dependent Bernoulli random variables.
Let {Xi}i∈Γ be locally dependent Bernoulli B(pi) random variables, where

Γ is a set of indexes. The following result is due to M.Roos [164].
Suppose that for every i∈ Γ set Γ is split into 4 subsets: {i}, Γvs

i (“very
strongly” dependent on Xi), Γvw

i (“very weakly” dependent on {Xj}j∈Γvs
i
),

and Γb
i (the rest). Denote

S =
∑
i∈Γ

Xi , Si = S−Xi , X̂i =
∑

j∈Γvs
i

Xj , Zi = Xi+X̂i ,

Xb
i =

∑
j∈Γb

i

Xj , Yi =
∑

j∈Γvw
i

Xj , Si,U = Si−X̂i ,

D = max
i∈Γ

|Γvs
i |, ϕ =

∑
i∈Γ

(ϕi,1 + ...+ ϕi,li), li = 1+|Γvs
i |,

where ϕi,j = IE|IEXi1I{Zi=j} − IE{Xi1I{Zi=j}|σ(Xl : l∈Γvw
i )}|.

Let compound Poisson r.v. Z be defined by (1.2), where λ = λ1+ ...+λD+1 ,

λj =
∑
i∈Γ

IEXi1I{Zi=j}/j (1≤j≤D+1), λj = 0 (j>D+1).

Theorem 3.6. [164] There holds

d
TV
(S;Z) ≤ cλϕ+ Cλ

∑
i∈Γ

(
IE2Xi + IEXiIE(X̂i+Xb

i ) + IEXiX
b
i

)
, (3.32)

where max{cλ;Cλ} ≤ eλ .

m-dependent random variables.
Let {X,X1, . . . , Xn} be a stationary sequence of 1-dependent non-negative

integer-valued bounded random variables; L(X) may depend on n.
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Theorem 3.5 and (3.31) can be applied to sums of m-dependent r.v.s. Note
that by grouping consequent random variables the sum of m-dependent r.v.s
can be presented as a sum of 1-dependent r.v.s.

Assume that

IEX=o(1), IEX(X−1)=o(IEX), IEX1X2=o(IEX), nIEX→∞ (3.33)

as n→∞. Set

G = exp
(
nIEX(I1−I) + cn(I1−I)∗2

)
,

R̃ = IEX(X−1)(X−2) + IEXIEX(X−1) + IE3X

+ IEX1(X1−1)X2 + IEX1X2(X2−1) + IEXIEX1X2 + IEX1X2X3 ,

where cn = n
2 (IEX(X−1)−IE2X) + (n−1)(IEX1X2−IE2X). Then [150]

d
TV
(L(Sn);G) = O

(
R̃
/
IEX

√
nIEX

)
. (3.34)

A generalization of (3.34) to the case of non-identically distributed 1-depen-
dent random variables has been given by Čekanavičius & Vellaisamy [67, 71].

Markov Binomial distribution.
Let ξ0, ξ1, . . . , ξn be a Markov chain with the initial distribution

IP(ξ0=1) = p0, IP(ξ0=0) = 1−p0, (p0 ∈ [0, 1])

and transition probabilities

IP(ξi=1 | ξi−1=1) = β, IP(ξi=0 | ξi−1=1) = 1−β,

IP(ξi=1 | ξi−1=0) = α, IP(ξi=0 | ξi−1=0) = 1−α,

where α, β∈(0, 1) (i∈ IN). If p0 = α/(1−β+α), then the chain is stationary.
The distribution of

Sn = ξ1 + · · ·+ ξn

is sometimes called the Markov Binomial (MB) distribution.
MB is a generalization of the Binomial distribution to the case of dependent

0-1 r.v.s. Indeed, if p0=0 and α=β=p, then L(Sn) is the Binomial B(n, p)
distribution.

One can check that IESn = nα/(1−β+α),

varSn =
nα(1−β)

(1−β+α)2
+

2nα(1−β)(β−α)

(1−β+α)3
+

2α(1−β)(β−α)((β−α)n−1)

(1−β+α)4
.

It is known that a centered normalised Binomial distribution can have either
normal, Poisson or degenerate weak limit [123], while in the case of Markov
Binomial distribution the class of limit laws for a centered normalised sum has
seven different elements (see Dobrushin [76]).
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A compound Poisson limit theorem for L(Sn) can be found in [121, 188, 83].
Hsiau [110] has extended the compound Poisson limit theorem to the case of a
stationary Markov chains with more than two states.

Assume that varSn > IESn . Let Y be a Negative Binomial r.v. defined by
(1.4), where

r =
(IESn)

2

varSn−IESn
, p = 1− IESn

varSn
.

Below p0 , α, β may depend on n.

Theorem 3.7. [192] If varSn> IESn , then

d
TV
(Sn;Y ) ≤ |β−α|(5+43max(α, β))

(1−max(β, α))2

(
2
√
5√
n

·
√
1−β+α√

α(1−β)min(1−α, β, 1/2)

+
360

n
· (1−α)(1−β)2+α2β

α(1−β)(1−β+α)
+ β�n/4�

)
. (3.35)

If α≡α(n)=O(1), β≡β(n)=O(1), then the RHS of (3.35) is O(n−1/2). The
same rate of shifted Poisson approximation without assumption varSn> IESn

has been achieved by Barbour & Lindvall [21].
The case of a non-stationary Markov chain has been investigated in [64, 65].

Denote by G geometric Γ(β) distribution (i.e., G = (1−β)
∑∞

j=0 β
jIj+1). Let

γ1 =
(1−β)α

1−β+α
, γ2 = − (1−β)α2

(1−β+α)2

(
β +

1−β

1−β+α

)
− γ2

1

2
,

γ3 =
γ3
1

3
+

γ2
1

(1−β)(1−β+α)

{
β2α+

β(1−β)(2α−1+β)

1−β+α
+

2α(1−β)2

(1−β+α)2

}

+
γ2
1α

1−β+α

(
β+

1−β

1− β + α

)
, H = I+κ2(G−I),

κ1 = γ1

(
α−β

1−β+α
− p0

)
, κ2 = p0

β(1−β)

1−β+α
,

D0 = exp ((n−p0)γ1(G−I)) , Djn = exp

(
n

j∑
i=1

γi(G−I)∗i

)
(1≤j≤3).

Set b=n(γ1+4γ2+3γ3), γ=[b], ω̃ = {b},

λ1 = n(γ1+4γ2+3γ3)− ω̃, λ2 = ω̃/6, λ−1 = −n(2γ2+3γ3) + ω̃/3,

D̃ = G∗γ ∗ exp
(
λ1(G−I) + λ2(G

∗2−I) + λ−1(I−1−I)/(1−β)
)
,

A0 = H ∗D0, Ã0 = H ∗D0 ∗ (I + nγ2(G−I)∗2),

A1 = H ∗ exp (κ1(G−I)) ∗ D̃, A2 = H ∗ exp (κ1(G−I)) ∗D2n ,

A3 = H ∗ exp (κ1(G−I)) ∗D3n .

Assume that 0≤ ω̃<1, β≤1/2. According to Čekanavičius & Vellaisamy [65],

d
TV
(L(Sn);A0) ≤ C

(
α(α+β)(1∧1/

√
nα) + min{α;nα2}+ γn

)
, (3.36)
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d
TV
(L(Sn); Ã0) ≤ C

(
α2 + αβ(1∧1/

√
nα) + γn

)
, (3.37)

where c, C are absolute constants, γn=(α+β)e−cn . If α≥1/n, then the RHS
of (3.36) and (3.37) are respectively O(α) and O(α2). If p0=0, then A0 is an
analogue of the accompanying distribution.

Theorem 3.8. [176] If β≤1/4, α≤1/30 and nα≥3, then

d
TV
(L(Sn);A1) ≤ Cmax(n−1; (nα)−2).

The accuracy of approximation in (3.36) can be improved if one uses a SCP
approximation.

Theorem 3.9. [65] If β ≤ 1/2, α ≤ 1/30, nα ≥ 1, then there exist absolute
constants c, C such that

dTV(L(Sn);A2) ≤ C(β+α)
(
min{α;n−1}+ e−cn

)
,

d
TV
(L(Sn);A3) ≤ C(β+α)

(
min{α;n−1}+ e−cn

)
,

dG(L(Sn);A3) ≤ C(β+α)
(
min{α;

√
α/n }+ e−cn

)
.

For example, if β≤1/2, α ≡ α(n)→0, nα→∞, then for all large enough n

C5α ≤ d
TV
(L(Sn);H∗D0) ≤ C6α, C5α

√
nα ≤ dG(L(Sn);H∗D0) ≤ C6α

√
nα .

If, in addition, β ≡ β(n)=o(1), then

d
TV
(L(Sn);H ∗D0) ∼ 6α/

√
2πe .

If β is “small”, then the compound Poisson approximation can be simplified.
Let

w =
α

1−β+α
, u =

α(1−β)(β−α)

(1−β + α)3
− w2

2
.

We define SCP G6 as L(πw−2u + 2πu). If β≤1/20 and α≤1/30, then [56]

d
TV
(L(Sn);G6) ≤ C(α+β)2 min{nα; (nα)−1/2}

+ C|α−β|min{1, (nα)−1/2}. (3.38)

If β = o(α), then the RHS of (3.38) is O(αn−1/2). Further results can be
found in [59, 64].

The case of a symmetric three-state Markov chain has been investigated
by Šliogerė & Čekanavičius [177]. Further extensions of the Markov Binomial
model were considered in [140, 190, 206]. Large deviations for Markov binomial
distribution have been studied by Jensen [112].
Open problems.
3.2. Can the assumptions on α, β in Theorem 3.9 be weakened?
3.3. Generalize Theorem 3.7 and Theorem 3.9 to the case of a Markov chain
with more than 3 states.
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3.4. Applications

2-run statistic.

Let ξ1, . . . , ξn be independent and identically distributed Bernoulli B(p)
random variables, where 0<p<1. Denote

Xi = min(ξi; ξi+1) = ξiξi+1 (1≤ i≤n),

where we assume that ξn+1 = ξ1. Then Sn,2 := X1 + ...+Xn is the number of
head runs of length 2, i.e., the 2-run statistic.

Barbour & Xia [16] have suggested a two-parameter compound Poisson ap-
proximation to the distribution of Sn,2 with the accuracy O(p n−1/2).

Let Y be a Negative Binomial NB(a/b, b) r.v., where

a = (1−b)np2 , b =
2p−3p2

1+2p−3p2
.

Negative Binomial approximation to L(Sn) has been suggested by Gan &
Xia [82]:

dTV(L(Sn|Sn≥1);L(Y |Y ≥1)) ≤ 32.2p√
(n−1)(1−p)3

aIP(Y >1|Y ≥1)

(a+b)IP(Sn≥1)
. (3.39)

If p is “small”, then the RHS of (3.39) is asymptotically 16.1p/
√
n(1−p)3 .

Sharp estimates of the accuracy of compound Poisson approximation to
L(Sn,k) has been established by Petrauskienė & Čekanavičius [149], see (4.56),
and by Vellaisamy & Čekanavičius [187], see (4.57).

k-run statistic.
Let ξ1, ξ2, . . . be independent Bernoulli B(pi) random variables, where 0<

pi<1. Denote

Xi = ξiξi+1 · · · ξi+k−1 , Sn,k = X1 + · · ·+Xn−k+1 .

where k ∈ IN. Then Sn,k is the number of head runs of length k among
X1, ..., Xn , i.e., Sn,k is the k-run statistic. For instance, if k = 1, then Xi =

ξi (∀i), and Sn,1 = X1+ · · ·+Xn . If k=2, then Sn,2 =
∑n−1

i=1 ξiξi+1 is a 2-run
statistic.

For the sake of simplicity we will assume that ξi+n = ξi (1≤ i≤n).

The accuracy of Negative Binomial approximation to Sn,m has been evalu-
ated by Wang & Xia [191] in the assumption that σ2>λ, where

λ = IESn,k , σ2 = varSn,k .

Let Yn be a Negative Binomial NB(r, p) r.v. defined by (1.4), where

r = λ/(σ2−λ), p = 1−λ/σ2 .
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Let ϑl be the lth largest number among (1−pi−1)
2(1−pi)pipi+1 · · · pi+k−1

(1≤ i≤n). Set

φ = min

{
2; 4.6

(
n∑

i=4k−1

ϑi

)−1/2}
, qi = max{pj : |j−i| ≤ 2k−2}.

Theorem 3.10. [191] If σ2>λ and n>4k, then

d
TV
(Sn,k;Yn) ≤

4.5(4k−3)(2k−1)φ

λ

n∑
i=1

qiIEXi . (3.40)

If k=1, then Sn,1 = ξ1 + ... + ξn , λ =
∑n

i=1 pi , σ2 =
∑n

i=1 pi(1−pi) < λ
meaning Theorem 3.10 is not applicable.

Let pi≡p≤1/5, k≥2, D = exp
(∑2k−1

j=1 λj(Ij−I)
)
, where

λj =

⎧⎨⎩
npk+j−1(1−p)2, j = 1, . . . , k−1,
npk+j−1j−1(1−p)[2+(2k−j−2)(1−p)], j = k, . . . , 2k−2,
np3k−2(2k−1)−1 j = 2k−1.

