
RESEARCH ARTICLE

Comparative finite element modelling of aneurysm formation and

physiologic inflation in the descending aorta

Serena de Gelidia,b and Andrea Bucchia

a School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth,
United Kingdom; b Present address: School of Science & Technology, Middlesex University,
London, United Kingdom

ARTICLE HISTORY

Compiled October 23, 2019

ABSTRACT
Despite the general interest in aneurysm rupture prediction, the aneurysm forma-
tion has received limited attention. The goal of this study is to assess whether an
aneurysm may be instigated in a healthy model of an aorta inflated by a supra-
physiological pressure. The effect of two main aspects on numerical predictions has
been explored: i) the geometric design and ii) the constitutive law adopted to rep-
resent the material properties. Firstly, higher values of wall stress and displacement
magnitude were generated in the physiologic model compared to the cylindrical one
when assigning the same material properties. Secondly, greater deformations are
observed in the anisotropic model compared to the isotropic one.
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1. Introduction

Several finite element analyses have been carried out in order to predict the wall stress
distributions in abdominal aortic aneurysms (Ma et al. 2007; Isaksen et al. 2008) and
to evaluate their rupture potential (Raghavan and Vorp 2000; Giannoglou et al. 2006;
Doyle et al. 2009). Despite the histological evidences, the arterial wall has been fre-
quently modelled as isotropic (Delfino et al. 1997; Raghavan and Vorp 2000; Wang
et al. 2002; Giannakoulas et al. 2005; Giannoglou et al. 2006; Isaksen et al. 2008;
Scotti et al. 2008; Gasser et al. 2010; Wang and Li 2011; Shang et al. 2015). The arte-
rial constitutive behaviour has been defined closer to being isotropic than anisotropic
by Alhayani et al. (2013). On the other end, Schmidt et al. (2015) highlighted signif-
icant differences between the outcomes generated by an isotropic and an anisotropic
model of a strongly idealized artery. Among the anisotropic formulations, even if the
Holzapfel-Gasser-Ogden (HGO) model (Holzapfel et al. 2004) is often preferred (Badel
et al. 2011; Rodŕıguez et al. 2008; Rodŕıguez and Merodio 2011; Alhayani et al. 2013),
the Fung strain-energy function (SEF) (Fung et al. 1979) has recently been adopted
to model the arterial wall (Sun et al. 2005; Ma et al. 2007; Avril et al. 2010; Lee et al.
2014). Ramachandran et al. (2012) discussed the most appropriate material modelling
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choices to estimate the wall tension distribution, comparing Laplace law, Fung-type
and isotropic polynomial strain-energy function (SEF). When the geometry is the
only patient-specific information available, it has been concluded that the modelling
choices have minimal impact on aneurysms wall tension evaluation (Ramachandran
et al. 2012).
Finite elements simulations rarely focus on the understanding of how an aneurysm is
instigated in arteries. As an example, Badel et al. (2011) simulated the inflation of a
mouse carotid artery, modelled as a perfect cylinder, but no aneurysm was initiated.
Historically, the topic of aneurysm formation in hyperelastic materials (Han 2007; Fu
et al. 2012, 2008; Badel et al. 2013; Alhayani et al. 2013) has been addressed as a buck-
ling problem from a macroscopic point of view. Han (2007) concluded that arteries may
buckle and become tortuous due to the application of a high internal pressure even
when the axial stretch ratio is below a certain value. The critical buckling pressure is
proportional to the axial stretch ratio and to the wall stiffness (Han 2007). However,
the arterial wall was modelled as thin and linear elastic. Fu et al. (2012) demonstrated
that the aneurysm formation can be modelled as a bifurcation phenomenon induced
by geometrical and material imperfections. In this study, the initiation pressure is de-
fined by two main features. Firstly, the uniform inflation solution ceases to be stable
as soon as the pressure reaches such value. Secondly, the near-critical bifurcated defor-
mation is a bulge, of precisely the same form that has been observed experimentally
(Fu et al. 2008). Lately, Lee et al. (2014) investigated the mechanical buckling and
post-buckling behaviour of arteries in order to identify the inter-relationship between
the artery buckling and aneurysms. They concluded that the shape and the curvature
of the aneurysmal wall surface can lead to higher peaks in axial wall stresses, thus
increasing the risk of an aneurysm rupture. Further studies focused on the buckling
mechanisms leading to vessel tortuosity. Badel et al. (2013) showed that the tortuosity
of veins is increased when their axial pre-stretch decreases and when their behaviour
becomes more anisotropic. Alhayani et al. (2013) adopted the modified Riks method
to instigate the bulge formation in isotropic, using Neo-Hookean SEF, and anisotropic,
using Holzapfel-type SEF, arterial models. However, the material properties presented
by Alhayani et al. (2013) appear to be idealised and not fully supported by an exper-
imental test.
The aim of this study is to investigate the buckling of the descending aorta by as-
signing specific mechanical properties to the thoracic and abdominal regions. To the
best of the authors knowledge, the combination of specific material properties along
the same FE model of the arterial tree is novel as generally a single set of proper-
ties is assigned to the whole geometry. The mechanical behaviour of each district has
been characterized by means of up-to-date techniques as presented in a previous work
(de Gelidi 2016). Among the anisotropic models available in literature, the Fung SEF
has been selected to model the experimental responses (Appendix). Differently from
the HGO model, Fung SEF focusses on the phenomenological aortic behaviour, ne-
glecting an explicit characterization of the fibres orientation. The dispersion and angle
of fibres, required by the HGO model, need to be quantified by microscopic analyses
that are beyond the aim of this research. Furthermore, given the limited attention
reserved in literature, the application of the Fung model to study aneurysm formation
is among the novelties of the present work. Two FE geometries have been designed to
investigate the aneurysm appearance in a descending aorta: 1) a cylindrical idealised
model and 2) a more physiologic one. Whilst each design features the same Fung or-
thotropic model parameters, the comparison between their predictions appears unique
in literature. In order to predict any eventual elastic instability during inflation, the
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modified Riks method (Riks 1979; Crisfield 1981) is adopted in a similar fashion as by
Bucchi and Hearn (2013a,b) and Alhayani et al. (2013). This algorithm provides a load
proportional factor (LPF) to be interpreted as a multiplier of the initial arbitrary load
(pressure) applied to the lumen surface. Below the maximum LPF, the model deforms
uniformly. The peak in the LPF value, instead, represents the critical pressure that
causes the aneurysm formation, hence instability. Furthermore, in analogy to Schmidt
et al. (2015), the same physiologic design has been described by means of a specific
isotropic and anisotropic material properties aiming to investigate the effect of the
material modelling choices on FE outcomes.

