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Abstract

The mathematics of Arthur Cayley with particular reference
to linear algebra

\

Anthony James Crilly

This thesis is principally concerned with Arthur Cayley's work on
Invariant Theory, but also considers his contribution to matrix
algebra and other algebraic systems, drawing on sources including
unpublished letters between Cayley and his contemporary,
J.J.Sylvester.

The history of modern linear algebra and Cayley's part in its
development has been extensively researched in the last decade by
Thomas Hawkins. However, little has been written on Cayley's
contribution to Invariant Theory, a subject to which he
constantly reverted over a period of fifty years. In comparison,
his work on Matrix Theory was a minor interest.

The focal points in Cayley's passage through Invariant theory are
investigated with reference being made, inter alia, to his
correspondence with J.J.Sylvester which affords special insights
into both the development of this Theory and the nature of their
collaboration. Where appropriate, particulars of Sylvester's
own work are given. Biographical details are included where

these are believed to be unpublished or otherwise not generally
available.

A survey of Cayley's mathematical thought is offered in so far
as it may be determined from his scattered remarks.

Cayley pursued his algebraic researches on two distinct levels.
First, he absorbed himself in calculation which led him to the
combinatorial aspects of Invariant Theory and, secondly, he
displayed a remarkable proclivity for systemisation, although this
expressed itself in the classification of specific forms rather than
in the development of an abstract theory as with the German
algebraists,

The basic text contains four chapters on Cayley's work in approximate
chronological order followed by a final chapter on his general
mathematical thinking., The Appendices include a statistical

survey of his work, a bibliography of manuscripts, including, of course,
his letters to Sylvester and a number of little known photographs
associated with Cayley and his times.
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Reference System

The Harvard Reference System is used’ throughout the text,

Thus [ Smith, 185355,221 refers to page 22 of a work published
by Smith in 1853. Details of the publication 1853b can be found
in the ﬁibliggraphy~(Appendix_D) in a chronological list under
Smith's name.’ Abbreviated forms of this notation are also
used, In cases where the authorship is clear [18535,22] is
used or simply (1853,

Reference to the Collected Mathematical Papers of Cayley and

Sylvester occur frequently. The full reference to these works is

[ cayley, 1852a , 40; CP2, 16]

which means reference has been made to Cayleyﬁs 1852a, page 40,

which can be found in Cayley's Collected Mathematical Papers,

volume 2, page 16.

In practice this full form is hardly used; typical abbreviationms

ares
[1852a; CP2, 16 ] or even [CP2,16]

Reference to unpublished material described in Appendices B and
C is abbreviated by:

{ App.B, 3 viii 1882] which refers to the Cayley-Sylvester correspond-
ence and a letter dated 3rd August 1882.

[ App.C, Klein, 8 iii 1887 ] which refers to a letter dated 8 iii 1887
in the Cayley-Klein correspondence listed in Appendix C.

Authorship of letters may be made clear in the text in which

case the abbreviated [App.C, 8 iii 1887] is used.

Footnote reference numbers appear sequentially throughout each chapter

in superscript notation and footnotes are found at the end of each
chapter.

Note In his[lSSZa]Sylvester introduced the terms invariant and

covariant. In Chapter 1 these terms have been used
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anachronistically in place of Cayley's terminology used in the 1840s

i.e. 'hyperdeterminant,' 'transforming function', 'derivative'.
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Preface

Introduction and early biography

Unlike other major scientific figures of the nineteenth century,
no extensive Biography exists for Arthur Cayley, arguably the most
influential English pure mathematician of his time. He has achieved
the rare distinction of one whose influence permeates a whole subject.
His view of mathematics as a total system made it difficult for him to
concentrate his efforts in any one branch of the subject, although in
modern times he is perhaps best remembered for his pioneering work in
Algebra. Many mathematical entities and theorems bear his name.l!

It is worth remembering that some areas of mathematics to which
he gave an initial impetus have proved useful in fields far removed
from pure mathematics. The best known example of this is the algebra
of matrices. In other directions, physicists note his name in
connection with the Cayley-Klein parameters?, chemists with his work
on enumerating isomers and astronomers with lunar theory.

When his algebraic contributions (for instance, Cayley's
Theorem in group theory) are included in modern abstract texts, the
impression may be conveyed that Cayley was an abstract mathematician.
This would not be correct if by the term 'abstract mathematician'
is meant one who proceeds from given axioms.Like other mathematicians
of the time, he would be more accurately described as a discoverer
of mathematical truths, rather than a mathematician proceeding from
known starting points with faultless rigour. He lived at a time
when algebra was in a state of transition from the algebra of
quantity to a new ‘symbolic algebra' in which symbols of operation
played the central role. But in the new algebra the foundations were
far from secure.

Cayley was born on 16th August 1821 at Richmond in Surrey.

He was the second son (the eldest died in infancy) in a family of
three boys and two girls. The Cayley family was a large and prominent
English family3 with a seat in Brompton in Yorkshire. Cayley's
father, not in the direct line to the family title, was a member

of the trading firm of Thornton Melville and Cayley which operated

in the Baltic. The background of his mother, Maria Doughty, appears
to be unknown.

During the early years of Cayley's life, the family lived in



St.Petersburg, in the course of his father's business. When they
returned to England in 1829, they settled in the small and quiet village
of Blackheath, then in the course of being transformed into ome of
London's first suburbs. There, Cayley and his brother went to a
local private teaching establishment run by a clergyman.

At this stage, Cayley already gave signs of a talent for
mathematics,” It was then observed that'he had a great liking for
numerical calculations and he developed a great aptitude for
them' [CP8,x] . This computational dexterity is an important part
of Cayley's mathematics and it lasted throughout his life.

In 1835 at the age of fourteen he left the school in Blackheath
and entered the Senior Department of King’s College, London. This
is evidence of Cayley's intellectual ability, for the stipulated
entry age of sixteen was usually strictly adhered to and students
below this age would normally go into the Junior Department of the
College.6

At King%;, the express purpose of education was to prepare young
men either for direct entry into commercial life or for entrance to
Oxford or Cambridge [Hearnshaw, 1929a]. The curriculum provided a sound
classical and religious education based on the teachings of the
Established Church and its students emerged well trained and
disciplined. The college had been created a few years earlier as
a reaction against the successful University College. which was based on
utilitarian principles. The principal of King's , Hugh Rose, who
later steered Cayley towards a career in mathematics, forcefully
believed that religion was the only sound basis for education and
pleaded for the 'study of literature as a cultivation of the mind,
and of theology as the indispensable nutriment of the soul'.

In his biography of Cayley, Forsyth recalls that Cayley had no
serious doubts on religious matters. Cayley was unwilling to take
holy orders 'not that there was any religious obstacle in his way,
for he was not harassed either by philosophical doubts or critical
difficulties, His simple reason for remaining a layman was that,
though devout in spirit and an active churchman, he felt no
' eps, xiii].

King’s College was unlike any of the English public schools.

vocation for the sacred office
It had 'Professors®, not schoolmasters, and these Professors
carried out research and gave Public Lectures, some of which were

very popular. In the teaching of mathematics, King’s College was
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well to the fore. 1In the public schools, mathematics generally
occupied a very minor place in the curriculum, usually amounting to
no more than basic training in arithmetic, a little formal algebra
and Euclid. At King’s the situation appeared to be different.

A chair of mathematics was established at the outset and the occupant
then, and during Cayley's period at the College, was the Reverend
Thomas Hall, a fellow and tutor of Magdalene College, Cambridge, and
Sth Wrangler in 1824. He wrote mathematical text bcoks and occupied
the chair at King's for almost forty years. Other members of the
staff were equally well qualified.

Three years of study at Kinés College in Cayley's day meant
studying a broad curriculum encompassing the classics, natural and
experimental philosophy, English literature, modern languages,
history and subjects connected with the various professions.

While showing his ability in mathematics, Cayley also showed a
liking for chemistry (the professor of Chemistry was John F. Daniell
F.R..S.), a knowledge he put to use in his later mathematical
research.

In 1838 Cayley obtained his qualification (Associate of King's
College = a theological qualification) and proceeded to Trinity
College, Cambridge, as Qas the custom for those who wished to read
for a degree. For the first year at Cambridge Cayley's tutor was
George Peacock (1791 - 1858) one of the founders of and main influence.
on the English school of symbolical algebra. Even though the
tutorial role was not primarily a teaching role, it was widely
known that Peacock took his tutorial duties seriously [Rothblatt,
1967a , 197] and it is likely that he had an influence on Cayley's
mathematical interests. In 1839, Peacock, who had been Lowndean
Professor since 1836, left the University to become Dean of Ely.

A substantial influence would have been the popular and successful
coach William Hopkins who coached Cayley for the Tripos Examinatiom.
At Cambridge, both the Classics and Mathematics played a prominent
part in the curriculum. In the third year, for example, Mathematics
was particularly encouraged. The subjects included Optics,
Hydrostatics, Astronomy, the higher part of Newton's Principia and
the geometry of three dimensions [Huber, 1843, wol. 1, 531] .

Cayley showed an all round ability but it is his interest
in analytical geometry that showed itself clearly in several early
papers. Second only to the rise of Calculus under the impetus of the

!
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'Analytical Society' at Cambridge, Analytical Geometry enjoyed a wide
popularity in the first thirty years of the nineteenth century
[Glaisher, 1886a,19] . There were many texts available and at
a level suitable for study by undergraduates.7 It was in
algebraic geometry that Cayley published his first paper [184la]
in the year prior to his graduation. He was something of a.
'celebrity' even before the Tripos Examination. William Thomson,
then a freshman at the University, wrote to his father in 1841 of
a party where he met Cayley 'who is to be Senior Wrangler this year'
(Thompson, 1910a, 34]

In his University career, Cayley was eminently successful. He
was widely tipped to be “Senior Wrangfer and he did nat disappoint
his supporters., With his victory in 1842(see Plate 8)he automatically
attained an elevated social position ensuring attention wherever
he went. The Times reporter wrote at the foot of the year's

honours list:

Mr.Cayley, the Senior Wrangler, is a mathematician of
extraordinary powers, nor are they limited to the
particular branch of study in which his present honours
have been won, but extend equally to other objects of
academical pursuit [ Times, 22.1i.42, 5]

Throughout his career Cayley never suffered from lack of
recognition. It was something that had to be borne, for Cayley
by nature was a shy and retiring figure. In later years, when Cayley
had reached a prominent position, the recognition reached a proportion
of wveneration,

When Cayley graduated in 1842, he had ample time to devote
to his “subject. The single hurdle had been the Tripos Examination:
but in the subsequent life of a Victorian Don, there was little pressure.
At the beginning he held a minor fellowship at Trinity College,
a position of limited remuneration. To supplement his income he took
a few private pupils and for leisure went on long walking tours.
In the great Victorian tradition, he was a tremendous walker. The
scientist, Francis Galton, met Giyley at the time and remembers an
occasion when Cayley supervised a reading party in Scotland, shortly
after the Tripos Examination in 1842. Remarking on his frail
appearance, Galton describes an incident which indicates the

individualistic side of Cayley's character: "



One morning he coached us as usual and dined early
with us at .our usual hour. The next morning he did the
same, all just as before, but it afterwards transpired
that he had not been to bed at all in the meantime,
but had tramped all night through the moors to and about
Loch Rannoch. [Galton, 1908a , 72]
Galton greatly admired Cayley and would have regarded him as a
prime example of his own theories on creativity - he was zealous to

a degree and had a capacity for hard work.

At Cambridge, Cayley found himself in the company of men
interested in the furtherance of mathematics and science. An
important figure in this respect was D.F.Gregory (1813-44). He was
a Fellow of Trinity College and in the course of lecturing and examining
at the College he came in contact with Cayley.8 Gregory was a man of
wide scientific interests and in mathematics he was well known
for his foundation work in the Calculus of Differential

Operations.

Gregory was the first editor of the Cambridge Mathematical

r

Journal, a publication intended to put Cambridge at the forefront
of mathematical research in England.9 His wide scientific view
included an interest in Analytic Geometry. In 1842 Gregory had begun

writing a text book on geometry titled A Treatise on the application

of analysis to solid geometry [1845a) . Its principal object

was to develop a system of solid geometry by the use of equations
and in a form suitable for the use of students, In preparing the book
Gregory used material published in the pages of the Cambridge

Mathematical Journal. In its preparation he received help from other

mathematicians in Cambridge including Cayley (Gregory, 1845a, 132].
It deals with the application of algebraic expressions and equatioms in
the geometry of three dimensions. In dealing only with quadric
surfaces therewas no pressing need for Gregory to develop
new notation and the equationswere presented in their full cartesian
form. One of the objectives of the book was to classify quadric
surfaces and to do this using the Cartesian equations for the
surfaces,

One important feature of the book is a striving for symmetry of
expression in the equations. Not only Gregory, but many writers on

analytical geometry in the articles in the early Cambridge Mathematical

Journal sought the same symmetry in their equations. This attitude

seems likely to have been learned from the earlier French writers on
-5-



the subject. According to Boole [1840b] the methods in analytical
geometry devoid of symmetry were to be avoided. In his [1841a]

Cayley showed an allegiance to the symmetric method and later it was
considered to be characteristic of his way of doing mathematics. ‘
When Gregory became ill, the editorship of the Journal fell to
R.L.Ellis, and after Gregory's death in February 1844 Thomson

was chosen as editor. Thomson had plans to expand the Journal
and in this was supported by Cayley.lo As Thomson recounts,

in a letter[dated 2 vi 1844]to his father:

of course the two great difficulties will be

to get contributors of memoirs, and money

enough to defray expenses, but as mathematical
study is considerably on the increase, here at least,
we are in hopes that in a few years' time we may
have succeeded in doing something for the object.

If the plan be carried out at all, the great object
of course would be to make the journal as gemeral

as possible in this country, and to get it made
known on the-Continent. I have been speaking to
Cayley since, and he quite enters into the

plan. One great assistance he thinks would be

that there is at present no journal of the kind

in this country, and that the want is very much

felt by mathematical men {Thompson, 1910a, 791

The Philosophical Magazine and the Proceedings of the Cambridge

Philosophical Society catered mainly for physical subjects. ' Gregory's

earlier mathematical journal provided the forum for Cayley's
initial papers and it is the first of his papers in this journal which

is next considered.



1.

Preface

References.

To mention some of the best known instances: The Cayley-Hamilton
theorem in linear algebra has been extensively studied both in this
and the last century. It was given by Cayley in his 1858

memoir on matrices [1858a; CP2, 4751, Cayley's theorem in
group theory which some mathematicians judge only to be of lesser
impoftance than Lagrange's theorem and Sylow's theorems.

It is stated by Cayley in [1878d; CP10, 4031 .

One theorem for which he was known in the nineteenth century

but which has since fallen into obscurity is Cayley's Theorem

on Pfaffians ( A skew symmetric determinant of even order ig

the square of a Pfaffian)[1848a ; CPl, 412] . Another important
theorem which has suffered the same fate is Cayley's Law for v

calculating the number of linearly independent covariants of a .

binary form [1856a; CP2,256] .

Four parameters that specify a body's orientation. Cayley's name is
linked to these parameters because he showed that quaternions
(representable as a unitary second order matrix with unit
determinant with the four parameters as entries) could be used to

represent a rotation of axes {1845c § CPl, 123] .

Its genealogy can be found in {Foster, 1875al . Members of the
family traditionally entered the professions: Banking, the Law,
Medicine and the Church. The only other member to become a Fellow
of the Royal Society appears to be Sir George Cayley (1773-1859) the

sixth Baronet and pioneer aviator.

The school is at Eliot Place, Blackheath. It was run by the
Reverend George Potticary. '

A namesake and distant relative, Arthur Cayley, graduated as

Fourth Wrangler in the Cambridge Tripos in 1796.

Cayley's brother, Charles Bagot Cayley (1823-1883) was not
mathematical by inclination. At King's College, London, he came
under the influence of Gabriele Rossetti, then Professor of Italian
and father of Dante and Christina Rossetti. From. him he gained a life .
long interest in Dante and Italian literature. He became one of the

Rossetti family inner circle and led a quiet life as a scholar and
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10.

"Ref. 5 continued

philologist. In 1866 he proposed marriage to Christina but

was refused. [ Packer, 1963a, 66 ].

The Senior Department of King’s College in the 1830s was the
forerunner of the faculties of Arts and Natural Science in today's
King's College, London. King’s College did not give degrees but
prepared people for entry to Universities. The Junior Department
later became Kings College School, a separate institution.

The first book published in England exclusively devoted to
analytical geometry was Lardner's book on Algebraic Geometry
[1823a ], although the ever popular general text by Dean Wood,
(which first appeared in 1795) contained a chapter on the
application of algebra to geometry. Other texts on the same
subject were produced, including a text by John Hymers [1830a] .
But the text which became the standard work for many years was
Hymers' Conic Sections [1837a] published a short time before
Cayley entered Trinity College to begin his studies. No doubt
these texts posed little difficulty for Cayley buttheir existence
emphasizes the importance with which the subject was regarded

as part of the mathematical training in the Cambridge of the

day.
Gregory was Moderator in the Tripos in 1842.

The setting up of the Cambridge Mathematical Journal is described
in {[Thomson, 1874a] and [Sharlin, 1979a] .

Cayley helped Thomson in his early career and introduced him to
the French mathematicians. He supplied a testimonial for

Thomson in support of his successful application for the Chair at
Glasgow in 1846. They were to remain lifelong friends..

See Chépter 5/for'Keivin's thoughts on the occasion of Cayley's
death.



Chapter 1
Early Years (1840 - 1849)

1.1. Introduction

The 1840s was a revolutionary period in the development of Algebra.

After Hamilton's discovery of the quaternions, a number of symbolical
algebras were discovered and in these developments Cayley took a definite
interest. However, it is the other side of linear algebra which will be
investigated in greater detail in this dissertation. That is, Cayley's
interest in algebraic forms and determinants. Cayley's first

paper [1841a] combines the theory of determinants with a problem in
geometry. But of course the two papers on 'hyperdeterminants'

(1845b, 1846b] were the contributions which determined the

subsequent development of Invariant Theory.

These two papérs in particular indicate an important facet of

Cayley's mathematics. This is his exaggerated interest in calculation,
which, in the theory of invariants meant the tedious calculation of
actual invariants and covariants. Thus Cayley was most concerned with
finding Processes, through which invariants and covariants could be
found. In the theory of invariants, 'proof' was hardly mentioned.

To 'discover' was everything.

1.2. Determinants and generalisations

Cayley's first paper [1841a] is interesting for several reasons. In
the broad division of mathematics into Analysis and Geometryl

Cayley felt obliged to enter this first paper under both headings.

It is not entirely clear what Cayley considered to be Analysis, but

it is wider than an older view of Analysis as the method of solving
problems by reducing them to equations. It is likely that Cayley

chose the geometrical topics for his category of Geometry and designated
the residual as Analysis. There is no category for Algebra and what we
would now consider to fall under that heading was grouped under
Analysié. 'Ca§1ey's[184133shows capability in drawing together algebra
and geometry. , ' " | )

The ‘content -of [1841a] in part is concerned with answering the geometrical
question:



" 'points in space related?

The solution was not new?, It had been’ given by Jacques Binet
(1786-1856) in 1812 but Cayley provided an elegant solution.

This was couched in terms of determinants which itself was an innovative
step., It marked the beginning of a custom among English
mathematicians of using determinants to express geometric

relationships [éoolidge, 1968a, 96] . éayley'wrote

determinants in the form of an array with the now familiar vertical

lines on elther side of the array.

The points werelabelled 1, 2, 3, 4 and 5 . and were assumed to lie in
any configuration in ordinary Euclidean space. By assigning
them co—ordlnates and by .denoting squared distances between points

i and j by isz Cayley stated the result [184la ; CPl 2]

—_—2 =l D 2

0,1, BT T | |=0
’971" T |

O

'i— 0’34‘,'%?,\
2w\ o, 5 |
5253 5‘4 o, |
| I,l..,-~v,o

H ’

e (B

\-‘*l °°l

l
i

«

The proof given in[1841a)depends on the product rule for determinants.
Arsixth order detérminant whose entries are squared distances

in 4 dimensional space can be expressed as the product (row by row
multiplication) of two other sixth order determinants and. furthermore
these latter two determinants vanish when the fourth co-ordinate is
taken to be zero. Trom the.determinant identity and by putting the
fourth_cp—ordina;e,equal to zero the expression (A) is therefore
obtained, Although Cayley wascontent to give results for 3 dimensional

space, his construction was perfectly general.

’

=10 -



With little extra work a determinantal statement for points in
n-dimensional space could be obtained but Cayley did not mention

this generalisation.

Other results relating to points lying on spheres, points in the
plane, points on circles and points on lines were also stated in terms
of determinantal arrays. One advantage of Cayley's notation, and

his later double bar notation, was that any mathematical entity could
be placed between the vertical bars. In this way determinants

of complicated entities, such as functions, could be easily expressed.
This was observed in [Muir, 1906a, vol 2, 6] and it shows Cayley's
skill in devising a suitable notation to suit the purpose. Cayley
effectively makes use of the numerical place notation for the entries
in the determinants. This is in contrast to his later work on matrices
where he uses alphabetic notation or alphabetic notation with a single
subscript. In later work he often fails to recognise the advantage

of the double subscripted array which had been used by some authors

in connection with determinants before 1840.

Cayley was attracted to this problem at various times of his career.3

The paper [1841a] clearly indicate Cayley's potential as a
mathematician but it did not contain any genuinely new results.

It was a known result elegantly expressed and written in the spirit

of the 'symmetric method' approach to Analytical geometry. Cayley's
first important paper in the theory of determinants was his [1843a]4
Here Cayley revealed the fundamental position determinants occupied in
his mathematical thought.’ Determinants occur in all fields of his
interest: the theory of elimination, the theory of linear equatioms,
algebraic geometry, the theory of numbers and, in short, *in almost
every part of mathematics' [1843a; CP1, 63] .

In {1843a] he showed a maturity as a mathematician which is quite
remarkable for a young man of twenty-two years of age. Up to this
time he had published papers in the Cambridge and Dublin Mathematical
Journal but {1843a) published in the Transactions of the Cambridge
Philosophical Soclety,showedthe range of his readlng. He was familiar
with.the earlier work of Cramer, Bezout, Vandermonde, Laplace and
Cauchy and -also papers on determinants by Lebesgue and Jacobi.

(1843a] is divided into two parts.  The first part is concerned

_]1_



with the investigation of the properties of determinants associated
‘ . 3
with the "quantity' U where

(L = x(&EJ—F']-{-...).‘-
:Cl(ﬁl'g + /gﬁ]+ .o .)-+ se e

. . .
. .

Associated with this form are the determinants which he

chose to investigate:

KU | os B o
oL R, L

and two others Fu— and qu. The function Ku was later called

the ‘'discriminant! of U.

In considering these functions, he was motivated in one direction

® by Cauchy and Jacobi whosa work contained the general theory of
determinants. In another direction he was conscious of the connmection
with the theory of reciprocal polars of surfaces of the second order.
At this time Cayley did not use an array to describe the bi-linear
form U itself, though it is for bi~linear functions that he used
the matrix notation later in his[18554. Here he was interested
in studying the‘determinant KU of the form U and determinants
FU and JWU 'derived' from the form U and which were themselves

bi-linear forms.

These derived functions FU and U he called 'Derivational Functions',

a term which he described as follows:

- 12 =



I would propose to denote those functioms,
the nature of which depends upon the form
of the quantity to which they refer, with
respect to the variables entering into

it, e.g. the differential coefficient of
any quantity is a derivational function
(1843a; cp1, 637.

Here he meant functions which one obtained by formal 'differentiation'
and the term was closely associated with 'derivative' a word used in
the Theory of Invariants. In the Cambridge tradition, he distinguished
between the function and the value of the function. 1In this paper he
referred to the 'quantity' KU in distinction to the functional symbol
K as in the method of 'separation of symbols'. Although most
of the paper is taken up with the investigation of these special
determinants KU ) FU and:lu it is the second part written on an
entirely separate subject, which showed Cayley's power of
generalisation. In this case, the notion of the ordinary determinant
was generalised from a two dimensional array to higher dimensional
arrays.6 These newly constructed determinants were later known as

'cubic determinants.'

In his [1843a] Cayley gave no clue to his motivation or application
of this generalisation, although he later found them useful in the
search for invariants. But from a letter he wrote to Boole

[App.C, 13 vi 44] he thought they might be useful in the Theory

of Elimination.

In(1843a] the generalisation is described in the following way:

Let=the letters T, Vi, ... Vi .vuvee(l)
represent a permutation of the numbers
1,2 veneen k RN ¢
Then in the series (1), if one of the
letters succeeds mediately or immediately
a letter representing a higher number than
its own, for each time that this happens
there is said to be a "derangement" or
"inversion." It is to be remarked that
if any letter succeeds letters representing
higher numbers, this is reckoned for the
same number of inversions.

- 13 -



Suppaose next that the symbol

Ty cees (3)

denotes the sign + or =, according as the
number of inversions in the series (1) is
even or odd.

This being premised, consider the symbol:

/\f%UT---(d)
p:o’... rere (8
Kk

denoting the sum of all the different terms
of the form

. )
It ts .. .Qpﬁog'mﬂf&agk-nﬁ)
the letters

TN oA S, San . SR (6

denoting any permutation whatever, the same or
different, of the series of numbers (2)

(and the several combinations of being
understood as denoting suffixes of the

A's). The number of terms represented

by the symbol (5) is evidently

™
(r.2... &) veee (7)
[1843a; cp1, 761

In the full Laplacean expansion of an ordinary determinant the terms
are expressed with one subscript unpermuted. In Cayley's extension
he made provision for this by placing a dagger over columns to
indicate that such columns were to be left unpermuted, Thus the

full generalisation was denoted by:
ff
Apsi..8 @ ...)

Y'kvk...ékqsk
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The ordinary k x k determinant is the simple case
+
& b
o fi
or equally
+
i By
) s f
An example of this is the simple 'cubic' determinant identical

to an ordinary determinant in the case k = 2.

A3, o
4, b

Cayley's extension is obtained when the number of columns exceeds 2.

= 0(| ﬁ| -°lz /31"' o(; ,@2, ’AF'

For example, the cubic determinant

Aﬁ, F. N
oly Fz \012

which is formed from the terms:

«, {@, Y -Olz{‘z Yo (sign #)
i 3% ola B 8 (sign - )
A fz Y. 0(-:./41 6 (sign +)
Up T pl e
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Using the single letter notation in Cayley's style:

= 112

a = 111 e

b = 211 f = 212

c = 121 g = 122

d = 221 h = 222
the foregoing cubic determinant is:

ah - ed + gb - cf

Expressions like this were subsequently found useful in

Invariant Theory.

Two facts about 'cubic determinants' emerge from({1843a)
Firstly, the symbol for a cubic determinant can be written as

a sum of symbols of the 'daggered' type, viz.

' ;xch,..gié¥vf..-00

. =Ztu1‘v. .. .

(AR Q@ | f;ko:" 'e“xé\’u

ﬁ\f%UTﬂuthﬁ.;(h)

This identity means that the cubic determinants generalisation
is illusory, for it imblies that any cubic determinant can be

written as the sum of ordinary determinants.-

The second fact is the main result of the paper. This is a
'product rule' for cubic determinants which have an even
number of columms.

t+ I o L | ‘
(A 2pH B yd = (ABIK. 20y Tt 7
The product rule for ordinary determinants is obtained by

putting p = landq = 1, ' This generalised product
rule is an elegant extension of the 'ordinary' product rule.
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It is quite likely that Cayley knew this extension at the time that
[1841a] was written, for in this paper a generalisation was mentioned
(1841a, CP1, 2]. At first Cayley did not find that cubic determinants

possessed much importance. As he subsequently wrote to Boole:

T attempted some time ago in the Cambridge Philosophical
Transactions to investigate the properties of some
such functions, formed by a permulatory rule analogous
to what I suppose the above must be, thinking they might
be applicable to the general theory of elimination but
they do not seem to possess much importance.
{App. C, Boole, 13 vi 44] .
Contrary to this expectation, Cayley shortly afterwards found
them to have useful comnections with hyperdeterminants. They
were later introduced by Sylvester’in the 1850s for use in the
calculus of forms but they did not attract much attention until
the 1860s when, according to [Muir, 1906a vol.3, 429] ,C ontinental

mathematicians gave them some. attention.

In his early mathematical career Cayley sought to generalise
the notion of the ordinary determinant in other directioms.
One generalisation occurred in one of several papers written

on Déterminants Gauches [ 1848b; CP1l, 4107 . The generalisation

attempted here was an extension of the ordinary determinant,

as was the previous extension to cubic determinants. But in

(1848b] the extension was not directly related to cubic determinants.
The motivation in this case was provided by papers written

by Jacobi in connection witﬁ the solution of differential equationms.
The functions which arise from this work were referred to by

Cayley as the 'functions of M. Jacobi' and they later became known
as Pfaffians.® Under this new definition of a determinant both
the ordinary determinant and the Pfaffian can be obtained as

special cases:

One obtains these functions (of which I repeat the theory
here) by the general properties of a determinant, defined
in the following manner: expressing by (1 2..

some function in which appear the symbolic numbers 1,2,

cean and by = sign corresponding to any permu-
tatlon of the numbers, the function

SE(12...8)

(where > desxgnates the sum of all the terms
obtained in permuting these numbers in any manner) is one
which is called Determinant [1848a; CP1, 4117 .
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Following this he suggested an even further generalisation:’

One may further generalise this definition in
admitting many systems of numbers !
‘,2)-..Y\-) 2’ VLJ,,.
which then ought to be permuted 1ndependent1y
between themselves and others; one obtains in
this manner an infinity of other functionms,
mentioned in (Crelle, 30 (1846), 7). In the
case of ordinary determinants, which I will not linger
over here, one would have

Ct2...n) = Qi Pga - Akn
In.the case of functions, with which we are concerned

(the functions of M.Jacobi), one supposes n even,
and writes

(V2 ..on) = X2 Agy ... Anctin

where AT.s are any quantities which satisfy

the. equations (1). [The equations (1), say,
)vfs:—),.‘-s Y¥FS

the conditions for a systéme gauche] [1848a, 4117 .