Then (Daly [73])

d
TV
(L(Sn,k);D) ≤ M(λ)(2k−1)np2k ,

where M(λ) is defined by (3.13) – (3.15).
Match patterns of length k.
Let X,X1, . . . , and Y, Y1, . . . , be two independent sequences of independent

random variables taking values in IN, Xi
d
= X (∀i), Yj

d
= Y (∀j). Then

Sm,n,k =

m∑
i=1

n∑
j=1

1I{(Xi, . . . , Xi+k−1) = (Yj , . . . , Yj+k−1)}

is the number of match patterns (NMP) of length k. In particular, if X ≡ 1,
then

S1,n,k =

n∑
j=1

1I{Yj = · · · = Yj+k−1 = 1}

is the number of head runs of length k among Y1, . . . , Yn .
Set R=IP(X=Y ), and suppose that R<1/2. Let

p
 = IP(X=�), q
 = IP(Y =�) (∀�∈ IN),

r = max



p
q
, S(R) = (1−R)(1−2R),

p̃ = max



p
1I{q
>0}, q̃ = max



q
1I{p
>0}, λ = mn(1−R)Rk .

Clearly, IESm,n,k = mnRk .
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Information on the distribution of NMP can help recognising “valuable” frag-
ments of DNA sequences (see [138, 147, 174]) and references therein).

Sm,n,k can be approximate by a compound Poisson random variable

Ỹ =

∞∑
i=1

iπθi ,

where θi = λ(1−R)Ri−1 , {πθi}i≥1 are independent Poisson Π(θi) r.v.s. Note
that

IEỸ = mnRk .

A compound Poisson limit theorem has been given by Mikhailov [138]. The
following estimate of the accuracy of compound Poisson approximation to
L(Sm,n,k) is due to Mikhailov [137].

Theorem 3.11. [137] If 2≤k<min(n,m) and 0<R<1, then

d
TV
(Sm,n,k; Ỹ ) ≤ M(λ)

(
2kλ(1−R)−1

(
2k(r/R)k +mp̃k + nq̃k

)

+
2(4k−3)λ2

(1−R)2

( 1

n
+

1

m

))
+

4λ2

nmR(1−R)
, (3.41)

where M(λ) ≤ (1 ∧ 1/λ(1−R))eλ . If 0<R<1/2, then

M(λ) ≤ 1 ∧ (1/4λS(R) + ln+(2λS(R))) /λS(R).

In the “central zone” where k = k(m,n) obeys mnRk � const as m →
∞, n→∞, m�n, the RHS of (3.41) is O(ln(mn)(1/m+1/n)).

Mikhailov [137] gives also an estimate of the accuracy of Poisson approxima-
tion in the case k=1. Note that the distribution of the number of match patterns
of length ≥k can be well approximated by the Poisson law (see [144, 147]).

Non-decreasing runs of fixed length.
Let X,X1, . . . , Xn be i.i.d. random variables with uniform distribution

IP(X=k) = 1/N (k = 0, 1, . . . , N−1),

where N≥3 is a fixed natural number.
Given s∈ IN, denote ηi(s) = 1I{Xi ≤ Xi+1 ≤ · · · ≤ Xi+s−1}. Let

Sn(s) =

n∑
i=1

ηi(s) ,

and let Z be defined by (1.2):

Z =

∞∑
j=1

jπλj ,
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where {πλj} are independent Poisson Π(λj) variables,

λj =

⎧⎪⎪⎨⎪⎪⎩
N−s−j−1nκ1,s+j−1, j = 1, . . . , s−1,
j−1N−s−j−1n(2Nκ2,s+j−1 + (2s−2−j)κ1,s+j−1) j = s, . . . , 2s−2,
(2s−1)−1N−3s+2

κ3,2s−1 j = 2s−1,
0 j = 2s, 2s+ 1, . . .

Here

κ1,k =

(
k+N−1

k+2

)
N(k2+k−1)−k2−k

N − 2
, κ2,k =

(
k+N

k+1

)
k(N−1)

N+k
,

κ3,k =

(
k+N−1

k

)
.

Then Z is a compound Poisson Π(λ, ζ) r.v. with λ =
∑2s−1

i=1 λi and multiplic-
ity distribution L(ζ) such that the ch.f. ϕζ(t) =

∑∞
j=1 λje

itj/λ.
Minakov [139], using Theorem 3.6, has shown that

dTV(Sn(s);Z) ≤ eλ
n(6s− 5)

(sN−1+1)2N2s

(
s+N

s

)2

. (3.42)

If n→∞, s→∞, s/n→0 and

n(s+N)N−1N−s−1/(N−2)! ∼ λ,

then L(Sn(s)) converges to the compound Poisson distribution exp(λ(N −
1)

∑∞
j=1 N

−j(Ij−I)).

4. Accuracy of CP approximation: general case

In this section the random variables are no longer assumed to take value 0 with
“large” probability. We present estimates of the accuracy of compound Poisson
approximation.

4.1. Independent Bernoulli random variables

Though Poisson distribution is a natural proxy to the Binomial one, there exist
a compound Poisson approximation that is more accurate.

Let X,X1, ..., Xn be independent Bernoulli B(p) r.v.s. Presman [153] has
shown that

sup
p

d
TV
(B(n, p);Pn,p) = O(n−2/3), (4.1)

where Pn,p is a shifted compound Poisson distribution (a similar result in terms
of dK is due to Meshalkin [135]).

The Meshalkin–Presman result is related to the first uniform Kolmogorov’s
problem, see (7.3). Unlike (7.3), the approximating distribution in (4.1) is given
explicitly.
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We present Presman’s result in Theorem 4.1 below.
Denote by �x� the integer number that is the nearest to x from above, and

let
γ =

⌈
3np2−2np3

⌉
, β = γ−3np2+2np3 , q = 1−p.

Note that β∈ [0; 1).
Let η1, η2, η3 be independent r.v.s with distributions

L(η1) = Π(pq2−β/n), L(η2) = Π(p2q+β/3n), L(η3) = Π(β/6n).

Set
Y = γ/n+η1−η2+2η3.

Note that Y−γ/n is a compound Poisson random variable. One can check that

IEY = p, IE(Y −p)2 = pq, IE(Y −p)3 = pq(q−p),

matching the first three moments of X−p.
Let Pn,p := L(Y1 + ...+ Yn), where {Yi} are independent copies of Y .

Theorem 4.1. [153] There exists an absolute constant C such that

dTV(B(n, p);Π(np)) ∧ dTV(B(n, p);Pn,p) ≤ Cεn,p (0≤p≤1/2), (4.2)

where εn,p = min
{
np2; p; max{1/(np)2; 1/n}

}
.

Bound (4.1) follows after noticing that

sup
0≤p≤1/2

εn,p = O(n−2/3),

cf. [153] or [6], ch.8. Clearly, it suffices considering only p∈ [0; 1/2] : if L(Sn) =
B(n, p), then L(n−Sn) = B(n, 1−p).

Theorem 4.1 has been derive by the method of characteristic functions.
Presman [153] has shown also that it is impossible to construct a compound

Poisson or infinitely divisible distribution approximating B(n, p) with the ac-
curacy better than εn,p . Namely, there exists an absolute constant c>0 such
that for an arbitrary infinitely divisible distribution P

dTV(B(n, p);P ) ≥ cεn,p (0≤p≤1/n); (4.3)

d
TV
(B(n, p);P ) ≥ cmin

{
p; (np)−2

}
(1/n≤p≤1/

√
n ).

Notice that εn,p = O(n−1) if p≥1/
√
n .

Čekanavičius [55] has extended Presman’s result to the case of non-identically
distributed 0-1 r.v.s.

Symmetrised Bernoulli random variables.
Consider independent Bernoulli B(pi) random variables {Xj}, where pj ∈

[0, 1], qj = 1−pj (j=1, . . . , n).
Let X ′

j denote an independent copy of Xj , and set

So
n = (X1−X ′

1) + · · ·+ (Xn−X ′
n).
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The characteristic function of So
n is equal to

IEeitS
o
n =

n∏
j=1

|qj + pje
it|2 =

n∏
j=1

(q2j + 2pjqj cos t+ p2j ).

It is natural to approximate L(So
n) by a symmetrised Poisson distribution.

Let πσ2 and π′
σ2 be two independent Poisson random variables with param-

eter σ2 =
∑n

j=1 pjqj . Set

Y = πσ2 − π′
σ2 .

Clearly, Y is a compound Poisson r.v. with the characteristic function

IEeitY = exp
(
2σ2(cos t−1)

)
.

Presman [154] has proved that

d
TV
(So

n;Y ) ≤ min

(
0.7225

n∑
j=1

p2jq
2
j /(σ

2−pjqj)
2; 4

n∑
j=1

(pjqj)
2

)
. (4.4)

If all {pj} are uniformly bounded away from 0 and 1, then the RHS of (4.4) is
O(1/n).

Assume now that pi ≡ p ≤ 1/2. Presman [153] has proved that

C1ε
∗
n,p ≤ d

TV
(So

n;Y ) ≤ C2ε
∗
n,p , (4.5)

where ε∗n,p = min{np2;n−1}, cf. (4.2). Thus, in the case of symmetrised r.v.s one
can expect the correct rate of the accuracy of compound Poisson approximation
be O(n−1).

An extension of (4.4) to the case of discrete distributions with non-negative
characteristic functions has been given by Čekanavičius [43]. A multivariate
version of (4.4) is given in [126].

SCP approximations.
Let L(Xi) = B(pi) (i = 1, . . . , n). Set

σ2 = varSn =

n∑
j=1

pj(1−pj) , λk =

n∑
j=1

pkj (k≥1), λ = λ1 , θ = λ2/λ.

Denote (with some abuse of notation)

G2 = L(πλ+λ2+2π−λ2/2), (4.6)

where πλ+λ2 and π−λ2/2 are independent “r.v.s”, i.e., G2 is a convolution of
Π(λ+λ2) and a compound Poisson unit measure Π(−λ2/2, 2).

Observe that G2 = Hn,2 from (3.23), where L(X ′
i) = I1 .

Presman [153] approximated the Binomial distribution by G2 . Kruopis [124]
has extended Presman’s result to the case of non-identically distributed Bernoulli
r.v.s:

d
TV
(B(n, p);G2) ≤ 5

√
eλ3 min{1.2σ−3 + 4.2λ2σ

−6; 2+σ2+3.4λ2}. (4.7)

Constants in (4.7) have been improved by Barbour & Xia [16] under the
additional assumption that θ<1/2, see also Zacharovas & Hwang [193].
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Theorem 4.2. [193] If θ<1, then for any m∈ IN

d
TV
(L(Sn);G2) ≤ λ3

2λ3/2

( √
6C2

(1−θ)2
+

√
3θ

2
√
2(1−θ)5/2

)
, (4.8)

dG(L(Sn);G2) ≤ λ3

λ

( √
2C2

(1−θ)3/2
+

√
3θ

4
√
2(1−θ)2

)
, (4.9)

dK(L(Sn);G2) ≤ λ3

λ3/2

( √
6C2

(1−θ)2
+

√
3θ

2
√
2(1−θ)5/2

)
gλ(m), (4.10)

|IP(Sn=m)−G2({m})| ≤ λ3

λ2

(
2
√
6C2

(1−θ)5/2
+

√
15θ

2
√
2(1−θ)6

)
gλ(m), (4.11)

where C2 = 0.3706, gλ(m) = e−(m−λ)2/4(m+λ) .

In particular,

C3 min
(
p
√
p/

√
n;np3

)
≤ dK(B(n, p);G2)

≤ d
TV
(B(n, p);G2) ≤ C4 min

(
p
√
p/

√
n;np3

)
. (4.12)

The upper bound follows from (4.7), the lower bound follows from Theorem
7 in [124]. In some cases (4.12) is sharper than (4.2) – consider, for example,
p=n−2/3 . On the other hand, in some cases (e.g., if p=1/2), Presman’s bound
(4.2) is more accurate.

Does there exist a SCP approximation, which is always better than the best
compound Poisson approximation? The answer is affirmative, at least if {pi}
are “small”. Denote

H∗
n,s = exp

⎛⎝ n∑
i=1

s∑
j=1

(−1)j+1pji (I1−I)∗j/j

⎞⎠ ,

cf. (3.23). Assume that pi≤1/4 (∀i), and let s≥2 be a fixed integer. According
to Theorem 1 in [166],

d
TV
(L(Sn);H

∗
n,s) ≤ C(s)λs+1 min(1;λ−(s+1)/2). (4.13)

In particular,

d
TV
(B(n, p);H∗

n,s) ≤ C(s)min
(
nps+1; p(s+1)/2n−(s−1)/2

)
. (4.14)

Thus, if p ≤ 1/4, then there exists a SCP measure, which approximates the Bi-
nomial distribution with the accuracy O(n−(s−1)/2) . For example, H∗

n,3 guar-
antees the accuracy of approximation as good as in (4.2) if p = O(1): for any
p ≤ 1/4 the accuracy of approximation by H∗

n,3 is O(n−1). Moreover, H∗
n,3 is

structurally comparable to Presman’s approximation, since both involve three
Poisson random variables.
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It is easy to check that H∗
n,2 can be expressed through Hermite polynomials

{Hm}:

H∗
n,2{m} = e−λ−λ2/2

λ
m/2
2

m!
Hm

(
λ+ λ2√

λ2

)
, (4.15)

where Hm(x) = (−1)mex
2/2 dm

dxm e−x2/2 . Besides,

mH∗
n,2{m} = (λ1+λ2)H

∗
n,2{m−1} − λ2H

∗
n,2{m−2} (m≥2) (4.16)

[52]. No such simple formulas exist for Pn,p and H∗
n,s if s≥ 3. The approach

proposed by Kruopis [125] is to construct asymptotic expansion to H∗
n,2 rather

than to apply a SCP with a longer expansion in the exponent.
Let

G∗
3 = H∗

n,2 ∗ (I+λ3(I1−I)∗3/3).