2. Materials and methods

2.1. Preliminary assumptions

Residual stresses (Chuong and Fung 1986; Vaishnav and Vossoughi 1987) were not
measured, analogously to Deplano et al. (2016). Material parameters taking into ac-
count residual stresses were found to be not significantly different from the ones ne-
glecting them (Labrosse et al. 2009). Furthermore, the stress in the load-free config-
uration, in which the arterial wall is not subjected to any loads, is assumed to be
negligible (Raghavan and Vorp 2000; Wang et al. 2002; Georgakarakos et al. 2010).
Accordingly, the same assumption has been made for the models presented in this
investigation.
In addition, although the aorta consists of three layers (Holzapfel et al. 2000; Drake
et al. 2010), only a single layer (Doyle et al. 2007; Badel et al. 2011; Maher et al.
2012; Lee et al. 2014) has been modelled in the present study. This choice is consistent
with the experimental methodology adopted by de Gelidi (2016), since the layers have
not been tested separately. Thus, the overall response of the aortic samples has been
assigned to the computational model of the entire wall.
In order to isolate the effect of the pressure, the ageing of the tissue has been neglected.
Finally, no contact with the spine and organs is taken into account in the simulations.

2.2. FE geometries

Two designs were generated, both intended as a simplification of a descending aorta.
A graphical outline of the designs is displayed in Figure 1.

[Figure 1 about here.]