Following [Muir, 1906a, vol.2, 258] an example shows Cayley's
construction. According to Cayley's prescription:

(1 2 3 4 ) = Az,

and Z * (l 2 34") is the form consisting of the twenty
four signed products

Made Ml M Ay
TR W VR W TV TR
ACY TR P TR V) W W
Ahr o A A
L S VS W A3 e
TR I W W W A
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If the systdme gauche conditions are introduced, the components

of the form may be reduced to simply tﬁree products

%l').}\u. ) 3\IS k14 f Azg’/\lﬁ

and therefore

P t(\‘ 234) =¢ ( )\11)34» "Alz’)zq. + Azg)lq-)

where %m_ A34 —),3 X‘U} +)13l’+ is the
Pfaffian algebraic form9 which Cayley denoted by fl 2 3 4] .
In Cayley's generalisation it is one eighth of a Cayleyan. determinant.
The result which Cayley gave in[1848a]that 'a skew determinant

of even order is the square of a Pfaffian' [CP1, 412]

became known as 'Cayley's Theorem' in the nineteenth century
literature. To-day the Pfaffian is an algebraic form which has

fallen into obscurity.lo



1.3. Hyperdeterminants

As is well known, Cayley generalised the homogeneous polynomials

in m variables considered by Boole to homogeneous functions
containing n sets of m variables [1845bj CP1, 80] . Through

these general functions, Cayley obtained functions with the
invariantive property which were not obtainable by the Elimination
method used by Boole. Cayley called these functions 'hyperdeterminants'
because although they were not determinants themselves they could
be expressed as functions of determinants. This is the
traditional view but it is an oversimplification.This simplification
is arrived at in most histories by assuming that Cayley ascribed
only one meaning to the word 'hyperdeterminant.' In fact, when
Cayley was doing this work he found many methods for finding
invariants and among them two distinct methods both of which he
-called by the name, Hyperdeterminant.The first is an expression
which he called simply 'Hyperdeterminant' and this is developed

in his [1845b} The second meaning is that of 'Hyperdeterminant
Derivative' and is a method for obtaining invariants. This method
is put forward in his {1846b) and during the 1840s it was the method
used by Cayley to generate invariants. In the 1850s Cayley
formulated a new synthesis for the theory and in this reverted to a
method associated with the earlier [1845H. Broadly speaking, the
method of [1845b) is a method of 'integration' and the method of
[1846b)is a method of 'differentiation.' Both [18451] énd [18461]

are considered in some detail in this dissertation, but before this

is done,Boole's own contribution is briefly considered.ll

12 on the young Cayley in his formative

The decisive influence
work in the theory of Invariants was George Boole. The theory
began in earnest with the 'mustard seed' in Boole's pioneering
[1841a}and(1841b] . This influence and the encouragement which
Boole gave to Cayley in the course of his preparation of
{1845b] and {1846b] is evident from the letters sent by Cayley to Boole
at the time.

Boole's main theorem in hls{1841&]wh1ch points the’ way to- Cayley ]
future development is the following: St
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If Q, be a homogeneous function of the nth degree,
with m variables, which by [a linear transformation]
the linear theorems (80) is transformed into R,»

a similar homogeneous function; and if ¥ represent

the degree of 6(&0 and 9(2..) » then
0(Q.) = B(Rn)

2

(Boole, 184la, 19].

The factor E is the determinant of the linear transformation.
The expressions e ( Qn) .and e (Rn) "are the
discriminants of the original homogeneous function

and the transformed homogeneous function R, respectively.

Boole actually obtained Q(Qn) by the method of
elimination applied to the m derived equations. The example of
the homogeneous function of degree 3 with two variables

is a simple illustration of Boole's very direct method:

Q= A= + 336-} + 3('.:;-&1" + D}’

By putting the derivatives 2Q ,'B_Q equal to
dx 2y

zero the 'derived equations' are obtained:

Ax2 + 2Bxy + Cy? = 0

Bx2 + 2Cky . + Dy2 = O

On eliminating 5:2, y2 the linear equations are next obtained

2(8-AC) x - (AD—BC)\i o

(AD-BC) x  -2(C~BD)y 0

and by a final eliminationm, the function 13
5(6) = (AD-BC) -4 (E-Ac)(C-BD)

The method is, és‘Boole admitted, tedious aﬁd th;a h;'.‘ghei: cases

promised to be even more tedious. TFor these cases Boole suggested
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that J.J.Sylvester's method of Elimindtion could be

used.  Boole.puts forward some applications of the computed
value e(&ﬂ) » including the reduction of quadratic
forms to the sums of squared terms and the investigation of the
solution of the fourth and fifth degree polynomials. Boole's
speculation is based on his findings for the solution of the .

cubic which is easily expressed in terms of Q(Qn) :
avi+ 3bv* + 3cy +d=0

with 'solution'

©=6(q) = (ad-be) -4(x ac)Xcbd)

0 = iim = 2(ad-3abe+25)

o= 4'6Q) . 2a*
dd*

| Boole,1841b, 119}

Although Boole recognised the importance of the subject, he hadno time
to develop it further.14 However, he did provide a spur for Cayley
in the Temark that rounded off his [1841b]: ”

An equally important subject of inquiry presents
itself in the-connexion between linear trans-
formations and an extensive class of theorems
depending on partial differentials, particularly
such as are met with in Analytical Geometry. It

is not my intention to enter into the subject in
this place, nor have I leisure either to pursue

the inquiry, or to elucidate my present views in

a separate paper. To those who may be disposed

to engage in the investigation, it will, I believe,
present an ample field of research and discovery....
Lincoln October 21st1841 [ Boole,f1841b, 119] .
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The interest awakened in Cayley -after reading this paper prompted
him to write to Boole. The brief correspondence !5 which passed
between the two mathematicians from considerably different
backgrounds and social class, presents a vivid picture of
'mathematics in the making'. By way of introduction to the
master mathematician George Boole (1814-1864) then teaching in a

school at Lincoln, Cayley wrote the following letter:

My dear Sir,

Will you allow me to make an excuse of the pleasure
afforded me by a paper of yours published some time

ago in the mathematical journal "On the theory of

linear transformations" and of the interest I take

in the subject, for sending you a few formulae rela-

tive to it, which were suggested to me by your very
interesting paper. I should be delighted if they were

to prevail upon you to resume the subject which

really appears inexhaustible. [App.C, Boole, 13 vi 44] .

Cayley's first work in the theory was presented in{1845b]and [1846b].
In one sense they represent a single work, the acclaimed commence=
ment of Invariant Theory. It will be seen that considered

individually they each contain differing approaches to the

subject.

On the Theory of Linear Transformations [1845b] .

Cayley's [1845b] extended Boole's work and provided the first tentative
steps in the calculation of invariants. The precise extension was
in the consideration of not only functions of m variables but
functions of n sets of m variables. Cayley later described

this theory as the téntipartite theory.?6 The 'tantipartite' theory
as opposed to the 'udipartitg' theory is the same kind of extension
that was made in the generalisation of the ordinary determinants

to cubic deferminants and the later generalisation of the Cayleyan
determinant. Caylej‘s(hypérdeterminant functions possessed

the invariant property and were more general than those functioms

discovered by Boole.:

In[18455]Cay1e9 gavég the first meaning to the word Hyperdeterminant
which he had first announced in a paper writtem in connection with
the work done by Eisenstein and Hesse [ 1845a; CPl, 114] . Inf{1845b]
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he wrote:

Imagine a function u of the coefficients, which are
simultaneously of the forms

u. = HP ‘sl,t¢°o- ) IS;/t,//... > s e e o (A)
2s/t, ..., 252t ...,

= I\ ! Vi
w = HP 'l",,‘t/,.--, TV ey
Y
T/, ..., T2 .., .

&c.; in which u denotes a rational homogeneous function of
the order p. The function H 1is not necessarily supposed
to be the same in the above equations, and in point of

fact it will not in general be so. The number of equations
is of course =n,

The function u, whose properties we proceed to investigate,

may conveniently be called a "Hyperdeterminant."

{1845b; cP1, 82 1.
Such notation for homogeneous functions had been used on an earlier
occasion.!” It is purely an abbreviation and gives no clue to the
specific form of an actual hyperdeterminant. Such formulae were
not known to Cayley and to find such a general rule became the
primary object in the theory. In order to help clarify some of
Cayley's highly complicated calculations we shall consider one of

his examples: the tripartite function U with 3 sets of 2 variables

u = 0¥ % 3 + L'&z‘jl*-l'!' Cz\‘jz %"‘i’h‘j;%;
texy 2o+ § Yyt ?’Q‘jz’é;* ?\xu‘;,_%,.
WeH ] a,b, ¢, o

e, k£, “, A

W “‘42 a,

o €
b,d, ¢
U.,=Hz_ Q,L, e,
. c 4 9.

..‘.24_



The functionsexpressed by each of these are identical in this

case. The third form above, gives the function

(ah - cf = de + bg)2 + 4(ag = ce) (df = bh)

one invariant of the function U. It was actually computed
using the 'cubic determinants' [1845b; CP1, 89 ] .

Cayley observed that the general theory could be useful in the

case of symmetrical hyperdeterminants, that is, those hyperdeterminants
obtained by identifying the different sets of variables. In the case
of the tripartite function described above,an invariant is obtained

on setting the variables
X ::23‘=~£| =2

‘Xz. 1;!31:%7_ -_-a..

The tripartite function reduces to the cubic form
w = 0(7(.34'3#113 + 37{:.911- g:f

by identifying the coefficients:

A<l gy
2.5

When these identifications are made in the invariant of the

tripartite function- .
(ah-cf-de+bs)s 4(ag-ce)df - bh)
the invariant v x\ : .
1, 12 (; b | 3 3
ad-3b¢t ~babed +4ac® + 46
of the binary cubic form is obtained. Thisllast_invariant is the

discriminant of the binary cubic obtainable by Boole's.elimination
process.



Carrying out a similar process for the binary~quar;ic form a
function o(i - 4'Fg + 382 was

obtained’ and this: Ls not the dlscrlmxnant of the bxnary
quartic, Cayley\had found a new~class of functlons which had
the invarlantrye property and it is the case of the quartic

that this phenomenon first appears,

» .w r N\

From the 'Hyperdetermlnant Cayley deduced a set of Partial

Differential Equatxons which he wrote

Z Z(o(st_gl_ w=0 o[ﬁ@
- dgst = pu 0(____)8
Z Z...(To(t K78

dr 1:>('L "©
2 = pu o(=/3

In the equations Cayley has used the abbreviated form of writing a
parameter by its index O( St. .-

OL ,/Z are fixed and summation is taken over the remaining

parameters §t...

For the tripartite function with 3 sets of 2 variables there
are 12 equations. One such is:

vrd 2 d 1214 1224 >u=o

d 21l o d2a2 - al'zu _ Zzzz.

or in Cayley's alphabetic notation: ] . L
(a_d. + e 4 4+ c d +\3.§_)u=o
b df dd Ak
Cayley remarked that ‘In every: case it is from.these.equations that
the form of the function u is to be:investigated; they entirely
replace the system (A) (Definition of Hyperdeterminant above)
[18455; CPl, 851 . Despite the importance of these equations Cayley

disregarded these partial differential equations in[1846b]in favour
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of another method - the method of 'Hyperdeterminant Derivation.'
However, partial differential equations were not completely

forgotten and they reappeafed in a later synthesis.

The importance of calculation

From the outset Cayley involved himself with the calculation of the
invariants. A simple expression for Boole's discriminant, (i.e.

the ordinary determinant), had been found and there seemed no

a priori reason why such formation rules could not be found for
invariants which were not determinants. In addition Cayley thought
it worthwhile to calculate the invariant functions even though at the
beginning the calculations seemed onerous. A short passage from a
letter written from Cayley to Boole indicates Cayley's computational

facility and patience:

For four sets of two variables there is one value of
F (an invariant) of the second order, another perfectly
independent one of the sixth order, the completely
developed form of which consists of 232 terms, which I
have succeeded with a good deal of difficulty in
working out. CApp. C, Boole, 23 viii 44 ].

The invariant of order two is

a.P-‘:o —cn + dm —el-&-f—k + z};—z?\i,

but the invariant of order 6 is colossal [1845b; CP1, 91] .

When Cayley came to calculate the symmetrical invariant, he found

the following expression:

BU = oL’€” - 6ol fS%e —124'RS " —18e™0 "™ 275"
“2TRTER+ F6 L6 S4LYS e +S4AFYE-S4YS
“SHETE-CHES + 31K Y +oBUBYS +10BR'¥Se - 1804 RN
It is in conngction with this last invariaut tﬁat the qﬁéétion as
to independence was brought sharply into focus. Cayley

evidently informed Boole of the form of evu.

Boole subsequently found the invariant:
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¥ 1 3
ace -be -ad-c+Zbde
and a result of great igportance, The .three invariants were

connected;

e(U) = (ae— 4bd + 3c")3—2.'{ (ace-l:ie ~ad-3+ ZLalc)z

This bond is symptomatic of the most impértant difficulty which
occurs in theT leory. To Cayley meeting it for the first time

it was a surprising fact and one which immediately caught his
interest and he replied to Boole ' I have been quite delighted with
the results you have sent me. The 9(%) = Vsj- 21 v*

is a particularly interesting ome' [ App.C, Boole, 11 xi 44 ]

The writing of (1845b) did not progress as smoothly and quickly

as: was usually the case with Cayley's papers. During its

preparation he wrote to Boole:

I have not.been able to work out anything further

on the subject of linear transformations, indeed

I almost .felt myself come to a standstill for the
present and have hardly attempted it. The

question now gives me the idea of requiring some rather
complicated combinatorial analysis and I doubt

whether T have enough of that to bestow upon it.

I have been working last week on the transcendental
function 18 defined by

W= x.TT'[T( | + F&%ﬁ-‘}
[App.C, Boole, 7 ix 44]

Difficulties with questions of a combinatorial character which
Cayley experienced at this time recurred throughout his later
research. These combinatorial problems were in direct comsequence

of his direct and computational approach to the subject.  The
subsequent attention which Cayley and Sylvester gave to combinatorial
questions is partially due to t£eir interest in the computation

of invariants.

Little more than a month after makxng thi's remark on comblnatorlal
analysis, Cayley wrote agaln and advxsed Boole that the paper
[18450] was finished: |



I have just finished a paper on linear transforma-
tions for the next No of the journal [1845b] ,
which I believe is to be printed soom. I shall be
very anxious to hear your opinion.of it
[App.C, Boole, 11 xi 44] .

Interlude between [1845b] and [1846b)

After the publication of [1845b],Cayley continued mvestigations
in preparation for its sequel, [1846b]. In the second paper,
Cayley gave another method for finding invariants, which should
not be confused with the method in[1845b], It is a systematic
method based on differentiation from which it is theoretically
possible to calculate all the invariants. From Cayley's view—
point the drawback to the method was that it yielded invariants

only after a great deal of cumbersome calculation.

A month after the publication of [1845b], he wrote to Boole with
his plans for the next investigation of the Theory.

The primary objective was calculation:

Do you see any way of calculating in rough the

degree of labor that would be necessary for forming
tables of Elimination, Sturms functions, our
transforming functions [invariantsl &c. If one

could get to any practical results about it, and

they were not very alarming, it would be worth

while I think presenting them to the British

Association: but I am afraid the limit of possibility
comes very soon: suppose one ascertained a result would
take a century to calculate, it would be rather a hopeless
affair, L App.C, Boole, II xii 4417 .

Tables of invariants were not presented to the British Association

at this time. From Cayley's calculations in both [1845b) and

UB46b],the 'highest' invariant calculated is of degree 4 for a binary
form of order 9. One of the difficulties Cayley faced at the beginning
was that he was working on the subject in isolation. The

Cambridge school of mathematicians with an interest in analytical

geometry might have taken a passing interest but no other contributor
to the Cambridge Mathematical Journal took up the subject until

Sylvester, : Subsequent papers written by Cayley
during this decade on the subject of Hyperdeterminants were published
in Crelle's Journal where they would be read by the Continental

mathematicians. His one contact was Boole to whom he wrote early
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in 1845:

I wish I could manage a visit to Lincoln, I should so

much enjoy talking over some things with you - not to mention
the temptation of your Cathedral. I think I must contrive

it some time in the next six months, - in spite of there
being no railroad, which one begins to consider oneself
entitled to in these days. L App.C, Boole, 17 i 45]

Despite the relative isolation he continued to work on the
Invariant Theory and was especially interested in developing
better methods to calculate the invariants. One feature of the
second paper on linear transformations is a more widely applicable
and systematic method for the calculation. This was his method of
'hyperdeterminant derivation' for the calculation of invariants.
Cayley was working on this method in March 1845. A letter to
Boole described this work:

I have just found a property of hyperdeterminants

which like most of the others gives another method

of determining them (one would be glad not to have

so many)19 and which seems to me perhaps the '

moat curious of all, [ App.C, Boole, 5 iii 45]

The 'hyperdeterminant derivative' method of finding invariants

is best illustrated by the very simplest example. This is the case
of the quadratic, and even in this case the calculations are
lengthy: .

W= a.x"*-be.u& + cv}"
Two binary quadratics are formed and denoted
W = axi+2bxyy, +cyr
Up=axg+2bxu, +¢ Ya
and- following Cayley's notation: ~
Ei denotes partial differentiation with respect to xi

and R, denotes partial differentiation with'?gspéct to yi,

The result of applying the operator

CI/NER AN

to the product W,U,

“t
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gives the required ‘invariant

(5192 = B Wlka = T2 wity= 4 (ac -b)

This is of course the simplest case. To compute the invariant
of degree 4 (the discriminant) of the binary cubic form by this
method requires the product of 4 copies of the binary cubic

operated on by :

12713 24 3¢

On Linear Transformations ' [1846b)

The overall goal Cayley set for Invariant Theory was set out in

[1846b). Briefly stated he said the future development should aim:

To find all the derivatives [invariants] of any number
of functions, which have the property of preserving
their form unaltered after any linear transformation
of the variables. [1846b ; cPI, 95]
Here the important word is 'find.' This was Cayley's principal
"motive and as a consequence,the importance of the algebraic process
which generate invariants and covariants was paramount. . Compared
to the process for finding invariants, Cayley's interest in providing
careful proofs is only slight. The objective is characteristically
stated in the most general terms. It made provision for his '
previously stated tantipartite theory and alloﬁed.for the possibility
of finding joint invariants of sets of functions. But to bring the
task into the realm of the possible, he carefully prefixed this
objective by a remark to the effect that only in the very special
case of a single function in only two variables was there any real
hopehof completing the objective.20 In retrospect this caveat had
a prophetic ring. Writing at the end of the century, P.A.MacMahon
concluded that invariants and covariants for binary forms of order
less than or equal to 8,were known." For a single function in three
variables, the listing of invariants was complete where the function
was of order. three or less, but only partial results were known when
the function of three variablesgwas of order four. For other higher

forms and systems of forms the results were correspondingly
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fragmentary | MacMahon, 1910a, 636] . 1In the 1880s Cayley
himself was still working on the binary quintic and had spent
much time in the intervening years on the calculation of

its invariants and covariants.

The finding of invariants was only part of the objective, and to
Cayley, writing in 1846, the easier part of the problem.
To the overall objective he added cautiously:

there remains a question to be resolved, which appears to

present very great difficulties, that of determining

the independent derivatives, and the relation between

these and the remaining ones. [ CP1, 95; his italics]
In the 1850s, Cayley began calculating the invariants in a comprehen-
sive way. Covariants were then actively considered in the execution
of the general objective where the problem was to find the complete
and independent system of invariants and covariants of a binary
form. The paper[1846b]represented a bold approach, but the
complexity of the task was not fully realised by Cayley. The

definitions weregiven in a very general way.

A simple example of the working of Cayley's method of 'hyperdeter=
minant derivation' has been considered. In[1846b],Cayley defined
the method quite generally.

The operator symbol O was given by

-

O=Fl wnsi) ) (an n-tute)

where ) )
gl E‘_ ) e o Sr
“—IL" = f.l‘ 2, . - - '].'
and where I
5¢ y N were partial derivatives

and F a rational homogeneous function.

(
Cayley stated : ... the function _L[:lf\I,,

is by the above definition a hyperdeterminant derivative. The symbol
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may be called "symbol of hyperdeterminant derivation,"

or simply "hyperdeterminant symbol." ' [1846b; CP1, 97]
Here he was making use of the 'method of the separation of
symbols' by separating the meanings of [} and

OWU but in the calculation of invariants this distinction
was not dwelled on at length;

In [1846b] Cayley investigated algebraic forms of low order

and presented some general results through the use of his symbolic
calculus., The presentation is deductive but the results were

not only achieved by deduction. Factors which are perhaps

ignored when discussing the work of mathematicians include the
speculative element and the initial simplistic guesses.

Cayley's speculations were obtained by analogy with known results.
In considering forms of two variables of order six he had found
two invariants of order 2 and 4 and in a letter to Boole
speculated on the existence of an invariant of the third

order:

I should rather think there was one of the third order
which I know nothing about; however, it is only on the
analogyof the theory of functions of the
fourth order that I imagine it to exist.

Continuing the speculation (later found to be false) he compared
the state of affairs existing for even order functions with those

which might exist for the odd order functions. 1In tabular form
he wrote:

order transforming functions of the orders
2 2
4 2, 3~
) 6 2,3, 4
Then might that for odd functions be
3 o 4
70 0o e 0 4, 6,8 0 T

-~ Since-clearly the ‘orders must be even. - .- =
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This is only founded on the instances

n =2, 3, 4 and it contradicts your
results for n=5, still it seems so
natural that the number of the functions
should depend very simply upon the value
of n. The question then comes is there
any practicable mode of finding the
functions for the fifth and sixth

orders. If my supposition about the
degrees {of invariants] should be correct,
it ought not to be so very difficult but
with functions of the 12th order, ome is
afraid to think of it. [App.C, Boole, 27 xi 441

As Cayley subsequently discovered [App.C; Boole, 13 xii 44] there

is no invariant of the third order for a sixth order binary form.

The classification of invariants by degree of an invariant

was suggested in {1846b] . The degree is the dimension of the
coefficients in the invariant and a listing of invariants by
degree was the course adopted during the early work. In the
1850s the calculation of invariants and covariants of forms

of specific orders?! was undertaken. For the difficult problem
of calculating invariants, Cayley was from the first involved
with combinatorial problems. In‘considéring invariants of
degree 4, Cayley found, for instance, that for binary forms of
order f the number of invariants was & (f) and the number of
relations between them was 2] (f- !) where 9({)
denoted the number of divisions of_an integer f into three or
fewer parts [1846b; CPl, 104] . From this he deduced that the

number of independent invariants was

E(g) - ..r , for £ even

o

‘ + Coa L e .o Ty s
, E('-F-Zé), ... for.fodd .

) Q S ; Ce LT .u. o ARSI a AU E
where E (;) _1s the greatest integer part of)p(ﬁ;), o

=

From this result Cayley was able to deduce that for a binar& form of

L -
LIRRANCH
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order 9 there were two independent invariants of the same degree.

Cayley's interest in calculation and the question of independence
led him to questions of combinatorial analysis. Lack of knowledge
on these questions limited the extension of his initial methods

to the most simple cases. Looking forward, he surmised that
extensive work in partitions would be needed before much progress
could be made. Another line of attack which he proposed at the time
was the linking the theory of hyperdeterminants with the theory

of elimination,

In fact, Cayley did not make much progress on the calculation of

inyariants in this decade. His first two papers contained the

- general objective and outlines of the intended path but apart from

a note in 1847 in which he considered miscellaneous problems

in the Theory and apart from papers which linked geometrical questioms
to Invariant Theory (discussed belowL a hiatus occurred in Cayley's
development of the subject, In his short Note [1847c; CP1,352] he did
attempt to find an algorithm for producing invariants. Unfortunately

his speculations were unsuccessful:

It appears possible to me that.all the hyperdeterminants
which belong to the.function ¥V, can be found in elimina-
ting between the equations ( p in number ) with which we
are concerned, and that is so in the case where U [sic]
1s of the order 2p or 2p+l; at least this rule is
yerified for the functions of the second, third and
fourth orders, and this appears (a priori) at least
probable for the invariants of a degree much higher

than those of the second degree, for which as one has
Just seen, it is effectively true.

This being so,- there will only be a number p of
independent derivatives for functions of order 2p and
2p + {3 a conclusion I have not been able to
demonstrate. T L1847¢; cp1, 353]

«

' The speculation made by Cayley is untrue but it seemed reasonable

as a working hypothesis. He knew the invariant systemé'(that is the
constant derivatives) for the binary forms of order 2, 3 and 4

for which there are respectively 1l,-1 and 2 independent invariants.
What he did not know about the quintic_;t this time was that there
were four independent inv§riapts.oneghad bgen:foupd[1846b;CP1,108],
whereas the three others, of degrees 8, 12 and 18, were not known

- 435<



by Cayley unti] much later, His boldness in basing at least

part of his argument on experience in such few cases is typical.

He frequently conjectured'results (and acted on them beit‘lg~

true) from lower to higher cases on wvery slender evidence

indeed and with hindsight some of these speculations were naive.

It was only in the next decade that questions relating to invariants
and covariants were found to be more complicated than first
thought . 22

The binary quintiec, which is the first difficult case in the Theory,

became the hub of his later algebraic researches.

‘Connections

Why did Cayley take up the study of invariants so avidly at the
beginning of his career and work on these problems throughout

his life? At the outset, the sub;ect was yirtaally fundzmental

to all of Cayley's other mathematical }nterests. The importance he
placed on determinants with their usefulness in other branches of
mathematics has already been stressed. With Hyperdeterminants

he found a generalisation of determinants with even greater
potential for application in other branches of mathematics.

The indications were there. At the end of (1845b)he noted in
connection with one of the discovered invariants:

The function K& - 4/38 +3%% occurs in other investiga-
tions: T haye met with it in a problem relating to a
homogeneous function of two variables, of any order
vhatever &£, /g, ¥, §,& signifying the fourth
differentlal coefficients of the function. But

this is only remotely connected with the present subject.
L1845b; CPI,93]

The reference here is to his work related to Hesse s automorphic
functions. Cayley worked at thzs subJect at the tme he was
submitting his [1845b) [ App.C, Boole 21 x.44]. Hesse had
demonstrated an algebralc property of the 'Hessian' Vu
where W is a homogeneous functlon of the third order in three

LAY

variables x, y, and Z. Hésse had demonstrated.i_,
V(U + aVU) = AU+ gVU
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where a is any constant and A,B were to be determined.

Cayley gave a similar result for a function of two variables
but any degree and in addition determined the coefficients which
appear in his formula. What links this work with invariants

is the appearance of the two independent invariants of the
binary quartic form:

Let U be a homogeneous function of order Y of
two variables x, y and Vu the determinant
d'v  div _[d*Vv\?
o 5 (i)

:* . theéda one has

(V-2)v-3) V(U+a V)=
{’v(v—‘)(y-%)z Ja + »(v=) (2»-537'1 a:-} W

+{ W-2)(y-3) + (¥-2)(y-3Y2v-5)Ta"} YU
Representing by i, j, k, 1, m, the differential
coefficients of U one has
I. = i km —ilz—oim" -’kz""ZikQ
T = ‘FJ,Q -3k - mi
such that I , T are functions of x, y of

orders 3()’—4-)  and 2(Y=4) respectively.
{1845a; cp1, 115] ‘

At the same time, Cayley was also able to employ the theory of
invariants in the study‘of elliptic integrals. Here the
question was to reduce the algebraic integral

where u. is a binary quartic form. e
Using the theory developed regarding invariants24 I, J for the

binary quartic,Cayley reduced the integral to a standard elliptic
integral:
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du
\/(l + put )l + qu)

{1846a;cP1, 224]

The consequence of the theory of invariants with respect to
geometrical questions were plain enough to Cayley. This is seen,
for instance, in his [1847b] where he stressed the connection of
different branches of his mathematical study. In the first part
of the paper he gave three theorems, all of which were rélated

to the question of tangents drawn to curves. Cayley demonstrated
that these questions can be treated by the theory of elimination
and the theory of invariants. This is seen in his statement of
the third theorem:

One finds the points of contact of double
tangents, in combining with the equation of
the curve [L=0] an equation TTW=0O

TTWU  is an invariant of W] of the order
(n-2)(n*-q) with respect to the wvariables,
and of the order N*+n -12 with respect to the
coefficients, that is to say, since there
corresponds two points of contact to a double
tangent, the number of these tangents is
equal to S wn(n-2)n"-Q]) : a theorem
demonstrated indirectly by M.Pliicker.

[1847b; cp1, 3447.

Cayley's work in algebraic geometry is vast (see Appendix A)
and cannot be considered here. Cayley continuously utilised
the intimate connection of formal algebra and its application
to questions of geometry. Of the power of the analytical
method he had no doubt. After stating the theorem mentioned

above, he gave his reason for writing this paper:



My intention has been to give here a precise
idea of the theorems to be demonstrated, so

as to formulate a purely analytic theory of
reciprocal polars. I have only put forward
these theorems (without seeking to prove them),
so as to show their link with the theory of
elimination and with that of hyperdeterminants;
the latter in particular that one needs to use,

I believe, to demonstrate the formula given
above

YT = AU - (ol o By +¥e3 (T,

and in order to find the form of the invariant
by means of which one determines the points

of contact of the double tangents. I will

be pleased if these researches might in some
way facilitate the solution of the problem

of reciprocals of surfaces; which still
remains completely unknown.