Observe that G∗
3 can be expressed through the first, second or third backward

differences of H∗
n,2 . According to Kruopis [124]

dK(L(Sn);G
∗
3) ≤ min(2.3

√
eλ4σ

−4 + 7.1λ2
3σ

−6; 3
√
eλ4 + 3.3eλ2

3). (4.17)

If pi ≤ C < 1 (∀i), then

dK(L(Sn);G
∗
3) ≤ Cλ4 min(1;λ−2), (4.18)

that is, the accuracy is the same as in (4.13).
A similar to (4.18) bound in terms of the total variation distance follows from

[67], Theorem 3.2, if all pi ≤ 1/100.
SCP measure H∗

n,s is not the only possible SCP approximation. For instance,
SCP

L(πλ−λ2/2 − π−λ2/2)

was used in [58], though the rate of the accuracy of approximation was worse
than that provided by H∗

n,2.
A large deviations result concerning SCP approximation to the Binomial

distribution B(n, p) has been suggested in [52].
Assume that n−1≤p≤1/3, n≥4, x∈ [np;n(1+p)2/5]. Then

IP(Sn=x)

H∗
n,2({x})

= eΛ(x)

{
1 +

θxA(x)

1−θxA(x)

}
, (4.19)

where |θx|≤1,

A(x) = 14.4e2y(y−p+
√

y/n ), y = x/n,

Λ(x) = −n(1−p)
∞∑
k=3

(
y−p

1−p

)k
1

k(k−1)

{
1−

k−2∑
j=0

(
j+k−2

j

)
(1−p)−j

}
.

As shown in [52], the “equivalence zone” for Hn,2 is larger than that for Poisson
approximation if np2→∞, p→0.
Open problems.
4.1. Evaluate constant C in Presman’s inequality (4.2).
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4.2. Independent discrete random variables

A lattice random variable is a linear transform of an integer-valued random
variable. In this section we deal with integer-valued r.v.s.

Integer-valued random variables with finite 3rd moments.

Let X be an integer-valued r.v. with a finite 3rd moment, and let Xi
d
=

X (∀i). Set
μ=IEX, u=varX/IEX2 .

Denote by Yn,u a compound Poisson r.v. with the distribution L(Yn,u) =
Π(nu,X). Čekanavičius [57] has proved that there exists constant CX (that
depends on L(X)) such that

d
TV
(Sn; [nμ

3/IEX2]+Yn,u) ≤ CXn−1/2 . (4.20)

Let {Xi} be r.v.s taking values in the set Z of integer numbers. Denote

Sn,i = Sn−Xi , en=IP{Sn<0}, d
(i)
+ = d

TV
(Sn,i;Sn,i+1),

a = 2IESn−varSn, b = (varSn−IESn)/2, θ̃ = |IESn−varSn|/IESn ,

ψ̂i = IE|Xi(Xi−1)(Xi−2)|+ |IEXi|IE|Xi(Xi−1)|+ 2IE|Xi||varXi−IEXi|.
Theorem 4.3. [16] If 2

3varSn< IESn<2varSn , then

d
TV
(Sn;πa+2πb) ≤

1

(1−2θ̃)IESn

{ n∑
i=1

ψ̂id
(i)
+ + en

}
. (4.21)

Quantity d
TV
(Sn,i;Sn,i+1) appears becaused of the method.

According to Barbour & Xia [16], Proposition 4.6,

d
TV
(Sn;Sn+1) ≤ 2V −1/2 , (4.22)

where

V=

n∑
i=1

min{1/2; vi}, vi = 1−d
TV
(Xi;Xi+1).

Estimate (4.22) has been improved by Mattner & Roos [134]:

d
TV
(Sn;Sn+1) ≤

√
2

π

(1
4
+

n∑
j=1

vi

)−1/2

. (4.23)

Set εi,n =
√
2/π

/(
1/4+V −vi

)1/2

. Then

dTV(Sn,i;Sn,i+1) ≤ εi,n .

According to Lemma 5 in [146], if one approximates Sn by an integer-valued
r.v. Y , then

d
TV
(Sn;Sn+1) ≤ d

TV
(Y ;Y +1) + 2d

TV
(Sn;Y ). (4.24)
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Bound (4.24) allows for replacing εi,n with εi,n∧ (ε∗+2ε+), where ε∗ is an
estimate of d

TV
(Y ;Y +1) and ε+ is an estimate of d

TV
(Sn;Y ), cf. [146, 148].

If b≥0, then L(πa+2πb) is a compound Poisson distribution, otherwise we
have a SCP approximation.

If {Xi} are Bernoulli B(p) r.v.s and 2/n< p< 1/3, then the assumptions
of the theorem are satisfied, a = np + np2, b = −np2/2, and SCP measure

L(πa+2πb) coincides with G2 from (4.6), V = np, θ̃ = p, ψ̂i = 2p3 , and the
RHS of (4.21) is bounded by 12

√
2p

√
p/

√
n , cf. (4.12).

On the other hand, if Xi
d
= π1, then a= n, b= θ̃ = 0, ψ̂i = 2, and d

(i)
+ ≤

1/
√
2e(n−1) , cf. (2.10) in Čekanavičius [68]. The left-hand side of (4.21) equals

zero, while the RHS is not.
Similar approximations involving γ+πa+2πb or γ+πa−πb (with possibly

negative b) have been suggested in [19].
Integer-valued random variables with finite 4th moments.
Barbour & Čekanavičius [19] have generalized Presman’s estimate (4.2) to

the case of non-identically distributed integer-valued r.v.s {Xi} with finite 4th
moments.

Denote (i≥1)

μi = IEXi, μ = IESn, σ
2
i = varXi, σ2 = varSn, β3i = IE(Xi − μi)

3,

β3 = IE(Sn − μ)3.

Let

λ1 = σ2 − (β3−σ2+2mδ)/(m−1), δ = γ−μ+σ2−(β3−σ2)/m

λ2 = mδ/2(m−2), λm = (β3−σ2−2δm/(m−2))/m2(m−1),

where m∈Z\{0, 1, 2} and γ are chosen according to the following rules:

a) If β3<σ2, then γ = �μ−σ2+m−1(β3−σ2)�, m=−max{1; �8(1−β3/σ
2)�};

b) If σ2 ≤ β3 < σ2+3, then γ = �μ−σ2+m−1(β3−σ2)�+3, m=−2;
c) If β3 ≥ σ2+3, then γ = �μ−σ2+m−1(β3−σ2)�, m=max{6; �8(β3/σ

2−1)�}.
Set

Ym = γ + πλ1 + 2πλ2 +mπλm .

The characteristic function of Ym is

IE exp (itYm) = exp
(
itγ + λ1(e

it−1) + λ2(e
2it−1) + λm(eitm−1)

)
.

The choice of parameters λ1, λ2, λm ensures matching the first three moments
of L(Sn):

IEYm = μ, varYm = σ2, IE(Ym−IEYm)3 = β3.

If L(Sn) is Binomial B(n, p), where p≤1/16, then

σ2=npq, β3=npq(1−2p), m=−1, λ1=npq2−δ, λ2=δ/6, λ−1=np2q+δ/3,

and L(Ym) coincides with Presman’s Pn,p from Theorem 4.1.
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Denote Sn,i = Sn−Xi ,

d′ = max
1≤i≤n

‖L(Sn,i) ∗ (I1−I)∗2‖, κ = max{8; �8|1−β3/σ
2|�},

ψi = |μi−σ2
i +(β3i−σ2

i )/m|IE|(Xi−1)(Xi−2)(Xi−3)|
+|σ2

i −(β3i − σ2
i )/(m−1)|IE|Xi(Xi−1)(Xi−2)|

+|(β3i−σ2
i )/(m(m−1))|IE|(Xi+m−1)(Xi+m−2)(Xi+m−3)|

+IE|Xi(Xi−1)(Xi−2)(Xi−3)|.

The following result is Theorem 4.3 from [19].

Theorem 4.4. If σ2�24, then

d
TV
(Sn;Ym) ≤ d′

3σ2

{ n∑
i=1

ψi + 2κ
}
+

10

3
exp

(
−5σ2

48κ

)

+42σ−4 + 14σ−8
n∑

i=1

IE(Xi−μi)
4. (4.25)

It has been stated in [19] that d′ ≤ 16/V (this can be improved using (4.23)).

If Xi
d
= X (∀i) and L(X) does not depend on n, then the RHS of (4.25) is

O(n−1).
For the Binomial B(n, p) distribution we have σ2 = npq, β3 = npq(q−p). If

npq≥24 and p≤11/16, then ψi=30p2q2, v = np; d′≤16/np; κ=8, and the
RHS in Theorem 4.4 is bounded by Cmin(n−1; (np)−2), cf. (4.2).

Čekanavičius [49, 53] has suggested a SCP measure Dk that matches first k
moments of L(Sn), where k> 2. In the case of i.i.d. lattice r.v.s that approxi-
mation ensures d

TV
(L(Sn);Dk) = O(n−(k−2)/2).

Integer-valued r.v.s with a non-negative characteristic function.
Let X,X ′, X ′′, X1, . . . , Xn be independent and identically distributed sym-

metric integer-valued r.v.s with a non-negative characteristic function F̂ (t) =
IEeitX . Assume that IE|X|3 < ∞, and denote

β1 = IE|X|, σ2 = IEX2 , β3 = IE|X|3 , q0 = P (X �=0).

The distribution of Sn can be approximated by the accompanying compound
Poisson law Π(n,X) or by a SCP

Gn = Π(2n,X) ∗ Π(−n/2, X ′−X ′′).

The Fourier transform of Gn is

exp
(
2n(F̂ (t)−1)

)
∗ exp

(
−n(F̂ (t)−1)2/2

)
.

More generally, let

Ĥn,k = exp

⎛⎝n

k∑
j=1

(−1)j+1 (F−I)∗j/j

⎞⎠ ,
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where k∈ IN. Then

Ĥn,1 = L(S̃n) = Π(n,X), Ĥn,2 = Gn .

The following theorem from [43] shows that Hipp’s result (3.25) can be improved
if σ2 < ∞.

Theorem 4.5. [43] There exist absolute constants C,C1, C2 such that

d
TV
(L(Sn); Ĥn,k) ≤ Cmin

(
q
−1/4
0 (n−1/2+σ)1/2n−k;nσ2(k+1)(1+nσ2)

)
. (4.26)

In particular,

d
TV
(L(Sn);Π(n,X)) ≤ C1q

−1/4
0 n−1(σ+n−1/2)1/2 , (4.27)

d
TV
(L(Sn);Gn) ≤ C2q

−1/4
0 n−2(σ+n−1/2)1/2 . (4.28)

If β3/(σ
3
√
n ) ≤ C for all n, where C is an absolute constant, then there exist

absolute constants C3, C4 such that

dK(L(Sn);Π(n,X)) ≥ C3n
−1 , dK(L(Sn);Gn) ≥ C4n

−2 .

Non-uniform estimates have been established in [46].
Bound (4.27) can be compared with (4.35).
It was proved in [43] that for any fixed m∈ IN

dK(L(Sn); Ĥn,m) ≤ Cmn−2(1 + β1n
−m) (4.29)

if s>1 and β1 < ∞.
Negative Binomial approximation.
Recall that Negative Binomial distribution is a particular compound Poisson

distribution. Negative Binomial distribution is a natural choice if IESn<varSn .
Let Sn = X1 + ...+Xn , where {Xi} are independent non-negative integer-

valued random variables with finite third moments. Assume that IESn<varSn .
Let Y be a Negative Binomial NB(r, q) r.v. with parameters r, q , where

r =
(IESn)

2

varSn−IESn
, q =

IESn

varSn
. (4.30)

Then IEY =IESn=rq/p, varY =varSn=rq/p2 , where p=1−q.
The following estimate has been obtained by Vellaisamy et al. [186]:

d
TV
(Sn;Y ) ≤ 2τ

rp

n∑
i=1

((3+p

2
IEXi + p

)
IEXi(Xi−1)

+
p+1

2
IEXi(Xi−1)(Xi−2) + q(IEXi)

3 + p(IEXi)
2

)
, (4.31)

where τ = max1≤i≤n dTV(Sn,i;Sn,i+1), Sn,i = Sn−Xi .
Note that (4.31) is not applicable if {Xi} are Poisson r.v.s, nor if {Xi} are

Bernoulli r.v.s.
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Example 4.1. Let r.v.s {Xi} have geometric distributions

IP(Xi=k) = qip
k
i (k≥0),

where qi=1−pi . Assume that qi>1/2 (∀i≥1). Then

IESn =

n∑
k=1

pk/qk , varSn =

n∑
k=1

pk/q
2
k ,

and (4.23), (4.31) yield an explicit estimate of d
TV
(Sn;Y ).

In particular, if pi = po/3 when i is odd, pi = 2po/3 when i is even, where

po∈(0; 1), then d
TV
(Sn;Y ) = O

(√
po/n

)
. �

Open problems.
4.2. Can an analogue of (4.26) hold under weaker moment assumption?
4.3. Can moment conditions in (4.27) be weakened?

4.3. Discrete non-lattice distributions

Any discrete distribution can include zero in its support after a proper shift.
W.l.o.g., we will assume that in this section.

The following result is due to Čekanavičius & Wang [62].
Assume that X1, . . . , Xn are independent r.v.s taking on values x0 = 0, x1, x2,

. . . , xN , where {xj} and N are fixed numbers.
Denote pki = IP(Xk = xi) (k = 1, . . . , n, i = 0, 1, . . . N). Set

G4 = exp

(
n∑

k=1

(L(Xk)−I)− 1

2

n∑
k=1

(L(Xk)−I)∗2

)
.

Theorem 4.6. [62] Suppose that there exists an absolute constant C̃ ∈ (0; 1)
such that pk0 ≥ C̃ >0 (k = 1, . . . , n). Then there exists constant CN depending
only on N such that

dK(L(Sn);G4) ≤ CN
max1≤j≤n |xj |
min1≤j≤n |xj |

(( n∑
k=1

(1−pk0)
)−1/2

lnn+ 1

)

×
N∑
j=1

( n∑
k=1

p3kj

)( n∑
m=1

pmj

)−3/2

+ e−n . (4.32)

If N is fixed, maxj |xj |/minj |xj |<C, 0<C9<pkj<C10<1, then the RHS
of (4.32) is O(n−1/2). Similar results have been given in [60, 66].