The first model consists into a cylindrical hollow geometry of which the total length
is 335 mm. The internal diameter measures 20 mm and its wall thickness is equal to
1.64 mm along the whole geometry. Such value of thickness has been obtained in a pre-
vious study (de Gelidi et al. 2017). The material properties (Section 2.3) of the upper
half of the model refer to the thoracic aorta, instead the behaviour of the inferior sector
to the abdominal aorta. Such discontinuity of material properties appears not easily
avoidable. After a sensitivity study, a mesh of 21376 C3D8H elements (Rodŕıguez et al.
2008; Fehervary et al. 2016), 64 in circumferential direction and 334 in longitudinal
direction (equally distributed in the thoracic and abdominal segment), is generated.
Since the present work does not focus on the gradient of stress generated across the
wall, a single element was assigned for each model across the arterial wall. Although
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it is uncommon in the literature to report the number of elements for each direction,
Takizawa et al. (2010) observed comparable results using one or two elements across
the thickness. However, mesh convergence tests have been carried out to compare the
maximum stress obtained when one, two, three or four elements mesh the wall thick-
ness.
The second model is conceived as a more realistic human descending aorta. The val-
ues of length, diameter and wall thickness adopted for this design refer to a data set
originally tabulated by Noordergraaf (1956) and successively updated, for the lower
abdominal aorta, by Westerhof et al. (1969). Recently, Wang and Parker (2004) ad-
justed such dimensions to produce a realistic human arterial tree. Thus, according to
the nomenclature presented in Wang and Parker (2004) the following segment of the
arterial tree were adopted: Thoracic aorta I and II, Abdominal aorta I to IV. All the
details are reported in Table 1.

[Table 1 about here.]

As a result, a tapering of the aorta from the thoracic to abdominal district can
be appreciated as both the diameter and the thickness progressively decrease. The
total length (335 mm) matches the idealised cylindrical model. However, the thoracic
sector (156 mm) is shorter than the abdominal one (179 mm). Once again, specific
material properties are assigned to each region. A mesh of 21440 C3D8H elements is
generated, 64 elements in circumferential direction and 335 in longitudinal direction
(in the specific 156 for the thoracic segment and 179 for the abdominal).

2.3. Anisotropic material model

The material properties assigned to the Fung orthotropic formulation in Abaqus are
based on the parameters obtained from the fitting procedure described in a previ-
ous work (de Gelidi 2016). In Abaqus (v. 6.14, Dassault Systèmes S.A., France), the
generalized Fung strain-energy potential has the following form:

W =
C

2

[
eQ(E) − 1

]
+

1

D

(
J2
el − 1

2
− ln Jel

)
(1)

where C and D are the temperature-dependent material parameters and Jel is the
elastic volume ratio, which is assumed to be 1 for an incompressible material. The
initial bulk modulus K0 depends on the initial deviatoric elasticity tensor D as follows

K0 =
2

D
. (2)

In order to define the full incompressibility, the hybrid formulation has been adopted
and the parameter D has been set as nil for all the following models (Dassault Systèmes
2014).
Experimental data, collected from biaxial tensile tests (de Gelidi 2016), have been post-
processed by means of Matlab. The mathematical modelling of hyper-elastic materials
requires the accurate identification of the fitting parameters from suitable experimental
datasets. In order to describe the mechanical properties of the tissues, a nonlinear
regression has been performed to model the experimental data by the Fung model (Eq.
A1 and A2 in the Appendix). The fitting coefficients generated from this procedure
are listed in Table 2 for the abdominal tissue and in Table 3 for the thoracic one.
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The complexity of such fitting consists in taking into account three different stress-
strain curves, which refer to the biaxial response in circumferential and longitudinal
direction, coupled with a simple shear response (Appendix). The quality of the fitting
is affected by the SEF convexity requirement, which demands that all Fung parameters
need to be strictly positive (Holzapfel 2006).

[Table 2 about here.]

[Table 3 about here.]

A variety of recommendations is available in the literature to verify the stability of
the Fung material and its physically meaningful mechanical behaviour (Sun and Sacks
2005; Pandit et al. 2005; Holzapfel 2006; Fan and Sacks 2014).
The convexity has been checked by plotting the contours in the Green-Lagrange strain
planes (Holzapfel et al. 2000; Sun and Sacks 2005; Holzapfel 2006; Anssari-Benam and
Bucchi 2017) representing the states of constant energy of the Fung SEF based on the
coefficients listed in Tables 2 and 3.

2.4. Isotropic material model

Average stress-strain responses, collected by means of uniaxial tensile tests in a previ-
ous study (de Gelidi et al. 2017), have been adopted to describe the isotropic material
properties of the thoracic and abdominal segment respectively in the physiologic de-
sign. The SEF by Marlow (2003) describes such data integrating the nominal uniaxial
stress τ1(ε) over the strain interval [0,ε∗]:

W (ε) =

∫ ε∗

0
τ1(ε) dε. (3)

Differently from others constitutive models (e.g. (Ogden 1972), (Yeoh 1993)), it has
been shown that Marlow SEF was the only one suited to predict aneurysm formation
for this set of data (de Gelidi et al. 2017).