[1847b; cP1 345]
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1.4. Algebra in transition

Sir W.R.Hamilton's discovery of the quaternions in 1843 was a

decisive event in the history of 'higher' number systems. He published
his work on quaternions in England in his{1844a] . The publication
immediately had a catalytic effect. Other mathematicians25 soon

found other systems like the quaternions and these systems, like the

quaternions, failed to obey the 'ordinary laws of arithmetic.'

Cayley was in- the vanguard of this activity. He was the first person
to publish a paper on quaternions after Hamilton. We go back to a
letter written to George Boole in September 1844 to gauge Cayley's
initial reaction to Hamilton's system:

I was very much interested lately by a

short paper of Sir William Hamilton in the
philosophical Magasine, On a new system of
imaginary quantities He considered what he

term [ed] quaternions, expressions of
the form

X+ iy o+ jz o+ Kuw,
SN
being imaginary symbols satisfying
Poml, JPeel k=m0 k k=L,
ki=}, jir-k, kj=-i, k==

The remarkable part of which is evidently that
the factors of a product are not convertible,
but as he observes, why should they be.

The results that the supposition leads to . -
are certainly quite consistent with each
other and some of them very remarkable.

L App.C, Boole, 7 ix 44] : . -

The interesting point about Céyley's‘re?dtiddfié his imﬁediate accept-
ance of the non—commutativity of ‘the quaternio{s. inqcayley's case
there was no apbéfeﬂt difficulty in subscribing to the new view of
algebra which asserted itself in the 1840s. - .The:new thinking was -
summarised by.Boole in his Logic :

-8
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They who are acquainted with the present state

of the theory of Symbolical Algebra, are aware,
that the validity of the processes of analysis
does not depend upon the interpretation of

the symbols which are employed, but solely upon
the laws of their combination. Every system

of interpretation which does not affect the truth
of the relations supposed, is equally admissible,
and it is-thus that the same process may, under
one scheme of interpretation, represent the solution
of a question on the properties of numbers, under
another, that of a geometrical problem, and under
a third, that of a problem of dynamics or optics.
This principle is indeed of fundamental importance;

[Boole, 1847a]

Some mathematicians had little experience with symbolic algebra
which did not obey the commutative law and associative law,

In particular, Peacock, through his 'Principle' and with
arithmetical algebra as the suggestive science, had a more
limited view of Symbolical Algebra. In Peacock's view

the commutative law and associative law were automatically
assumed.. Cayley felt no compulsion to adopt this approach and
immediately accepted the quaternions as a valid system.

Boole took up quaternions but only contributed a single paper
on the subject [1848a] . éay}éy's inftial paper [1845c]

on quaternions is in two parts. The first part is concerned
with his interest in determinants. The following passage
from a letter to Boole draws attention to this and points to
Cayley's cavalier attitude in his treatment of questions which

required more than a formal treatment:

The properties of determinants for instance are -
modified most curiously. But like, I forget what
Jewish writing it was said of, the idea would
require Camel loads of commentaries for its
development; every [ word] would require to be
rewritten, and the new version would be ten times
as long as the original, if all the formulae of
analysis had to be adapted to the cases of the
symbols-it contained, denoting quaternionms.
[ App.C, Boole, 7 ix.44]) - S

Here Cayley considered yet another generalisation of the determinant.

But here the generalisation is not a‘structural extension as has
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been preyiously discussed, but a generalisation involying the
elemeut&‘oé the determinants themselyes. For quaternions

w , w' ) Q6 ) 45’ éayley defined
the determinant by

w, :w¢’_wl¢
/ )
W, @

vhere of course the quaternion factors cannot be interchanged as
with the 'ordinary' quantities. A consequence of this definition
as Cayley noted,is that a second order determinant vanishes

if it has identical rows but does not necessarily vanish if it
has identical colummns. He further noticed that a quaternion
determinant vanishes if four or more of its colummns were

identical.

Cayley defined a quaternion determinant in the general case by
analogy with the Laplacean expansion for ordinary
determinants. He proved no results about the general case and
only investigated quaternion determinants of low orders. As
with many of Cayley's theorems the general case is dismissed
almost perfunctorily and this paper-on'quaterﬁion

determinants is an:example of this practice. Cayley just

has time to remark:

Again, it is immediately seen that

w, 7£ ¢6 , W w, w O)’ U)l

[ ! +1 ! = - |
WL g L |

&c. for determinants of any order.
[1845¢ 5 cp1, 125)
Finally, in [1845c] Cayley mentioned linear equations with quaternion
coefficients but only examined the question in the case of two
equations in two unknowns. After[1845c], Cayley left the question
of determinants with non-commutative entries until the time of his
presentation of [1858a], the Memoir on Matrices.26




The ease with which Cayley accepted the non—commutative element of

the quaternions was not commonplace amongst the English mathematicians.
Augustus de Morgan, who by 1844 had published four papers on the
Foundations of Algebra, had long cogsidered the problem of

constructing triplets and in his fourth paper on the Foundations of
Algebra [1844a] he gave possible systems of triple algebra.

But De Morgan did not disregard the commutative and associative
laws and most of his systems obey both these laws, although

he did consider non-standard meduli. Cayley was also interested

in the de Morgan ‘triple algebras:

I have not seen De Morgan's paper on triple

algebra. It is I suppose a good deal connected

with Sir W Hamilton's quaternions, which is a

most interesting theory. I think I mentioned

it to you in a former letter: you can easily work
out the fundamental results if you are so inclined
from the mere idea - which is that of considering the
general symbol

q('+/éi, +Z’(‘} * Sk

i, j» k being imaginary roots of -1 which combine
according to the laws

|=Jk kb, k:i}
=i ,\.-rik ~k=ji

What are De Morgan's analogous assumptions! I heard
an abstract of the paper read: = which was just
sufficient not to tell me what I wanted to know
about it. CApp.C, Boole, 17 ii 451

The year of 1845 was an import&nt one for Cayley with respect to
work in the new algebraic systems, He published papers on algebraic
couples, the quaternions and thé,bétaves.27 Cayley's discovery

of the octaves appeared in his[1845d). Cayley did not emphasize the
lack of commutativity and associativiﬁfJof the new system but merely
warned the reader that the system requxres some care 1n writing
down, and not only with respect to the comblnatlons of the letters,
but also to their order;® [1845d cp: 1271 The note vas
short but in it Cayley gave an extenSLQn of Euler s ‘four squares'

theorem.



Cayley also published [1845e] in which he listed a number of possible
systems for ‘algebraic couples' . In this he appeared to have
been influenced by de Morgan's work on triple algebra. Cayley's
systems were presented with alternative rules of'multiplication'
and alternative definitions of the moduli . The paper 11845e]

is in response to an earlier paper by J.T.Graves on a similar

subject “[J.Graves,1856a’, 315] .  Graves only Considered couples
ix+} Y which obeyed the ordinary rules (commutativity and

associativity) and these he named normal couples. The couples
which obeyed the antl-commutatlve law he termed anomalous couples.
In response to this paper, Cayley consxdered simply 'algebraical
couples'. They are of the same form, {=x + &\3 )

but there is not the implicit assumption that they should satisfy
a priori any particular law.  The only requirement is that

the system should be closed:

_ (L=x+ J'cé)(ix,+°[~3,)= (X + iY

and that the multiplication be determined by the multiplication
of the symbols i and j between themselves. This (implicit)
assumption of linearity was not thought necessary to mention.
Cayley considered the different systems of 'couples' which
arase from different relationships between the parameters which
determine the multiplication table for i, j. The four

equations which i, j satisfy were

[1845e- cp1, 128]
With these systems there was no mentlon by Cayley of 1mag1nary
quantities. The ordxnary complex numbers can Be obtalned as e
special case of these couples but thxs fact was passed over 1n

Al

silence. In[1845e]he was 1nterested 1n qulte general systems and ‘



he considered moduli of the general form

K (+Ay)(x+p ¥)

The paper concluded with the classification of seyeral formal
systems and there was no attempt to examine the indiwvidual properties

of these purely symbolic algebras.

In his [1884b] Cayley;:eturned'to the problem of double algebras.
In this later paper Cayley's objective remained the same: to
classify the different algebraic systems and to do this directly

through the four equations which the symbols i and j should
satisfy. '

In June 1845, the British Association Meeting was held at
Cambridge.28 The three papers Cayley had published on new

algebraic systems and this kind of work generally received

substantial attention at the meeting. From the presidential

chair Sir John ﬁerschgl (1792-1871), a competent mathematician

and eminent scientist, enthusiastically encouraged further exploration
and development. With respect to the new systems he said:

Conceptions of a novel and refined kind have

thus Been introduced into analysis-new forms of

imaginary expression rendered familfar - and a

vein opened which I cannot but believe will

terminate in some first-rate discovery - in

abstract science.’ UHerschel, 1845, B.A.Address,
xxviii]

In mentioning Cayley by name, Herschel specifically referred to

the paper on algebraic couples{1845e]. In the Mathematics and
Physics section of the meeting Hamilton gave a paper: On_ the System

of Quaternions and Charles Graves, professor - of mathematics at

Dublin gave a paper on triplets [C.Graves, 1847a]

Two years later, the British Association meeting was held at

Oxford and by then the quaternions were eyen better known. On

this occasion, Herschel was even more enthusiastic. The quaternionms
appeared to him as'a cornucopia of scientific abundance! and his

advice to mathematicians at the meeting was to 'study the quaternions'
[ crowe, 196721, ‘
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Ceometry and. the new systems

Hamilton's long search for the multiplication of triplets had been
guided by geometric considerations of a kind based on the analogy
with the complex numbers. When Hamilton made the essential

step to the quaternionms, éayley perceived Hamilton's achieyement
as a discovery in symbolic algebra. This may have been due to
Hamilton's presentation of his results, for he gave it in purely
symbolic form and there was no hint that geometric considerations
had played a part in their discovery. Cayley needed no geometric
Jjustification for guaternions of the kind that had earlier been
put forward for explaining the existence of the square root of

- 1. He would have been largely in agreement with de Morgan who,

writing on the nature of his own triple algebra, said:

The interpretation of these systems are very

imperfect, and appear to present great difficulty;

but their symbolical character is- unimpeachable.

{ de Morgan, 1844a]

De Morgan had difficulty in finding a suitable geometric
interpretation for his ‘'triplets' due to his non-standard
definition of the modulus. In the case of the quaternionms, a
geometric interpretation was found by Cayley almost immediately.
This finding he published as the other half of his first paper
on quaternions [1845c] . Cayley showed the product

g (ix+jiy rkz)g
(where q is a quaternion) gorresponded to a rotation of axes where
the coefficients of the resulting pure quaternion were the
co-ordinates of a point after a rotation of axes has taken
place. Because Cayley had originally seen the quaternions as
a symbolic algebra the geometric result appeared ‘'rather a curious

one.'

Expanding the product CL (ic+ é‘} rk2) 1(‘ as:
(V+Al+ /«J -»vk) (nc-o-Jn-o-—kz—)(H A+ [y + vk)
| L= Cax-p- »‘)+ 2}(x;uy) +22 (w-py 1"
='4>_‘L+P:+)L<+J[2X.(A[A v) 'l' J(I-I\'L »_v +Z%(}*N+»] .,
k{2 (Ay+i) +23(;w->) + 2 (1))
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= L(o(:t-i-el."a +ol’2)

+§ ([{x-l-/l'? + /1"-1)
+/’l(‘(m+h"a +¥"-z-)

where he found the coefficients 0(, /;, Y make
the transformation

% = Lx -Hl'ﬂ + oLz

Y= free py of

2, = ¥x + }f@j + B’%z

take one set of rectangular axes into another. This he had
written on two years earlier [ CPI, 28] and in this, as in

. . 29
later work, he was much influenced by a paper of Olinde Rodrigues,

Furthermore, it was possible to interpret the coefficients

A, K,y in terms of angles to the resultant axis of the
rotation

>\=+a-_g cos)e, J '—"l‘w».?:cos%,, v =+a~% eos £

Cayley concluded that ‘It would be an interesting question to account,
a priorid, for the appearance of these coefficients here.'
Cayley's discovery also raised the question of whether such

geometric transformations would be obtained from other symbolic
algebras.

Hamilton was also aware of the use of quaternions as a rotation

of axes:

That important application of the author's( Hamilton's)

principles had indeed occurred to himself previously;

but he was happy to see it handled by one so well

versed as Mr. Cayley is in the theory of such

rotation, and possessing such entire command of the

resources of algebra and geometry. [ R.P.Graves 1882a,
“ wol.3, 196]



From the first, Cayley accepted quaternions as a symbolical algebra
and the quaternion operator followed as an application. But the
quaternions seemed to Cayley to be not wholly abstract and he later
teflected. ' it seems clear that the whole theory of quaternions
was in its original conception intimately connected with the notion
of rotation.' [1862a; CP4, 559]

Cayley's interest in symbolic algebra after 1845 waned for a
time, apart from a note on the Octaves [1847a] . There he

- .
noted that the symbol /N X /\ in [1845c] appeared to be
without a geometrical interpretation in the case where )<J _/\_,
represented Octaves. The failure to obtain satisfactory geometric
interpretations for other symbolic algebras could only reinforce

the importance of quaternions.,

In 1848 Cayley travelled to Dublin and while there heard Hamilton
lecture on quaternions. Hamilton gave a series of four lectures

and they formed the basis for his Lectures on Quaternions

[1853a] . While he was there Cayley met Hamilton [R.P.Graves, 1882a

vol.2,605 ] and relations between the two men always appear to have

been cordial. At the beginning of the first lecture Hamilton
publicly praised Cayley's contributions to Quaternion
Theory.

It is tempting to suggest that some of Cayley's later ideas on

matrices were derived from Hamilton's 1848 lectures. 30

However, this is purely speculative. Cayley and Hamilton moved in

the same mathematical society and each was interested in the

others work. Hamilton's preoccupation with quaternions left him little
time to appreciate the work Cayley was doing in algebraic geometry
though Hamilton acknowledged the support he received from Cayley

and others in his work on the quaternions:

Now Herschel, Cayley, Donkin, Peacock, yourself
[ de Morgan] and others in England, to say
nothing of my Dublin friends, have, as it

seems to me, stepped out of their own ways

to recognise and encourage my exertionms.
{R.P.Graves, 1882a, vol.3, 331]
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In April 1846 Cayley had been admitted to Lincoln's Inn to

read for the Bar, To stay at Cambridge would have eventually

meant taking Holy Orders and evidently this course held no

attraction for him. Fortunately he had the necessary

financial means for training as a barrister. This choice of

career, a well trodden path for Cambridge graduates of the

period, suited his purpose. After three years, this profession would
give him financial independence and sufficient leisure to pursue

his mathematical interests. In the year he began the training, his
mathematical output dropped but increased steadily during the

following years.
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ChaEter 1

References

1. Cayley's classification of papers in|[CP vol.1) compiled during
1887-8 was rudimentary. Under the broad headings of Geometry and
Analysis it contains over fifty sub-classifications of which more
than thirty contain only one paper. This type of classification

scheme exists for volumes 1 - 7 of the Collected Mathematical

Papers the portion which Cayley himself edited and for volumes 8 = 13
the portion edited by A.R.Forsyth after Cayley's death in 1895.
This classification shows the width of Cayley's interestg, An attempt

has been made to group Cayley's work in Appendix A.

2. The problem and Binet's solution is discussed in [Muir, 1906a,
vol.l, 123-130] .

3. In his([1853b, 1860d, 186le, 1888a and 1889d].Sylvester referred to
{1841a] as Cayley's 'juvenile paper'.

4., [1843a)was read to the Cambridge Philosophical Society. He was
elected to this Society in 1842. 1In 1845 he was elected to its
Council but rather strangely[1843a) is the only paper he read to the
Society in the period up to the time he went to Cambridge as
Sadleirian Professor in 1863.

5. In later years (after 1870) Cayley still maintained that
determinants were of the greatest importance. In conversation
with Felix Klein, he is reported to have said that had he to give
fifteen lectures on the whole of mathematics, he would devote one
of them to determinants [Klein, 1908a, 143] .

6. It may be in connection with cubic determinants that

Cayley had an idea of 'cubic matrices' when he casually referred in
his [1858a) to the idea of a matrix ' used in a more general sense.'
In [ Tvrda, 1971a, 347 ] reference is made to the possibility of
Cayley having an ideauoﬁhspatia; matrices but no reference is

made to cubic determinaﬁfs;
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7.  Sylyester called them commutants when he worked with them in
[ 1852a; sP1, 305] . They were the subject of a question of
priority between Cayﬂ.ey and Sylvester,

8. The name Pfaffian was given to these functions by Cayley.

The functions were discovered by Jacobi in connection with a method
due to J.F.Pfaff for solving differential equations [Muir, 1906a,
- yol.2, 268]

9. A later notation for Pfaffians was a triangular form:
l (>\|7. 1!‘5 ’)‘W- = )‘1 )\34.

)va.; 'Xuq- - )tl A‘Ub
:\1* +‘)m;123

This was developed by Muir[1882a] but this notation does not
appear to have been used by Cayley.

10. Sylvester mentions hyper-Pfaffians in [App.B, 30 viii 1861] .

11. [Boole,184la, 1 1 Boole introduced his work on the trans—
formation of homogeneous functions by linear substitutions by
referring to the work of Con;inental‘mathematicians and the work

of de Morgan on Analytical Geometry.

12. Cayley gives credit to Boole for inaugurating the theory in a
letter [ App.C, Boole, 15 iv 45] written at the time Cayley was
preparing hi's own papers. At a later date, Cayley waived any claim

to inaugurating the Theory of Invariants [Henrici, 1884a, 4] .

13. Boole suggested the term 'final derivative' in his (1843a)
whereas Cayley used 'determinant.’'

14. Boole brlefly returned to the SubJect later w1th h1$[1851a]and
(1851b] His initial (1840a)was followed by [1841a, 1841b and 18454

15. The letters- wrltten from Cayley to Boole .were presented to-
Trinity College, Cambrldge, after Cayley s death in 1895.
They had wvery 11ke1y~been returned to Cayley after Boole's death
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15 (continued)

"in 1864. The other half of the correspondence is not belieyed
to be extant. ( See. Appendix B for the fate of some letters
written to Cayley)

16.In Cayley's [ CP1, 584] added during the compilation of

the Collected Mathematical Papers he refers to his([1845b]as the paper
in which he first stated the general objectives of Invariant Theory.

However, it is in the second paper,[1846b]},in which the general

programme is stated most clearly.

17. Cayley's ([1843b; CP1,60] where he uses this notation to write
a homogeneous function of the second order.

18. This work is presented in [Cayley,1845f] . From his own

vantage point as a specialist in Elliptic Functions, Glaisher
{1895¢] judged Cayley's early work on Elliptic Functions

one of the most important English contributions to the theory of

doubly periodic products.

19. The other method referred to in his letter to Boole were

set out in his first paper on linear transformations and were

ad hoc methods; a method Cayley refers to at the end of his
(1845b] is obtained by observing that an invariant can be expressed
in terms of the symmetric functions of the roots of the equation
4 = 0 bué this method is special in that it can only be

applied ta binary forms. ‘

20. According to[Turnbull, 1926a) the second part of the nineteenth
century was the 'binary era' while in the early part of twentieth
century the accent was on forms of many variables, The study of
forms of three yariables spanned both these periods according to
Turnbull.

21. In the 1850s when organisation of results became more systematic,
attention was focussed .upom: ‘the parent form with the subsequent

attempt to find its system.

22. The full list of @nvarignﬁs and covariants for the binary quintic
is given'in - [Cayley, 1871a] .
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23. See [App. C, Boole, 21 x 44) for a comgunication to Boole on
this result. See also [Muir,1206a,y0l, 2, 381] for discussion
of technical details,

24, Since Cayley was frequently concerned with low order forms,
curves of low order, the solution of specific polynomials of low
degree, some invariants continually occur in his work., This is

the case for the invariants I, J.

25. In England, Peacock, ﬁoole,'de'ﬁo;gap and Gregory were all

active in the development of symbolic algebra. In [Koppelman,

1971a] it has been shown that these mathematicians were concerned
with the Calculus of Operations and it‘'is from the mathematics

vhich arises in this Calculus that the development of Abstract Algebra
is viewed. According te Koppelman, Boole considered non-commutative
operations as they naturally arose in his work on linear differential

equations with variable coefficients. Boole's work On a general

method of analysis won the Mathematical Medal of the Royal Society

and was published in 1844.

26. He considered them in connection with matrices whose entries are

themselves matrices. The generalisation

2 , b
¢, d

suggested [ App B, 19 xi 1857]. Determinants with entries in non-

= -‘i(&d-(- o\a—bcv-cd) ~was briefly

commutative systems were neglected in the nineteenth century.

Muir [1906a] mentions only William Spottiswoode and C.A.Joly.
Spottiswoode in 1876, investigated determinants whose elements were
alternate numbers.

Joly considered in 1896, low dimensional determinants with quaternion
entries. His definition is almost identical to Cayley's definition

and he did not significantly improve on Cayley's results.

27. They are often referred to as Cayley numbers but they were

discoyered independently by John T. Graves (1808-1870) in December
1843 shortly after Hamilton discovered the quaternions [CPl, 586] .
Graves was Examiner in Law and Jurisprudence at London University.

A friend of Hamilton, he was a member of the group interested in the
new algebraic systems,
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28. . Cayley was prasent at this meeting as were George Boole and
J.J.Sylyester. ' J.J,Sylyester had returned iyom'Ame;ica'in

1844.. He entered Inner Temple on 29 vii 1846 and was called to

the Bar on 22 xi 1850 but he did not practise as a barrister,

He was an actiye member of the Committee‘which.set up the Institute
of Actuaries and acted as an Acguary_himgelf between 19 xii 1844
and 12 v 1855 for the Equity Law Life Assur;nce Society
[collingwaod, 19662, 587 ] and [Archidald, 1936a,101) |,

The first letter in tye'éayley*Sylvester'Correspondence [ App.B)

is dated 24 =xi 1847, ‘

29; ' dayiey refefred to Rodrigues"paper on numerous occasions. He
regarded it as treating the entire theory of rotation (finite and
infinitesimal rotatiens) as well as the analytical theory of the
resultant axis [ 1862a, cpP4, 581] , See”[Gray, 1980a] for

commentary on Rodrigues' original paper.

30. The first chapters of Hamilton's Lectures on Quaternions were
virtually taken verbatim from his 1848 lectures but the latter
chapters contain material added after the lectures took place. The
lectures were held on the 21, 23, 26 and 28 of June 1848.
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‘Chapter 2
The legal profession -Quantics, Matrices and. the
Computational element (1850-1862)

2.1. Introduction

By the beginning of the 1850s Britain was fast becoming an
industrialised nation. This was no better symbolised than by the

1851 Exhibition, an event which set forth the country's leading
position in the world. The increasing use of technology and the

rapid improvement in communication brought by the spread of the

railway system increased the tempo of change begun in the previous
decade. Cayley pursued his mathematical interests against a background
of security and relative financial stability. He was called to the

Bar on 3rd May 1849 at the age of twenty seven.

By the time Cayley qualified as a barrister-at-law he had secured
a reputation as one of the country's outstanding mathematicians.
At the time of his election to a Fellowship of the Royal Society

in June 1852 at the age of thirty, he had published over a hundred
papers on mathematics.

A few years earlier he had met J.J.Sylvester and by the beginning

of the decade their mathematical partnership began to flourish.

They had similar mathematical interests and professionally both

had studied for the Bar at the same time. Sylvester did not

practise Law (though he was admitted to the Bar in 1850) preferring

to continue as an Actuary for the Equity and Law Life Assurance Society.
Cayley took up the Lawas a profession and acted as a Conveyancing

Barrister at Lincolns Inn.

During the early years of their partnership the foundations were

laid for much of their later work and the early part of this decade
is judged "(by Muir for example) to be one of their creative periods.
During the 1850s Cayley produced work which from a retrospective
viewpoint was ‘'ahead of its time.' This is especially the case

with his work on groups and matrices. However, the theory of

forms proved to be his central interest in algebra, and with

Sylvester, Cayley devoted much of his attention to this theory.
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Cayley's initial contributions to the Invariant Theory in the

1840s had been fragmentary. Joined by Sylvester at the beginning
of the 1850s Cayley's work on the subiect gathered momentum.
Mathematicians on the Continent, most notably Charles Hermite
(1822-1901), Francesco Brioschi (1824-1897) and Siegfried Aronhold
(1819-1884) made important discoveries [CP2, 598] . In

England and Ireland, Boole, William Spottiswoode (1825-1883) and
George Salmon (1819-1904) played a supporting role to the energetic

researches of Cayley and Sylvester.

Boole, who had encouraged Cayley in the earlier period, made his
final contributions in his [1851a] and [1851b}. Boole was primarily
interested in taking a 'connected view of the methods and the results
already obtained' [Boole, 1851a, 87]. 1In [185la] Boole gave

yet another method for calculating invariants. Boole's method was
simpler in chosen instances than the excessively cumbrous method

of 'hyperdeterminant derivation' but was not universally
applicable. He applied his method to the binary quintic and found
an invariant EB(GQ) of degree 8. But the method did not yield
a practical means for transforming equations of the fifth degree,
as he had previously hoped in his [1841b] .



2.2, Cayley, Sylvester and further determinantal generalisations

Sylvester, in his long paper On the Principles of the Calculus of

Forms [1852&] vividly surveyed the subject, proposed generalisatioms
and introduced terminology. But it was Cayley who provided the subject .
with a sound foundation in his much praised memoirs on quantics.
The first memoir was published in 1854 and the last in 1878.
These papers (to be discussed) represent the bulk of Cayley's
work in Invariant Theory. Like both Boole and Sylvester,

he was interested in a 'connected' view of the subject, and

in the first memoir proposed a new basis for it. Before the
memoirs on quantics are considered, Cayley's work in the Theory
of Invariants published prior to the introduction of his first
memoir [ 1854c] is considered. 1In this prelude there is occasion

to remark briefly on the Cayley-Sylvester partnership.

In the early 1850s Sylvester independently found methods for generating
invariants. Two of these methods were closely connected with

Cayley's own methods, though it is apparent that Sylvester came to

them from a different angle. In Cayley's [1845b)it was shown that

though the Theory was based on a system of partial differential

equations, invariants were actually found using 'cubic determinants.'

Sylvester found his own combinatorial method for generating
invariants and naturally his combinatorial method had something in

common with Cayley's ‘cubic determinant' method.

In the other more important method, Sylvester found that invariants
could be considered as solutions to partial differential equatioms.
In this he was anticipated by Cayley who found a new approach to
finding invariants of a binary form through two simple partial

differential equations.

Firstly, Syivés;er's‘coﬁbinatorial‘approach to the probiem of finding
invariants is conside}ed.‘lSylvester made many brilliant discoveries
in the theory of forms at the beglnn1ng of the decade. One such
discovery was in the reduction. of algebralc forms to canonlcal form
and it was in a prellmlnary paper on canonlcal forms that he

first referred to h1s dxscovery of a comblnatorlal method for

Ao b
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finding invariants. This he called 'a process of Compound
Permutation' [SP1, 185] .

At the time, Sylvester was working on a host of other problems, the
problem of canonical forms, the classification of the intersections
of conics and the Theory of Determinants. But the method of

compound permutation is promised:

I have succeeded using an umbral notation

in reducing to a mechanical method of compound
permutation the process for the discovery of
these memorable forms invented by Mr.Cayley,

and named by him hyperdeterminants, which have .
attracted the notice and just admiration of
analysts all over Europe, and which will remain
a perpetual memorial, as long as the name of
algebra survives, of the penetration and sagacity
of their author.

(sp1, 251]

After a few months, Sylvester published his work on the method

of compound permutation, but before this happened, Cayley published
his own thoughts on the method. The essence of Cayley's ideas

was contained in his {1843a] , but in his [1852a] the ideas were

extensively generalised.

Cayley's generalisations of the ordinary determinant made in the
preceding decade were brought together in one grand conception =
the Permutant. This idea, of astonishing generality, was prompted

by the theory of forms.

The basic expression was the simple permutant, for, as was shown
in [1852a] , a more general compound permutant could be written
as the sum of simple ﬁermutants in much the same way that the cubic
determinant could be written as the sum of ordinary determinants.
(Chap.1l, page 16). How permutants are derived from forms, Cayley
explained in the following way:

A FORM may be considered as composed of blanks

which are to be filled up by inserting in them

specialising characters, and a form the blanks

of which are so filled up becomes a symbol. We

may for brevity speak of the blanks of a symbol

in the sense of the blanks of the form from which

such symbol is derived. Suppose the characters
are 1, 2, 3, 4 ..., the symbol may always
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be represented in the first instance and without
reference to the nature of the form, by V

And it will be proper to consider the blan s

as having an invariable order to which reference
will implicitly be made; thus, in speaking of
the characters 2, 1, 3, 4... instead of as
before 1, 2, 4,.. [sic] the symbol will be Vzu*
1nstead of \ﬁ134 +.. When the form is
given we shall have an equation such as

‘7-34 PIZ®3R4 oy * Pn.PM..,. Xc

according to the particular nature of the form.

(evsd)

The aggregate of the symbols which correspond to every
possible arrangement of the characters, giving

to each symbol the s1gn of the arrangement,

[+ if the number of inversions of the characters

is even, = if the number of inversions is

0dd] may be termed a [ simple] Permutant

[1852a; cp2, 16]

As an example of a permutant( \415 ), where

\/113 = Cleh.C3

(VI'LS> = Lz Cy+ay L_; (o +a3\>‘ < -@L,c,_— q:_L@;" azklc‘

To indicate that some of the characters may be permuted between

themselves, Cayley suggested the 'spatial' notation for a permutant

( \JQ g Y. o >

vy [

where the connection with the cubic determinant is apparent.