4.4. Special classes of distributions

In this section we present estimates of the accuracy of compound Poisson ap-
proximation to the distribution of the sum Sn of i.i.d.r.v.s when L(X) belongs
to a particular class of distributions. Denote
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F the set of all distributions
Fs the set of symmetric distributions

F+⊂Fs the set of distributions with non-negative characteristic functions
Fα⊂Fs the set of distributions such that the ch.f. ϕ obeys ϕ(t)≥−1+α (∀t)
F0,β the set of zero-mean distributions such that IE|X|β<∞

Symmetric random variables.
If X,X1, . . . , Xn are i.i.d. symmetric random variables, then estimate (4.48)

can be improved. Zaitsev [194] (upper bound) and Studnev [178] (lower bound)
have shown that there exist absolute constants 0<c<C<∞ such that

cn−1/2 ≤ sup
L(X)∈Fs

dK(Sn; S̃n) ≤ Cn−1/2 , (4.33)

where S̃n = X̃1 + ... + X̃n is the sum of accompanying independent random
variables.

Denote P = L(X). In terms of convolutions of distributions (4.33) states
that

cn−1/2 ≤ sup
P∈Fs

dK

(
P ∗n; exp(n(P−I))

)
≤ Cn−1/2 .

Moreover [194],

sup
P∈Fs

dK

(
P ∗n; exp(

n

2
(P ∗2−I))

)
≤ Cn−1/2 .

The derivation of (4.33) relies on a result of Arak [3] for r.v.s with a non-
negative ch.f.. Note that no moment assumption is needed.

According to Prokhorov [159],

cn−1 ≤ dK(B(n, 1/2);D) ≤ Cn−1 , (4.34)

where D denotes the set of infinitely divisible distributions, c , C are absolute
constants.

A similar result holds for a sum S∗
n of i.i.d. symmetrised Bernoulli random

variables X∗
i = Xi − X̂i , where L(Xi)=L(X̂i)=B(p) (∀i), X̂i is an indepen-

dent copy of Xi :

C1 min{np2;n−1} ≤ dTV(S
∗
n;Y ) ≤ C2 min{np2;n−1} , (4.5∗)

(Presman [153]), where C1 , C2 are absolute constants, Y = πnpq − π̂npq , π̂npq

is and independent copy of a Poisson Π(npq) r.v. πnpq (see also Theorem 4.2.1
in [6]).

Zaitsev [204] has conjectured that for any distribution L(X) there exist a
constant CX such that

dK(L(Sn);D) ≤ CXn−1 .

Random variables with a non-negative characteristic function
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Let X,X1, . . . , Xn be i.i.d.r.v.s. Denote P =L(X).
Arak [2, 3] has obtained a sharper estimate in the case of r.v.s with a non-

negative characteristic function: if L(X) ∈ F+ , then there exist absolute con-
stants 0<c<C<∞ such that

cn−1 ≤ sup
L(X)∈F+

dK(Sn; S̃n) ≤ Cn−1. (4.35)

Čekanavičius [42] has suggested the following asymptotic expansion in (4.35):

sup
P∈F+

dK(P ∗n; exp (n(P−I)) ∗ (I−n(P−I)∗2/2)) ≤ Cn−2 . (4.36)

Zaitsev [199] (see also [6], Theorem 5.1) has shown that the upper bound in
(4.35) holds for a more general class of distributions: if L(X)∈Fα (∃α∈(0; 2)),
then there exist an absolute constant C<∞ such that

dK(Sn; S̃n) ≤ C
(
n−1 + exp

(
−nα+C ln3 n

) )
= O(n−1). (4.37)

A non-uniform analogue of (4.37) has been proved by Zaitsev [201].
Similar estimates hold for distributions with a symmetric component. Recall

that any distribution P := L(X) admits representation

X
d
= (1−τ)ξ + τη, (3.10�)

where L(τ) = B(p), p∈ [0; 1], random variables τ, ξ, η are independent. Equiv-
alently,

L(X) = (1−p)U + pV, (3.10∗)

where U=L(ξ), V =L(η).
Let

G5 = L(S̃n)− nL(S̃n−1) ∗ (L(X)−I)∗2/2.

Čekanavičius [42] presents asymptotic expansions for L(Sn) in the assumption
that U ∈F+ , V ∈F :

sup
U∈F+

sup
V ∈F

dK(Sn; S̃n) ≤ C(n−1+p), sup
U∈F+

sup
V ∈F

dK(L(Sn);G5) ≤ C(n−1+p)2 .

(4.38)
The RHSs of estimates (4.38) are small if p is small.

If p = 0, then the upper bound in (4.35) follows from the first estimate in
(4.38); the second estimate in (4.38) becomes O(n−2).

Let p=0, so that L(X) = U , L(Sn) = U∗n . Set

G6 = exp (n(U−I)) ∗ (I − n(U−I)∗2/2 + n(U−I)∗3/3 + n2(U−I)∗4/8).

Then [42]

sup
U∈F+

dK(L(Sn);G6) ≤ Cn−3 . (4.39)
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Let X,X1, ..., Xn be i.i.d.r.v.s. The following SCP approximations to L(Sn)
has been suggested by Čekanavičius [51]. Set

G7 = exp
(
(1−p)(U−I) + p(V −I)− p2(V −I)∗2/2

)
,

A3 = −n(1−p)p(U−I) ∗ (V −I) + np3(V −I)∗3/3.

Note that G7 = exp(P−I−p2(V −I)∗2/2).

Theorem 4.7. [51] If 0≤p≤C0<1, then there exists an absolute constant C
such that

sup
P∈F+

sup
V ∈F

dK(L(Sn);G
∗n
7 ) ≤ C

(
1/n+

√
p/n

)
, (4.40)

sup
P∈F+

sup
V ∈F

dK(L(Sn);G
∗n
7 ∗ (I+A3)) ≤ C/n. (4.41)

Inequality (4.40) is a generalization of the upper bound in (4.35). Esti-
mates (4.40) and (4.41) demonstrate that approximations of order O(n−1/2)
and O(n−1) can be achieved if ( 3.10∗) holds for a particular U ∈ F+ and
p≤C0<1.

Proofs of a number of results concerning compound Poisson approximations
to the distribution of a sum of symmetric r.v.s. can be found in [6] and [68], Sec.
2.7.

Distributions obeying certain moment assumptions.
Let X,X1, . . . , Xn be i.i.d.r.v.s such that L(X)∈F0,β (∃β∈(1; 2]). Zaitsev

[204] has proved that there exists a constant CX such that

dK(L(Sn);Π(n,X)) ≤ CXn−α , (4.42)

where α = min{1/2;β−1}. If β∈(3/2; 2) and IEX2=∞, then

dK(L(Sn);Π(n,X)) = o(n−1/2),

where S̃n is the sum of accompanying r.v.s. defined by (1.9).
Zaitsev’s estimate (4.42) can be improved if IEX =0, IE|X|1+β <∞ (∃β ∈

(0; 1]), and L(X) satisfies Cramér’s condition

lim sup
|t|→∞

|F̂X(t)| < 1. (4.43)

Namely, in such case there exists CX such that

dK(L(Sn);Π(n,X)) ≤ CXn−β , dK(L(Sn);G8) ≤ CXn−2β , (4.44)

where
G8 = Π(n,X) ∗ (I−n(L(X)−I)∗2/2)

[57]. In particular,
dK(L(Sn);Π(n,X)) ≤ CXn−1 (4.45)
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if IEX=0, IEX2<∞ (Studnev [178]).
Under the additional assumption that IEX4 <∞ Studnev [178] has shown

that

sup
x

|IP(Sn/σ
√
n <x)− Fn(x)− x(3−x2)ϕ(x)/8n| = o(n−1) , (4.46)

where σ2 = IEX2 , Fn is the d.f. of Π(n,X/σ
√
n) and ϕ is the density of the

standard normal distribution. If IEX =0, IEX2<∞, but instead of (4.43) one
assumes that L(X) is non-lattice, then the RHS of (4.45) is o(n−1/2).

Further results on the topic can be found in [205, 94].
Open problem.
4.4. Recall (3.10∗). Let L(X̃) be the accompanying L(X) distribution defined
by (1.6). For any m∈ IN we set

Bm(U, V ) =
m∑
j=0

(
n

j

)
L(X̃)∗(n−j) ∗ (L(X)−L(X̃))∗j .

For instance, B0(U, V ) = L(S̃n),

B1(U, V ) = L(S̃n) + nL(S̃n−1) ∗ (L(X)−L(X̃)).

It is known [42] that

sup
U∈F+

sup
V ∈F

dK(L(Sn);Bm(U, V )) ≤ Cm(n−1+ p)m+1 . (4.47)

Will (4.47) hold if assumption U ∈F+ is replaced with U ∈Fs ?

4.5. Shifted compound Poisson approximation

Let X,X1, . . . , Xn be independent and identically distributed r.v.s. Denote by
X̃1,a, ..., X̃n,a accompanying X1+a, . . . , Xn+a random variables, and let

S̃n,a = X̃1,a + ...+ X̃n,a .

Clearly, S̃n,a is a compound Poisson Π(n,X+a) random variable.
Le Cam [129] has shown that

sup
L(X)

inf
a∈R

dK(Sn+na; S̃n,a) ≤ 132n−1/3 . (4.48)

A detailed procedure of finding a suitable shift has been described in [111].
According to Ibragimov & Presman [111], constant 132 in (4.48) can be replaced
with 8.

Presman ([6], ch. VIII.4) has shown that

sup
L(X)

inf
a∈R

dK(Sn+na; S̃n,a) ≥ cn−1/3 , (4.49)
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where c>0 is an absolute constant; the bound holds if the class of distributions
is reduced to the family of Bernoulli random variables.

Note that the rate of the accuracy of shifted Poisson approximation to the
Binomial distribution is n−1/2 (see Theorem 6 in [147]); according to (4.1), the
rate of the accuracy of shifted compound Poisson approximation to the Binomial
distribution is n−2/3 .

Zaitsev [204] has conjectured that for every L(X) there exist a constant CX

such that
inf
a∈R

dK(L(Sn+na); S̃n,a) ≤ CXn−1/2 . (4.50)

A first-order asymptotic expansion.
Let X,X1, . . . , Xn be i.i.d.r.v.s. Set

Bn,a(X) = L(S̃n,a) ∗
(
I − n

2
(L(X+a)−I)∗2

)
. (4.51)

Then [47]
sup

L(X)∈F
inf
a∈R

dK(L(Sn+na);Bn,a(X)) ≤ C5n
−2/5 . (4.52)

Čekanavičius [42] has proved that

sup
L(X)∈F+

dK(L(Sn);Bn,0(X)) ≤ Cn−2 . (4.53)

If 0≤p≤C0<1, then [51]

dK(L(Sn);H
∗n) ≤ C

(
1/n+

√
p/n

)
. (4.54)

Open problem.
4.5. Improve the accuracy of approximation in (4.52).

4.6. Other results

Arak’s method has been applied in order to derive an asymptotic expansion
with the accuracy O(n−1+ε) for any fixed 0< ε≤ 1/3, see Čekanavičius [60].
However, only the existence of such asymptotic expansion has been established.

Chen & Roos [38] have evaluated the accuracy of compound Poisson approx-
imation to IEf(Sn), where f is an unbounded function. Borisov [31] has proved
that

IEf(Sn) ≤ IEf(S̃n)

for a class of functions f , where S̃n is a sum of accompanying X,X1, ... r.v.s.
Besides, he showed that

IEf(Sn) ≤ IEf(S̃n)/IP(X=0)

for a non-negative measurable function f if X,X1, ... are i.i.r.v.s, see also [30],
§5.
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Let X,X1, ..., Xn be i.i.d.r.v.s such that IEX =0< IEX2 <∞, IE|X|k <∞
(∃k ≥ 3). Assume that L(X) does not depend on n and satisfies Cramér’s
condition (4.43).

Let η, πα1 , ..., παk
be independent random variables, where η is a standard

normal random variable, παj is a Poisson r.v. with parameter αj (j≥1). There
exist α1>0, . . . , αk>0, β1∈R, . . . βk∈R such that

dK(Sn/
√
nIEX2 ; η+β1πα1+. . .+βkπαk

) = O(n−(k−1)/2) (4.55)

as n→∞. An explicit algorithm for choosing {αi, βi} has been described in
Čekanavičius [49].
Open problem.
4.6. Let X,X1, ..., Xn be i.i.d.r.v.s. Denote PX =L(X). Will SCP measure

G9 = exp
(
n(PX−I)− n

2
(PX−I)∗2

)
approximate L(Sn) with the rate o(n−1)?

4.7. Applications

2-run statistic.
Let ξ1, ξ2, . . . be independent Bernoulli B(p) random variables, where 0<

p<1. Denote Sn,2 =
∑n−1

i=1 ξiξi+1 ,

G+ = exp
(
np2(I1−I) + γ2(I1−I)∗2 + γ3(I1−I)∗3

)
,

where

γ2 = np3(1− 3

2
p)− p3(1−p) , γ3 = np4(1−4p+

10

3
p2)− 2p4(1−p)(1−2p) .

Then Sn,2 is a 2-run statistic, G+ is the distribution of πλ1 +2πλ2 +3πλ3 ,
where πλ1 , πλ2 , πλ3 are independent Poisson random variables with parameters
λ1 = np2−2γ2+3γ3 , λ2 = γ2−3γ3 , λ3 = γ3 .