2.5. Boundary conditions

A supra-physiologic state, for which the arterial wall is subjected to internal pressures
higher than the normal blood pressure (Schmidt et al. 2015), is used to study the
case of aneurysm formation. The aneurysm formation is instigated by means of the
modified Riks method (Riks 1979; Crisfield 1981) while an internal inflating pressure
with a starting value of 1 kPa is applied. No axial pre-stretch was applied to simulate
the worst case scenario: the pre-stretch, normally ensuring arterial stability (Rachev
2009), rapidly decreases with ageing (Horný et al. 2014). This condition is relaxed
in order to increase the likelihood to predict aortic buckling, hence both ends were
constrained for axial displacement.
Furthermore, in order to compare the FE outcomes computed by each design, a static
inflation, intended to simulate a systolic pressure load, up to 16 kPa (∼ 120 mmHg)
has been performed.
All simulations were carried out by means of Abaqus (v. 6.14, Dassault Systèmes S.A.,
France).
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3. Results

Contrasting outcomes in the aneurysm generation were achieved while characterizing
the material with different strain energy functions. With the use of the orthotropic
Fung model, no critical pressure and bulge appearance are computed for the cylin-
drical geometry (Section 2.2). Similarly, no aneurysm formation has been computed
in the physiologic geometry. On the other end, the modified Riks analysis predicts
in such design the aneurysm appearance at a critical pressure of 22.8 kPa (∼ 171
mmHg) if the tissue is modelled as isotropic (Section 2.4). The formation is expected
in the superior part of the abdominal aorta, where wall stress values exceed 1.3 MPa,
as shown in Figure 2. It should be also noted that, as shown in Table 1, the thickness
to radius ratio does not increase monotonically from the abdominal aorta I to the IV
section.

[Figure 2 about here.]

The static inflation allows a comparison of the predictions of the two FE geometries
(Section 2.2). As a result, larger deformations are achieved in the physiologic model,
where the maximum radial displacement (10.91 mm) is higher compared to the
maximum predicted for the cylindrical model (8.76 mm). Wall stress values on the
external surface appear about 0.38 MPa higher in the thoracic physiologic model
(Figure 3 A) compared to the thoracic cylindrical one (Figure 4). However, while the
stress field is almost uniform in both thoracic regions and in the abdominal region of
the cylindrical model, the stress in the physiologic abdominal aorta covers a range of
approximately 0.2 MPa.

[Figure 3 about here.]

[Figure 4 about here.]

As a second main comparison, the effect of different material properties is studied
in the same geometry: the physiologic design. As a result, the static inflation gen-
erates stress values comparable in both the isotropic and the anisotropic material
models on the external wall surface of the abdominal area. In the thoracic region, the
anisotropic model shows a stress about 52% higher than the isotropic one on the exter-
nal wall. However, an even increased discrepancy between the models can be observed
in the cutaway view, where lumen stress values appear more uniform and lower in the
isotropic model compared to the anisotropic one (Figure 5). In the anisotropic model
a gradient of von Mises stress of about 0.6 MPa can be observed across the lumen
surface between the thoracic and abdominal area. Lastly, in the isotropic model the
radial displacement does not exceed 6 mm, while in the anisotropic model this appears
almost doubled (∼ 11 mm).

[Figure 5 about here.]