By specialisation, the other known algebraic forms could be obtained

V-
.

from the Permutant:



(A) The blanks CPositions to be occupied by characters] of a
single set [Pfaffians] or of single sets [No name given]

are situated in more than one column
(B) The blanks of each single set are situated in the same column
[Intermutants, the earlier Hyperdeterminants ]

(C) The blanks of each single set form a separate column.

{ Commutants or cubic determinants]

The 'family tree' of Permutants [Muir 1906a, vol.2, 267] shows
their exceptionally general character when compared with

the lowly common determinant.

Permutants

(B) Intermutants

(A) Pfaffians (C) Commutants

“Ordinary determinant$:

s

The motivation for defining the permutant appears to.be an attempt in
designing a method for generating invariants in the same vein as the
earlier cubic determinant.

As has been remarked, Sylvester was at the same time thinking along

—‘6 0—
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similar lines with a view to its application to the Theory of
Invariants. This fact, coupled with the appearance of Cayley's

paper, caused Sylvester to claim priority.

In the delicate question of ownership of mathematical ideas
Sylvester felt that Cayley's discovery of the Permutant should

be qualified.: Even though Cayley and Sylvester worked in close
collaboration, the line had to be drawn when questions of priority

were at issue.

The subject was broached in a letter written to Cayleys

As you appealed to me on the subject, I must say

that I do not think that you are justified

in publishing your views on the Method (as applied

to Hyperdeterminants) of Compound Permutation of

Umbral elements founded on or suggested by my
communications to you on the subject which were meant
as confidential, until I have first published my own
account of the matter. It will then be right for you, to
p01nt out whatever part of the idea you may think is included
in your former printed papers and to suggest any
generalisations. As regards the principle of
restricted permutations, I was aware of & even as you
will see by my notes had enunciated the general notion
thereof. Indeed I believe you acknowledge your
inspirations on that point arose out of accidental
observations on my part = but I owe to you the first
simplified statement of its appllcatlon in a partlcular
case which however I repeat, it is quite certain from
its direction my researches had taken, I must in
algorithmizing the Permutant for the Hyphers of odd
degrees have necessarily arrived at.

To put out the method as your own and as only doing certain
improvements of nomenclature to my suggestion would not
I think be quite fair.

[App. B, 20 iii 1851}

‘Cayley's reputation for being consistently fair in these matters is
borne out by his reaction tt'Sylvesterfs letter. In an attempt

to apportion his friend's contribution correctly, Cayley added a
postscript to his paper on Permutants [1852&; CP2, 26 ] .

In this Cayley referred to his own earlier paper on Déterminants
Gauches [ 1848a] in which ﬁé mentibned a generalisation along the
lines of a permutant though the idea was not developed at that
stage [ 1848a; cP1, 411]

Sylvester discovered that the permﬁtation method was wider in

application than Cayley had at first thought.
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"Sylvester found that an invariant

2 1 3
ace +2bed-ad’-be -c¢
of the binary quartic could be written as one of his commutants

( cayley's ‘cubic determinant') , Cayley responded and
found that the discriminant of the binary cubic, the familiar

2 3 T2
d +4acd + 46d -3b°C ~babed
was not a commutant, but belonged higher up the permutant
'family tree' and was in fact an intermutant.

The importance of these determinant=-like entities formed by
permuting the suffices of symbols was that invariants could be
obtained from them in the same way that some invariants could

be written as ordinary determinants.

Evidently, Sylvester was not completely satisfied with Cayley's
postscript. In a paragraph of his[lSSZa]Sylvester wrote:

The commutants applied in the preceding theorems have

been called by me total commutants, because the total

of each line of umbrae is permuted in every possible

manner. If the lines be divided into segments, and

the permutation be local for each segment instead

of extending itself over the whole line, we then arrive

at the notion of partial commutants, to which I have also
(in concert with Mr. Cayley) given the distinctive name

of Intermutants. In order to find the invariants of
functions of odd degrees, the theory of total commutants
requires the process of commutation to be applied, not
immediately to the coefficients of the proposed

function, but to some derived concomitant form,

I became early sensible of this imperfection, and stated

to the friend above named, to whom I had previously

imparted my general method of total commutation, my
conviction of the existence of a qualified or restricted method
of permutation, whereby the invariants of the cubic function, for
instance, of two and of three letters would admit, without
the aid of a derived form, of being represented. Many
months ago, when I was engaged in this important research,
and had made some considerable steps towards the
representation of the invariant, that is, the discriminant
of the cubic function of x and y, under the form of a

single permutant, I was surprised by a note from the

friend above alluded to, announcing that he had succeeded

in fixing the form of the permutant of which I was

at that moment in search. It is with no intention of
complaining of this interference on the part of one to whose
example and conversation I feel so deeply indebted, (and the
undisputed author of the theory of Invariants,) that I may
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be permitted to say that, independent of the inter-
vention of this communication, I must inevitably have
succeeded in shaping my method so as to furnish the
form in question; and that with greater certainty,
after my theory of commutants had furnished me with
the precedent of permutable forms giving rise to

terms identical in value but affected with contrary
signs.

- [1852a; sr1, 317]

After a further printed note from Cayley the matter was dropped.
Sylvester frequently found himself involved in skirmishes in

the journals but the slight altercation with Cayley concerning
permutants was the exception rather than the rule. The importance
they both attached to priority was one reason for their seeking
publication at the first opportunity. Their partnership was not
a’'collaboration in the true sense. Sylvester, in particular, appeared
to require a firm arrangement, which made it clear how the rewards
of partnership were to be divided. A modern arrangement such as

a joint publication might have cleared some of the difficulties.
However, joint papers were not undertaken in the middle

of the nineteenth century, a period when 'individualism' was greatly
admired. Sylvester and Cayley were individualists and though

they helped each other and interchanged ideas, they really trod

their own mathematical paths,

If Sylvester were on the point of solying a problem, he might
even request Cayley not to send him material, for example:

Pray do not send me (if you find it before me) the
law of the development of

( a;) (1’)

as it will place me in an awkward position in publishing
my memoir, if I appear compelled to borrow so essential
a part of the inyestigation when I haye obtained the
solution which I consider myself on the [ true? ]
road to obtain before long.

I shall be del:.ghted to- [compare?] our respectWe
‘methods & give all due honour -~ & value

to yours alongside of my own. With many parts of the
subject claiming my attention at once it is of course
impossible for me not to require time for doing the
task which is’set before me and to delay the
consideration of some of them; add to this the
impediments arising from the cares of life and
busmess& not unfrequent fits of~ Dlsgust& tedlum
arising [ from] long intervals of 1nact1v1ty.

* [ App. B, 2 xii 1854]
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2.3. A new synthesis

In his[1845b] Cayley endorsed the 'partial differential equatioms'
as a basis for Invariant Theory by stating that 'In every case
it is from these equations that the form of the function W,
(an invariant) is to be investigated [ 1845b;CPI, 85 ]

\
Apart from this reference,Cayley made no further mention of partial
differential equations in the introductory papers and they did
not provide the main method for the production of invariants during the
1840s. The principal method was the 'hyperdeterminant derivative'
method as has been discussed previously. But it is a laborious method
to operate, although it is capable of producing both invariants
and covariants of algebraic forms | Elliott, 1964a, 107 1. cayley's
early work chiefly dealt with 'constant derivatives' (invariants)
although his use of this term showed he was aware of the more general
functions (covariants) with the invariantive property. However, his
original objectives for the infant Theory were so general that
they easily took into account the possibility of 'non-constant
derivatives.'

In the prelude to the Introductory Memoir on quantics [1854c].
Cayley reconsidered the basis of the Theory. What is perhaps

surprising was his intention to abandon the 'hyperdeterminant

derivative' method and introduce partial differential equations

as the basis for a new synthesis. The'new'discovery of this synthesis
he confided to his friend, Sylvester, in a letter (Plate1 ) dated
5th of December 1851:

Dear Sylvester,

Every Invariant satisfies the partial difffrentiall
equations

(aﬁ 4.25&24. 3c.£id+ ce néﬁ()u._.o

(bd +2cd +3dd . vnkd)Usfnsd

(s the degree of the Invariant) and of course the two
equations found by taklng the coeffs in a reverse
order. This will constitute the foundat1on of a new
theory of Invariants.

Believe me, yours very sincerely,
A. Cayley.

[ App.B, 5 xii 51]
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Plate 1: Letter [first page] from Cayley

to Sylvester on the partial differen-

tial operator method.{App B, 5 xii 1851]
Original held at St.Johns College,

Cambridge [ Sylvester Papers) .



He had found a method[1854c; CP2,225] akin to the partial
differential equations given in[1845b] but he did not
give these specific equations in his {1845b)or [1846b].

The pair of differential equations given in the letter are
not of equal status. The second equation:” merely expresses
the fact that an invariant of degree s for a binary form

of order n is of constant weight (weight of an invariant

is equal to .;__ns ) and is a consequence of Euler's theorem
on homogeneous functions.

The important equations for binary forms are the first equation

J yA d « e '\._d_ =
(CL ‘i]; + bljéi + :3C6Cl.+ é‘ﬂ‘:>(1. o)

and the equations formed by taking the coefficients in reverse

order

[

kd + 21 d +34d 4+ ...4nbd =
(a;t+ J& g e anbdUe0

The equations written above apply only to invariants. But both
Cayley and Sylvester were able to extend these considerations to
the notion of covariants. Here the corresponding equations for

a covariant W of a binary form are:

ad . 2bd 43 o4 nid —yd \iL=
(¢b+ dc+ Co%ol+ +n;dk %d.x.>u' O

kd +2id +3cd 4 ...4nbd _xd\y =
(d3+ ig +3i8 4 ... 4nbd xd:,)(,( 0

involving the variables of the ‘form ensure that‘a = Y
coyariant is reduced to zero by the 'generalised® operators.
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“In the new synthesis, the partial differential equations method
written above represented an advance in that they applied to
covariants where the earlier differential equations were only
capable of dealing with invariants [1854cj CP2,2257 .

What caused Cayley to abandon his earlier hyperdeterminant derivation
method? MacMahon merely remarked that Cayley 'had little fancy
for the hyperdeterminant derivation method, which, dropping
from his hands, was carried on with great results by the
mathematicians of Germany' [ MacMahon, 1896a, 7 ]‘.

But Cayley himself gave a small but useful clue in answering
this question. The feason goes back to his intention.of calculating
the invariants and covariants. In his (1854b], the paper where he
announced the new method, he noted that from the partial
differential equations 'one finds quite easily the covariants

by the method of undetermined coefficients' [ 1854b; CP2, 167] .
Cayley did not drop the 'hyperdeterminant derivation' method on a
suspicion of its theoretical weakness. He knew that it could

be made a proper basis for the theory when he remarked that

'the method (hyperdeterminant derivation) appears to be the
appropriate one for the treatment of the theory of the invariants
or covariants of any degree whatever' but he added a rider which
provided the clue for letting the derivational method fall into
abeyance 'the application of it becomes difficult when the degree
exceeds 4' [ 1858d ; CP2, 516-517 J‘.z ‘

Thus for Cayley, even though the 'hyperdeterminant method'was

theoretically able to produce all invariants and covariants of an

algebraic form, Cayley did not regard it as a proper basis

for the theory because of its inefficiency as a method of

calculation. The German mathematicians did use the derivational

method but not to calculate the expressions for invariants and

covariants in their full Cartesian form as did Cayley. They pursued

a more abstract method.

The partial differential equations

Though the differential equations obtained by Cayley and Sylvester
were similar it is interesting to note that they came to their
ideas through entirely different considerations., Cayley's thinking

is entirely algebraic (a retrospective explanation given while
completing the Collected Papers in 1889):
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I believe I actually arrived at the notion by the
simple remark, say that o9, +2b"3

operating upon ac-b* reduced it to
zero, and that the same operat1on performed

upon axt+ 2bxy ¢ Ctj

reduced it to Zawxy + ZL«J

which is . = 3? {axt +7.b‘x.j +c3}

L cp2, 6001

Sylvester's discovery of the differential equations seemed to

rely léss on a formal observation.- His reasoning commenced

with the original meaning of an invariant. He described the under-
lying idea as one of continuous or infinitesimal variation and

wrote:

Again suppose that C [a function of coefflclents of
x,4,2)] .

alters neither when x receives such infinitesimal

increment, y and z remaining constant, nor when

y and z separately receive corresponding increments

g, x and X, y in the respective cases remaining

constant ... C will remain constant for any

concurrent linear transformation of %, y £ when

the modulus is unity.

[1852a3 sP1, 326]

At the time Sylvester wrote these words he did not describe
them further as he was aware of Cayley's priority and wished

to allow his friend to state his results publicly.

Cayley dispatched his results to the editor of Crelle's Journal
on 23 February 1852 and they appeared:..in his [1854b]. The paper
contained as its essential result a statement of the fundamental
theorem: the necessary and sufficient condition for ¢

to be a covariant of a binary form is that it satisfies the

two partial differential equations. Céyley provided a proof

of it and outlined ltS usefulness in the Theory of Invarlants.

Sylvester's derlvatxon of the two part1a1 dxfferentzal equatlons,
unlike Cayley's formal observatlon, wasbased on the original

meaning of an 1nvar1ant.‘
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Letting
n n-! - ’ -1
= | - L " /I n
56 ax + nbx y + .in(n Nex Y+ + nb'xy +ay’

Sylvester made the substitution X+ey for x with
unchanged.

y

¢ is thus transformed to
(a+Aa)x™ + n(b+ M»)x“j :

-J-Jin(n-n)(u Ac)x™? yt+ . oL
_(_l>'+Al>’)x3“" + (a/+ Aa’) 'j"

Aa=0, Ab =ae ) Ac=2be+ ae",,..

Taylor's Theorem applied to a function

T(a,b,c,..., b a)

where

implies

AT = (.Aa%“{—ﬁbg.cw--)l

(X
+g(Pag robge )L

d  Bbd 4 ST4.. =
Pl (Bo g )Lk =0

which is identically zero for all values of e in the(calsej L

is an invariant LAI‘O for an invariant J .

L3 s t
The coefficients of €, e ,... are hence zero., In

particular the coefficient of € meant that:
ad L2bd +... YT =0
[ 1852a; sP1, 353)
and by considering the end coefficient: - BRI
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! '
(Qib'f-ZL%'-&-.... )I:o
{1852a; sp1, 355]

Sylvester's insight was explained in terms of two and three
variables and a general conclusion:

And in general for a function of m variables,

in partial differential equations similarly

constructed (but not however arbitrarily selected)

will be necessary and sufficient to determine

any invariant: and it is clear that all the

general properties of invariants must be contained

in and be capable of being educed out of such equations.

[ 1852a; spP1, 356)

Cayley emphasized the partial differential equations as the
foundation of the subject and noted that the earlier
'hyperdeterminant derivative' method of calculation was subsumed
under this new synthesis. Cayley did not dwell on the primitive
notion of the invariant as an 'unchanging function'after a linear
substitution of the variables of the algebraic form. Under the
new synthesis, invariants and covariants had a modern ring: they
were functions annihilated (to use Sylvestex's terminology)

by partial differential operators.

In the 'hyperdeterminant derivation' method covariants were

obtained by a process of differentiation. From the partial
differential equations, the covariants are in a sense integrals and
Cayley used this terminology  [1856a, 101; CP2, 250] .

With his customary enthusiasm, Sylvester later in life reflected

on the partial equation method as ‘'an engine that mightiest instrument
of research ever yet invented by the mind of man - a Partial
Differential Equation, to define and generate invariantive

forms.' [ 1886b; SP4, 294] .

The Introductory Memoir on Quantics [1854c]

e

Cayley's memoirs onjquaﬁtics were written between 1854 and 1878.
The first seven memoirs ‘appeared between 1854 and 1861 and the-
last three rather-later, 1867, .1871 and 1878. Even with the

completion of the series, Cayley continued work on:the subject up
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to the last years of his life.

The memoirs on quantics were from the outset so highly specialised
and technically difficult as to put them beyond the immediate
circle of those not fully involved with the research. This was the
view of J.T.Graves on being invited to referee the Introductory
memoir, noted its abstract character and the introdaction of

new terminology.

The opening paragraph to the first memoir indicated the intended

scope of the series:

The term Quantics3 is used to denote the entire subject
of rational and integral functions, and of the equations
and loci to which these give rise; the word "quantic"
is an adjective, meaning of such a degree, but may

be used substantively, the noun understood being

(unless the contrary appears by the context) functions;
so used the word admits of the plural "quantics".

[1854c; cp2, 221]

This introduction underlined Cayley's main purpose in writing
the series: to state afresh the Theory of Invariants and to

unify it under the 'new' principles.

In the first two memoirs, Cayley explained the foundations of the
subject and in this the calculus of differential operations

played a key role. The important result shown in the early

part of the memoir is that invariants and covariants by the
'hyperdeterminant derivative' method were invariants and covariants
with respect to the new method. This is shown by proving that

the earlier method of writing an invariant:

ATBYCT. WU, ...

is annihilated by the two differential operators, which in

print, Cayley wrote as
{=%} -
{y2d - wé
Before proving the result, Cayley establlshed properties of these

differential operators. In doing this he did not axiomatise

.properties of general operators but used the properties of the
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specific differential operators and techniques familiar to
practitioners of the Calculus of Operations. One such device
deserves special mention as it recurs fréquently in Cayley's
work. He still used it in his last papers, for example in
[1893a; CP13, 400] . This is the artifice whereby a symbol

was allowed to operate on only part of the operand.z'

Cayley's introduction to this technique in the particular case

of a linear function was:

In particular if P be a linear function
of Oa,?d, ..., we have to replace
Pby P +R » where B is the same

function of 9,9 , vae
that P is of 3., »,, ... and it is
therefore clear that we have in this
case

P.Q = PQ + P(Q)

where on the right-hand side in the
term PQ the differentiations da,dpyess
are considered as not in anywise
affecting the symbol ® , while in the
term P(®) these differentiations, or
what is the same thing, the operation
P, is considered to be performed
upon(R as operand.

{1854¢; cp2, 226]

In the symbolic equation

P.Q = PQ+ P(@)

the left hand side P.Q is the modern composition of
operators withQ operating first, followed by P . The first
term of the right hand side is the ordinary producﬁ of the two
operators multiplied as ordinary algebraic quﬁntities. The
term P(Q) is the result of applying the operator Pto &
where  is considered as an operand. This symbolic equation
was seen as a splitting of composition of two operators

into a commutative part and a non-commutative part.



By reversing the symbols F) and Gl to obtain
O.P=QP + QP)

Cayley obtained the key result

P.Q -Q.P = P(Q) -Q(P)

These considerations bring out an important feature of this work
on the Calculus of Differential Operations: the two roles played
by symbols used in the calculus. At this time Cayley was just
aware that a symbol of operation could be interpreted as an
operator or as an operand. The newness of the idea of allowing
an operator to operate on another operator (and how Cayley dealt
with it)3 is seen in his [1857d] :

A SYMBOL such as
A‘ax + B>7+""

where A , B de. contain the
variables x ,y ,&e. in respect to which
differentiations are to be performed,
partakes of the natures of an operand

and operator, and may be therefore called
an Operandator.

[18574; cp3, 242]

Having established some of the elementary properties of differential
operators, Cayley used these to establish the first important

result in the new synthesis for Invariant Theory. This asserted
that the 'hyperdeterminant derivation' method is subsumed under

the new synthesis. But Cayley did not show the two main methods

of obtaining invariants and covariants were equivalent.

The Introductory Memoir was completed with a postscript which

contained important implications for the later development of

the 'rheory:6
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POSTSCRIPT added October 7th, 1954 = I have,
since the preceding memoir was written, found
with respect to the covariants of a quantic

™

(*Ix) \l) )
that a function of any order and degree in the
coefficients satisfying the necessary condition

as to weight, and such that it is reduced to
zero by one of the operations

{xo} -%x3% | {ydq} -y

will of necessity be reduced to zero by the

other of the two operatiomns, i.e. it will be a
covariant; and I have been thereby led to the
discovery of the law for the number of asyzygetic
covariants of a given order and degree in

the coefficients.

[18s4c 3 cp2, 234]



2.4. Calculation of covariants and the finiteness question

In the problem of calculating the complete system for a binary quantic
only the simplest cases = the binary quadratic, cubic and quartic =

can be judged to be straightforward. In the case of the binary cubic

U= (a,b, e, dYx,9)

there is a single invariant

v/ (ad- be) — 4 (ac-b")(bd~c*)

¥

&d' - babed +4ac® + 4534 -3b%*
and two covariants:

H o= (ac-b)x+ (ad-be)xy + (bd-c)y

This is the 'Hessian' covariant and is obtained from the expression

(A

o)

U Ju

———

Xt Ixdy
.b'lu 2

dxdy 3\“

The other is:

@ = (cf' ol - ?mLc +2L3 ) a‘ai -1 act-i»lazc. , -ac.d+7. B‘d -Lc: - ac‘1’+3 Lcd -2 c’Xx ) tf)’

7 .
The Irreducible forms _'&L ) ‘7’ , }{ , §> constitute a complete

system for the binary cubic because every other covariant of the binary
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cubic is a rational and integral function of these four covariants.
Cayley was not only interested in calculating the complete set of
covariants but also in the covariants which could be formed from
the complete set. The product of any two covariants is a
covariant. So, for example,

Wy , o, W
- ’ 2
are covariants of degree 6 and order 6 formed from the complete
set. Cayley was interested in calculating the number of linearly
independent (asyzygetic) covariants which existed for each degree
and order. This question was complicated by the existence of -
linear dependences: between the covariants. For instance,

there is one linear dependency between
wv, *  H
2 2 3
Wv=2% +4H

which reduces the number of linearly independent covariants of degree 6

and order 6 to only two.

Although the general aims of the Theory were clear enough, they were
far too general to be successfully executed. Cayley's implicit

objective became more specific than the embracing objective in[1846bl,

The practical objective can be summed up in two parts:

(a) The determination of the complete system of irreducible coyariants

for a single quantic, the most important case being the simplest

- case: the binary quantic.

(b) 'To determine the dependences between covariants.

From (a) two subsidiary questions arose:

(i) Given a binary quantic of order n, what is the rule for stating
the number of linearly independent covariants of a prescribed

degree. and order?

(ii) 1Is the total number‘pf irreducible covariants of a complete system
finite?
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Answers to (i) and (ii) were given by Cayley in the Second Memoir
on Quantics [1856a] . In considering Cayley's work in the

calculation of covariants this paper is the most important.

(The Sixth Memoir ([1859a] is perhaps the best known because it contains
the application of the theory of quantics to Projective Geometry).
One referee for Cayley's [1856a] was G.G.Stokes who reported:

I had to devote many a long day's labour
to getting up on the subject generally
before I felt myself in a position at
all competent to take a broad view

of that wide untrodden field opened

up to us by the researches of Messrs.
Cayley, Sylvester, Spottiswoode and
Boole.

[Royal Society of London, RR.2. 45-46)

As is well known, Cayley gave an incorrect answer to the finiteness
question (ii). For binary quantics of certain degrees, he drew the
conclusion that the fundamental system of covariants was infinite.
But in the combinatorial question of ascertaining the number of
linearly independent covariants, Cayley was spectacularly
successful. For this law an important detail was left unproved,
but this omission did not prevent him from basing much of his

later work on its validity. It is this result which became

known as Cayle&'s Law and is half of the main theorem which formed

the centrepiece of his Second Memoir.

The main theorem

Cayley could hardly disguise his pleasure when he wrote to Sylvester
announcing his success in finding the Law, for as he had earlier
remarked, this was a 'problime qui a toujours bravé mes efforts'
[1854b3cP2, 167] :

Dear Sylvester,

Eureka. Let

C(a, b, o, XYY

be a quantic. I consider the coeffts a, b, c..
as being of the weights?
<in, l-in &e

and %, y df the weights % ,-é ; every covariant
is of the weight 0.
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Write. .

{*)7}
{Yax}

and let A be a rational and integral homogeneous
function of the coefficients of the weight —.’is )

n L'ba. + (n-1 >CDB + &c‘. =Y suppose

abb-i-g_bbc + 1. =X

[ The argument used by Cayley to prove this most
important theorem now follows. It is based on the
properties of the differential operators X and Y
defined above. In terms of modern theory A is a
characteristic vector though Cayley did not abstract
the concept of characteristic vector and pursue its
theoretical implications] .

Then it is easy to see that
(XY -YX)A=sAh

and substituting for A -
X3 .
XA XA Lsel e
which are of the weights

I-3s  2-4s &
we derive

(XY-YX)A=sA

(XY =YX YA =(s-2)YA

(XY =Y X)YA: (s-4YA & o
1t then XA =0 vehave XY A= 5sA, the second

equation becomes
XY'A=Y.XYA + (s-2)YA
sYA  + (s-2)YA [o vi=
XYA= sA
-~ XY'A= 2(s-DA

il

XY*8- (ser)s-6)

T
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6 =S,s+| g,c. gives
XY*'A= 0
XY™A = - (s+2).1 . Y*'A
X YA = - (s+3).2.Y52A
8e

Now suppose if possible
YA #0 e XYA#0
YA+ D |

-Consequently

and therefore

Y**A#0

and so on ad infinitum

[which]is absurd for YS’OA vhich is of
constant degree and of a continually increasing

weight must end with the term /Qe

vhere { is the last of the coeftS

a, by, ¢ +.. and e is the degree of A Hence

Y**A=0

and this once proved we have [see [1856a; C?2.254-256] for
complete details of the proof ] .

Theorem 1If A be of the weight —és and satisfy
the single equation XA=0 then a

covariant is
(AYALYA . Tox,y)

Suppose that A is of the degree e in the
coefficients and take for A  the most general form
of the degree o and weight -';—.S, or what is the

" same thing, reckoning the weights a, b, ¢ as 0, 1, 2 &c take

for A the most general form of the degree and

weight -'z- (no -.s) o



Then XA will be a form of the degree

. e and weight ';li (ne 'f_5> -1 :

and putting XA'—'—O " the.coefficients of A
satisfy a certain number of linear equations there
is no reason for'doubting that these equations are
independent - and if so The number of asyzygetic

covariants

S .
((a,b;C.. )GIX)Y> = No. of terms degree O weight.%-(ne-s)

less

No. of terms degre:e %] , Weight {';-.(ﬂe-S)"' l} [Sic]

which is I believe the law for the number of asyzygetic
covariants of a given order, and degree in the

coefficients,

[App. B, late 1854 - early 1855;
date estimated]

The importance of the theorem was two-fold. Not only did it
count the number of linearly independent covariants, but it also
provided a formula for finding these covariants. The formula
made it clear that a covariant was determined by its leading
term (later called a seminvariant ). It is the formula used by
Giyley to calculate his extensive Covariant Tables. That the
fomuia was used by Cayley and Sylvester in all their subsequent
work is confirmed by Sylvester in [ 1878h 9 SP3, 152] .

The practical aspect of Cayley's method is illustrated by two simple
examples associated with the binary cubic. In the 1850s Cayley
was concerned with finding the invariants and covariants of

low order forms so that these examples are by no means artificial

at this point in the history.



EXAMPLE 1
Consider Cayley's problem of finding the covariant of order
2 and degree 2 for the binary cubic [ 1854b; CP2, 169]

In Cayley's notation the cubic form is written

3
(a,b,c,dXx,y) (n=3)
and the form of the covariant as

(A,B,Cixﬁf

(order s =2, degree O = 2)

The weight of A is -'2-_ (nb -'S) = Z and henceA-must be
a linear combination of the elements QG , b*
(the only products of weight 2)

oL ac + F B

By operating on this 'trial solution' with

RS-

X = O.BB + Zl:'éc + 3edd

it follows that -o( = +ﬁ and A takes the form (to a
multiplicative factor)
- 2
A=a-b

Using the operator Y = Sbaa + 2 >L +dde
and evaluating YA and _L‘ Y’A the required covariant
is found; :

(A YA, LYA X ,y) = (ac-b ad-be, bd-cx,y)
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Example 1 shows how Cayley's algorithm can be used to evaluate
a covariant for any binary form. First, the leading term is
computed using the operator X and the remaining terms are

computed by the repeated application of Y.

In Example 2 to follow, the simpler problem of computing an
invariant is considered. This is a simpler task since there is
no need to employ the operator Y. Example 2 (again for the
binary cubic)illustrates the linear equations which Cayley
referred to in his letter when he said 'there is no reason

for doubting that these equations are independent.' That

'these equations' are in fact linearly independent was not proved

by Cayley.10

EXAMPLE 2

There is only one invariant of the binary cubic and this

is of degree 4., The parameters are h=3 : 8 =4 ,S= 0.

The weight of the invariant is _‘ir\e = _‘_ 34 = 6
: 2

As the weights of the coefficients a, b, ¢, d are respectively
0, 1, 2, 3, the terms of the required products correspond to the

partitions of 6 into four parts:

0+0+3+3 | dd
O+1+2+3 ai:col
0+2+2+2 | ac
T+1+1+3 | b'd
|+ 1s2+2 | b
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‘Thus the required invariant has the form

Lad + ﬁalzcd.+xax_3 Ff S+ ebet |

and the coefficients

A, B, ¥ ,8§ et £
are determined by operating on this ' trial solution'

by the annihilating operator:

X = ad, +2bd + 34

From this Cayley obtained his 'linearly independent' linear

equations:

b +f3
14435 |
3p 68 +1¢
' 3§ +4¢

i\

0
0
o)
0

W

By taking the value of °< to be unity, and solving

the equations, the required invariant
2d? - bobed + 4ac® + 4bd -35*

is obtained.