A sharp estimate of the accuracy of compound Poisson approximation to
L(Sn,2) has been established by Petrauskienė & Čekanavičius [149].

Theorem 4.8. [149] Assume that p≤ 1/5. There exists an absolute constant
C such that

d
TV
(L(Sn,2);G+) ≤ Cmin

(
np5; p/n

)
(n≥3). (4.56)

Further reading on the topic includes [40, 41, 67, 187, 70, 71].
(k1, k2)-run statistic.
k -run statistic is not the only one explicitly related to a sequence of inde-

pendent Bernoulli random variables.
Given two natural numbers k1, k2 , a (k1, k2)-run is a pattern consisting of

at least k1 consecutive failures followed by at least k2 consecutive successes.
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Let {ξi} be independent Bernoulli B(pi) random variables (0<pi<1). Set
m=k1+k2 ,

Xj = (1−ξj−m+1) · · · (1−ξj−k2)ξj−k2+1 · · · ξj (j≥m).

Denote
Sn(k1, k2) = Xm +Xm+1 + . . .+Xn .

If k1 = 1, then Sn(1, k) is the number of head runs of length ≥ k among
ξ1, . . . , ξn .

Approximations to L(Sn(k1, k2)) have been suggested in [67, 180, 184, 187].
We present below an analogue of (4.1) established by Vellaisamy & Čekanavičius
[187].

Let S = {p : m(1−p)k1pk2 ≤ 0.01}. Assume that p∈S. Then there exist a
compound Poisson distribution Y and a constant Cm such that

d
TV
(L(Sn(k1, k2));Y ) ≤ Cmn−2/3 (n>Cm). (4.57)

An urn model with overflow.
Suppose that n balls are distributed into m urns, and each ball is equally

likely to be assigned to any urn. Each urn can hold at most k balls, where k≥2
is a fixed number. If a ball is assigned to an urn that is already full, that ball is
placed in an additional “overflow urn” of unlimited capacity.

Let W be the number of balls allocated to the overflow urn. A compound
Poisson approximation to W has been suggested in [35, 73]. Set

λi =

(
n

i+k

)(
1

m

)i+k−1(
1− 1

m

)n−i−k

(i = 1, . . . , n−k),

λ = λ1 + . . .+ λn−k , Zn =

n−k∑
i=1

iπλi .

Daly [73] has shown that

dTV(W ;Zn) ≤ M(λ)

{
m2

(
n∑

i=k

(i−k)

(
n

i

)( 1

m

)i(
1− 1

m

)n−i
)2

− m(m−1)

n∑
i=k+1

n−i∑
j=k+1

(i−k)(j−k)n!

i!j!(n−i−j)!

( 1

m

)i+j(
1− 2

m

)n−i−j
}
,

where factor M(λ) obeys (3.13)–(3.15).
Other applications.
An overview of compound Poisson approximation results obtained via Stein’s

method can be found in [17, 18].
Compound Poisson approximation to the distribution of the number of k-

out-of-n isolated vertices of a rectangular lattice on a torus has been presented
in [164].
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Compound Poisson approximation to the number of overlapping and non-
overlapping occurrences of word patterns has been suggested in [87]. Compound
Poisson approximation to the number of overlapping sequences has been studied
in [40].

A Negative Binomial approximation to the number of parasites has been
suggested in [23].

A review of compound Poisson approximations to the number of dependent
claims has been given by Genest et al. [84].

5. Multivariate compound Poisson approximation

A compound Poisson random vector is defined by (1.1), where {ζi} are inde-
pendent random vectors. We denote by Π(λ, ζ) ≡ Π(λ,L(ζ)) the multivariate
compound Poisson distribution with intensity λ and compounding (multiplic-
ity) distribution L(ζ) :

Π(λ, ζ) = L
(∑πλ

i=0
ζi

)
,

where π(λ), ζ, ζ1, ... are independent, L(πλ) = Π(λ), ζi
d
= ζ (i≥1), ζ0 = 0̄.

5.1. Multivariate compound Poisson limit theorem

This section presents a multivariate compound Poisson limit theorem.

Let {X,X1, ..., Xn}, where Xi =(X
(1)
i , ..., X

(k)
i ), be a sequence of k-dimen-

sional random vectors that are non-zero with “small” probabilities. Set

Sn = X1 +...+Xn .

Example 5.1. Let {ξi} be a sequence of random variables. Denote

Nn(x) =

n∑
i=1

1I{ξi>x}, Nn[a, b) =

n∑
i=1

1I{a≥ξi>b} (a>b).

Given a set x1>...>xk of numbers (“levels”), set

Sn = (Nn(x1), Nn[x1;x2), ..., Nn[xk−1;xk)) . (5.1)

Then Sn = X1+...+Xn, where Xi = (1I{ξi > x1}, 1I{x1 ≥ ξi > x2}, ..., 1I{xk−1 ≥
ξi > xk}).

Random vector (5.1) plays a role in extreme value theory when one deals
with a joint distribution of exceedances of several level (cf. [144], ch. 6). �

Random vector Sn can be approximated by a compound Poisson random
vector. Indeed, Theorem 2.1 clearly holds if {Xi} are i.i.d. random vectors.

Let {X,X1, ..., Xn} be a stationary sequence of random vectors. The argu-
ment of the proof of Theorem 2.3 remains valid. Hence Theorem 2.3 holds if
{Xi} are random vectors.
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Theorem 2.3∗ Assume that

lim sup
n→∞

nIP(X �=0̄) < ∞, (5.2)

and there exists the limit

lim
n→∞

IP(Sn=0̄) := e−λ (∃λ>0). (5.3)

If L(Sr|Sr �= 0̄) ⇒ L(ζ) as n → ∞ for a random vector ζ and a sequence
{r=rn}∈R, then

L(Sn) ⇒ Π(λ, ζ). (2.15∗)

The limiting distribution Π(λ, ζ) in (2.15∗) does not depend on the choice of a
sequence {rn}.

If L(Sn) converges weakly to a random vector S, then there exists λ≥0 and
a random vector ζ such that L(S) = Π(λ, ζ), where λ = − ln IP(S = 0̄), and
(5.3) holds. If λ>0, then there exist a sequence {r= rn}∈R such that (2.14)
holds.

Theorem 2.3∗ is essentially Theorem 6.6 from [144].
Random vector ζ in Theorem 2.3∗ may have dependent components. The

following theorem presents a necessary and sufficient condition for a weak con-
vergence of Sn to a vector with independent compound Poisson components.

Given t0=0<t1< ... <tk<∞, denote t̄ = (t1, ..., tk). Set

S(j)
n = X

(j)
1 +...+X(j)

n , pj = (tj−tj−1)/tk (1≤j≤k).

Condition (Ct̄ ).
We say that condition (Ct̄ ) holds if there exists a random variable ζ taking

values in IN and a sequence {r=rn} such that n�r�1,
(a) for every 1≤ i≤k, �≥1,

IP(S(i)
r =�) ∼ r

n
IP(ζ=�)(ti−ti−1) (n → ∞),

(b) for every 1≤ i<j≤k

IP(S(i)
r >0, S(j)

r >0) = o(r/n) (n → ∞).

Condition (Ct̄ ) is necessary and sufficient for the weak convergence of L(Sn)
to a vector with independent compound Poisson components.

Note that conditions (a) and (5.2) yield

IP(S(i)
r >0) ∼ (ti−ti−1)r/n (n → ∞) (5.4)

( 1≤ i≤m, �≥1). Hence (a) means

IP(S(i)
r =�|S(i)

r >0) ∼ IP(ζ=�) (1≤ i≤k, �≥1) (a∗)
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as n→∞. If condition Δ holds, then (5.4) is equivalent to

lim
n→∞

IP(S(i)
n =0) = e−ti−ti−1 .

Thus, instead of assuming (5.3), one could have added (5.4) as item (c) of
condition (Ct̄ ) (cf. [143]).

Condition (b) means components of a random vector ζr with the distribution
L(ζr) = L(Sr|Sr �= 0) are asymptotically independent.

Let {π(s), s≥0} be a Poisson process with intensity rate 1, and let η, η1, η2, ...
be a sequence of i.i.d.r.v.s taking values in IN. Denote

Q(t) =

π(t)∑
j=1

ηj .

Then {Q(t), t≥0} is a compound Poisson jump process. Equivalently,

Q̃(B) :=

∫
B

Q(dt)

is a compound Poisson point process with the Lebesgue intensity measure and
multiplicity distribution L(η).

Denote
St̄ = {Q(t1), Q(t2)−Q(t1), ..., Q(tk)−Q(tk−1)}.

Clearly, St̄ is a random vector with independent compound Poisson compo-
nents.

The ch.f. of St̄ is

IE exp(is̄St̄ ) = exp
(
tk

( k∑
j=1

pjϕη(sj)− 1
))

(∀s̄ = (s1, ..., sk)∈ IRk),

where ϕη is a ch.f. of L(η).
Theorem 5.1. Assume conditions Δ and (5.2), and suppose that for a vector
t̄ = (t1, ..., tk), where t0=0<t1< ... <tk<∞, there exist the limits

lim
n→∞

IP(S(j)
n =0) = e−tj+tj−1 (∀j ∈ {1, ..., k}). (5.5)

Weak convergence
Sn ⇒ St̄ (5.6)

holds if and only if condition (Ct̄ ) holds.

Theorem 5.1 is essentially Theorem 6.3 from [144].

Example 5.2. deals with sample extremes. We rewrite the sample X1, . . . , Xn

in the non-increasing order:

X1:n ≥ ... ≥ Xn:n .
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Then X1:n, ..., Xn:n are called the “order statistics”. In particular, Mn = X1:n

is the sample maximum, Xl:n is the lth sample maximum.
Denote by Nn(x) =

∑n
i=1 1I{Xi > x} the number of exceedances over the

threshold x. It is easy to see that

{Xl:n≤x} = {Nn(x)<l} (1≤ l≤n). (5.7)

Let {un(·)} be a non-decreasing normalising sequence such that

lim sup
n→∞

nIP(X>un(t)) < ∞, lim
n→∞

IP(Mn≤un(t)) = e−t (∀t>0). (5.8)

Assume condition Δ. The following result can be deduced from Theorem 5.1
for the joint limiting distribution of X1:n and Xl:n: if 0<s<t, then

lim
n→∞

IP(X1:n≤un(s), Xl:n≤un(t)) (5.9)

= e−t

{
1 +

l−1∑
j=1

(t−s)j IP

(
j∑

i=1

ζi<k

)/
j!

}
(l≥2).

In particular,

lim
n→∞

IP(X1:n ≤ un(s), X2:n ≤ un(t)) = e−t (1+(t−s)IP(ζ=1)) .

Similarly, if 0<q<s<t, then Theorem 5.1 yields

lim
n→∞

IP(X1:n≤un(q), X2:n≤un(s), X3:n≤un(t)) (5.10)

= e−t
{
1+(t−q)IP(ζ=1) + (t−s)2IP2(ζ=1)/2

+ (t−s)(s−q)IP2(ζ=1) + (t−s)IP(ζ=2)
}
.

Formulas (5.9), (5.10) demonstrate the impact of the asymptotic clustering
of extremes on the limiting distribution of upper order statistics. �
Remark. Condition (Ct̄ ) stipulates the “regular” way of asymptotic clustering
of extremes. Waiving it makes the situation more complicated (cf. formula (6.10)
in [144]).

Example 5.3. Let {Xi, i ≥ 1} be a strictly stationary α–mixing sequence.
Hsing [107] has shown that limn→∞ IP(X1:n ≤ un(s), Xl:n ≤ un(t)), if exists, is
necessarily expressed via a compound Poisson distribution, cf. (5.11).

Necessary and sufficient conditions for the convergence of IP(X1:n ≤ un(s),
Xl:n ≤ un(t)): if (5.8) holds, then the probability

IP(X1:n≤un(s), Xl:n≤un(t)) = IP(Nn(un(s))=0, Nn(un(t))<l)

converges for every t > s > 0 if and only if there exist functions fi(·) and a
sequence {r=rn} such that n�r�1 and

lim
n→∞

IP(Nr(un(s))=0, Nr(un(t))= i |Nr(un(t))>0) = fi(s/t)
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for each t>s>0 and i∈{1, . . . , l−1}. The limit is expressed via a compound
Poisson distribution:

lim
n→∞

IP (Nn(un(s))=0, Nn(un(t))<l) = IP

(
π(t)∑
i=1

ζ∗i <l

)
, (5.11)

where {ζ∗i } are i.i.d.r.v.s, IP(ζ∗= i) = fi(s/t) (Novak [143]). In particular, the
limiting cluster size distribution depends on the ratio s/t.

Sufficient conditions for the weak convergence of the random vector {Nn(un(s)),
Nn(un(t))} can be found in Novak [143], Proposition 6 (see also [144], p. 107).

�

5.2. Accuracy of multivariate CP approximation: rare events

Estimates of the accuracy of univariate compound Poisson approximation to
L(Sn) have been given in section 3. Definitions of metrics, accompanying r.v.s,
an exponent of a measure, etc., remain valid in the multivariate case.

We present below results concerning the accuracy of multivariate compound
Poisson approximation to the distribution of the sum Sn = X1 + ... + Xn of
random vectors X1, ..., Xn.

Let {Xi} be independent random vectors that are non-zero with small prob-
abilities. Recall that S̃n denote the sum of accompanying random vectors, see
(1.9). Set

pi = IP(Xi �=0̄), λ = p1 + ...+ pn (i≥1).

Khintchine’s formula (2.1∗) holds for random vectors:

Xi
d
= τiX

′
i,

where τi and X ′
i are independent r.v.s,

L(X ′
i) = L(Xi|Xi �=0), L(τi) = B(pi).