4. Discussion

The literature suggests that uniaxial and planar biaxial tests are sufficient, but
not complete, for characterisation of the aortic tissue and to model its anisotropic
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behaviour by means of the Fung SEF. However, no work to date has published a
complete set constitute of 9 parameters to fit soft tissue behaviour.
Schulze-Bauer et al. (2002) reported 4 parameters to fit the response of human
femoral arteries subjected to inflation tests. In 2003, Schulze-Bauer and Holzapfel
(2003) modelled already published clinical data of the thoracic aorta, oblivious of the
cross-sectional area, by means of 4 Fung parameters. Sun and Sacks (2005) aimed to
produce clear guidelines to build a Fung model in Abaqus. However, they published
only 7 parameters. Pandit et al. (2005) published 4 coefficients to fit the experimental
data obtained from the inflation tests performed on porcine left anterior descending
artery. In 2006, Vande Geest et al. (2006) were unable to fit the experimental data
with a 4 parameter Fung elastic model. Differently, Horný et al. (2006) fitted the
responses of inflation tests on human thoracic aorta by means of 4 Fung parameters.
However, they added a Neo-Hookean term to the SEF. Ma et al. (2007) claimed that
their Abaqus model of cerebral aneurysm is modelled by 5 Fung parameters. In 2010,
Avril et al. (2010) modelled in Abaqus the inflation of human arteries, publishing only
4 parameters. Vychytil et al. (2010) reported the 9 parameters equation, but they
published only 6 coefficients with no assumption for the shear terms. Bellini et al.
(2011) reported 4 parameters to fit the responses of planar biaxial tests conducted
on the porcine duodenum, the jejunum and the ileum. Recently, Lee et al. (2014)
published 7 parameters for porcine carotid arteries.
The present work arises no doubt that 4 Fung parameters are sufficient to obtain an
excellent fit of biaxial tests results. In addition, the 3 parameters referred to shear are
generally neglected in literature. Since no shear is generated during a simple inflation
test (Vossoughi and Tözeren 1998), such parameters were initially disregarded in this
work. However, it has been noticed that a sufficient material description requires 9
positive parameters for the orthotropic model. Thus, it is difficult to justify why no
complete set of coefficients have been published so far, since they are necessary to
run the FE model.
Therefore, the results in Tables 2 and 3 represent a considerable novelty.

The use of different elements has been explored for meshing the geometries. How-
ever, convergence has been reached only in the cylindrical design whether C3D8RH
elements were employed in conjunction with fully constrained ends. Differently,
incompatible mode hybrid elements (C3D8IH) ensured convergence in the physiologic
model if the radial displacement is permitted. However, Abaqus guide recommends
incompatible elements to improve the bending behaviour of regular displacement
elements (Dassault Systèmes 2014).

The comparison between different geometries highlighted the larger deformations
achieved in the physiologic model as a result of the static inflation. Furthermore,
while the abdominal segment accounts for the highest stretch in the physiologic
model, the stretch peak in the cylindrical model is expected along the junction
between the aortic segments. Comparing the cylindrical and the physiologic models
of descending aorta, higher wall stress values are reached, in both cases, in the
thoracic district compared to the abdominal one. The range of values predicted
in the stress field (∼ 0.2 MPa) is suggested to be mainly a direct effect of the
geometry, due to the decreasing diameter and thickness. In contrast with Takizawa
et al. (2010), the results also suggest the use, in future studies, of multiple elements
across the wall thickness due to the stress difference observed between the lumen
and the external surface (Figure 3). The effect of the number of elements has been
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quantified in Figure 6, which compares the wall stress values predicted by assigning
1, 2 or 4 elements across the thickness. No significant difference in stress values
is appreciable for the isotropic material model. Such analysis has been extended
also to the aneurysm instigation, which predicted a 0.08% scatter between the use
of 1 or 4 elements in the cylindrical geometry and 0.04% in the more realistic geometry.

[Figure 6 about here.]

The comparison between isotropic and anisotropic material properties on the
physiologic geometry revealed a substantial difference: the aneurysm formation was
predicted only for isotropic material properties. This outcome represents the main
novelty of the present work. The computed critical pressure of ∼ 171 mmHg is a
value of high systolic blood pressure that leads to a diagnosis of hypertension. Such
condition affects more than one in four adults in the UK (NHS 2019), while the
Abdominal Aortic Aneurysm (AAA) was detected in below 4% of men screened in
2017/18 (Public Health England 2019). Although the NHS states that high blood
pressure can double the risk of getting a AAA (NHS 2017), the authors suggest that
the aneurysm formation predicted by the isotropic model is a misleading outcome
resulted by simplified material properties. Such findings appear in contrast with
Ramachandran et al. (2012), who claimed that the modelling choices (Fung-type or
isotropic) have minimal impact on wall tension evaluation. Similarly, Alhayani et al.
(2013) observed that the formation of the bulge in the anisotropic (HGO) model
appeared analogous to the one predicted in the isotropic design. However, their
material properties were not fully corroborated by experimental data.