Arbogast's Rule

To produce systematicall& the 'trial solution' in readiness for the
application of the differential operator, Cayley made use of
Arbogast's Method of Derivations.!l 1Its value in the.Theory of
Invariaﬂts was as an algorithmic device from which combinations of
symbols of the correct weighé.could be quickly computed.

Using Arbogast's Rule, Cayley produced a table where the columns
(rea&ing from the left) contain elements of the same weight and
wherg:the columns are arranged (reading from left to right)

in ascending weights, See Table 1 for the binary cubic.
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How Arbogast's Rule is used mechanically to obtain the table is
explained by Cayley:

To derive any column from the one which immediately
precedes it, we operate on a letter by changing it
into its immediate successor in the alphabet, and we
must in each term operate on the last letter, and
also, when the last but one letter in the term is
the immediate antecessor in the alphabet of the
last letter (but in this case only), operate on the
last but one [different] letter. Thus a’c

gives @d but a'b* gives abe and a .

[1861a; CP4, 265] )

Counting Invariants and Covariants-—Cayley's Law

The actual counting of linearly independent asyzygetic invariants
proceeded from the main theorem by an application of the theory

of partitions. The part of the main theorem concerned with "counting'
is simply stated:

CAYLEY'S LAW

For a quantic of order n, the number!2 of asyzygetic
covariants of degree © and order s is

P(0,0,2,...,n) L (n6-9=P(0,1,2, . ..,nY (L (n6-5)-1)

where P(O,I,Z,..-n)eq, is the number of ways in which $
can be written as the sum of © or fewer terms with the
elements l,'Z,...l\ and each element occurring any number of
times in the sum [1856a; CP2, 265] .

Cayley's Law illust;.rates the combinatorial element in the problem
of computing the invariants and covariants and this problem
stimulated both Cayley and Sylvester to develop iaartition
formulae alongside their work in Invariant Theory.

An example illustrates the notation and the working of

Cayley's Law:



EXAMPLE

The actual partitions of 10 into 5 or fewer parts where the

numbers are restricted to 1,..., 7 are:

37 127 ey 1234 titie
46 | 36 1126 1332 1pies
55 I 45 113% 2224 11134
226 1V 4y 21233 L1114

23s 12125 112332

i 244 N R AR 4

334 111l

and the number of these 'restricted' partitions
' s
P(O,b.”,7)lo = 26
This calculation is used in an application of Cayley's Law (and which

s needed later) in which the parameters are N= 7,8 =5, 5=13 |

By Cayley's Law, the number of linearly independent covariants

of degree 5 and order 13 for a binary form of order 7 is:

?(o,x,...ﬂgtl — P(o,u,...,v)ﬂo = 30-26 =4

The Law was also used in an ingenious way to show the existence and
irreducibility of covariants. The technique used by Cayley to
discover the covariants and show that they were irreducible may be
understood with reference to the binary cubic. For instance, how
many covariants are there of degree 3 and order 3? By Cayley's Law
the number of linearly independent covariants of this degree and

order is

3 3
Plo,1,2,3) 3 — Plo,1,2,3)2 = 3-2

1]
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“Composite covariants (formed from products of irreducible
covariants already found) are not possible for this degree
and order (because sums of degree and order in products

must respectively equal 3, and 3) and therefore the single covariant
already found must be irreducible,

The formula for the number of covariants of a quantic

naturally led Cayley to consider Euler's generating functions.

As well as a means of calculation, generating functions provided
important clues to the existence of specific covariants and the
syzygies which exist between them. The generating functions used
in the 1850s were basic in comparison with the refined functioms
used in the 1870s. Their first application also led Cayley into
serious error in the answer he gave to the finiteness question.

In the expression:

pCo,,2,..., h)e q - P(o,1,2,... ,n)e(q’- 1)

~ . . 8., Y .
the first factor is given by the coefficient of Z7X in
| .
(=2 (1 —2(1-2x). .. (I—2%X)
. o i
The second factor by the coefficient of Z X in the same
=)
expression or equally the coefficient of 2 Xq'
in
X .
(=2Y(1=2x)(1-2%") ... (1-2X")
. [2) 1,
The number of covariants is therefore the coefficient of Z X

in

| =%
(=& 1=2x)(1-2X*) .. . (1=ZX")

Much of Ca?leyfs'wdrk in Invariant Theory dealt with methods of

expanding these generating functionms.
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‘The binary quintic

The covariant systems for the quantics of order less than five
were easily established. But the binary quantic of order five
(the quintic) presented a problem of a higher order of
difficulty. Many covariants were calculated for his{1856a]
but the quintic occupied much of Cayley's attention during the
following thirty years. '

By the beginning of the 1850s, Cayley knew of three invariants

for the quintic (of the degrees 4, 8,12) and he thought furthermore’

that the degrees of the invariants of the quintic were 'evenly even'.
This belief was dispelled when Hermite produced [1854a] an invariant

of degree 18, the famous skew invariant,

The 'step up' in the order of complexity with regard to the quintic
might have lulled Cayley into accepting a result for the quintic
which was out of line with the results for the lower order

forms.la

His conclusion for the quintic was that the fundamental
covariant system was infinite. The argument was based on

generating functions.

Cayley found that the number of irreducible covariants of degree
for the binary quintic was the coefficient of X

in the expression:

.
L4 x o x40 6xt 0%+ Db 10x T4 1268+ 10x3% Ix 2+ Ox" +-bx' >+ 4x 34 x 45+ X

U=x)(1=x*) (1=x5) (1=x")

The long expression for the numerator was then factorised into

' 1 12 s
(l+x)"(\-—x P2 e x e 2t 3T xC e ST x P 3x T 200 x 26T x e x ')

The first factor in this gﬁﬁréésion was replaced by
U =xJrC1=)r
and the second factor by the infinite product
(=) (=Y ) (= (=X)L X
Cayley then observed that the coefficient of R” could
?e made arbittéfiiyriérge aﬁ&ﬂﬁhéacondlusion he reached was that

'SZf



the number of irreducible covariants for the binary quintic was
infinite [1856a; CP2, 270].

From the letters which passed between Cayley and Sylvester at

the time it is apparent that they both experienced difficulty in
calculating the covariants for the quintic. But even believing
that there was no finite system for the quintic did not halt Cayley

in his programme of calculation. In the Second Memoir on Quantics

[1856a] thirteen distinct irreducible covariants of the quintic

were calculated.

In dealing with invariants(as distinect from covariants) of binary
forms, Cayley experienced similar difficulties on the finiteness

question:15

R.SCVOP.

Dear Sylvester,

Is there any reason a priori, why the number
of irreducible invariants of a quantic ( %Ix,\/)
should be finite. It is so we know for
m=2,3,4,5 & 6 = I know nothing about m=7

but the formulae I have obtained for m=8

seem to show that there are an infinite number
of irreducible invariants. The question

is merely this - Can there not be an infinite
number [0f] quantities I, rational functions
ofrn+l~e1ements and such that any I 1is an
irrational function of any (m-2) I'*

say of T, I, el

but so that" there is no finite number of I's

of which any other I whatever is a rational
function.

My results for m=8 are I must confess of

a very paradoxical form, I find that there

is one irreducible invariant of each of the
orders 2, 3, 4, 5, 6, 7, 8, 9, 10 one syzygetic
equation of each of the orders 16, 17, 18, 19
"one irreducible invariant of each of the orders
25, 26, 27, 28, & 29 which.is as far as I have
'carrled the development...

[App B, (1854/55] year estlmated]
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Plate 2: Letter [first page) from Cayley to Sylvester

speculating on the number of irreducible invariants.

[ App B, [October 1854]) Original held at St.Johns College,
Cambridge [Sylvester Papers ]

The letter is undated but is
likely to have been written between late 1854 and early 1855.



Covariant Tables

With the new synthesis for the theory Cayley did not delay in
carrying out the calculations. In his [1845b] some tables had been
given, but not in a systematic manner. In[1856a)] he began to list
his results for each binary quantic of order n=1,2,3,... His reasons
for choosing the specific invariants and covariants to exhibit

is indicative of his intention to catalogue. The choice is made

on simplicity of form based on the alphabetic notation but is
otherwise arbitrary:

the following considerations seem to me to furnish a

convenient rule for selection. Let the literal

parts of the terms which enter into the coefficients of

the highest power of x or leading coefficients be

represented by My, Mg, My,...

these quantities being arranged in the natural or

alphabetical order; the first in order of these

quantities M, which enters into the leading

coefficient of a particular covariant, may for shortness
\ be called the leading term of such covariant,...

f18s6a; cp2, 270]

The covariants chosen according to this principle were described

as being in their ‘best form'.

The covariants of the binary quintic calculated in the Second Memoir

were the covariants of degree less than or equal to five (plus an
invariant of degree 8). They are all of modest length as, for example,
the covariant of degree 5 and order 7 (see .Table 2. ) which would
have required Cayley to solve 15 linear equations in 16 variables in

order to obtain the leading term of the covariant.

In {1856b], Cayley computed an invariant of degree 12 and in{1858e]}

he included the table for the invariant of degree 18, the famous

skew invariant discovered earlier by Hermite. The massive calculations
necessary for the display of this invariant were carried out by the
Irish mathematician, George Salmon, and its presentation in [ 1889b:
CP2,299J took up five quarto pages.
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George Salmon, the third member of the 'Invariant Trinity' had
made his first contribution to Fwariant Theory with his

(1854a] . He took a particular interest in the calculation

of invariants and covariants. According to Thomas Archer Hirst
(1830 - 1892), the mathematician, and Cayley's close

friend, the calculatory part of Invariant Theory almost became
an end in itself for Salmon:

He [ Salmon] is a great calculator, fond

of calculating for its own sake. I do

not class him amongst the high mathema-
ticians however. The mere ready-reckoning
element is too prominent in him. I had
often noticed that his books although
excellent as a collection of theorems gave
no compact rounded view of the subject and this
defect was at once explained when I learnt
that he writes his books in a fragmentary
manner beginning to print before he had
concluded what shall be the precise

nature of the book. To my surprise,

I found he was not a great reader that
Cayley to him is just as difficult as to
the rest of us and that it is only on
those subjects upon which he has himself
worked that he can even read Cayley. He
is just beginning a book on Surfaces which
he is writing in his usual manner.

[App.C, Hirst Journal, August 1860 , 3, 15481
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aof et et et = ek Liaft et el L
abdf ... |abef ..la'cef = 3|aidef+ Tla*ef — 1|addf*+ 3|abef* ...|acef? ...

abé .. (akedf+ T{adf+12]a% —~ 6labef*= Tlabe*f = 3iacdf*~ T|ad’f? -2
alclf + 2 lake? =10} ude* = 9| ab®/*+ 1|abdef+26]ac’f? =12 ace’f + T|ade’f + 4
alcde = 5 a'dle+ 3|ablef + 3|abeef'—26|abe” —10 | acdef+ 18 adver+ T|aet -2
' + 3! abdf— T|abedf=18|abd’f+32|ac%ef =32 ace® + 6|ade’ - T|b'e

abief — 4 ' ab’e? + 10| abee® =18 | abde® = 8jacd’f+18 ad’f + 3|b%f*+10| bedf* + 5
ab’de + 3 abc}f = T !abdle+ 30| ac’df =18 acde® +53 | ad’?® =15 | b**f - 10| bee’f =5
abc®e + 5 |abede— 8lac’f — 3lac’e® + 6lade =30!8%f/+ 9|bctf2= 3|bdPef =5
abed? =T !abd® + 9|ac’de+ 45 |acd’e+52(63f? + 6 b%def+18|bedef + 8| bde® +5 I“ 9y
afd +1lacs +22|acd -39 |adt -39 |bef + 8800 ~27 bee” = 2| 3f? -3| 4™ Y
8 +21add?=19{8df = 6|b%f +19|0df = 6ibc%f -30|bd3f - 22| Sdef + T
blea =310%f + T 0% +27|8cdf =53|0%e* —20|bed’f =45 |bd® +19| ¢ + 2
B ~2 e + 2|0Ef +15]b%e® +20|bdf +45 | bede® + 87 def -9 edyf -1
b'etd + 8 | bic%e = 19| b%de — 8T | 5d% -25|bc%? +25|dd% ~12|c2d3f + 19| cd’e?® -8
bt =3 0% =11|8d® + 6[bcY +39|bed'e=52|c3df +39|cde? +11{d% +3
b3d +33 |8 + 12| bPde - 45 bd* e <~ Gled’e =33
¢ =125 + 5T {bed® +63|ctf +39 % =5T{L +12
cdd —=24|c'e o |Pde =63 )cd* +24
A -20(cdd +20

& 20 & 93 & 207 = 241 % 241 + 207 = 03 = 26

The ¥ number at the foot of each columm.is Cayley's check on the
correctness of the result. In the first columm, for instance,
the sum of the positive coefficients is 26, that of negative
coefficients is -26 and the sum is zero as it should be.

TABLE 2 {1856a;CP2, 275)

The covariant of degree 5 and order 7 for the binary form
(a2 b ¢ d e £ )(x, y)?, a covariant of modest length.
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Salmon as a member of the inner group of algebraists in England

did much to promote the work of Cayley and Sylvester by his prolific
production of text books on modern algebra (Invariant Theory)

and algebraic geometry, His work in calculation was highly valued
by Cayley as contributing to the eventual tabulation of covariants.
In the Third Memoir on quantics [1856b] Cayley's classification of
covariants continued. He calculated independent covariants for the
binary forms of order six (6 covariants), seven (2 covariants) eight
(8 covariants) nine (3 covariants) and twelve (3 covariants).

To a twentieth century mathematician the calculations seem relentless.
To Cayley and his colleagues the listing of results appeared to be
of greater importance than a carefully presented argument.

In the lower dimensional cases, the calculations of covariants (and
as well, groups, partition tables, symmetric functions etc)

were just within their grasp and they duly responded to the

possibility of actually seeing the invariants and covariants.

 There are two supportive elements missing in Cayley's mathematics
which are taken for granted by modern mathematicians. One is a fairly
secure and sophisticated theoretical framework and the other . ( which
perhaps would have interested Cayley and Salmon more) is the

availability of powerful computational aids.

For forms of three variables, even:those of low order, results were
more difficult to obtain. But through his experience of calculation
Cayley had acquired great facility in dealing with algebraic forms.
What would appear long and tedious to the modern mathematician was,
perhaps, not so difficult for Cayley. In regard to calculations

associated with forms of three variables, he wrote:

The actual effectuation of the transformations would,
it is almost needless to remark, be very laborious, but
the forms of the results are easily forseen, and the
results can then be verified by means of one or two
coefficients only.

[ 1861c; cpr4, 3357

With the close of the Seventh Memoir on quantics [18¢1c] there was still

much to do. A number of covariants of the quintic had been calculated
but few of the dependences between covariants were known. In the

succeeding case, the binary form of order six, few covariants had -

actually been calculated.



Cayley eventually produced complete tables for the binary quintic
and sextic but in doing so he relied on the theoretical results
of the German mathematicians. Of crucial importance was the
fundamental finiteness theorem of Gordan. This was published in
1868. Like Cayley, Gordan was interested in the calculation of

covariants but his results were given in the German 'symbolic

form.'



2.5. Applications to polynomial equations

Apart from its intrinsic appeal, Invariant Theory occupied a

central place in Cayley's mathematics because of its wide applicationms.
In the theory of algebraic equations !6 the calculations of

invariants and covariants was particularly relevant. During the

second half of the nineteenth century in England, the theory

of the algebraic equation was almost exclusively studied through

the Theory of Invariants. The invariants and covariants already
calculated could be utilised and this application provided a spur

for more calculation. This was especially the case with quintic
polynomial equation , one of the leading problems in the mid

century period.

Hermite had given the solution of the quintic equation in terms of
elliptic functions, but there were many questions remaining.
Questions which interested Cayley included finding criteria

for establishing the reality of the roots of the quintic and the
problem of finding special forms of the quintic which were
solvable by radicals.

Felix Klein discussed[1956a] two approaches to the subject of
polynomial equations. One was to transform the equation by a
polynomial transformation of the (n-1)th degree to make some

of the coefficients vanish ‘(Tschirnhausen's Transformation).
The other was the approach via the resolvent equation whose own
roots could be expressed as rational functions of roots of the

original polynomial equation.

Cayley adopted both these procedures and found that invariants ‘and
covariants could be made to play a leading role in both of them.
The tenor of the investigation is of course computational. Cayley

wvas especially active with this work during the period 1860-1862.
In the first apﬁroach,’béyley‘s application of Hermite's transforma-
tion ‘. *ufﬁﬂ'a"4 o R o . 1
Yy E(axb)B e (ax+3bx +200C
in the caseiqflghétéqﬁﬂq‘equatipn‘ﬁl . | |
e bt ex di0

suggests the method used.
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‘Cayley rewrote Hermite's transformation as

. (y—LB-ZcC) + x( —aB-3bC) + ¥*(-al) =0

_multiplied by x and reduced using the cubic equation to obtain

dC + X(‘1-LB1—CC,) + x*(-aB)=0

and repeating the process

4B b x(3cB +dC) + x(y+2B+0=0
“.Cayley wrote these three equations as
y-bB-2eC -aB-3bC —C L1,x,¥)=0
dC y -bB+cC -aB |
dB 3B +dC y+2bB+cC

[1861a; cp4, 378]

Since these three linear equations were required to possess a
non—-trivial solution, the determinant of the matrix must vanish.
This yielded the transformed equation:

‘\l3+ 3H~.1 + § =0

where H ) @ were the familiar covariants of the binary cubic
form (a, b, ¢, A)(8,C)3  [1861a ; CP4,379).

“Cayley continued by giying corresponding results (the coefficients

of the transformed eqqation<were geherally functions of covariants)
for the binary quartic and binary quintic. As to be.expected, the
calculations for the quintic were the most involved. 1In fac&, in
this case, Cayley supervised two nineteenth century computers (Messrs.
Davis and Otter) who were paid from a Government Grant Fund.



The second approach to the quintic equation was concerned with
formulating resolvent equations. At the beginning of the 1850s
Cayley was one of the few English mathematicians!? aware

that the insolubility of the quintic polynomial equation had been
established by Abel and Galois. George Peacock had been completely
unaware of the result at the time he published his [1845a][Kiernan,
1971a, 94] « Isaac Todhunter, publishing a textbook on the

Theory of Equations was aware of the result but showed a lack of

interest in the details: 'beyond equations of the fourth degree

the general algebraical solution of equations has not been carried,

and it appears cannot be carried! [ Todhunter, 1861a, 3].

In formulating the resolvent equation, Cayley found that its
coefficients were seminvariants. Following the work of J.Cockle
aﬁd R. Harley!® (the former had obtained a very simple expression
for a resolvent of the reduced quintic xs ~ax +b=0 ),

Cayley considered the general quintic. He obtained the sextic
resolvent: ‘

ploCg e B G a0

The coefficients C, E , F , G of this polynomial were
seminvariants. Cayley demonstrated the fundamental property of
the resolvent equation: that the roots X1, X2, ¥ ,Xa, Xs

of the general quintic could be expressed as rational

functions of the roots ¢!_ ¢z ¢3 ¢4 ¢~: ¢6

of the sextic resolvent:

¢. @, + ¢1 Ba + By ¢s (* Y x,, |)+

| Bbv by Btk = (kY xa, 1)
BE o Bp B - (KA xy, )

Bd o+ b + @ Bs [C3 5

Bty s bl + b = (Kl

4
The expression'sl,_‘(%:( X, 0 were known polynomials of the
fourth degree [i861a; CP4, 310] DT e reny

A
o o Coma L g Y
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After this work was- completed Cayley discovered that Jacobi had
published the result in 1835 [1861c; CP4,324).

. Seminvariants also arose in other Qquestions concerned with the
theory of equations. In the equation of squared differences, |

a construction which according to Cayley went back to Waring in

1763, the coefficients of the equation of differences were

identified as Seminvariants [ Cayley, 1860a]. The equation of
differences gave criteria for determining the reality of roots of the
cubic though for the quintic and higher polynomials the establishment
of this criteria proved a difficult problem. For the cubic, it is

relatively simple:

Let the cubic:
3
ax + 3bx* +3ex +d =0

L, B.¥

The equation whose roots are:

(d= PV, (B-¥Y, (¥=o)

is (the equation of squared differences):

have roots

afx* + 18 La'x" + BI&'x +27V=0

where 'g : ac-bt ) \4

h and V are seminvariants.
~ ~

discriminant of cubic. Both

As a corollary to this:

A= p (- (=01 21 ¢
o ot

‘ [ 1860a; cra, 2427
The criteria for the reality of the roots is therefore:

V >O ) ., Two imaginai‘); rodts_
v= 0 - - Two roots identical = -
‘7 <‘C) ieL - - .Distinct real roots .. .7 - -

pwoe -

1w - L . A LI . "
e 2l LT Sl - P . e - o8
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2.6. Matrices

In considering Cayley's work on matrieces, it is possible to discern
many connections with his other interests in algebra. Cayley
appears to use matrices as a notation for algebraic forms

but he was able to see comnections between their theory and

such diverse areas as the Theory of Groups and Hamilton's
quaternions., These connections would have convinced him that
matrices possessed a wider scope than a mere notational

advantage in treating bilinear forms. But the links which

Cayley mentioned as existing between different theories went
undeveloped. At the time Cayley was at one of his peaks of
production and many areas claimed his attention. A contributing
factor to Cayley's lack of interest in pursuing the Theory of
Matrices must have been their limited applicability to the Theory
of Invariants. Whereas determinants and functions like them were
useful in this Theory, matrices were inessential. By the late
1850s the Theory of Invariants had long dispensed with the need to
deal with linear transformations per se. During this period the
'new synthesis' for Invariant Theory caused the subject to be
approached through partial differential equations. But more

than this reason is the fact that one of Cayley's main concerns
in the Theory of Invariants was centred around the computational
problem of actually producing covariants. Matrices were
occasionally found useful but it was a limited use and their
existence did not ease the problem of producing covariants.

And even after his [1858a] Cayley frequently used the 'matrix'

in the old sense of simply delineating an array from which determinants

could be extracted.

It is likely that Cayley saw matrlces when applled to transformatlons
and bilinear forms as s1mp1y a condensed notation but not taking the
place of the full Cartesian expression of the transformation or
bilinear form., While he.regarded matrices when applied to trans=
formations as elegant .(as:in, for example [1880b] ), transformations
were most easily dealt with by.Cayley through linear equatioms.
Despite the few contributions by Cayley on matrices, he is remembered
today primarily on account of his contributions to their theory.

The reason for this lies in the subsequent importance of matrices
coupled with the historical fact that in [18583] he gave a clear

exposition of their basic prOpertles.
...38-.



In recent years, the history of matrices during the last century

has been extensively studied in a series of papers written by

Thomas Hawkins.!9 In Hawkins' reconstruction of Cayley's thought
[1877é]the importance of Cayley's {1858b] (the companion paper to his
better known Memoir on the Theory of Matrices [1858a])is emphasized.
According to Hawkins, the importance of [1858b) was that it contained
Cayley's motivation for introducing matrix symbolism. In[1858b]
Cayley introduced the symbolism for application in the 'Cayley-
Hermite' problem (To determine all linear substitutions of the

variables of a non singular quadratic form which leave the form

invariant ) . This problem has long been studied by Cayley, but

until [1858b] he had not treated it using the single letter

symbolism for matrices. In his [1977a] Hawkins concluded that 'Cayley
occupies a special place in the history of that theory (Matrices)

by virtue of his work relating to the Cayley-Hermite problem'

[ Hawkins, 1977a, 108] .

The intention here is to suggest a reason for Cayley being in a position
to introduce this symbolism 1in respect to the Cayley~Hermite

problem.

The 1858 Memoirs-prelude

Sylvester played —a“part in the eventual emergence of Cayley's{1858a)
and [1858b] As is well known, it was Sylvester who introduced the
word 'matrix' into mathematical language in 1850, but he

then meant an array of numbers from which determinants could be
formed. Cayley had earlier used the double‘bar(notation for the

same purpose in his early papers on determinants. _

Sylvester's concern was with determinants, as his consideration for

the multiplication rule for determinants shows.

‘A letter written in 1852 to Cayley by Sylvester shows a matrix being
multiplied by anothe;'ga;rix, It"is,Qui;g_natgraL for Sylvester
to be using row by row multiplication to obtain the resulting

matrix as’he was interested in determinants: , |

Ta -
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A consideration of the principle of your paper in the
Cam Journal 1841 ({184la] has led me to the following
agreeable extension of the common rule for the
multiplication of Determinants which extends also

to the Combination of Rectangular Matrices. The
example will suffice to make you see the Theorem.

_o b ¢ L g ¥

a b x o p 'S

ah L. C’I ’ &'I {gu X”
‘Ca, b, e X%, B,¥) 5.(a,b, e Xols 3, ¥')5(a,h, X7 85 ¥")
(a', bl X, B,¥) 3, bl e XL p %)
(d.”) V" c"xo{) {3/'3’); . e ;('a_‘v/‘,h, C/,X“/: P'; ry)

according to the Common Rule...

l4pp. B, 21 ix 52]

Writing in 1853, Sylvester made use of matrices in describing linear
substitutions. ' The matrix formed by the coefficients of substitution
arranged in regular order is called the Matrix of Substitution, and

is of course a square.' [ SP1L, 585] . Thus Sylvester was aware

that a matrix could be a convenient way of representing a linear
transformation. Sylvester also had a clear idea of the 'inverse matrix'
as the matrix of cofactors(but without division by the determinant

itself) but he did not consider the theory of matrices per se.

Hawkins has noted [1977a, 86] that the idea of using an array for
representing transformation was also realised by other mathematicians
at the time. It is likely that Cayley was referring to this theory of
matrices in 1853 at the time he submitted his[1854alon groups.

In his(1854a) Cayley made a,paséing reference to the Theory of
Matrices%o. It was Cayley who éventually presented ideas in a short
paper to the editor of Crelle's Journmal. This is the paper [ 1855a)
containing the frequently quoted remark that the Theory of Matrices
precedes the Theory of Determinants, by which Cayley meant that

matrices logically precede dgtermlnants in their order of development.21

v

. o . - B -
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The paper [ 1855a] outlined some of the elementary properties of

matrices (including the composition of matrices) and some of the

advantages of the new notation in applications. As to applicationms,
Cayley noted that matrices gave a convenient method for representing

linear equations and quadratic functioms.

lineo-linear (bi~linear) function
(oL € + By + ¥S5.. . )x

+(Lls + gl + 850y

+ ("5 + /8”;, + ¥15...) 2

¢ o . s, ® o -

For example, a

e o .

can be represented by

The special case of a quadratic form in three variables

ax + bx{" + CcZ" + kaq + 23x2 + 2fyz

would be written

or by ; ,
(a;b,c,hyg, £Xx,y,2)

a notation he introduced in hisﬁintroductory memoir on quantics
(1854c]
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After [1855a) the notation was used in a number of instances??. But
although he indicated a theory of matrices he persisted in using

the notation in different ways. (Even after his [1858a) the notation
was used as an array from which determinants can be formed).One way was
in a short paper [1857f] on a method in the theory of eliminationm.

This paper illustrates the difficulty other mathematicians experienced
with Cayley's preference for this notation and his liking for the
'homogeneous' notation.in denoting a polynomial.

1n[1857f£] which Cayley published on Bézout's method,23matrices as
notational devices were used purely as a static notation. Cayley's

o 4 o
observation on Bezout's eliminant was expressed as

(o, ... S0 ) (o, .. 500, W)= (A, oY) (a,. . L) =
Kx=- Ay

. @nayo >(x) Y)“-'V (k’f*)“-‘

ao' a|.l a’n-‘) t

Qojnet Qpynet + o Gpretyneg

a binary form of degree N-| of two sets of variables, .

A[1857f; Cp4, 3}%]
The editor of Cmlle [ Borcharef] fecognieed tﬁé»importence of the
result but because he considered the presentation-obseure,added a Note
which expressed the result 1n the ordrnary mathematlcal . language
of the day. 24 Thls Note was in terms of polynomials.written non-
homogeneously and' is made thhout the use of matrlces. After
some correspondence between the editor and Cayley on’ d1ff1cu1t1es over
the matrix notation [ App C, Borchardt, 20 lx 56] (whlch was :

submitted in Aprll 1855)lwas Jegweshed in- 1857. R X

- S et
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The 1858 Memoir [1858a]

Cayley's autput in the years 1857 and.1858 was prolific.zs

The principal result of his(1858a]is the celebrated Cayley-Hamilton
Theorem?6, a result which is both spectacular and surprising.

This was not only the view of Cayley on its discovery but also of
twentieth century mathematicians who succeeded in generalising it.
No doubt it was Cayley's discovery of this result which gave him
the impetus to publish his paper. 1In addition to thisTheorem,
(1858a] contains a formalisation of the properties of matrices and

an investigation of some of their properties.

There are two aspects of algebra in which Cayley is notably
expert. In the Theory of Invariants Cayley was interested both in the

calculation part of a theory and its formalisation. Central to

this formalisation. is the Calculus of Operations. In{1854alon group -
theory Cayley began with the notion of an operation , In the

Theory of Invariants the importance of differential operation is
implicit. In[1858a] the idea of an operation is present but it is more
difficult to detect. Cayley did not mention the 'Calculus of
Operations' explicitly. But George Boole provided a clue. '

He was one of the referees of(1858a] 1In his report (dated 29 iii 1858)
Boole saw Cayley's introduction of matrix algebra as a step in the

Calculus of Operations:

This memoir is an application of what has recently been
termed the Calculus of Operations, to a particular

branch of the Calculus of Functions. A matrix is a complex
symbol denoting the operation by which from any set of
quantities x, y, z, we form a set of linear functioms

of these quantities e.g.

ax+by+rcz  ax+bly+ca fc,

the number of such functions being in the class of
Matrices chiefly considered by the author, equal to the
number of the subject quantltles. As operatlons such as
the above may be performed in succession, as the
results to which they lead are capable of addition

and subtraction, as also,'here=as‘elsewhere;‘a direct
operatlon supposes the existence of a, .corresponding
inverse operation - the inquiry is suggested what are
the distinctive laws of this.class of ‘operations, and
to what special forms of Calculus, 1nc1uded under the
more general calculus of operations, they’ grve birth.
This inquiry forms the business of the memoir, and its
results are developed with clearness and ability.