Therefore, (2.9) remains valid: if {X ′
i} are identically distributed, then

d
TV
(Sn;Y ) ≡ d

TV

( νn∑
i=1

X ′
i;

πλ∑
i=1

X ′
i

)
≤ d

TV
(νn;πλ).

Besides, (3.6) entails

d
TV
(Sn; S̃n) ≤

n∑
i=1

p2i .

A number of univariate results have been generalized to the multi-dimensional
case. In particular, inequality (3.8) has been generalized by Zaitsev [199] to the
case of independent random vectors taking values in R

k that are zero with large
probabilities: there exists constant C(k) such that

dK(Sn; S̃n) ≤ C(k) max
1≤i≤n

pi . (5.12)
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Related results can be found in [95, 96].
Bound (3.9) holds in the multivariate case as well. Estimates (3.25) and (3.26)

hold in the multivariate case (cf. [68], p. 28). Multivariate versions of (4.7) for
independent random vectors have been given by Roos [166, 167].

Independent 0-1 random vectors.
Let {Xi} be independent k-dimensional random vectors. Set 0̄=(0, . . . , 0),

pj,r = IP(Xj = ēr), pj = IP(Xj �= 0̄) =

k∑
r=1

pj,r, λr =

n∑
i=1

pi,r > 0,

p̃0 =

k∑
r=1

max
1≤i≤n

pi,r .

Tecall that I denotes the distribution concentrated at 0̄, Iēj is the distribution
concentrated at ēj . Denote

Fn =
∗n∏
j=1

(
(1− pj)I +

k∑
r=1

pj,r(Iēr−I)

)
, G∗ = exp

(
k∑

r=1

λr(Iēr−I)

)
.

If {Xi} are i.i.d., then Fn = L(Sn) is a multinomial distribution. Results on
the accuracy of Poisson approximation to the multinomial distribution can be
found, e.g., in [144]. Set

Aj =

k∑
r=1

pj,r(Iēr−I); Hn,s = exp

⎛⎝ s∑
m=1

(−1)m+1

m

n∑
j=1

A∗m
j

⎞⎠ (s∈ IN).

If p̃0≤1/4, then (Roos [166]) there exists constant Cs such that

d
TV
(L(Sn);Hn,s) ≤ Cs

n∑
j=1

(
min

{ k∑
r=1

p2j,r
λr

; p2j

})(s+1)/2

. (5.13)

If k, s are fixed and pi,j�C, then the rate of accuracy in (5.13) is O(n−(s−1)/2).
Further SCP approximations to the sum of 0-1 random vectors can be found

in [167]. A one dimensional version of (5.13) is (4.13).
The next theorem estimates the accuracy of approximation Fn ≈ G∗ .
Denote qi,r = pi,r/pi (i ∈ {1, . . . , n}, r ∈ {1, . . . , k}). Clearly,

∑k
r=1 qi,r =

1 (∀i). Set

λ =

n∑
j=1

pj =

k∑
r=1

λr ,

α=

n∑
j=1

g(2pj)p
2
j

k∑
r=1

qj,r min{2−3/2qj,r/λr; 2},
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β=

n∑
j=1

p2j

k∑
r=1

qj,r min{qj,r/λr; 1},

where g(z)=2ez(e−z−1−z)/z2 (z>0).

Theorem 5.2. [170] The following estimate holds:

d
TV
(Fn;G∗) ≤ 7.8β. (5.14)

If α ≤ 2−3/2, then

d
TV
(Fn;G∗) ≤ α/(1−2

√
2α). (5.15)

If k=1 and qj,1≡1 (∀j), then (5.14) becomes an estimate of the accuracy of
univariate Poisson approximation to the distribution of a sum of independent
Bernoulli r.v.s.

Dependent 0-1 random vectors.
We now consider the case of weakly dependent 0-1 random vectors.
Let X,X1, . . . , Xn be a strictly stationary sequence of k-dimensional 0-1

random vectors such that not more than one coordinate of a vector may equal

1. Set Xi = (X
(1)
i , ..., X

(k)
i ),

Sn = X1 +...+Xn .

Denote ēj = (0, . . . , 1, . . . , 0), i.e., vector ēj has the jth coordinate equal 1, the
other coordinates equal zero. Assume that

IP(X=0̄) = 1−p, IP(X= ēj) = pj (1≤j≤k), (5.16)

where 0̄=(0, . . . , 0), p = IP(X �=0̄).
If {Xi} are independent, then L(Sn) is multinomial B(n, p1, ..., pk). An

estimate of the accuracy of Poisson approximation to B(n, p1, ..., pk) can be
found in [147].

Given r ∈ {1, ..., n}, let ζ, ζ1, ζ2, . . . be independent random vectors with the
common distribution

L(ζ) = L(Sr|Sr �=0̄).

Denote

q = IP(Sr �=0), k = [n/r], r′ = n−rk, λ = kq.

We approximate L(Sn) by the multivariate compound Poisson distribution
Π(kq, ζ).

Theorem 5.3. If n>r>l≥0 and L(Y ) = Π(kq, ζ), then

d
TV
(Sn;Y ) ≤ Cn,rrp+ (r′+2nr−1l)p+ nr−1 min{β(l);κ(l)}, (5.17)

where Cn,r = min{3/4e+(1−e−np)rp; 1−e−np} and κ(l) = 1 if m2(m−1)/2α(l) >

1, κ(l) = 2(1+2/m)
(
2m−1m2α2(l)

)1/(2+m)
if m2(m−1)/2α(l) ≤ 1.
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Theorem 5.3 is effectively Theorem 6.8 from [144].
If {ξi} are i.i.d. B(p) random variables, then (5.17) with l=0 and r=1

becomes an estimate of the accuracy of Poisson approximation to L(Sn) with
a correct constant 3/4e at the leading term:

dTV(B(n, p);Π(np)) ≤ 3p/4e + (1−e−np)p2.

The next corollary applies (5.17) to the case of m-dependent random vectors.

Corollary 5.4. If vectors {ξi} are m-dependent and m<r<n, then

d
TV
(Sn;Y ) ≤ Cn,rrp+ (r′+2nm/r)p. (5.18)

If we choose r � √
n , then the right-hand side of (5.18) is O(p

√
n ).

Open problem.
5.1. The term (2nr−1l+r′)p appears in (5.17) because of the method (Bernstein’s
blocks approach). An open question is if it can be removed.

5.3. Accuracy of multivariate CP approximation: general case

Let X,X1, . . . , Xn be independent and identically distributed random vectors
taking values in R

k . Denote by X̃a, X̃1,a, ..., X̃n,a accompanying X1+a, ..., Xn+
a independent random vectors, and let

S̃n,a = X̃1,a + ...+ X̃n,a .

Recall that S̃n,a is a compound Poisson random vector.
Estimate (4.48) of the accuracy of compound Poisson approximation has been

generalized to the multivariate case by Presman [152]: there exists an absolute
constants C such that

sup
L(X)

inf
a
dK(Sn; S̃n,a−na) ≤ Cn−1/3 . (5.19)

At a moment (5.19) is the best available estimate of the accuracy of multivariate
compound Poisson approximation without extra assumptions on L(X) .

Bentkus et al. [25] state that the rate of approximation to L(Sn) by L(S̃n) is
O(n−1) if IE‖X‖8/3<∞. Here norm is understood as a square root of a scalar
product of X with itself. Namely, assume that L(X) is not concentrated on a
hyperspace in R

k , IEX=0, IE‖X‖8/3<∞. Then for any a∈R
k , as n→∞,

sup
x

|IP(‖Sn−a‖2 < x)− IP(‖S̃n−a‖2 < x)| = O((1+‖a‖4)n−1) . (5.20)

Asymptotic expansions.
The next result presents a SCP approximation in (5.19).
Recall Khintchine’s formula (3.10):

X
d
= τXA + (1−τ)XAc ,
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where XA , XAc

, τ are independent r.v.s, L(τ)=B(p), p=IP(X∈A),

L(XA) = L(X|X∈A), L(XAc) = L(X|X∈Ac)

([115], ch. 2). One may choose a bounded set A and take a=IEXA in (5.21).
Denote

P = L(X), Pa = L(X+a), V =L(XA).

Theorem 5.5. [48] For any n∈ IN and any k-dimensional distribution P there
exists constant Ck(Pa) such that

inf
a
dK(L(Sn+na); exp

(
n(Pa−I)− n2(V −I)∗2/2

)
) ≤ Ck(Pa)n

−1/2 . (5.21)

Further results concerning asymptotic expansions can be found in [152, 48].
Symmetric random vectors.
Let {Xi} be i.i.d. symmetric random vectors taking values in R

k .
Multivariate analogues of (4.33) and (4.37) for independent random vectors

have been established by Zaitsev [198, 200]:

dK(Sn, S̃n) ≤ Ckn
−1/2 . (5.22)

If L(X) has a non-negative characteristic function, then

dK(Sn, S̃n) ≤ Ckn
−1 . (5.23)

Infinite-dimensional versions of (5.12), (5.22), (5.23) can be found in Götze &
Zaitsev [97].

Čekanavičius [44] investigated the case of mixtures of distributions with a
dominant symmetric part.

Let P be a symmetric distribution, and let V be the distribution of an
arbitrary k-dimensional random vector. Consider the situation where

L(X) = (1−p)

s∑
j=1

qjP
∗j + pV

for some p, qi , s∈ IN such that 0<p<1/2, qi∈ [0, 1] (i≥1), q1 + · · ·+ qs = 1.
Denote

Hn =

(
(1− p)

s∑
j=1

qjP
∗j + pV

)∗n

,

Dn = exp

(
n

s∑
j=1

qj(P − I) + np(V − I)− np2

2
(V − I)∗2

)
,

Čekanavičius [44] has shown that for any s∈ IN there exists an absolute constant
C(s, k) such that

dK(Hn;Dn) ≤ C(s, k)

(
p1/2n−1/4 + s3n−1/2

( s∑
j=1

jqj

)−1/2
)
. (5.24)



Compound Poisson approximation 327

If s=1, then the RHS of (5.24) is O(p1/2n−1/4 + n−1/2).
Suppose now that

X
d
=

ξ∑
j=0

ηj ,

where r.v. ξ takes values in IN, 0 ≤ ξ ≤ s ∈ IN, η0 = 0, η, η1, η2 . . . are i.i.d.
random vectors with a non-negative characteristic function, {ηj} and ξ≥0 are
independent. Set μ = IEξ. It is shown in [44] that

dK(L(Sn);Π(nμ, η)) ≤ Cks
3(nμ)−1 . (5.25)

Estimate (5.25) demonstrates that additional information about L(X) helps
improvinging the accuracy of compound Poisson approximation. For example,
let L(X) = 0.2I + 0.3P + 0.5P ∗5. Then μ = IEξ = 2.8. It follows from (5.25)
that

sup
P∈F+(k)

dK(L(Sn); exp (2.8n(P−I))) ≤ Ckn
−1 .

Here F+(k) denotes the class of k-dimensional distributions with non-negative
characteristic functions.

Symmetric integer-valued random vectors.
Similarly to (5.16) we denote

0̄ = (0, . . . , 0), ēj = (0, . . . , 1, . . . , 0) (1≤j≤k),

where vector ēj has the jth coordinate equal to 1 and the other coordinates
equal to 0.

Let {Xi} be independent integer-valued random vectors with distributions
concentrated on coordinate axes of R

k:

k∑
r=1

∞∑
m=−∞

IP(Xj = mēr) = 1 (∀j).

Set (r=1, . . . , k, j=1, . . . , n)

pj,r = IP(Xj ∈ ērZ\{0̄}), pj =

k∑
r=1

pj,r , pj,0 = 1−pj .

Denote
Fr{mēr} = IP(Xj=mēr)/pj,r (m∈Z\{0}).

We assume that Fr does not depend on j. Such distribution Fr always exist in
the case of identically distributed random vectors (but not in the general case).
Then

L(Sn) =

∗n∏
j=1

(
(1−pj)I +

k∑
r=1

pj,rFr

)
, L(S̃n) = exp

(
n∑

j=1

k∑
r=1

pj,r(Fr−I)

)
.
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Let σ2
r denote the variance of Fr , and let

g(z) = 2ez(e−z−1−z)/z2 , λn,r =
n∑

j=1

pj,r ,

α0 =

n∑
i=1

g(2(1−pi,0))min
{
2−3/2

k∑
r=1

p2i,r/λn,r; p
2
i

}
.

Theorem 5.6. [126] Suppose that Fr is a symmetric distribution, σ2
r < ∞

(r=1, . . . , k), 2α0e<1. Then

d
TV
(Sn; S̃n) ≤

8

(1−2α0e)3/2

k∑
i=1

(1+σi)
k∑

r=1

λ−2
0,r

n∑
j=1

p2j,r . (5.26)

If {σr, pj,r} are bounded away from 0, then the RHS of (5.26) is O(n−1),
i.e., the accuracy is comparable with that of (4.37).

If k=1, σ2
1 is fixed and pj,1≡p (∀j), then (5.26) is comparable to (4.27).

Infinite-dimensional spaces.
Very few results are known for a sum Sn = X1+ ...+Xn of random elements

X1, ..., Xn taking values in a general measurable space.
Bakštys & Paulauskas [7, 8] dealt with random elements X1, ..., Xn taking

values in a separable Banach space B.
Denote by X̃a, X̃1,a, ..., X̃n,a accompanying X+a,X1+a, ..., Xn+a indepen-

dent random elements, and let

S̃n,a = X̃1,a + ...+ X̃n,a , S̃n = X̃1,0 + ...+ X̃n,0 .