It is worth highlighting that, differently from other FE models, the specific me-
chanical behaviours of the thoracic and the abdominal aorta are contiguous in the
model. Joining two different and specific biological responses is an aspect rarely ad-
dressed in literature, that appears novel for the Fung formulation. Such an approach
highlighted, for the first time, the significant difference in terms of stress between the
regions (Figure 2 and 4). Nonetheless it has been possible to predict the aneurysm
formation for the isotropic model in the superior part of the abdominal aorta, which
clinical incidence is far higher compared to the thoracic area. Although a local dis-
continuity in stress values is observed where different material properties connect, the
overall results appear to be independent from such aspect. Furthermore, the gap of the
predicted wall stress values between the isotropic and anisotropic models is likely the
result of a different calibration. In other words, different experimental data have been
embedded in each set of properties: uniaxial tensile test results have been used for the
isotropic model, while these were complemented with biaxial tensile test and synthetic
shear test outcomes for the Fung model. Due to the nature of the test, biaxial tensile
tests generate softer responses compared to the uniaxial analyses.
Among the limitations of the present investigation, the experimental data refer to
porcine aortic tissue. Hence, FE simulations related to the human tissue could lead
to different outcomes. Although the physiologic design appears closer to the in vivo
structure, no arteries connected to the aorta have been considered. As suggested by
the present work, a different geometry may lead to different predictions. Despite the
fact that haemodynamic forces are thought to be the main instigators on aneurysm
formation and growth (Signorelli et al. 2018; Koseki et al. 2019), their influence has not
been considered in this work. Since no dedicated facility was available, the shear re-
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sponse, needed for anisotropic FE models, has been estimated analytically (Appendix).
Thus, such results could differ from what could be observed in an experimental pro-
cedure alike the study presented by Sommer et al. (2016), who investigated the shear
properties of a diseased thoracic aorta.

5. Conclusions

Material properties strongly affect the FE predictions, since the Fung orthotropic
model generates quite distinct predictions compared to the isotropic one. Such differ-
ence is even enhanced in the aneurysm prediction, as only the isotropic model predicts
an aneurysm formation. Such outcome could be especially valuable for studies aiming
to predict the evolution of a patient-specific aorta into a possible aneurysm, as an
isotropic model may mislead the prognosis.

Therefore, the present study suggests that an aneurysm formation in healthy models
of aortas is unlikely to be caused by supra-physiologic pressure loading. Whether an
aneurysm is predicted in the descending aorta, it is suggested that the abdominal
district is more prone to show the bulge compared to the thoracic one. This is presumed
to happen due to the combination of the material properties and the geometry, as both
its diameter and thickness decrease substantially in the abdominal region.
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Figure 1. Schematic outline of the FE analyses performed for anisotropic models of aorta. Pink geometries

are characterized by material properties of thoracic aorta, while purple ones refer to abdominal aorta
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Figure 2. Aneurysm formation predicted by the modified Riks method at a critical pressure of 22.8 kPa in

a isotropic model of descending aorta. The upper district of the geometry is modelled by thoracic material
properties, while abdominal material properties are assigned to the inferior district. Higher von Mises stress

[Pa] levels are experienced on the internal surface of the geometry (B) compared to the external one (A)
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Figure 3. von Mises stress [Pa] predicted for an anisotropic model of descending aorta subjected to a static
inflation of 16 kPa (∼ 120 mmHg). The upper region of the physiologic geometry is modelled by thoracic
material properties, while abdominal material properties are assigned to the inferior region. Higher stress levels

are experienced on the internal surface of the geometry (B) compared to the external one (A)
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Figure 4. von Mises stress [Pa] predicted for an anisotropic model of descending aorta subjected to a static
inflation of 16 kPa (∼ 120 mmHg). The upper half of the cylindrical geometry is modelled by thoracic material
properties, while abdominal material properties are assigned to the inferior half. Stress levels are predicted to

be almost doubled on the internal surface of the geometry (B) compared to the external one (A)
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Figure 5. Comparison of von Mises stress [Pa] predicted for an anisotropic (A) and isotropic (B) model

of descending aorta subjected to a static inflation of 16 kPa (∼ 120 mmHg). The cutaway views highlight

the different gradient of stress between the models, which is enhanced in the lumen surface compared to the
external one as shown in Figure 3.
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Figure 6. Mesh sensitivity evaluated for the inflation at 16 kPa (∼ 120 mmHg) of the anisotropic (dashed)
and the isotropic (solid) material model for the two FE geometries: A) the cylindrical and B) the more realistic
human descending aorta. No convergence was reached for the anisotropic material model featuring 4 elements
across the realistic geometry (B)
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Segment Length [cm] Radius [cm] Thickness [cm] Ratio* [ ]
Thoracic
aorta I