In certain general features they resemble, and
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necessarily so, the results of all other special
developments of the Calculus of Operations and they
are certainly of an interesting character...

[Royal Society of London, RR. 3.55]

In the interpretation of a matrix as a 'complex symbol' Boole would
have taken note of Cayley's brief explanation of the meaning of the

matrix notation:

The notation

a E,,c _X_,‘f,_j) .
I r

a, b, c
] L} I

a', b, ¢

represents the set of linear functions

((G., ba CIX)YJ%)I (o"lb,/ C'IX,‘j‘i‘)'(&.”, UJ’C”IXJ‘L%))

so that calling these [functionS] (Y,Y,Z’) )

we have

G B)=(a b, ¢ Xx,4,2)
a' ) LI) !
aM) LI[) le
and, as remarkéﬁ above, thiédforﬁula ieads to most

of the fundamental notions of tbglthebry.

- [1858a, 18 cp2, 476]

It is not obyvious that Cayiéﬁ did reéarﬁ fhé ﬁéffix as Boole describes
but there is a striking similarity between this paper and his earlier
paper on group theory [1854a;:CP2,123] ..-In.this.Cayley.outlined
the principal properties of 'operations' and opened his[1854a)

with the following passage:
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LET B be a symbol of operation, which may, if we
please, have for its operand, not a single
quantity x, but a system (X,y,...) so that

B (x,y,..) =(x"¢" ..)

where X ‘j . are any functions whatever

of X,J it is not even necessary that
x 1 Yo should be the same inlnumber with
X, - In particular X 3 )

may represent a petmutatlon of X%,y,{.,

is in this case what is termed a Substltut1on,

and 1f, instead of a set X, 4., the operand

is a single quantity x, so that Bx = x' = fx,
is an ordinary functional symbol. It is

not necessary (even if this could be done) to

attach any meaning to a symbol such as O 52{

or to the symbol O.

[1854a; cp2, 1237

The multiplication of matrices was a direct consequence of the
'compound' operation, but the addition of matrices does not

follow so naturally.

The key remark in the quotation occurs at the part where he
discussed the corresponding operation 9‘:95 and

the parenthetical 'even if this could be done.' This is taken
to mean 'if it could be done in a particular example.' That
this is the most likely interpretation follows from a later
remark in the same paper in which Cayley made clear that
vhereas €2 ¢ cannot be satisfactorily explained in the
case O and ¢ each refer to a permutation operatiom,
it can be interpreted when © and 96 each involve
quarternion imaginaries in which . : s defined. Even

if the parenthetical remark means: ., 'if it could be done .
at all', his quoted remarks above show that Cayley was alert
to the possibility of add1ng symbols of operat1on.

Havxng formalised the Theory of Matrxces 1t is curzous that Cayley

did not develop it further. In a paper wrltten in the very same
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year of his[1858a] Cayley employed a notation due to Gabriel Lame'_
(1795-1870). This is a grid notation for representing the
transforming equations:

X = X, + FY, + YZ:
Y= L%, +pY, +Y'Z,
E - D(I'X, +/80\(" _’_)///Z,

from (X ) Y, %) to (X, ’ Y/ , Z/) (the passive interpretation

of a transformation) as

X/ Yl Z/
X | & p|Y

Y o(l {;I YI
Z <i” fg” ‘K*

[cayley, 1860c; CP3, 354]

The composition of transformation is also expressed in this grid
notation in{1860c) Cayley used Lamé's notation28 elsewhere

(as in[1862a]). This notation is found in [Lamé, 1859a, 4] a book
widely used by Cambridge mathematicians during the 1860s and 1870s.

The Oxford mathematician H.J.S.Smith (1826-1883) a pioneer in the
Theory of Numbers contributed.a paperLY186la]‘on.linear gqqa;ions to
the Philosophical Transactions of the Royal Society. - Smith's work was

written in the language of matrices and it is possible that he
read and was influenced byvCayleyfs pemoi: of a few yegrs.before.29
However, Smith did not adopt Cayley's notation preferring to write the

matrix with q rows and p columns as

S ;,gf lj’?;#“i;‘,ll’/%"ll B
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2.7. The. Return to Cambridge

During the 1850s and early 1860s Cayley .continued in his profession
as a conveyancing barrister and :pursued his prolific mathematical

publication. Cayley was one of the leaders of pure mathematies in

England.

A wvivid picture of Cayley was given by his close friend, T.A.Hirst.

Influenced by the interest in phrenology, Hirst wrote:

This evening (Friday Dec 23){1859] I called upon
.Cayley and we had a very interesting hour's talk on
Curves of the Third Order a propos of Mobius, on a

new method of his own for obtaining the equation of

the squares of the differences of the roots of the
quintic [1860a] and on my own subject of Derived

Curves of Double Curvature. I explained what I was
doing in which he expressed some interest. I was

a little amused and encouraged too by his asking me

for a definition of the rectifying plane. The great
geometer had forgotten it for the moment. What a
wonderful head he has not merely round but spheroidal
with the largest diameter parallel to his eyes, or
rather to the line joining his ears. He never sits
upright on his chair but with his posterior on the

very edge he leans one elbow on the seat of the chair
and throws the other arm over the back. Yet he is a
keen sighted and extraordinary man, gentle I think

by nature and at once timid, modest and reticent. Often
when he speaks he shuts his eyes and talks as if he were
reading from an unseen book, and talks well too that one
has to sharpen one's own wits to follow him.

L App. C, Hirst Journal,
23 xii 1859, 3, p. 1520]
Yet for this exceptionally gifted man there was no suitable
academic position available and at ome point he considered taking
private pupils [App.B, 15 ~i (1861]] .

According to Sharlin [1979a, 72]>emp;oyment prospects for
research scientists in general were bleak in:midxoentury
Britain. Most research was dohe outsideftﬁe Univetsities‘and
those already in teachlng posts and vhose maln xnterest was
primarily in teach;ng had little aptltude for research. ‘

On a few occasions 24 Cayley was tempted to obtaln employment

in a teaching 1nst1tut10n but W1thout success.‘ In" one attempt
to find a posxtlon more congen1a1 to h1s mathematlcal lnterests
than the daily rOund of legal problems at’ Llncolns Inn, Cayley's

name became linked with the 111fatedyWestern University of
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‘Great Britain at Gnoll College in the Vale of Neath in
Glamorganshire [Williams, 1966a, 32 ]

In 1857 the only University Institutions with University status

'in England and Wales were Oxford and Cambridge, Durham, Kings

College and University College in London, Owens College at

Manchester and Lampeter in Wales. The proposed Western University
was to be more adapted to the 'Wants of the Age' and Cayley

was to be one of the seven resident professors. The position had its
attractions,not least the generous salary of £500 per annum in
comparison with a salary of about £300 at one of the ancient
Universities.

In keeping with the philosophy of the proposed educational
venture, the practical aspects of Mathematics were to be stressed
and this aim to be attained by, for example, an intermediate
course in descriptive Geometry and Higher Calculus with such final
courses as Astronomical Observation and Trigonometrical

Surveying. It seemed that the curriculum was modelled on the

one which existed at the fcole Centrale in Paris. In the event
the College never went -further than the planning stage but in the
meantime the proponents of the idea made full use of Cayley's name
in advertisements which appeared in the Times and elsewhere. In
retrospect, Cayley would have done well to have heeded the advice
offered by Sylvester:

I am sorry to see the unprivileged use the Gnoll people
haye made of your name, I never thought well of the
scheme, I like it now much less than ever and most
earnestly trust & hope that you will not associate
yourself w1th 1t._ [App. B, 14 x 1857]

Despite these setbacks in hls career, Cayley continued his
mathematical work. There was plenty of 1nterest in London,and
Sylvester, when he gave hls Lectures on Comblnatorxal Theory at

Kings College in 1859 attracted'more than forty-llsteners.

The London Mathematlcal Soclety was not yet formed but‘mathemat1c1ans

who were members of the Royal Socxety found the;r meetlng place at

the Royal Socxety; Others umt rn the London Clubs.:

Sylvester was elected to the Athenaeum Club, a meeting place for

the Scientific and Literary, but Cayley appeared curiously reluctant.
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Sylvester tried to persuade him:

I wish (...) you might come among us; you would
thus meet all the people you would most likely to
wish to meet and know. Pity! that you are
obstinately bent on decllnlng a privilege that
many rich men would give £1,000 or £2,000 to
obtain or even more. You have only to Speak

the word and the Committee would bring you in
among the 9 Muses over the heads of about 1500
expectant candidates.

[App B, [18617],date estimated ]

In addition there were the informal meetings where mathematics was
actively discussed. Hirst's Journal provides a valuable record

of one of these meetings. The passage indicates the interest
Cayley and Sylvester maintained in the teaching of mathematics at

an elementary level:

On Monday evening I went to Woolwich to dine
with Sylvester. Cayley was there to meet me and
we had a very pleasant and very simple dinner.
Sylvester's researches on Commutants and the
Integration of Equations of finite Differences formed
the principal subject of conversation. Sylvester
was full of brilliant ideas. Cayley~pu11ed him in
incessantly to obtain greater precision for
Syivester lacks the power of placlng himself in his hearers
p031tlon and appreciating what it ls\necessary‘to explain
in order to bring them to his point of view. I
understood the matter but 1mperfect1y. On Elementary
mathematics both threw out ideas which I must find
time to examine, one by Sylyester was on the development
of cosn b and sihnd
in terms of powers of Sin® and t¢osd

. Cayley's suggestion had reference to
the theory of determinants which he would define as a
linear function of the elements in a row (or column)
which changes sign when any two rows are interchanged.
From this definition all properties might be easily
deduced.

| CApp. C, Hirst Journal, 9 xi 1861, 3,p.1593]
At Cambridge University in 1857 a new Statute was ‘epacted whereby
Lectureships. which had hitherto been funded by a Trust.
(Lady Sadleir Benefaction) were to be phased out and replaced
by the Sadleirian Chair of Pure Mathematics, When sufficient
funds were available an election for the Chair was called for
June 1863.. The other candidates for the Chair [C.U.L., Add 6580]
were all re31dent Cambrldge Dons. ‘Percival Frost, Isaac Todhunter
(1820-1884), N.M, Ferrers (1829 1903), and E.J.Routh (1831-1907).
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They were all well known teachers of mathematics but none of

them could match Cayley's research achievement.

After his initial disappointments in trying to obtain a post,
Cayley was at last successful and was elected to the Sadleirian
Chair on 10th June 1863. The specific duty of the Sadleirian

Professor was:

to explain and teach the principles of pure
mathematics and to apply himself to the
advancement of that science.



Chapter 2

References

1. The existence of this letter is remarked upon by Cayley
in the Notes [ CP2,6007 he made to the Collected Mathematical
Papers when they were being edited for publication in 1889.

The letter itself serves to underline his priority over

Sylvester who discovered similar differential equations and
published them before Cayley. Cayley dispatched his paper [1854b]

on the new developments to Crelle's Journmal on 23 ii 1852.

2. Cayley is speaking here of the degree of the covariant
(the degree of the coefficients) and not tﬁe parer;t quantic. In
particular, he is not saying that the method is difficult to apply
for a binary quintic and higher ordér forms. Cayley employed his
hyperdeterminant method computationally for invariants of degree
less than or equal to 4 in(1846B].

In his(1892a], Emory McClintock,commenting on the computation -of
covariants by Transvection,said that the computation of low degree
covariants of low order by 'transvection' is ' extremely
troublesome', Cayley dealt with the ‘'hyperdeterminant derivative'
method infrequently after he dropped it as a method for finding
invariants and coyariants. But it did not disappear altogether.
For example [Cayley, 1872c and 1892a].

3. ( Roy.Soc. London, RR. 2. 42-3] Graves thought the
introduction of the word 'Quantic' was unnecessary. Boole
thought "Quantic' was a bad notation being a Greek termination

to a Latin adjective "which expresses nothing." [ Letter Boole to
de Morgan, 3 i 1855, D.M.S.Watson Library, University College,

London ; I am grateful to My.G. Smith for this reference.]

4, Vestiges of this technique still suryive. The shifting
operator E(x) =x+h is required to have
the property E @ (x)= ¢ (x+ k) in some parts
of Numerical Analysis. De Morgan described this kind of ‘operation’
by saying that the symbol ;5 is diaphonous with

respect to the operator Eh. [Brock, 1967a 101] . Gregory
usedithis device to prove the Leibnitz formula for the nth’

derivative of a product of two functions.
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4

5.

(continued)

He wrote
é_ uv = (.Ql_ + _C_l: )uv
dx dx olx
and expanded this bracket using the binomial theorem.
The differential operator _d. is considered to act
on the function W only and the differential operator
_&C only on the function V [ Koppelman, 1971a, 193] .
C:yley found that the 'graphical notation' of tree diagrams

was a convenient notation for expressing the formulae analogous
to :
_P.a = PQ +PQ)

for the composition of n operators [1857d] .

The postscript said that if a function of the correct weight

is annihilated by one of these operators, it must be annihilated
by the other. The stipulation of 'correct weight' is necessary
as seen in the example of the quadratic function

ax"+2bxy + ey

The coefﬁcient: a (which is not of the correct weight) is
annihilated by the first of the operators O.B; + 2b2c

but not by the second operator C?b +2b%.

Cayley's postscript was his first intimation of the concept of a
seminvariant: a function of the coefficients of a form which
satisfies one of the differential equations but not necessarily

the other. Thus the coefficient a 1is a seminvariant for the
quadra_tiq. function ax* + beq + C\("

ngihvariant'funkc.t:iqns received some attention by mathematicians

in the late 1850s and early 1860s (Brioshi who called them
peninvariants). The Irish mathematician, Michael Roberts (1817-1882)
who cﬁlled‘the.m the source of a ;:ovariant, showed that a covariant of

a binary form could be uniquely obtained from a covariant and

- conversely. ~.He showed the - source of the product of two covariants

to be equal tqvthAe product of their sources and restated Cayley's

Theorem (see Chapter 2, p. 78) [Roberts, M. 186la] .
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6 (continued)

This meant that covariants of a binary quantic could be tabulated
by their seminvariants. This was later found useful in dealing with
the classification of covariants of binary forms of high

order.

7. A covariant is irreducible if it cannot be expressed, as a
rational and integral function of covariants of lower degree.

In the case of the binary cubic, éﬁ’ ' is an
irreducible covariant.

The covariants u, , \V4 , H ) @ are each

irreducible, and form a completé set (or basis) for the
binary cubic. '
For the cubic there are three 'really independent' coyariants

because one of LL,§7,¥%,§ can be expressed in terms of the others. For

= Jwv-4H3

(But ® is an irrational function of W,V,H) [1854c;cp2,233]

example:

8. This letter is undated but is likely to have been written late
in 1854 or early in 1855. The Second Memoir on Quantics [1856a]

was received for publication on 14 iv 55 and read 24 v. 55.

9. There are two conventions used by Cayley in connection with the

weight (pesanteur) of a covariant. In the notation adopted in Cayley's

letter n
(&:L) c, ... X—XJY)

denotes a binary quantic of order n

© s
and (Ao ,Au, e e, A,) (X,) a covariant of degree e and
orders.

Convention 1 The weights of the coefficients a, b, ¢,... are
=in , l-%zn , 2“'%&” ye

and the weights of x, y are taken to be T '%

then the weights of the individual terms of the covariants
are zero.

Convention II The weights of the coefficients a, b, ¢c,... are 0,1,2,...

°
’

and the weights of x, y are taken as 1, 0; then the general

term of the covariant has weight -‘i (“6 '*’5) .
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9 (continued)

. S
The first term of the covariant is of the form on
and hence (in Convention II) the individual term A

has weight -'i (nB-5s)

Cayley described Convention I as the most elegant way of expressing

the fact that a covariant has uniform weight in all its terms.

It is the convention he adopted in his early work and i§ the

first one described in the letter.

Convention II is the second convention in the letter and the one adopted

in(1856a] It was the Convention used throughout the series on quantics.
[1856a; cp2, 254]

10. A proof that the linear equations were indeed independent was
given by Sylvester in([1878a}at a time when doubts had been expressed
as to the validity of Cayley's Law.

11. L.F.A.Arbogast (1759-1803) was a pioneer in the Calculus of
Operations. He generalised Lagrange's approach to the Calculus,

the approach which placed the Calculus on an algebraic foundation,

in contrast to Cauchy's approach which introduced the limit concept.
The general approach to the differential calculus based on algebraic
considerations gained popularity in England through the Analytical
Society. Cayley was influenced by Arbogast's treatment of the calculus
as were other English mathematicians. A comparison of the two different
traditions in the Calculus is given in Grattan-Cuinness, Bw~it. Journa{
Hist. Science,12(1979) , §2- 8%

The rule of Arbogast which Cayley used in his 1856a is an algorithm

for producing the coefficient of X¥ from the coefficient of X"

in the expansion of -F(a.-!- bx + cxedi+ - ) . As remarked in
[Koppelman, 1971a, 161] this rule is highly combinatorial in character
and it is the combinatorial aspect which Cayley made use of in his
Theory of Invariants. He referred to Arbogast's Rule as the 'rule of
the last and last but one.' See Cayley's paper of 1869 [CP8,471) for
his explanation of Arbogast's Rule. See also [ Cayley, 1878f].

In his 188la Cayley still used this deyice in his search for
invariants.

For a history of Arbogast's Rule see ‘:Tanner, 1891a ] .
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12. In‘general the condition ></\ =0 gives
e
P(O)Daan)q,

. 8
linear equations in P (O y e V\)(Ct'- l) variables.
. ) -
These equations have P(O,...,n)%q - Plo,...,Mig-1)
linearly independent solutions if the equations are linearly
independent. Thus Cayley's Law for the number of 'asyzygetic'
invariants and covariants follows immediately if this assumption

is made.

13. This is stated in a letter to Sylvester YApp.B,1851/1852,
estimated date]

14, Cayley's conclusion that there was no finite complete system of
covariants for the quintic might have been expected by the early
practitioners in Invariant Theory. Turnbull [1941a]suggests that
these mathematicians recognised that the quintic was essentially

different from binary forms of lower order.

15. The letter (Plate 2) is undated but is likely to be late 1854 or
early 1855. Cayley knew that a binary quantic of order m has m-3
'really independent' invariants. Cayley concluded that there was

not a finite number of irreducible invariants forming a complete system
for binary quantics of order seven and eight [ 1856a; CP2, 2537 .

16. Cayley was uninterested in the numerical solutions of equations.
His computations were carried out in terms of the literal coefficients
were conc¢erned with the algebraic solution of equations, His results
were useless for the numerical calculation of the roots of equations
with numerical coefficients. Cayley's‘method of solution of the cubic
illustrates this:

The cubic was written homogeneously

W= (a, b, c,dXx,yY

From the invariant Vv and the covariants H and é
Cayley factored the fundamental relation

4W= L'V- §*
AW = (JT U= )T U+ 2)
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16 (continued)

The cubic root of each factor is therefore linear because** is a
covariant of order 2.

Hence the éxpression

N U+ §>J§ f (JTU-BY

is linear and it also vanishes if k‘. = 0. It must

be a factor of the cubic LL .

Letting

|

X U7u+§f
Y=(/JVu-2ay
X*+Y = (VU+ +UTu-3)=/su.

whereupon the cubic is completely factored into

JTU = (X+Y)X+eY) X+ YY)

3
where W =| .

w a complex root of unity.
[ 1858e ; cp2, 5421

17. Galois' papers on the theory of equations were eventually
published by Liouville in 1846 in volume IX of Liouville's Journal
[ Kiernan, 1971a, 99 ] . Cayley also published two papers in
volume IX of Liouville's Journal . Cayley had published a

paper in the same journal as early as 1844 and being known to the
French mathematicians was likely aware of the importance of Galois'

work at a very early stage.

When Cayley introduced his paper on the theory of groups [1854aJ
he explicitly referred to the.idea of a group as applied to permutations
or substitutions [ Kiernan, 1971a, 102] .
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18. Cockle and Harley were serious amateur mathematicians of the
Victorian period. They were both interested in the quintic and they
worked on the theory of this problem in the late 1850s and early
1860s in concert with Cayley. Cayley's[1861b], which crowned the
preﬁious fifteen years work of these mathematicians, was regarded

as one of Cayley's important papers [ MacMahon, 18%al .

Sir James Cockle (1819-1895) was almost an exact contemporary of
Cayley. His lowly position in the Tripos in 1841 did not stifle
his enthusiasm for mathematics and it became a life long interest.

He was called to the Bar in 1846 and made a career in the Law.

Robert Harley (1828-1910) was a self-taught mathematician and did
not attend University. A close friend of George Boole, he was a.
pioneer in the Temperance movement. He was elected to the Royal
Society in 1863,

19. See tHaWkins, 1972a, 1974a, 1975a, 1977a, 1977b 1.
In particular, see [1977a], an appraisal of Cayley's contribution
to the Theory of Matrices.

20. Cayley noted:

Again, in the theory of matrices, if I denote the
operation of inversion {taking the inverse]and

tr. that of transposition,( I do not stop to explain
the terms as the example may be passed over), we may
write

d=T  pzt, ¥Y-Ih-%.I
[1854a; cp2, 123]

21. The difference between matrices and determinants was not firmly
grasped by many mathematicians over a half a century later but Cayley
never missed an opportunity of stressing the distinction . One

instance was in an expository article on new terms in mathematics
[ 1860] :

Moreover, in a system of simple {linear] equationms,

if the coefficients arranged in the natural square

order are considered apart. by themselves, this leads

to the theory of matrices, a theory which indeed

might have preceded that of determinants; the matrix, is,
so to speak, the matter of a determinant.

f cr4, 594,my italics]
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22, Cayley contributed seven papers to volume 50 (1955) of Crelle's
Journal [ pages 277-289, 299-317] . Apart from [1855a ] which

introduced the notation, three other papers utilised it. These

papers were likely submitted at the same time. The last paper contains
a date of dispatch of 24 v 1854 . Subsequent to these papers but prior -
to the appearance of his [1858a] and [1858b1 , Cayley made sporadic
use of the matrix notation as a means of considering arrays of
coefficients. One of these papers [1857f] on Bézout's Method

of Elimination is briefly discussed in the text.

23. Apparently Cayley discovered this method of Elimination around
January 1853. Sylvester's reaction to the discovery is found in
(App.B, Jan 1853]. Its importance to Cayley and Sylvester

was as a process for finding covariants., It was called the

Quotient Method by Sylvester { SP1, 5531 .

24, This comment is made on the basis of an entry in Hirst's
Journal which recorded some discussion between Liouville and
T.A.Hirst. Hirst learnt from Liouville that 'Borchardt, the

editor of Crelle recognising the importance of the result obtained
by Cayley, appended a note to Cayley's memoir and succeeded

in reproducing the memoir in shorter space and in ordinary
language with a decided gain in clearmess.' [ App.C, Hirst Journal,
18 xi 1857, 3, 1327].

25, In the period 1857-1858 there was a surge in Cayley's mathematical
output ( Appendix A) . [18583] was received 10 xii 1857 and read

17 i 1858. In December 1857 alome, six other papers were received

by the Royal Society from Cayley and these were read in January

1858.

26. It is not clear why Cayley should have substituted a matrix into
the polynomial det( A -~ 21 ). Hamilton published his result some
years earlier in his Lectures. Perhaps Cayley remembered Hamilton's
conclusion. Cayley reviewed Lectures on Ouaternions [Stokes,

1907a, 386] and he attended Hamilton's lectures in Dublin

(see Chapter 1, p.48). Cayley refuted (in retrospect, 1894)

the notion that he gained the idea of a matrix from quaternions
[Knott, 1911a, 164] .
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27. The other referee was the Oxford mathematician, W.F.Donkin,
who in a short report,wrote that the paper contained ' a real

extension of the resources of symbolical reasoning.'

[ Royal Soc. of London, RR.3.57J

28. Cayley showed a definite interest in new notations. In connection

with substitutions (A) he used A
& B

[App B, 16 xiii 1860 ] . The composition of substitutions could then

be written’
‘AJ’EJ_-_[AJ
B |C C

Buccheim [1885a, 71] suggested this notation for matrix multiplication
attributing it to Cayley. '

Cayley's notation for the determinant formula for the inverse is an
interesting one:

1L (v WY avp
VWY WV v
1503‘7 ]5§J{7 .2%”‘7

(18s8a; cp2, 481)

is the partial derivative with

respect ta & and therefore b&V is the cofactor of a.
cofactor of a.

where, for instance, Ba_

In his (1858a) Cayley made . the distinction between the matrix A

(an array) and the symbol A as a single quantity.

He briefly used the
notation A for A

considered as a single quantity.
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29, Smith and Cayley were in communication by letter
(App.C, Smith, 13 i 1858] during the period June 1857 to
January 1858, when Cayley was preparing his Memoirs on

Matrices [1858a] and [1858b] . The correspondence

related to the transformation of quadratic forms as applie&

to the Theory of Numbers. As such it was concerned with

linear transformations but matrices were not utilised.

(see Cayley, [1857b]). Cayley recognised the importance of
Smith's work on systems of linear equations and congruences but
he did not appear to take up the subject himself [Royal Society
of London, RR. 4. 242 ].
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Chapter 3 Academic life - the middle years (1863-1881)

3.1. Introduction

Shortly after his election to the Sadleirian Chair, Cayley married

and settled down to a quiet life at Cambridge. The lecturing

duties were light and for years his custom was to give a single

course of lectures in the first term of each year.l Though pure
mathematics was dominant in the Mathematical Tripos and the application
of mathematics to physical problems played little part in the education
of undergraduates, pressures were gradually being exerted for the
inclusion of 'applicable mathematics' in the curriculum. Two leading
figures in this movement were James Clerk Maxwell and Sir William
Thomson. A morecritical voice was heard from the Astronomer Royal,
Sir George Biddell Airy (1801-1892). He mounted a campaign

inside the University for the teaching of mathematics which could be
applied to physical problems and entered into a sharp correspondence

with Cayley which stressed the importance of the proposed change.?

Elected in the 1860s, Cayley was one of the 'mew professors'

as distinct from an earlier breed with a more leisurely attitude

to their University Chairs. The old guard was under no obligétion

to teach, to influence education or to even live in the vicinity

of Cambridge. As a 'new professor', Cayley was required to both
teach and carry out research. The latter presented no difficulty

for Cayley but his classes attracted fe& students and he concentrated
his attention on research. His lectures embodied the results of

this work and being of an advanced character were of little use to the
average undergraduate. Students of the Victorian Age had their attention
focused on the 'paying work' of the Tripes and they turned to private

coaches for the appropriate training.>
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3.2. The foundations of Invariant Theory

The calculus which lay at the basis of the English approach

to the Theory of Invariants was the Calculus of Differential
Operations.# Cayley and Sylvester considered the foundations of this
calculus and collaborated in this work though it was Sylvester who
took the initiative and greater interest at this time.

Sylvester made few contributions to Invariant Theory between the

time of his(18544] and his professornal appointment at Baltimore in
1876.° One was his notable [1864a] and the others (to be discussed here)
were his [1866a] and [1867a].

The papers [1866a] and [1867a] were, in part, an attempt to place the
Calculus of Differential Operations on a proper footing. His
first step was to explain the meaning of an pperator5.

An algebraical function in the two sets of elements

( a ) L, C ) e ; -4— 2 é— ) d . o n>
- da ~ db ' de-
was an algebraic formula of the kind which arose in the Theory of

Invariants for instance, O._é_ + Zbi + 3c__d_ )
db de  dd

As a formula, Sylvester argued it was not an operator (he called it

an operant Or corpus ) . To Sylvester, an operator was more than
an algebraic formula., To make the distinction, he added a star
symbol &  to the 'corpus' to obtain the operator ¢*

(For example, X" could be converted tc; the operator x‘*ﬁ)

In his manner of speaking, the corpus was thus 'energised' and as

he later described the distinction:

I might have used the word vitalised

to convey the same idea, = the operator being

the operant endued with power of action, but none the

less capable of being acted upon, calling to mind

the relation between dead and living matter

o . Usylvester, 1867a; SP2, 608 f.n.]

The symbol ¢>“' ' was an operator which operated on all
that followed. The peculiarity of the symbol Q’*
from a modern standpoint is that it applied only to the symbols
a, b, ¢,... and not to the differential operations Ja , 24 ) }c, cee
In one of Sylvester's simple examples [ Sylvester 1866a; SP2, 568]
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where

the expression

yf*pf =(x_d_).¥.x_0_l_=xol ,¢/

dx dx

Mid century British mathematicians working- in the Calculus of
Operations allowed their operations to act on part of the operand
and in this respect, an operation differed from the modern functiom.
In the Calculus of Operations it was permissible in considering
the meaning of L M (X + \/) (L, M operations;

Xy ¥ operands) for L to refer to x only and M to y only.