Let U be the set of all convex Borel sets. Suppose that for any ε> 0 there
exists a finite-dimensional subspace Vε such that IP(X∈Vε)≤ε. Then [8]

lim
n→∞

inf
a

sup
A∈U

|IP(Sn∈A)− IP(S̃n,a−na∈A)| = 0. (5.27)

If X is symmetric random element taking values in a Hilbert space, then

lim
n→∞

inf
a

sup
A∈V

|IP(Sn∈A)− IP(S̃n,a−na∈A)| = 0, (5.28)

where V is a set of all open balls in that Hilbert space (Bakštys [9]).
Let X,X ′, X1, . . . , Xn be a sequence of i.i.d. random elements taking values

in a real separable Hilbert space H with scalar product (·, ·) and norm ‖ · ‖H .
Nagaev [142] has derived estimates of the accuracy of approximation L(Sn) ≈
L(S̃n).

Namely, for any x∈H and constant C>0 set

B(x;C) = IE1/2(X−X ′, x)21I{‖X‖H ∧ ‖X ′‖H ≤ C}, B(x) = B(x,∞).

Let σ2
1(C) ≥ σ2

2(C) ≥ . . . be the eigenvalues of the quadratic form {B(·;C)×
B(·;C)}.
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Denote V (a; r) = {x∈H : ‖x−a‖H ≤r}, and let

σ2(C) =

∞∏
j=1

σ2
j (C), Λl(C) =

l∏
j=1

σ2
j (C), σ2 = IE‖X‖2H .

Theorem 5.7. [142] If IEX=0 and σ2<∞, then for any a∈H and C∈(0;∞)

sup
r

‖IP(Sn∈V (a; r))−IP(S̃n∈V (a; r))‖ ≤ σ4+B2(a)/n

Λ
2/5
5 (C)

√
n

+
Cσ(C)

Λ
1/3
3 (C)

√
n
. (5.29)

If 0<σ(C)<∞, then the RHS of (5.29) is O(n−1/2).
Open problem.
5.2. Evaluate constant Ck in (5.21).

6. Compound Poisson process approximation

Let r.v.s X1, X2, ... represent rare events (i.e., {Xj} are non-zero with “small”
probability). Poisson process approximation to corresponding empirical point
processes of exceedances has been studied by many authors (see, e.g., [31, 144]
and references therein). However, Poisson process approximation is applicable
only if the limiting cluster size distribution is degenerate.

If the limiting cluster size distribution is not degenerate, then the limiting
distribution of the number of exceedances is typically compound Poisson; the
limiting distribution of an empirical point processes of exceedances can be more
complex than compound Poisson (cf. [144], ch. 8).

This section presents results concerning compound Poisson process approxi-
mation.

Compound Poisson process is a process with independent compound Pois-
son increments. Namely, a point process S(·) is called a compound Poisson
process with intensity measure Q and multiplicity distribution L(ζ) if it has
independent increments (i.e., for arbitrary disjoint measurable sets A1, ..., Ak

r.v.s S(A1), ..., S(Ak) are independent) and for any measurable set A random
variable S(A) is compound Poisson Π(Q(A),L(ζ)).

If Q = λm, where m is the Lebesgue measure, then we say that S(·) is a
compound Poisson process with intensity rate λ and compounding (multiplic-
ity) distribution L(ζ).

6.1. Empirical processes

Let r.v.s X,X1, X2, ..., Xn represent rare events (i.e., they are non-zero with
“small” probability). Define the point process

Sn(·) =
n∑

i=1

Xi1I{i/n∈·}. (6.1)
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A particular case is the jump process

Sn,t =

[nt]∑
i=1

Xi (0<t≤1)

known also as a random broken line. Note that Sn,t = Sn((0; t]),

Sn ≡ X1 + ...+Xn = Sn((0; 1]).

If {Xi} are Bernoulli r.v.s, then point process (6.1) counts locations of rare
events.

Example 6.1. A typical example is a process of exceedances of a “high” thresh-
old. Let {ξi, i≥1} be a stationary sequence of random variables, and let {un}
be a sequence of levels. Set Xi = 1I{ξi>un}. Process Sn(·) = Nn(·, un), where

Nn(B, un) =

n∑
i=1

Xi1I{ i/n∈B} (B⊂(0; 1]), (6.2)

counts locations of exceedances of level un. �
A natural approximation to Sn(·) is a compound Poisson process.
Let {X,X1, ..., Xn} ≡ {Xn,0, Xn,1, ..., Xn,n}, n ≥ 1, be a triangle array of

dependent r.v.s, strictly stationary in each row. In applications r.v.s {Xi} are
typically non-negative; they usually represent rare events. Therefore, we assume
that Xi≥0 (∀i).

If a sequence {r= rn} of natural numbers obeys n� rn ≥ 1, we denote by
ζr ≡ ζr,n a r.v. with the distribution

L(ζr,n) = L(Sr |Sr>0). (6.3)

The next theorem presents necessary and sufficient conditions for the weak
convergence of Sn(·) to a compound Poisson point process. It is essentially
Theorem 7.1 from [144].

Theorem 6.1. Assume mixing condition Δ, and suppose that (2.13) holds. If,
as n→∞,

IP(Sn=0) → e−λ (∃λ>0), (2.11∗)

L(Sr|Sr �=0) ⇒ L(ζ) (2.14∗)

for a sequence {r=rn} obeying (2.10), then

Sn(·) ⇒ S(·), (6.4)

where S(·) is a compound Poisson point process with intensity rate λ and
multiplicity distribution L(ζ).

If Sn(·) converges weakly to a point process S(·), then S(·) is a compound
Poisson process on (0; 1] with intensity rate λ given by (2.11∗). If λ>0, then
(2.14∗) is valid for some r.v. ζ and sequence {rn} that obeys (2.10).
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Condition (2.13) can be relaxed to allow for np→∞ at a certain “slow” rate.

Example 6.2. Let {Xi, i≥0} be a regenerative process, i.e., there exist integer-
valued r.v.s 0<ξ0<ξ1< ... such that the “cycles”

{Xi, 0≤ i<ξ0}, {Xi, ξ0≤ i<ξ1}, ...

are i.i.d.. We define r.v.s Y, Y1, Y2, ... as follows:

Y = max
0≤i<ξ0

Xi , Y1 = max
ξ0≤i<ξ1

Xi , ...

Denote

Tj =

ξj−1∑
i=ξj−1

1I{Xi>un} (j∈ IN),

where {un} is a sequence of levels. Suppose that ξ0 is aperiodic, μ :=IEξ0<∞
and IP(Y >max1≤j≤k Yi) → 0 as k→∞.

Process Nn(·, un) converges weakly to a non-degenerate point process N if
and only if there exist λ>0 and a distribution P such that

nIP(Y >un)/μ → λ and L(T1|T1>0) ⇒ P

as n → ∞; necessarily N a compound Poisson point process with intensity rate
λ and multiplicity distribution P (Rootzén [171]). �

Concerning random broken line {Sn,t, 0 ≤ t ≤ 1}, Borisov & Borovkov [27]
use a Poisson component in order to improve the rate of approximation in the
Donsker-Prokhorov invariance principle.

6.2. Excess process

Let X,X1, X2, ..., Xn be a stationary sequence of r.v.s. When one is interested in
the joint distribution of exceedances of several levels among X1, ..., Xn, a natural
tool is the excess process Nε

n(·). This section presents necessary and sufficient
conditions for the weak convergence of the excess process to a compound Poisson
process.

Given a sequence {un(·), n≥1} of monotone functions on [0;∞), denote

Nε
n(t) =

n∑
i=1

1I{Xi>un(t)} (t>0).

Let T >0. We call {Nε
n(t), t∈ [0;T ]} the excess process.

Process Nε
n(·) describes variability in the heights of observations X1, X2, ...,

Xn .
Note that Nε

n(·) is the “tail empirical process” for Yn,1, ..., Yn,n, where Yn,i=
u−1
n (Xi):

Nε
n(t) =

n∑
i=1

1I{Yn,i<t}. (6.5)
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There is a considerable amount of research on the topic of tail empirical processes
(see, e.g., [72, 133] and references therein).

We present necessary and sufficient conditions for the weak convergence of
the excess process to a compound Poisson process in Theorem 6.2 below.

Suppose that function un(·) is strictly decreasing for all large enough n,
un(0) = ∞,

lim sup
n→∞

nIP(X>un(t)) < ∞ (0<t<∞), (6.6)

lim
n→∞

IP(Nn(un(t))=0) = e−t (t>0). (6.7)

Condition (6.7) means un(·) is a “proper” normalising sequence.
Given t0=0<t1< ... <tk<∞, denote t̄ =(t1, ..., tk). Recall condition Ct̄ .
Definition. Condition (C) holds if condition Ct̄ is valid for every 0<t1<

... < tk<∞, k∈ IN.
Let {πs, s≥ 0 } be a Poisson process with intensity rate 1, and let ζ1, ζ2, ...

be a sequence of i.i.d. copies of ζ. Denote

Qζ(t) =

πt∑
j=1

ζj . (6.8)

Then {Qζ(t), t≥0} is a compound Poisson jump process. Equivalently,

Q̃ζ(B) :=

∫
B

Qζ(dt)

is a compound Poisson point process with the Lebesgue intensity measure and
multiplicity distribution L(ζ). We do not distinguish between Qζ and Q̃ζ in
the sequel.

Theorem 6.2. Assume mixing condition condition Δ, (6.6), (6.7), and let
πζ(·) denote a compound Poisson process with intensity rate 1 and multiplicity
distribution L(ζ). Then

Nε
n(·) ⇒ Qζ(·) (6.9)

as n → ∞ if and only if condition (C) holds.

Theorem 6.2 is Theorem 7.2 from [144].
General situation.
Excess process {Nε

n(·)} may converge weakly to a process of a more complex
structure:

{Nε
n(t), t≤T} ⇒

{
πT∑
j=1

γj(t/T ), t≤T

}
(6.10)

as n → ∞, where πT is a Poisson r.v., {γj(·)} are independent jump processes.

Process
{∑πT

j=1 γj(·)
}

can be called Poisson cluster process or compound

Poisson process of the second order (regarding the standard compound Poisson
process a “compound Poisson process of the first order”).
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Results concerning approximation (6.10) can be found in [144], ch. 8. The
accuracy of approximation to the distribution of an excess process can be eval-
uated in terms of the total variation distance (cf. [144], Theorem 8.3).

6.3. General point processes of exceedances

Both (6.2) and (6.5) are one–dimensional processes of exceedances. Below we
deal with a general point process of exceedances N∗

n , which counts locations of
extremes (rare events) as well as their heights.

For any Borel set A⊂(0; 1]×[0;∞) denote

N∗
n(A) :=

n∑
i=1

1I{
(
i/n, u−1

n (Xi)
)
∈ A }. (6.11)

If {Xi} are i.i.d.r.v.s, or if {Xi, i≥1} is a strictly stationary sequence obey-
ing certain mixing conditions, then N∗

n(·) converges weakly to a pure Poisson
point process (Adler [1], see also [147]).

The following theorem presents necessary and sufficient conditions for the
weak convergence of point process N∗

n(·) to a compound Poisson point process.
Denote by N∗(·) a compound Poisson point process on (0; 1]×[0;∞) with

the Lebesgue intensity measure and multiplicity distribution L(ζ). Note that

Qζ(t)
d
= N∗((0; 1]× [0; t)).

Theorem 6.3. Assume conditions Δ, (6.6), (6.7). Then

N∗
n ⇒ N∗ (n→∞) (6.12)

if and only if condition (C) holds.

Theorem 6.3 is Theorem 7.4 from [144].

Example 6.3. Let {ξi}, {αi} be independent sequences of i.i.d. r.v.s, IP(ξi ≤
x) = F (x) and αi ∈ B(θ), where θ∈(0; 1). Put X1 = ξ1 , and let

Xi = αiξi + (1−αi)Xi−1 (i≥2). (6.13)

Then {Xi, i≥1} is a stationary sequence of r.v.s with the marginal d.f. F , the
cluster sizes have the geometric distribution with mean 1/θ, and the extremal
index equals θ.

Notice that sequence {Xi, i≥1} is ϕ–mixing and

ϕ(k) ≤ (1−θ)k (k≥1).

Furthermore,

IP(max
i≤n

Xi ≤ u) = F (u)IE(1− p)ν = F (u)(1− θp)n−1 ,
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where ν =
∑n

i=2 αi is a Binomial B(n−1, θ) r.v..
Denote K∗ = sup{x : F (x)<1}, and assume that

IP(X≥x)/IP(X>x) → 1 (6.14)

as x → K∗ (Gnedenko’s condition [90]). Then there exists a sequence {un}
such that nIP(X>un) → 1 (cf. Theorem 1.7.13 in [127]). Put

un(t) = u[θn/t] (t>0).

Then

IP(X>un(t)) ∼ t/nθ, IP(Nr(un(t))>0) ∼ tr/n, (6.15)

and {un(·)} obeys (6.7).
In order to check condition (C), we need to check items (a), (b) of condition

(Ct̄). Let 0<s<t<v<∞. Condition (b) follows from (6.15) and estimate

IP(Nr[un(t);un(v))>0, Nr[un(s);un(t))>0)

≤ r2IP(un(v)<ξ≤un(t))IP(un(t)<ξ≤un(s)) = O((r/n)2).