5.2 1.120 0.110 0.098

Thoracic
aorta II

10.4 1.071 0.100 0.093

Abdominal
aorta I

5.3 0.920 0.090 0.098

Abdominal
aorta II

1.0 0.843 0.080 0.095

Abdominal
aorta III

1.0 0.794 0.080 0.101

Abdominal
aorta IV

10.6 0.665 0.075 0.113

Table 1. Geometric details adopted from Wang and Parker (2004) to design the realistic human descending

aorta. *Ratio is defined as the thickness divided by the radius.
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Table 2. Fitting coefficients based on the experimental mechanical response of abdominal aorta subjected to

uniaxial, biaxial and simple shear tests. Parameter C is expressed in Pa, while ai are dimensionless

Fung parameter Fitting coefficient

a1 0.81

a2 0.74

a3 1.41

a4 0.43

a5 0.000035

a6 0.0006

a7 0.9

a8 1.23

a9 1.23

C 73277.87
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Table 3. Fitting coefficients based on the experimental mechanical response of thoracic aorta subjected to

uniaxial, biaxial and simple shear tests. Parameter C is expressed in Pa, while ai are dimensionless

Fung parameter Fitting coefficient

a1 0.45

a2 0.53

a3 3.19

a4 0.09

a5 0.0003

a6 0.002

a7 0.51

a8 7.58

a9 0.13

C 73131.96
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Appendix A.

According to Fung et al. (1979), the three-dimensional stress-strain behaviour of a soft
tissue can be described by the following function

W =
C

2
[eQ(E) − 1] (A1)

where Q is expressed in terms of the Green strain E:

Q(E) = a1E
2
θθ + a2E

2
ZZ + a3E

2
RR + 2a4EθθEZZ + 2a5EZZERR

+ 2a6EθθERR + a7E
2
θZ + a8E

2
θR + a9E

2
ZR.

(A2)

In order to estimate parameters a7, a8 and a9 it is necessary to take into account
shear behaviour, which cannot be captured by a biaxial tensile test in which the
sample is aligned with circumferential and longitudinal directions Zhou and Fung
(1997). Therefore, theoretical shear stress value are calculated as:

SθZ =
∂W

∂EθZ
= (2a7EθZ)

C

2
eQ(E) (A3)

Green-Lagrange shear strain and stress data have been determined by means of
synthetic simple shear test. The principal stretches for this test Horgan and Murphy
(2010) are the following:

λ1 =
k

2
+

√
1 +

k2

4
λ2 =

1

λ1
λ3 = 1 (A4)

where κ is the amount of shear. As a result, the Green-Lagrange shear strain Vos-
soughi and Tözeren (1998); Fung (1993) is calculated as

E12 =
1

2
λ1λ2 cos(φF ) =

1

2
λ1λ2 cos

(π
2
− φ

)
(A5)

where φ and φF are the angles showed in Figure A1. The angle φ is worked out
from the amount of shear κ Ogden (1997); Horgan and Murphy (2010)

κ = tan(φ) = λ1 −
1

λ1
. (A6)

Once principal stretches from Equation A4 are substituted, the shear strain becomes

E12 =
1

2
cos
(π

2
− arctan(κ)

)
. (A7)

[Figure 7 about here.]
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As the Cauchy stress in simple shear tests Nunes and Moreira (2013) can be ex-
pressed as

σ12 = 2κ
∂W

∂I1
, (A8)

where I1 is the first invariant, defined as I1 = λ2
1 + λ2

2 + λ2
3 Horgan and Murphy

(2010). Biaxial data are fitted by Yeoh SEF Yeoh (1993) in Abaqus as it is dependent
on the first invariant and provides a good fitting of the experimental data. Thus, the
fitting coefficients C10, C20 and C30 are determined and Equation A8 becomes

σ12 = 2κ
[
C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2

]
. (A9)

Hence, a synthetic set of data for simple shear can be generated. The Cauchy stress
(σ) is related to the second Piola-Kirchhoff (S) by Equation A3 as S = JF−1σF−T ,
from which S12 = σ12 − kσ22. However, in the hypothesis of plane stress the normal
component of the traction on inclined surfaces (σ22) and σ33 are equal to zero Nunes
and Moreira (2013). As a result, σ12 coincides with S12.
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Figure A1. Sketch of a simple shear test transforming the original configuration (dashed blue) into the
deformed one (red). The angle φF is needed to calculate Green-Lagrange shear strain
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