Thus LM(x+y) = Lx+My
and LM(X‘{) Lk M\I

So, for instance, the operation i being understood, it was

permissible to write

M(X\/\'; XM\/

In the star notation, the 'composition' of two operators was written

* 1{"* . and compared to Cayley's earlier formulae’
Sylvester wrote:8

. PRk
Pk ¥

(Py)% + [Exp]k
(P A)x + [¥x g%

"

The symbol ¢"7[’ meant simply multiplications of functionms
( as ordinary quantities) while the symbol ¢"* Y’
meant the operator - -° ¢‘* acting on ’)L'

Sylvester developed formulae in [1866a] for the.éomposition of n
operators of the type: ‘
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E =2 (ad +2bd+-)
which he called an Extensor. While (1866a] was being printed,
Cayley realised that Sylvester's work applied to a wider class
of functions than originally thought. Cayley realised that
96; }b could be taken as bilinear forms in the

variables (a, by, ¢y...) and

d d . ...
(g A £5)

Sylvester was also thinking along similar lines:

I sit down at length to reply to your welcome
note to which I referred in mine of yesterday.
At_the very moment it came to hand, I was

intent upon generalising the theory of Extensors.
In fact the whole of that day and the day before,
struck with the fact of the theorems holding good
for

é— j%; ) aifi 4n!>ééL , ete.

(aléo“for O“SL* 2b g‘. L+l Sb' + 21 Sc',

as noticed in my paper sent to press) I had been
preparing to set to work to ascertain the full
extent of the generalisation when your note

came to hand - I have embodied its contents

with marks of quotation in a postscript

[ sylvester, 1866a;SP2, 571] to my paper in

the Phil Mag on the subject along with other

new and I think important matters. I have said
that "it occurred to you and myself independently
that the theory was capable of generalisation' -
which is conformable to the facts of the case (¢.e),”
I cannot find your equation (Cayley 1854b;

CP2, 164 ; Sylvester, 1867a; SP2, 609]

etE:& _ (et:r),‘e

in the memoir you referred me to; will you cite
for me the passage where it occurs or its
equivalent that I may[mention? ] {its?)
nomination in my paper for the Phil Mag?

I abandon the word Extensors and use Protractor
in its place. Then I can speak of a Protractant
as well as Protractor; also of Pertractants,
Pertractors for the generalised lineo-linear
forms in a, by, ¢, oo

go.,gb;gc

Universally there 'is an Algebraical analogous’
to the logical break of Subject, Copula,
[connecting word] Predicate viz. Operant-
Symbol of Operation—Operand. The operator.=
operant energised by addition of the symbol of
operation. i ¢ [App.B, 24 xi 1866] .

3

Tpedtrs ERRT N
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From the observation that certain differential operators commuted,
Sylvester was led to the theory of commutable matrices.?

On this he wrote to Cayley:

The theory of Polycephalous Pertradantive
systems implies that of Commutable Matrices.
Have you worked out the condition of
Commutability in your memoir on Matrices?
For binary matrices the general solution is

‘){“:# oLL+;«.§

where giving the outside multiplier
and A any values

all the matrices so formed are inter-
commutable. For ternary matrices an
interesting particular solution is

(] | y

n I

If you have determined the conditions of
Commutability I should desire to quote

your conclusions in my forthcoming Phil

Mag Paper. Query. Has not H.J.S.Smith treated
of this question. Does it not appear to you
that the theory of Matrices is absorbed in that
of Pertractors?; another interesting solution

of
doef T 5 e ¢
-9k k F .5
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where

=0

2 m
-
(o

— & 3

Have you stated anywhere the number of arbitrary
constants which enter into the solution’. of

M*M'=Mx M

/
P« ) M being two matrices each of the order i,
of which the former may be supposed given?

U App. B, 127 xi 1866 ]

The letter illustrates Sylvester's somewhat sketchy thoughts on
matrices. One point of interest is Sylvester's interpretation of

a matrix as an 'operation'. This view is reminiscent of Boole's
interpretation of Cayley's matrices which he gave as referee to Cayley's
{L1858a]. Sylvester considered the left hand matrix 'energised' and
becoming an operator. The right hand matrix was regarded as an operand
on which this operator acted.

In a reply to Sylvester, Cayley made a slight observation on the use

of matrices. Cayley made few applications of matrices to the Theory of
Invariants. In this application matrices were limited to their

use in providing a compact notation for bilinear epressions in the
Theory of Differential Operators:

In the case of two variablés, if

4 o
B= (ax+by) g + (ex +d»\)o_gl(§

then in the notation of . matrices , ,
l > .

he L a0 8),

P-,_' z{?: i}z(x'\” (5%; ) ﬁLﬂ)’
i en(d gy

}..

W
Lan

P I

. N o - - . . N S AN -
L L Ak T - N
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whence also

P;* Pz = Pz*Pl = é%::iiz(x'\”(dix ’ 0%‘-1>=3P3

which accords with your theorem,

E/#E,% = Ep%E % = B 4Bk + 3E,%

[ sylvester, 1866a sp2, 576

= [ cayley, 18664 CP7, 8 )

In Sylvester's second paper [1867a] he made a further generalisation
hoping to provide a '‘universal theorem for the multiplication of any
number of operators, energised functions of x, ¥y, Z,... Sx ; S , gg,. ..
freed from all restrictions as to the linearity of form in respect to

the latter set.' ([Sylvester,1867a; SP2,610)]

Here ¢l ) ¢7_ s e e e ¢.( were algebraic functions

of X, ¥» Zseesr ) Sx N 5\, Sz, ... But now Sylvester

?
introduced differential operators which act on the differentials

Sx ) 57 , gg, c. . ( but of course not on the symbols
Xy ¥» 2 ) . Thus , ,
| §x= 4 - d

Sylvester's generalisation involved the functions -

El

A / : 1 ’ ;" . '
Ai'i - gx"gx'-j + SY)‘: . S"N +‘_Si,€ . gi,j+ cry

. e

. .

/
where _gx, ¢« .and Ox,. . were restricted to act exclusively
1
(3 . . R '
Orie general result was:

Pk Pok By k- - ;é'«* -[ QZA:‘.\¢! B.¢.. B.]¥

Sylvester outlined his results [ App. B, 30 xi 1866 ] and in response

Cayley provided a proof of Sylvester's result.
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The proof, as one might expect, is written in the shorthand of one
familiar with the immediate problem.However, it is a proof which would
have satisfied Cayley as to the theorem's general truth.Cayley committed
to print many of his extempore writings without revision. If he had
intended to publish a proof himself, there is no reason to believe the

proof would have been any more complete than the thumb-nail sketch he

gave to Sylvester:

" Write. . §= S,, , 7 = S\‘
A = O (5,0)

namely, A , any function of degrees a, 0(; and so
. b B
- (xa“i) (g)’)) ) zC.,
Q o
and A\Z = (xn‘/i) (gt; 'h\, XC-,
but all suffixes are to be ultimately rejected. Then

(xzs 90; (s +§n,q+n~)P(X:,v ) (5+n)
eg " "(%2,42) (5»»') ) (xn‘h) (¥ '))ﬁ*
Bo Bu Alo* if AV §S§, + ’]g’h

B+ A%

n

U]

Similarly,
C¥Rx Ak = (x;l\,s)c@ +5, 45,_, N+, +v),_)x
CX-;_,‘*{-;.) (5 +fl,¥) + ’)l)p(xb"ll )Q(g) r))tl*
(14 5)85 1(n+0,)na
A.; +Dos ( ,73) (gi:')z) .......
= ng_ %2 Am*

- A +DNog +B
= e 2 b ‘°' CS?.Bu Ato, and so on

This seems the easiest proof of your general theorem."

[Sylvester, 1867a3 SP2, 611]
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The proof depended only on devices which were stock—in-trade to

mid century practitioners in the Calculus of Operatioms.

Cayley made use of the artifice whereby 3 was replaced by
¥ +%, and use was made of Maclaurin's expansion

D
for the symbolic form@ where D represented § ggu + '] S’]s

Sylvesfer's later generalisations gave rise to ponderous formulae.
Even Sylvester himself had doubts as to their validity but with
-characteristic optimism expressed the belief that 'even a wrong rule
is preferable to anarchy and confusién' [18673; SP2, 614n] .

Looking back it is now clear that what was needed, was not more

unwieldy formulae, but a more satisfactory basic calculus,



3.3. Quantics revisited

Since his arrival in Cambridge, Cayley had been attracted to Geometry
as his main research interest. He returned to quantics with the
preparation of the Eighth Memoir on quantics [ 1867a] , the previous
memoir in the series being [ 186lc J]. In the year following the publication

of the Eighth Memoir, K Gordan was to publish his famous theorem for binmary

quantics, a theorem which established a watershed in the theory of
algebraic forms. As Cayley delved further into the computational
problems associated with quantics the great problem of the syzygies
(or dependencies between covariants) became more apparent. As a
consequence, the work in[1867a]showed signs of becoming increasingly

more detailed. Writing six years after the preceding memoir in

the series Cayley resumed the central subject of the earlier

Second and Third memoirs = the binary quintic form. In these earlier
memoirs [ 18562, 1856b] all the covariants of degree five or less

for the quintic had been given. 1In preparing[1867a] he remarked that

'it was interesting to proceed one step further, viz. to the covariants
of degree 6'{1867a; CP6, 147] .

To this end he produced in{1867a} two covariants of degree 6; one of
order 2 and the other of order 4. To date Cayley's account for the
quintic showed a total of seventeen irreducible covariants given in
their full Cartesian form. But how long‘would he have continued these
calculations believing as he did that the quintic possessed no finite

set of irreducible covariants?

For the covariants of degree 6. though, there was a new phenomenon.
Whereas for covariants.of degree 5 there had only been one syzygy
connecting them, for the covariants of degree 6, there were no fewer

than seven such bonds (six of which were irreducible) :

(sic] E+.4C%+ A*D - - KBC

= 0. o (oEQer 18)

~6ACD -EF - 4RC+ A =0 _ (order 14)
AL +3DF - 2. ... =0 (order 12)
+81C+l2pfgb F\"Gr *' E.L = o , (o;:dgr 10) .

AK + 28T - 3DE. ?j . (,1"" o) (order 8)

AT +28H - - B3~ CG‘ 4D =0 (order 6)

and the reducible syzygy .

A{AT +8F —CE | =0 (order 16).
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The way Cayley would have proceeded in the absence of Gordan's theorem
is fairly clear. He would have calculated covariants of higher degrees
for the quintic and both found and counted the syzygies between them.

As it was, Gordan's result dictated the course of Cayley's laterwork and
this was acknowledged in his Ninth Memoir on quantiecs [1871a] .

This important result provides a convenient point for briefly comparing

Cayley's methods with those of the German algebraists.

Gordan's Theorem and the symbolic method

Paul Gordan (1837 = 1912) in his[1868a]proved a theorem which established
his mathematical reputation. The theorem demonstrated, through a
'symbolic method', that any binary quantic possessed a finite number of
irreducible covariants. In the case of the binary quintic and

binary sextic, Gordan computed the irreducible covariants using the
symbolic method. For the binary quintic he produced the 23 irreducible"
covariants and for the binary sextic he produced the 26 irreducible
covariants. This theorem is well known and at the time marked a real

advance in the Theory of Invariants.

But while Cayley fully acknowledged Gordan's achievement, in
[1871a] he expressed reservations. For several reasons, Gordan's

results were not fully satisfactory to Cayley.

The symbolic method

The two constituents of the 'symbolic method' were a symbolic notation
for writing algebraic forms and a method (transvection

= Ueberelnanderschlebung) for comblnlng two forms when written in
the symbolic notatxon.

Cayley had lightly ﬁ;ucth’bﬁrétwai of ﬁfiting‘é binary form similar to
the German method in his Introductory Memoir [1854a] but this was not

pursued. The method of transvection itself was one instance of Cayley s

more general theory of 'hyperdeterminant derivation' whlch he introduced
in hls[1846b}but'dropp§§i1n preference to the 'Partial differential

| equation' synthesiéiié*fhé.ISSOS.
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Cayley's notation for the binary quantic of order n was

Ca,b,c, ... )06

while in the symbolic notation it was denoted by

(0(| Xy + olzxx)n =

In this notation o(‘ , ola were umbrae (or'undetermined

quantities') and were used to represent the actual values

a, b, ¢,... However, they had no meaning when taken by themselves;

the umbrae o(\ , o(:. were only capable of interpretation
in terms of a, b, c, - when combined in expression of degree n.

This was done by comparing the expanded form of (a, b, c,... )(x,y)“ ,

with

(O(l Xy, + eZ:_X-,_)n

]

n-\| - .
O( '\ ncl”d‘ °(1.. X:‘ 'Xz.'* ‘e 4-0(:_ 3(.:‘

so that, for example:

n
0(| represented a

nel
J‘ d'l. o " b
vul

d’. 1" c

The product of letters a, b, ¢,... could be represented by the
product of umbrae but-the representatlon was not un1que ( For instance

ac and b2 were both represented by e(.n- o(,_ )

i ot
i -

The difficulty was avo1.ded by using dlfferent but equlvalent umbrae
-2
within products.- In this way ac was represented by o(' F" ﬁ

, Vjand b2 by “.'ol,_ (3'”(3; I TR

The notation gave a succinct way of representing invariants and covariants.
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EXAMPLE

In the case n = 2 (binary quadratic) where

z
aC represented by 4 { {S-a.

p
and L represented by ol lo(l {?IFL

Expanding the symbolic determinant written (o((%)

(o( )1. _ L oy Ao(z v b, LEpT
[g = /S, [iz = X /?;"2 40(:./3:/@7."’-1%
an expression which therefore represented 2 (ac - b2).

Invariants of binary forms were represented products of the kind (dﬁ)

while covariants additionally involved expressions o(,“-' oy X, + o2 Xa

Written in symbolic notation the complete set of covariants for

the binary cubic was:

% = ol; = (O(‘ X, plz_xz>3 (the ycy:ub>ic, degree 1)
v » :
= (0((3) le Fx (covariant of degree 2)
. - - |
é == (OLF) (dx)ﬁx sz f (covari}int of degree 3)

H

(olp) O(Y) FS (XS) (mvar:.ant of degree 4)

.The -Transvec tlon Process

This process was used by’ Gordan to generate covanants. It 'was a
speclal case of Cayley s’ 'hyperdetermmant derlvatwe method.
Cayley's derivation method was concerned with expressions of’ ”

‘ the form:



Ti-l-rg{! -2-'—37... ulu1u3.,,

A
in order to find 1nvar1ants where, for instance, |2
denoted the differential operator (f, Ne =~ fzf) )
(see Chapter 1, page 30).

— -

The definition of a transvectant was formal. The kth

e ™M g .
transvectant of X /.é* is the symbolic

expression:

ﬂk -k

(27, f) = (Ao g™,

However, the process of finding transvectants in general was not
purely formal. (Transvectants could not be obtained by mere
substitution in the case where binary quantics were not in the
simple forms o(?‘ ) {3? ) The actual formulae for finding the

kth transvectant is obtained from the following considerationms.

Using C.a‘yley's differentiation operator ( the operator |Z above)

Nn=2_ _2
Bx.'blj.,, BYzb"h

and the identity:

n-k M- k
e RY = (ol /s) dy [y
(n- k)' (m- k)‘
w ”m
the kth transvectant of o(x and . /3): could be written

’(n -k)! (mr:\k)' [_n_ oL /3,

n!

' Thls was identical (apart from the numer:.cal factor) to a special

case of Cayley's 'hyperdeterm:.nant process.'

'The irreducible invariants and covanants of the bmary cublc form

could each be obtamed by transvectlon. Co- :
- (u, u\ B (u,W=-8, (4,8.—v
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The theorem in Gordan's [1868a] singled out by Cayley as of the
greatest importance stated that: the covariants of a given degree n
can be obtained by transvection from the parent quantic f and a
covariant of degree (n-1).

Recalling that _\4 ) H.. P é - and v are respectively of degrees 1, 2,
3, and 4, the transvections for the binary cubic (given above)
illustrate this theorem.

Cayley used Gordan's results in completing his calculations for the
binary quintic. But Gordan's work did not remove the binary quantic
from the field of mathematical research. From Cayley's computational
standpoint especially, the problem was not 'solved' and even with
Gordan's Theorem progress was slow. Sylvester indicated the difficulty
of the computational problem when writing to Cayley on a different
matter:

But why should be expect to do this [to

enumerate single cyclodes, Sylvester, 1869a]

for all degrees seeing how limited our powers

of enumeration extend in the case of

Invariants which have been so long the

subject of study? (this consoling reflexion
has only just occurred to me)

[App.B, 21 vi 1869 ]

Cayley's Ninth Memoir

With the aid of Gordan's results, Cayley completed the tabulation
of the covariants of the quintic in the Ninth Memoir f1871a] .

He had reached a milestone in the Theory. Looking back to the
general objective of his [1846b]: 'To find all the derivatives
(invariants) of any number of functions.....' (Chapter 1, p.31) the
actual computed results seem fa1r1y meagre.

According to Sylvester, Cayley s concluszon ‘that the binary

quintic had an 1nf1n1te basxs of the qulntlc held up progress in
the Theory. It probably acted as' a brake on Cayley ] calculatlons
between 1861-1867 but 1n seek1ng reasons for slow progress ‘some
recognltlon of the problem s computatlonal complex1ty should be
made. The next problem to be tackled was to find the” syzygles
assoc1ated with the qu1nt1c and hxgher order blnary quantlcs. This
‘was to be an even more dlfflcult problem. Cayley ‘had recognised
its difficulty twenty-five years earlier as the question 'which
appears to present very great difficulties' [1846b;C§1, 95] .

~135-



But before he attempted these new computations he discussed the
underlying reason for'falsely concluding that the irreducible

covariants for the quintic were infinite in [1856a] .

In the case of the binary quintic he calculated that there were ten
composite covariants of degree 8 and order 14 with six linear
dependences existing between them. From this he argued that

only four (10-6) of the covariants were in fact linearly independent.
From Cayley's Law, the number of linearly independent covariants was

found to be five because

P(0,1,2,3,45% 13 - P(0,1,2,3,4,5) (2 =5
The conclusion reached was that a covariant existed which was not
reducible. Applying an argument of this kind to other covariants
it could be concluded that an infinite number of irreducible
covariants existed. As is well known, the six linear relations
between covarilants were themselves linearly dependent and in reality

equivalent to only five independent linear relatioms.

From this consideration it was clear that the 5 composite covariants
(=10-5) were accounted for by Cayley's Law and there was no irreducible
covariant of degree 8 and order 14, Irreducible covariants could

not be produced ad infinitum.

But Cayley's Law itself was based on the assumption of linear
independence, a fact which was overlooked at the time and Cayley did not
appear to have doubts as to its validity. Cayley's unawareness of the
complication of the linear relations between covariants themselves

being themselves linearly dependent (second order syzygies) was most
likely a consequence of his calculatory approach. Working through

from the simplest cases, calculating the covariants as he went,

Cayley was obviously only experienced with phenomena he had actually
encountered. By the time of the Eighth Memoir [1867a] he had not

reached the point where the problem of the second order syzygies had

shown itself. 1In the EightﬁlMemoir he had only calculated covariants

up to degree 6 for the binary quintic form. Cayley's gradualist
" approach withan empirical outlook did mot allow him to take

proper account of difficulties he had not encountered.

o



Pragmatism dictated that higher cases were like lower cases unless shown

otherwise.

Refined generating function methods

In the Ninth Memoir [1871a]) Cayley adopted a new point of departure in

the method of generating functions. In the approach adopted in the
1850s the basic Euler generating function had been primarily used for
counting invariants. In the Ninth Memoir, Cayley made a slight change
in the Euler generating function to obtain a refined generating
function. But this new approach foundered in the case of the binary

quintic form.

In the 1850s, the number of linearly independent covariants of degree
6
© and order S was obtained as the coefficient of Z x¥
(1, = .!:-_(ne-s) = weight ) in the ordinary Euler

generating function expression. In the case of the binary cubic:

| - x
(1=2)0-2x)0—-2%xX*)(1-2%%)

In his‘[1871a],Cayley changed the form of this generating function by a

|

simple transformation of the variables. Cayley replaced X by }'i

and z by 0~X3 to obtain the expression

= X"
(1 =ax?) (1= ax)(1- ax™)(I- ax™)

The drawback of this form was its awkwardness for purposes of

calculation and it gave no means of determining the complete system of
covariants [ Franklin, 1880a, 129] . It was called the Crude

form of the generating function. Cayley then observed

[ 1871a; CP7,339 Jthat this could be written in the form:

A&)-%Aﬁou

where
6.6

A= - 2

(1=ax®)(1= a*x*)(1=a2x)(1-a*)

A(x) was called the Numerical Generawting Function and when expressed

in least terms ( No common factors in numerator and denominator) it was
' - 137 -



called the Minimum Numerical Generating Functionlpayley,187la;CP7,33§L
A(x) involves only positive powers of x and is the only part

of the generating function relevant to the Theory of Invariants.

For example, the number of linearly independent covariants

of degree 6 and order s 1is the coefficient of q_exs

in A(x).

This approach was successful for the low order cases of a binary
quantic, but as already noted, it failed in the case of the binary
quintic. In this case, Cayley was unable to find an expression
for A(x) with a finite numerator [1971a; CP7,340] .
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3.4. The way ahead = the 1870s.

After the appearance of[1871a] Cayley appeared to lose some interest

in the Theory of Invariants. For a time, research associated with

the quintic was suspended and his attention appears to have been drawn

to geometrical questions. Sylvester's interest in Invariant Theory remained
dormant until his appointment at Johns Hopkins University in 1876.

After this date, both Cayley and Sylvester resumed Invariant Theory.

They were both primarily interested in calculation, but their work

on Gordan's Theorem and Cayley's Law continued to be of importance to them.

Reproving Gordan's Theorem

Cayley had presented a synopsis of Gordan's Theorem and its proof in his
[1871a], but, as he remarked then, the proof was a difficult ome to

understand:

I cannot but hope that a more simple
proof of Professor Gordan's theorem will be
obtained - a theorem the importance of which,
in reference to the whole theory of forms,

it is impossible to estimate too highly.

Lcayley, 1871a; CP7, 353] .

This caﬁ be taken as a resolution on Cayley's part to supply such a proof.

In the ensuing years neither he nor Sylvester gave up hope of supplying one
for Cayley believed a much simpler proof would eventually be found

[1871e, CP8, 566].1f Cayley and Sylvester could give a simple proof

based on their own principles of ordinary algebra it would vindicate their

own non-symbolic methods. -

The complexity of Gordan's proof was not the only barrier to Cayley's whole-
hearted acceptance of Gordan's method.Another obstacle was a consequence

of his-particular interest in calculating the invariants and covariants in
Ccartesian form.. The symbolic method did notﬂgive an.efficient algorithm

for the computation of covariants. Indeed Cayley éstimatedzthat.429
derivations were needed for the computation of the 23 covariants of the
binary quintic -[1871a; CP7, 353) . For higher order binary.forms the
number of derivations.needed was obviously much_greatér.;, -Because Cayley
was' absorbed in:.calculation,:the efficiency of the generating algorithm

was - paramount. As Gordan's method needed so many derivations in order
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to uncover the irreducible covariants, Cayley concluded that it was

not suitable as a basis for the Theory [1878a; CPrlo0, 378] .

There were other drawbacks. Long calculation would be needed in
passing from Gordan's symbolic covariants to Cayley's covariant
expressions. So much so, that from Cayley's viewpoint covariants
were better calculated de novo using the partial differential

equation method.

Even from Gordan's standpoint there was the difficulty of deciding
which generated covariants were in fact irreducible. There was no

a priori procedure of deciding this other than a detailed examination
of the covariants of each degree. In the case of the cubic, for

instance, the transvectants:

(w,uy | (u,mt, (u,d

were all found to be irreducible, yet the transvectants generated

alongside these

(u,3)" (3 &), (4,9

were reducible, being respectively

$H*  VH 2 VU

z_.. , - "=

The symbolic method was abstract. By using the transvectant process
many covariants could be generated, but if the irreducible complete set
were required (not just ;he\§§£a§1ishﬁent of finiteness), the reducible
covariants had to be identified and discarded. In this way, the
irreducible set off?@&agiapééiﬁas obtained by 'narrowing down' the
totality of covariantSAgenErated. If reducible covariants were

not identified, the German method would over-estimate the number

. of irreducible covariants.. This procedure is very different from

Cayley's where each covariant was tested for irreducibility as

-

it was constructed.. ' The success of Cayley's method depended on
ST REEEE , 4 P

being fortunate enough ‘to find the irreducible covariants. Thus

Cayley was liabléft;”ﬁﬁdéfésfiﬁaﬁé thevnuﬁbér'df irredﬁciblei

*

covariants. e T ST

< NI
R o
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The two approaches were complementary for if the German upper bound
coincided with the English lower bound then it was likely that the
correct result had been obtained. Through the different approaches, a
friendly rivalry grew up between the two schools. A focal point for

this rivalry was Gordan's Theorem itself. Sylvester on occasions became
preoccupied with a desire to give a non symbolic proof of Gordan's
theorem. In this he was joined by Cayley but only after Cayley had
produced his Tenth and final memoir on quantics [1878a] .

Sylvester keenly felt the nationalistic rivalry which existed between the

German and the English invariant theorists. - In a letter to

William Spottiswoode he wrote: !0

The verification for the form of the generating
function of the 8¢ has been the result of
several hours hard work - The piratical

Germans, Clebsch & Gordan who have so unscrupulously
done their best to rob us English of all the
credit belonging to the discoveries made in the
New Algebra will now suffer it is to be hoped
the due Nemesis of their misdeeds. Nothing

in Clebsch & Gordan is really new but their
cumbrous method of limiting (not determining)
the Invariants of any given form. This last

of their work is now I think destined to be
blotted out of existence.

Amid the interminable calculations involved with the generating functioms,
Sylvester is ever loyal to his and Cayley's method of partial differential
operators and enumeration by generating functions. In a letter written

a few days later (again to William Spottiswoode) he summarized a plan;!!

I believe to reduce (this subject (New Algebra)

= Invariants) to Annihilation all that the school
of Clebsch and Gordan by aid of method borrowed
by the Germans without acknowledgement from Cayley
& myself, have attempted in this subject. .Their
symbolical method is nothing but Cthel method of
Hyperdeterminants in disguise...

A little later in a letter to Cayley,”Sylvester pointed out the weakness
of the German abstract method:

S

Gordan writes to me that he has proved their
CTables of Grundformen published in Clebsch]
correctness = but the proof has never been
produced - he says that any a priori proof by
his method is not to be looked for = I mean a
proof that the supposed grundformen being
actually indecomposable. [ App.B, 9 v 1877]

=141 =



f-’” . . [ U./ /f‘// C'/u/‘(//hlflw 1,},.// //
f\’/‘.L 4/ J“,'\/}77
; I ~

,'/ “.(‘71 l-(f) U} - {1 tH‘t‘//l ll/ 71,,'4 /.

I

|ty ity it o o

x\/ i )*C] P /A‘ PP, //“ é’). /{,(, (/)‘“(L

93 . m/xm, oot oo
w \I Qr«- I 7 Ilv(/{l/(_( {1_ /. /_’c

[

E(‘Zl‘(”"/c(f' /¢ ‘-"ﬁ ’/) /

4 0{'4 .2 ~tn Al
t§'Z’///§.- 4 va /_/fl. . 1‘&"’" - oo OFeremr L
ZE(L;\ )

R N

’ H i?%z ;A_ ,(__, (_. ’—?
\'EE low ¢ 6,6, @) (",'\
///(/’/‘-/ "‘"
?ﬁuﬂéup( o a))
ol il Lo

\;{ ______/ ZJIJ/ [ Ty /tr- Vo4 }KU[{%
.L'\/'v ,/1 /)nq,,/( T4 /7//11%.

4

/ A
\.-/l’;{’;—] /Ln“/'bﬁ—// < "J’w""‘* 4o LAYy .

T RV R B T e

Plate 3: Letter from Sylvester to Cayley on Gordan's

Theorem. [ App B, 20 xii 1877) . Original held at
St.Johns College, Cambridge [ Sylvester Papers]



Both Cayley and Sylvester avoided the use of elaborate methods. It was
in this vein that Sylvester attacked Gordan's theorem. If he could make’
the 'right' observation, Gordan's theorem could be proved without

an elaborate theoretical calculus. On more than one occasion he

thought he had succeeded. For example, in 1877 he wrote to Cayley:

Since I wrote yesterday my ideas on the
proof of Gordan's theorem have assumed
a more precise form and what was surrounded
by a sort of haze or nimbus is now perfectly
clear and well defined so that I hope in the
course of this very day to draw out my proof.

TApp.B, 21 xii 1877]

The German symbolic method, despite its spectacular success in solving

the finiteness question for binary quantics was ignored‘in the.English
journals [ Osgood, 1892a, 251] . Cayley showed more interest than
Sylvester in the symbolic calculus and of course recognised its importance.
But although he showed the relationship between covariants in the Cartesian
notation and in the compact German notation [1871a] the advantages

were not sufficient to persuade him to forsake his own methods.

Cayley's Law

This Law which lay at the base of Cayley's method was not completely
proved until Sylvester gave his proof in (1877a]. To Cayley and Sylvester,
and their direct'methods,the Law was crucial but the result seems to have
been ignored by the German mathematicians {:Sylvester; 1881b; SP3, 524]
The correctness of Cayley's Law depended on the independence of the
linear equations derived from the 'annihilation' NI=0
where L represented Cayley's linear partial differential operator.
Cayley believed these equations were independent as 'there is no reason for
doubting that these equatiohe ere ipdependent'”(Chap 2, p. 79) .
Sylvester also held the equations to be independent not by any proof but
by 'extrinsic evidence':irn.r

_the extrinsic evidence in support of the

”lndependence of the equations which had
- been meugned [Cayley s Law had been called

into question by Faa de Bruno] rendered it to

my mind as certain as any fact in nature could

be, but.that to reduce it to an exact demonstra-

~ tion ,transcended, I thought, the powers. of the .
human” understandlng [Sylvester 1878a, SP3, 112]

Xr’.“ .