Random variables {Xi, ..., Xi+m} form a cluster of size m if αi = 1, αi+1 =
... = αi+m−1 = 0, αi+m = 1. Denote

W = 1I1 +

r∑
i=2

αi1Ii ,

where 1Ii = 1I{ξi ∈ (un(t);un(s)]}. Asymptotically, only one cluster among
X1, ..., Xr may hit (un(t);un(s)]. Therefore,

IP(Nr[un(s);un(t)) = j) ∼ IP(Nr[un(s);un(t))=j,Nr(un(s))=0)

= IP(Nr[un(s);un(t))=j,Nr(un(s))=0,W =1) +O((r/n)2)

∼ rθ2(1−θ)j−1IP(un(t)<ξ≤un(s)) ∼ (t−s)IP(ζ=j)rθ/n, (6.16)

where L(ζ) = Γ(1−θ). Thus, condition (a) holds, and Theorem 6.3 entails

N∗
n ⇒ N∗

as n→∞, where N∗ is a compound Poisson point process with the Lebesgue
intensity measure and multiplicity distribution Γ(1−θ). �

Results concerning weak convergence of point process N∗
n(·) to a Poisson

cluster process can be found in [144], ch. 8. An estimate of the accuracy of
approximation to L(N∗

n(·)) in terms of a d
G
-type distance has been established

in [20].
Open problem.
6.1. Improve the estimate of the accuracy of approximation N∗

n ≈ N∗ presented
in [20].
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7. Kolmogorov’s problem

Let {X1, . . . , Xn}n≥1 be independent infinitesimal random variables, Sn =
X1 + ... + Xn . It is well-known [116] that if the limiting distribution of Sn

exists, then it is infinitely divisible.
The notion of the infinitely divisible distribution was introduced by de Finetti

in 1925. A well-known result due to Khintchine [117] states that the class D
of infinitely divisible distributions coincides with the class of weak limits of
compound Poisson distributions. Thus, the topics of compound Poisson and
infinitely divisible approximations are closely related.

This section is devoted to Kolmogorov’s problem.

7.1. Kolmogorov’s first problem

In early 1950s Kolmogorov has raised the problem of evaluating the accuracy of
infinitely divisible approximation to L(Sn).

Kolmogorov’s first problem is concerned with i.i.d.r.v.s, while Kolmogorov’s
second problem deals with independent but not necessarily identically distributed
random variables. The problem is called “uniform” since the estimate of the ac-
curacy of approximation established by Kolmogorov is uniform over the class
F of all probability distributions.

Prokhorov [155, 157] (see also [160]) has proved that for any distribution
L(X) there exists a sequence of infinitely divisible distributions that are “close”
to L(Sn), hence

dK(L(Sn);D) ≡ inf
P∈D

dK(L(Sn);P ) → 0 (n→∞). (7.1)

If L(X) has an absolute continuous component or is a discrete distribution,
then dK in (7.1) can be replaced with d

TV
.

Kolmogorov [120] has derived an estimate of the accuracy of approximation
that is uniform over F (the so-called first Kolmogorov’s theorem): there exists
an absolute constant C such that

sup
L(X)∈F

dK(L(Sn);D) ≤ Cn−1/3 . (7.2)

Observe the extreme generality of estimate (7.2) — there are no moment or
structural assumptions.

Many authors worked on deriving upper and lower bounds to dK(L(Sn);D)
(see, e.g., [6, 135, 205] and references therein). It took over 25 years of research by
various mathematicians before the correct rate of the accuracy of approximation
in (7.2) has been established by Arak [4, 5] (a comprehensive history of the
problem can be found in the monograph by Arak & Zaitsev [6]).

Arak’s [4, 5] theorem states that there exist absolute constants 0<C1<C2<
∞ such that

C1n
−2/3 ≤ sup

F∈F
dK(L(Sn);D) ≤ C2n

−2/3 . (7.3)
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The lower bound in (7.3) sets a limit to the rate of the accuracy of compound
Poisson approximation (as well as a limit to the rate of the accuracy of approx-
imation by any other infinitely divisible distribution).

There is no multidimensional analogue of Arak’s result (7.3).
Arak has proved that the rate n−2/3 in (7.3) can be achieved using shifted

compound Poisson approximation. Therefore, (7.3) demonstrates universality of
compound Poisson approximation.

The main drawback of (7.3) is that only existence of an approximating com-
pound Poisson distribution has been established.

Relations (4.2), (4.25), (4.33), (4.37) can be viewed as solutions of Kol-
mogorov’s first problem for special classes of distributions.

Zaitsev [202] has shown that dK in (7.3) cannot in general be replaced by
the total variation distance.

Let X,X1, . . . , Xn be i.i.d. integer-valued r.v.s. Studnev [178] reports that
Gusak has shown that

dK(L(Sn);D) = O(n−1). (7.4)

We are not aware if Gusak’s result (7.4) has been published.
Zaitsev [204] has conjectured that for any distribution L(X) there exist a

constant CX such that

inf
a∈R

dK(L(Sn+na);Π(n,X+a)) ≤ CXn−1/2 . (7.5)

It is shown in [6] that

Cn−1 ≤ sup
L(X)∈F+

dK(L(Sn);D) ≤ sup
L(X)∈F+

dK(L(Sn);L(S̃n)).

If (7.5) is true, then the accompanying compound Poisson distribution ensures
the best possible rate of infinitely divisible approximation in the class F+ of
distributions with non-negative characteristic functions.
Open problems.
7.1 Derive a multidimensional analogue of Arak’s inequality (7.3).
7.2. Is it true that

sup
L(X)∈Fs

dK(L(Sn);D) ≤ Cn−1 , (7.6)

where C is an absolute constant?

7.2. Kolmogorov’s second problem

Kolmogorov’s second problem deals with independent but not necessarily iden-
tically distributed random variables. In general, the problem has no solution.

Let X1, . . . , Xn be independent random variables. Denote by dL the Lévy
distance, and let

dL(P ;D) = inf
D∈D

dL(P ;D).
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Recall that by (3.10)

L(Xi) = (1−pi)Ui + piVi (0≤pi≤1),

where distribution Ui may be chosen concentrated on a finite interval of length
say T . Set

ai =

∫
R

xUi(dx), p∗n = max{p1, . . . , pn}.

Denote by X̃1,a1 , ..., X̃n,an accompanying X1+a1, ..., Xn+an independent ran-
dom variables. Let

S̃ = X̃1,a1 + ...+ X̃n,an .

If ai=0 (∀i), then S̃ = S̃n , cf. (1.9).
According to Zaitsev & Arak [196] (see also [6]), there exists an absolute

constant C such that

dL(L(Sn);D) ≤ dL(Sn; S̃) ≤ C(p∗n + T ln(1/T )). (7.7)

Zaitsev & Arak [196] have proved that estimate (7.7) is of correct order. A
multivariate version of this result has been derived by Zaitsev [199].

The following result is Theorem 4 from Arak & Zaitsev [6], p. 5.

Theorem 7.1. If ε > 0 and dL(L(Xi); Iβi) ≤ ε for some βi (i = 1, . . . , n),
then there exist a1, a2, . . . , an and an absolute constant 0<<C<∞ such that

dL(Sn; S̃) ≤ Cε(| ln ε|+ 1).

For any δ ∈ (0, 1] there exist i.i.d. random variables X,X1, ..., Xn and n∈ IN
such that dL(L(X); I)≤δ and

dL(Sn;D) ≥ cδ(| ln δ|+ 1),

where c>0 is an absolute constant.

An infinite-dimensional version of (7.7) has been established by Götze &
Zaitsev [98], see also [96].
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[64] Čekanavičius V. and Roos B. (2009) Poisson type approximations for the
Markov Binomial distribution. — Stochastic Process. Appl., 119(1), 190–
207. MR2485024
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[69] Čekanavičius V. and Vellaisamy P. (2018) On closeness of two discrete
weighted sums. — Mod. Stoch. Theory Appl., 5(2), 207–224. MR3813092

[70] Čekanavičius V. and Vellaisamy P. (2019) On large deviations for sums of
discrete m-dependent random variables. — Stochastics, 91(8), 1092–1108.
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346 V. Čekanavičius and S. Y. Novak

process. — Ann. Probab., v. 18, No 1, 129–139. MR1043940
[134] Mattner L. and Roos B. (2007) A shorter proof of Kanter’s Bessel func-

tion concentration bound. — Probab. Theory Rel. Fields, 139, 191–205.
MR2322695

[135] Meshalkin L.D. (1960) On the approximation of polynomial distributions
by infinitely-divisible laws. — Teor. Veroyatn. Primen., 5(1), 114–124
(Russian). Transl.: Theory Probab. Appl., 5(1), 106–114. MR0132586

[136] Michel R. (1987) An improved error bound for the compound Poisson
approximation of a nearly homogeneous portfolio. — ASTIN Bulletin,
17(2), 165–169.

[137] Mikhailov V.G. (2001) Estimate of the accuracy of the compound Poisson
approximation for the distribution of the number of matching patterns.
— Teor. Veroyatn. Primen., 46(4), 713–723 (Russian). Transl.: Theory
Probab. Appl., 46(4), 667–675. MR1971829

[138] Mikhailov V.G. (2008) A Poisson-type limit theorem for the number of
pairs of matching sequences. — Teor. Veroyatn. Primen., 53(1), 59–71
(Russian). Transl.: Theory Probab. Appl., 53(1), 106–116. MR2760565

[139] Minakov A.A. (2015) Compound Poisson approximation of the number
distribution for monotone strings of fixed length in a random sequence.
(Russian) — Prikl. Diskr. Mat., 28(2), 21–29.

[140] Minkova L. and Omey E. (2014) A new Markov Binomial distribution. —
Comm. Statist. Theory Methods, 43(13), 2674–2688. MR3223703

[141] de Moivre A. (1712) De mensura sortis. — Philosophical Transactions,
27, 213–264. Transl: Hald A. (1984) A. de Moivre: ‘De Mensura Sortis’ or
‘On the measurement of chance’. — International Statistical Review, v.
52, No 3, 229–262. MR0867173

[142] Nagaev S.V. (1998) Concentration functions and the accuracy of approx-
imation by infinitely divisible laws in a Hilbert space. (Russian) — Dokl.
Akad. Nauk, 359(4), 461–463. MR1668408

[143] Novak S.Y. (1998) On the limiting distribution of extremes. — Siberian
Adv. Math., v. 8, No 2, 70–95. MR1650530

[144] Novak S.Y. (2011) Extreme value methods with applications to finance. —
London: Chapman & Hall/CRC Press. ISBN 9781439835746 MR2933280

[145] Novak S.Y. and Xia A. (2012) On exceedances of high levels. — Stochastic
Processes Appl., v. 122, 582–599. MR2868931

[146] Novak S.Y. (2019) On the accuracy of Poisson approximation. — Ex-
tremes, 22, 729–748. MR4031855

[147] Novak S.Y. (2019) Poisson approximation. — Probability Surveys, 16,
228–276; (2021) v. 18, 272–275.

[148] Novak S.Y. (2021) Poisson approximation in terms of the Gini–
Kantorovich distance. — Extremes, v. 24, No 1, 67–84. MR3992498
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350 V. Čekanavičius and S. Y. Novak

symmetric distributions by accompanying laws. — Zap. Nauchn. Sem.
LOMI V. A. Steklova AN SSSR, 177, 55–72 (Russian). Transl.: J. Soviet
Mathematics, 61(1), 1859–1872. MR1053124

[201] Zaitsev A.Y. (1990) Certain class of nonuniform estimates in multidimen-
sional limit theorems. — Zap. Nauchn. Sem. POMI, 184, 92–100 (Rus-
sian). Transl.: J. Math. Sci., 68, 459–468. MR1098691

[202] Zaitsev A.Yu. (1991) An example of a distribution whose set of n-fold con-
volutions is uniformly separated from the set of infinitely divisible laws in
distance in variation. — Teor. Veroyatn. Primen., 36(2), 356–361 (Rus-
sian). Transl.: Theory Probab. Appl., 36(2), 419–425. MR1119511

[203] Zaitsev A.Yu. (1992) Approximation of convolutions of probability distri-
butions by infinitely divisible laws under weakened moment restrictions.
— Zap. Nauchn. Sem. POMI, 194, 79–90 (Russian). Transl.: J. Math.
Sci., 75(5), 1922–1930. MR1175738

[204] Zaitsev A.Yu. (1996) Approximation of convolutions by accompanying
laws under the existence of moments of low orders. — Zap. Nauchn. Sem.
POMI, 228, 135–141 (Russian). Transl.: J. Math. Sci., 93(3), 336–340.
MR1449852

[205] Zaitsev A.Yu. (2003) Approximation of a sample by a Poisson point pro-
cess. — Zap. Nauchn. Sem. POMI, 298, 111–125 (Russian). Transl.: J.
Math. Sci., 128(1), 2556–2563. MR2038866

[206] Zhang M. (2011) Approximation for counts of head runs. — Sci. China
Math., 54(2), 311–324. MR2771207

https://www.ams.org/mathscinet-getitem?mr=1053124
https://www.ams.org/mathscinet-getitem?mr=1098691
https://www.ams.org/mathscinet-getitem?mr=1119511
https://www.ams.org/mathscinet-getitem?mr=1175738
https://www.ams.org/mathscinet-getitem?mr=1449852
https://www.ams.org/mathscinet-getitem?mr=2038866
https://www.ams.org/mathscinet-getitem?mr=2771207

	Preliminaries
	Notation
	Metrics

	Compound Poisson limit theorem
	Basic properties of a compound Poisson distribution
	Compound Poisson limit theorem for independent summands
	Compound Poisson limit theorem for dependent r.v.s

	Accuracy of CP approximation: rare events
	Independent random variables
	Asymptotic expansions
	Dependent random variables
	Applications

	Accuracy of CP approximation: general case
	Independent Bernoulli random variables
	Independent discrete random variables
	Discrete non-lattice distributions
	Special classes of distributions
	Shifted compound Poisson approximation
	Other results
	Applications

	Multivariate compound Poisson approximation
	Multivariate compound Poisson limit theorem
	Accuracy of multivariate CP approximation: rare events
	Accuracy of multivariate CP approximation: general case

	Compound Poisson process approximation
	Empirical processes
	Excess process
	General point processes of exceedances

	Kolmogorov's problem
	Kolmogorov's first problem
	Kolmogorov's second problem

	Acknowledgments
	References