Sylvester was exhllarated at flndlng a proof A letter to

Cayley referred to the discovery:
- 142 -



I have been fortunate enough in the last day or
two to discover a rigorous proof of the theorem
that the number of linearly independent
differentiants (i.e. functions D which satisfy
the equation

(0§, +2b8.+ 3cS4+--- ID=0)

is equal to and cannot be greater than the difference
between the two well known denumerants - in other
words the Independence of the Equations given by
your fundamental theorem in the second Memoir on
Quantics.

The independence only comes in as an inference -
I disprove the possibility of the number being
greater than the difference of the Denumerants by
a wonderfully beau%%ful method and have sent the
proof to Borchardt for insertion in his
Journal— [App.B, 6 xi 1877]

This was one of Sylvester's.great triumphs and a result of some importance.

cayley's Law had been relied on for twenty years but it was Sylvester's

proof which eventually established it. Sylvester's strategy for proof
t1878a] has a modern ring; by assuming a certain set of forms linearly

dependent, he deduced a contradiction.

It is possible that Sylvester's. enthusiastic letters from America made
little impression on Cayley even allowing for a natural interest in such a

proof. Replying to Sylvester's letters, Cayley wrote:

I have to thank you very much for several

letters, tho' to be candid I have not been able to
put myself sufficiently into your covariant

theory to follow them in any satisfactory manner.

I am always looking forward to the complete memoir
which you are to write on the subject — and I am a
little disappointed to find from the contents of
your Journal that you throw off with only Notes on the
subject (...) I hardly know what Mathematics I have
been doing - Certainly not much — & I have been
hindered from looking at my paper on the covariants
of a quintic- [ App.B, 7 ii 18787,

The binary quintic and higher order forms

The reason for Cayley's’lapse of interest in Invariant Theory after the
publication of his Ninth Memoir Qn’quantics [1871a] may have been connected
with his inability to find a finite numerical geﬁerating function for the
binary quintic. After Sylvester-had proved the correctness

of Cayley's Law he managed (at about the same time) to find the express1on

“
P

for finite numer1ca1 generatlng functlon of the blnary qulntlc.,“

- 143 -



Sylvester wrote to Cayley on the discovery of this result:

I have looked into your paper in the Q.M.J.

{cpr10, 278; misdated?] and find which I had

an idea of (after inspecting yr ninth Memoir -

where also I found you had been beforehand

with me in the particular shape given to the

Crude Generating Function) that your process

is identical with mine - The form for the

Quintic you will find 'ere this reaches you.

(or ought to do so in the Comptes Rendus){1877b; SP3, 58]

{ App. B, 9 v 1877]

Cayley returned to Invariant Theory with his Tenth Memoir on
quantics [1878a] and his interest in generating functions

on this occasion was rekindled by Sylvester's success.!3

Cayley introduced a form of A(x) (the numerical generating
function) which he called a Real Generating Function and this
was used to find the first order or fundamental éyzygies of the
binary quintic.

For instance:

|- &*
(=W (-HY(1 - 8)I=-9)

[ef. 18784 ;¢p10, 341 ]

is the Real Generating Function of the binary cubic.

Cayley's method depended on examining the Real Generating Function.
In the case of the cubic it could be written (after cancellation
of the factor ( \—§ ) as:

(1+ 3= wW'(-Hy'(=o)

The expansion of this was required in order to find the number of
independent covariants and the fundamental syzygies.

For instance, in the case of covariants of degree 6 and order 6 for
the cubic, the expressions H3 and lf'v were found

I3 s * L
in the expansion. But the covariant §i was not found

in the expansion and Cayley concluded in this case that a syzygy
existed between it and the other covariants (Here @1'3 LU'V"""H:)
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An observation of this kind may have led Cayley to the method he applied

to the binary quintic.

The covariants found in the expansion of the real generating function
wefe named segregates and the others were named congregates. Thus a
listing of the congregates was equivalent to a listing of the
syzygies. Cayley provided a list of the degrees and orders of 179
fundamental syzygies in his({1878a]. Cayley's table is shown in Table 3.
In the case of the cubig, the congregate §1' for instance,

was easy to identify but it was not clear how Cayley was able to
write 179 congregates in the case of the quintic. As Sylvester
remarked 'The method followed by the eminent author in singling

out the fundamental syzygants does not appear (as far as I can

make out) to be explicitly stated in his memoir' [1881a; SP3,4997 .

A comparison with Cayley's Eighth Memoir ([1867a] published ten years

earlier indicates the advance made in the Tenth Memoir(1878a) .
The six fundamental syzygies found earlier {Chapter 3, p.130)
are in the top -left hand corner in the body of Table 3.

The Tenth Memoir was concluded with a partial list of theactual

fundamental syzygies of the quintic.l4»15

Loy et NP
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Table 3
Reproduced from Cayley's Tenth memoir on quantics [1878a CPl0, 347].

Table showing the degree and order of the 179 fundamental [f
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Going beyond the binary quintic, mathematicians tackled the higher
order binary forms. Supported by a young and enthusiastic group
of mathematicians at Johns Hopkins University, Sylvester carried

out the task vigorously. In a letter to Cayley, he wrote:

I mentioned to you that it was my intention
to complete my tables of the N.G.F's by
calculating the 7€ and the 10¢ and certain
combinations in addition to those already
worked by me - and would have preferred to
have carried out myself the work which I

had commenced = but do not desire to preclude
you from taking possession of the case of the
7¢ if you are particularly desirous to do so.

But why not undertake the 9¢? That is a
gigantic labor which I would most willingly
relinquish to you and which I know would yield
certain new and interesting results in the form
of the N.G.F. especially as regards the
denominator.

(App. B, 15 vii 1878]

Using a theorem given by Sylvester,Cayley produced the minimum Numerical

Generating Function for the binary form of order seven. (Table 4, p.148).
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Table 4

" Minimum Numerical Generating Function for the binary form of order 7

Reproduced from Cayley( 1879e] See also Sylvester [1878b, 1878¢] .

The Minimum N.G.F is the generating function with no common factors:

in the numerator and denominator. Note the symmetry of the coefficients
in the numerator about the middle term al8
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The calculations were formidable and the only way they could successfully
be carried out was with the use of human computers. These were usually
paid from special funds and at this time Sylvester, Cayley and
Spottiswoode had a grant from the British Association for the Advancement
of Science for investigating Fundamental Invariants of Algebraic

Forms.16 In America, Sylvester had the help of his department and

in particular,Franklin!7;

Franklin is such a Calculator as probably has
no superior (indeed I am sure he has none) in
the whole world (for I have had experience of
calculators before) and it seems a pity not to
utilize such a force when it is at hand.

[ App.B, 11 i 1879]

The first stage of the problem was the calculation of the generating
function but the real calculatory work appeared to arise in the
subsequent treatment of the generating function. In this treatment
Cayley and Sylvester had similar though different methods. But

the methods shared the characteristic of being both direct and

based on experience gained in the cases of low order forms. If the
binary forms of higher orders possessed unexpected properties then
Cayley's and Sylvester's pragmatic methods could (and did) fail.
Cayley's treatment of his Real Generating Functions has already been
considered. Sylvester's method, though different, would not have

been considered wrong in principle by Cayley.

Sylvester developed a 'sifting' process (which he called the method
of Tamisage ) of the numerator and denominator of the generating
function in a rather complicéted way to enable the covariants and
syzygies to be discovered. !8 He informed Cayley of the discovery
of the method in a letter:

It seems perfectly monstrous on my part to

have ‘allowed your kind and welcome letter to
remain so long unanswered. I have been waiting
to get to anfundoubted ?] result in what I am
engaged upon before doing so and two or three weeks
have passed like a shadow whilst I have been
engaged in this research. I think I may now
announce with moral certainty that my method
Cof Tamisagel completely solves the problem of
finding the grundformen for binary forms and
systems of binary forms (without mixture of
superfluous forms) in all cases = I have sent an’
account of the method to the Comptes Rendws
-(1877b] . I oughtto add that anterior to all
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verification this method could not give

superfluous forms =~ but it is metaphysically
conceivable that it might give too few grundformen =
The principle {Sylvester called this the Fundamental
Postulate] I proceed upon is that in interpreting the
generating function we are not to assume the existence of
more syzygetic relations than those which are necessary
to make it consistent with itself and with the fact
that every combination of Concomitants is a Concomitant.
Even if this had not been true my method would

have given a sure means of proceeding step by step

from the lowest forms to higher ones until all were
exhausted - but it wd would take too long to go

into this in a letter.

[ App.B, 23 iv 1877]

Sylvester's method of sifting the generating function (a 'numerical
Winnowing process') would only uncover all the covariants if the
postulate were true. ~ This postulate was based purely on

experience and not on any well formulated theory [App.B, 9 v 1877} .

The Fundamental Postulate

The introduction of the Fundamental Postulate by Sylvester for the

purpose of calculation illustrates an important difference between

the English pragmétic approach and the method of the German algebraists.
The Fundamental Postulate, which assumed that new syzygies and irreducible
concomitants did not exist for the same degree and order, was based on
observation of phenomena which occurred for binary quantics of the first

six orders. Sylvester explained the role of the Fundamental Postulate:

The law itself fCayley's Law] for the case of a single
quantic was first stated by Professor Cayley whilst
the theory was still in its infancy.

But besides this fundamental theorem, in order to deduce
the tables of groundforms, a fundamental postulate still
awaiting demonstration is necessary, which is, that

no more linear relations between in - and covariants

are supposed to exist than are necessary in order to
satisfy the fundamental theorem. The application

of this principle in such a mode as to substitute

a finite for an infinite process, leads to the use of
representative generating functions and the simplified
method of tamisage. The validity of the fundamental-
postulate which is in accord with the law of parcimony
La similar limitation on the syzygies which were
supposed to exist] 1is verified by its conducting to
results which have been proved to be accurate for

single binary quantics up to the sixth order
inclusive,... (Sylvester, 1879a; SP3, 309]
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The relationship between the Fundamental Postulate and the working of the
method of Tamisage is interesting. By Cayley's Law, the number of linearly
independent covariants (say c) of a specified degree and order could

be calculated. If the method of Tamisage uncovered K (Z?C)

covariants of this degree and order, acceptance of the Fundamental
Postulate was equivalent to there being exactly k - ¢ syzygies or
linear relations between these k covariants.If the Fundamental Postulate
were false then extra linear relations would reduce the number of
covariants found by the Tamisage process to a number below c.

This would imply that the Tamisage method was incapable of finding

all the linearly independent covariants.

Sylvester's belief in the correctness of the Postulate was strengthened
by his success in showing that a irreducible covariant of a certain
degree and order did not exist for the binary form of order

eight, Its non—existence was suggested by the Fundamental Postulate
but the proof, given by Sylvester, was independent of the Fundamental
Postulate. Sylvester 'used this instance as another exemplification

of the validity of the same very reasonable postulate' [ sylvester,1881b] .
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3.5. Matrices and Linear Algebras

During the period 1863-1881, matrices appeared to hold little
interest for Cayley. Virtually nothing was done by Cayley to further
the work set out in{1858a] . From a modern viewpoint, the natural
step would have been to consider the problem of 'diagonalisation'
of matrices coupled with an eigenvalue and eigenvector analysis
in this respect. As shown by Hawkins [1977a], Cayley played little
part in the furtherance of Matrix Theory. Both Cayley and Sylvester
were familiar with the characteristic equation through geometrical
problems such as the intersection of conics. In these problems both
the ordinary characteristic equation det (A —XI)'O and the
generalised characteristic equation det ( LA -AB)=0  were
essential to their analytic approach, but in these problems the
calculation of the corresponding n = tuple was not explicitly
considered. It was only when Sylvester reconsidered matrices
in the 1880s that a name (latent root) was given to a root of the
characteristic equation. For Cayley, these ideas remained in the
geometrical sphere. For instance, he saw the study of principal
axes as secondary compared with the theory of conies:
'I remark that, the theory of principal axes once brought into
connexion with that of confocal surfaces, all ulterior developments
belong more properly to the latter theory’[Cayley, 1862a] .
In the theory of principal axes he dealt with the linear equations
Ax =x and det (R-—I)ro {ces, 435) . But he
emphasised that the principal azes could be better obtained
by other methods (e.g. Rodrigues' Method).

Where 'diagonalisation' was really needed was in the problem of
computing the power of a matrix. Cayley gave a solution for

this problem in his [1858a) in the binary matrix case.

The solution was unsatisfactory being given in terms of trigonometric
functions (after Babbage) and was purely formal. In 1872, when a
comparison with the method of matrices and the competing theory

of quaternions was instigated by the Scottish physicist and
mathematician, P.G.Tait, the question was reopened.

" Tait had written to Cayley in 1872 in the following terms:
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Thomson and I wish to introduce this [ quaternion approach to
finding square root of a strain] into the new edition of

our first volume on Natural Philosophy = but he objects
utterly to Quaternions, and neither of us can profess to

more than a very slight acquaintance with modern algebra -

so that we are afraid of publishing something which

you and Sylvester would smile at as utterly antiquated

if we gave our laborious solutions of these nine

quadratic equations. [ Knott, 191la, 152].

Cayley's paper which compared the matrix and quaternionic method was:
On the Extraction of the Square Root of a Matrix of the Third Order

[187233 . This paper was read to the Royal Society of Edinburgh

and was connected with Tait's problem of finding the square root of

a strain. The intention of the paper was to compare the solution of the
problem using matrices with the solution given by Tait in the language
of quaternions.!8 - Quaternions attracted a good deal of attention

in the early 1870s. They were promoted zealously by Tait as a compact
notation admirably suited to the needs of Physics. Other mathematicians
and scientists, such as Cayley and Thomson, found the older Cartesian
methods (including the matrix as a Cartesian method) more manageable and
intelligible. In his({1872a),Cayley used the method given in{1858a]

for dealing with the Cayley-Hamilton matrix equation. Following Cayley
the method is exemplified in the binary case: Given a binary matrix M,

it was required to find the square root L.

From the Cayley-Hamilton Theorem:

P«L- va\‘*' 9, = 0
L - 1-L_“ +s=0

.
and also L = M

These three equations were used to solve for L

Thus L =_L(M{.5>
T

and r, S were then. computed.

Cayley's test of the correctmess of the result was by his much practxsed

means of verification. From the calculated expression for L, L was

simply compared with M. - 153 =



In the case of a third order matrix M, the matrix equations were
correspondingly more difficult to solve, though in this case it

was still possible to extract a formal result. The equationms

were more involved. Cayley was forced to solve them by a piecemeal
method and the result was unsatisfactory. His intention was

to give a formula for the square root and one which could be verified

by direct multiplication.

After the dialogue with Tait, Cayley's interest in matrices lapsed until

the short paper on finding

1o i

¢, d

appeared [1880d] . Cayley was led back to this problem twenty years after
he first gave its solutiOn(in11858Q)by a question in fluid motion

[app. B, 5 xi 77] .

Cayley provided the explicit result:

M= (zu-&)"" (M-Li)i--a” bf*’(’“”\)“ ) Lf}

CX=1 VA ¢, d -a

where ;\ satisfied

S>\+01 - (a+d)
A ad - be

and ;\ is the ratio of the characteristic roots of P/\
although he did not give them this or any other name. The method Cayley

used can be directly generalised to an (RAxXN) matrix A and is in fact

)

. . . n .
a basic method for giving an expression of A in a closed form;

as distinet from giving a procedure for computing AN .

A
In the case )\ = [ , he showed that M was periodic of order m while
the case where A= (equal characteristic roots) was described as
'very remarkable' by Cayley in that the function M was not periodic at all.

- Al
The paper was rounded off with a discussion of the behaviour of M
as n tended to infinity.

Cayley's peripheral interest in matrices in the 1880s did nothing to
rival the importance of his earlier memoirs of 1858. His work in matrices
showed a preoccupation with matrices of low order. He made no attempt

to consider a general theory of matrices to the extent of not even
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developing a proper notation for the general n x n matrix. 1In this
respect Cayley had acquired a dislike of suffixes.

In the course of his early work in the 1840s Cayley had used subscript
notation quite freely. But his later bias against its use is seen in
a letter written to Felix Klein:

I send herewith for the Annalen [ Cayley, 1880e] 2!
a proof of Schottky's theorem: I have a theory that

- mathematicians in general are too fond of suffixes, .and
it is partly intended to show how by the notation
employed, of rows and matrices, it is to a very great
extent possible to get rid of them The theorem itself
from its great generality of form seems to me a very
important one - I wish I had known it before writing
a paper on the double functions which is to appear
in the Phil Transactions. [App.C, Klein, 12 vii 1880] .

And in the theory of forms, especially in the setting up of tables,

he made his opposition to suffixes very clear:

I attach also considerable importance to the employment
of the simple letters b, ¢, d, e and in place of the
suffixed ones a, , a, , a3 , a4 &c. [ 1885e; CP12,275] .

Linear Algebras

Cayley was obviously familiar with Benjamin Peirce's Linear Associative

Algebra [1881a) which had been privately circulated in 1870. The

London Mathematical Society had received a copy and attention was drawn to
the work by Spottiswoode's Address [1872a, 152] . Cayleyturned to the
consideration of linear algebras with two related.paperg published

in 1881. The first{1881d] was on the Euler Identity [ See Dickson, 1919a,
169] . The other paper [1881f) in response to the growing interest in

theory of linear algebras in Americayas titled: On the 8=-square

Imaginaries. In this paper, Cayley continued his ideas given in

his earlier papers [ 1845d] and (1847a)Jon the octaves published in the 1840s.
The method he used in[1881f]bore a strong resemblance to the methods he
used in[1852¢) to prove the non-existence of the Euler Identity for

16 squares. As in(1852¢],he introduced the units.
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E,=| €. ,E,,...E Ei=-1 (i=1,...7)
EiE.Es;=er EEEs=e, E.BE. = &4
E3E4E,=€5 E‘E‘E1= e; E;EgE? * €

E.E-E.= g
where & =1 or -1
and where expressions like E,EzEz = e; was a shorthand

for the six equations:
_E|E7_: 6,53 = —EZEI ] E,_E; = e|E| = 'E;Ez ) E3E| =€ Ez = -E;Ez

Cayley showed that for no values of the €, was the resulting

algebra an associative algebra. One of the novelties of the work

was that the system represented a non—associative linear algebra. In
presenting it, Cayley mentioned that he was unaware of any previous work
on algebras for which the associative law did not hold. The signs were
chosen to preserve the property of the product of the norms of two
octaves being equal to the norm of their product. The values of

€ = €. = €3 could be chosen to be unity without any loss
of generality and as a consequence:

By choosing [ ¢t ‘.Dick"son, 1914a, 169

€4 = |
the following relations

E| E-z_E; =
ELE,, B
E| E‘ E‘, =

\

E1E4 E‘ = ‘ )
Ez E;E-l ="I E;E;Ee'-"‘l
Es E4Eq=-l

[ "

from which (and writing F7 ""‘E'] ) the multiplication table of the
'Cayley numbers' was obtained.
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3.6. An American invitation

Although Cayley took a brief interest in the Theory of Matrices and
.linear algebras at the beginning of the 1880s, his principal
algebraic interest continued to be in the Theory of Invariants.

The demands on Cayley's time for lecturing duties were slight and

the classes remained small. To Sylvester he wrote:

I have not been doing much mathematically = my
lectures, on the theory of equations = I always
go on with them very much from hand to mouth -
took more time than they ought to have done.
I think I shall write a book on the subject
[ written?] [ App.B, 24 xii 1880, year estimated] .

To which, Sylvester replied:

I wish you would write a book on the theory of QU$

as you propose. I wish [ two?] times over that you

would come over here - where you could more than

double your emoluments as Professor andvhere you could
command a class of 10 or 20 enthusiastic hearers and
followers and really found a School. [ App, B, 19 i 1881]

In the middle of the same year, Sylvester reissued the invitation:

I wish you could come and join us here. I could

promise you a class of some 10 at least of most
intelligent and sympathetic auditors for your lectures:
such men as Craig, Franklin, Mitchell, Ladd (although

she is not exactly a man) myself, Story and several most
promising young men who bid fair to keep the succession
of the Craigs Franklins and the rest. In fact you

would have a class of Glaishers for your auditors and the
seed you might sow would fall upon a fertile soil...

and continued ., . .

We have not an idle student among us and no single case
calling for the application of discipline has ever

yet occurred - We number about 200 at present but sooner
or later I am sure that a Boom will spring up in our
favour and carry our numbers to a far higher figure.

Newcombe, Hill and other mathematicians are in our immediate
Vicinity at Washington and Anapolis and Craig and I aspire to
convert our so called "Mathematical Seminarum" into the 4
"American Mathematical Society". Y| App.B, 12 v 1881)
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Chapter 3

References

1. For Cayley's first two years the lectures were on Analytical
Geometry. Cayley's manuscript of the Introductory Lecture

( delivered 3 xi 1863) is held at Columbia University, New York.

From 1887~1894 Cayley gave two courses of lectures in each academic
year. The titles of these courses are given in [CPS8, xlv=xlvi] but the

titles did not always correspond to their content.

2. The Correspondence is contained in [ Airy, 1896a] and discussed
in (Chapter 5, p 223 ).

3. See [Rothblatt, 1967a] It describes the changing attitudes to

teaching and research in Victorian Cambridge.

4, See [ Koppelman, 1971a] for the early history of British Algebra
(especia11y~in the first half of the nineteenth century) as a develop-
ment in the Calculus of Operations. Cayley and Sylvester were influenced

by this Calculus and this is seen in the foundations of Invariant Theory.

5. The previous paper (prior to his[1864a))written by Sylvester on
Invariant Theory had been his[1854b) 1In that year he had been
anticipated by Hermite in the discovery of the skew invariant of

the quintic and he was dejected by this according to a reminiscence in
[ 1869; SP2, 7147 According to Sylvester the most important result

in his [1864a] was the establishment of invariantive criteria

(sP2, 452] for the reality of the roots of the quintic equation

[ 1864a; sP2, 3801 .

6. Cayley used the term operation [1854c] but this gave way to
his use of operator [1858d ] .

7. During the 1850s it had become apparent to Sylyester and Cayley
that an operator itself could play the rdle of an operand (the entity

on which a symbol operates ).Cayley observed [1857d] that a differential
operator of the type

/\:xx + ES'B» o

'partakes of the natures of an operand and operétor‘ and could be
called an 'Operandator'. Thus a symbol ¢ was capable of
representing both operand and operator.
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7. (continued)

Sylvester's %* represented that operator and the

formulae given in the text corresponded to Cayley's earlier [1854c] :

P.Q = PQ + P(Q) _
Q.Pp =QP + Q(P
8. Example 1illustrating the working of these formulae
¢ = &Bb P o= “}’Bc -
(@¥)* = (@ abd)* = (2b3)*
[gxyls = (a3, % abd)é= (ad)%

9. Several other branches of algebra impinged on Sylvester's

generalised theory of differential operators. According to Sylvester,
the 'marvellous property of these operators is that they form a sort
of closed group' explaining that two operators combined were
equivalent to a third operator. [ Sylvester 1866a; SP2, 5691 . 1In his
biography of Sylvester, H.F.Baker [ SP4, xxxvii] noted that Sylvester

wrote nothing on the abstract theory of groups.

10. Letter dated 19 xi 1876 held [Sylvester Papers] St.Johns College,
Cambridge.

11. Letter dated 25 xi 1876 held [Sylvester Papers] St.Johns College,
12. [1878d; sP3, 2297 Further references to this theorem in

Sylvester's works are: [1877a; SP3,551[1877b; sP3, 93]
(1878a; sp3, 117](1886b; SP4, 363]

13. For comparison of generating function methods see [Franklin,1880a].

14. Sylvester also tackled the problem of the sézygies. He produced
tables for the quintic and the sextic binary form and his result for
the quintic agreed with Cayley's {188la; SP3, 506] .

But Sylvester did not attempt to list the fundamental syzygies

in their explicit form as did Cayley.

15. In his{1886a) Hammond showed that one of Cayley's calculated
fundamental syzygies was in fact reducible. Thig reducibility
implied that 11 other uncalculated syzygiéé were reducible so that
the total number of fundamental syzygies was in fact 167,  Hammond
calculated all the syzygies of the quintic in his [1886a], ‘
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16. This grant of £50 in the first instance was for the computation
of the 'Fundamental Invariants of Algebraical Forms'. Cayley,
Sylvester and Spottiswoode were in charge of allocating funds

[ App.B, 21 viii 1878] . The Grant spanned the years 1879-1882
and was used for calculating the tables of the binary quantics of
orders 7, 8, 9 and 10 [Sylvester, 1879a; SP3, 311] .

17. Fabian Franklin (1853-1939) was a Hungarian emigré who
studied civil engineering in his early years. His work in
mathematics was mainly in MNumber Theory and Invariant Theory.
In 1895 he left mathematics and began a career in journalism
[ wilson, 1939a] .

18. For the binary cubic, the 'method of Tamisage' began with the
(in Sylvester's terminology, C.anonical = Representative) generating

function:

| + &@x3
(0 = ax® - ¢x)-a*)

A positive sign in the numerator indicated a (primary) covariant of
degree and order (3,3) (A negative sign indicated a syzygy).

The denominator indicated(secondary) covariants of degree and

order (‘,3) (242) and (4‘)0)

The information about a primary covariant is removed to the
denominator. (In this case by multiplying top and bottom by
|- a X‘) to obtain:

| - a®x®
(= ax¥) - ax*)(1- a2x?)(1-a%)

The process is repeated with the generating function in the new form.
Eventually all the covariants appear on the bottom line and the
coefficients in the numerator negative. At this stage the search
for syzygies could begin [1877b] .

19. See {Cayley;lSQSH] for Cayley's argument for the use of

co-ordinates in favour of quaternionic methods.

20. Sylvester investigated the problem of finding binary matrices M
(3 [ K 13
which satisfy M==1I for given K {18814; SP3,556] .

His interest in the problem seems to have been awakened by a
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detail in the theory of invariants[App.B, 24 xi 77]. Unlike Cayley
he generalised the problem and this was most likely the source of

his renewed interest in matrices in the early 1880s.

21, As it happened, Cayley regarded part of this work as a develop-

ment of the notation of his([1858a]. Cayley introduced a form with
matrix coefficients:

(*)CQJ,VSL

(C\ ) l"; b)(ulv)z

auw+2huv +bvs

where a, h, b were square matrices

and

W,V orows (Wisee, ), Qui,... , V)
But for Cayley, (a , h, E)(q,v) was in reality the
general quadric function of 2(’ letters and the use of matrices

was condensed notation for writing this form.
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Chapter 4. Johns Hopkins University - later years
(1882 - 1895)

4.1, Ihtroduction

Largely through Sylvester's influence, mathematics was a well estab=-
lished discipline at Johns Hopkins University by the time Cayley
arrived there at the beginning of 1882. During his stay

Cayley gave a course of lectures on Abelian and Theta functions,

one of his foremost interests at thi.s’time.l He also attended

a series of lectures on matrix algebra given by Sylvester. A

letter to Hirst described his research and the daily round at

Johns Hopkins:

I have been getting ([on] satisfactorily

enough with my own work on the subject

[Abelian and theta functions] » making out

to myself the very beautiful manner in which
Clebsch and Gordan in their book2 arrive at

the Multiple theta functions - and completing

the geometrical theory of the double theta
functions as derivable from a nodal quartic-on
two other days I hear Sylvester, who began a course
of "three or at most four" lectures on Multiple
Algebra, which he has gone on with since the
beginning of the year - & they are not finished -
nor likely to be.

[App. C, Hirst, 31 iii 1882]

Cayley never seemed to work on one subject exclusively and in matrix
algebra he found time to both encourage Sylvester and make some

contributions himself.

4.2, Matrices and linear algebras

"In a lecture given to the April meeting of the Mathematics Seminar

(at Johns Hopkins University) in 1882, Cayley considered the

problem of listing the double algebras which had the property of

being both commutative and associative [1882b]. This was a renewal

af his earlier interest in algebraic couples given in[1845e] and from
the outset, the approach in[1882bJwas by the same direct method as
adopted in the earlier paper. From the requirement that multiplication
in the algebra be a closed operatiqn, the 'imaginariegf X, ¥ were .

supposed to satisfy (cf. Chapter 1, page 44):
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X = AXx + bs1
Xy
yx = ex +{y
Y= gx rhy

Cayley regarded the problem as one of determining the relationships
between the (ordinary) symbols a, byseey h so that the resulting
double algebra would be both commutative and associative. 1In

order that these properties would hold, Cayley deduced that:

C¥ +-c(1

X = ax +by ]
XY = yx = CX *—d'-]

"

. Y C-E‘-{X + dz"'tc-d-d\.f_

a result which gave the relationships:

¢ f=d

g:cd L: dz-[cui-Lc)
b

n

e

o

The approach was, of course, classificatory.and primarily depended

on the solution of linear equations. From a modern standpoint, the
weakness of the direct approach is that anarbitrary multiplication table
representing an algebra may not be found amongst the representative
tables., Cayley himself experienced this difficulty and at the

Seminar he remarked:

I did not perceive how to identify the
system with any of the double algebras

of B. Peirce's Linear Associative
Algebra.....; but it has been pointed

out to me by Mr.C.S.Peirce, that my

system in the general case ad-bc, not equal
to zero, is expressible as a mixture of

two algebras...

(Eisele, 1976a, vol.1, xvi]=[1882b;CP12,106] .

Cayley read a more substantial paper [1884b] on double algebras to the
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London Mathematical Society. In this he gave tables defining

non-equivalent associative double algebras over the complex numbers.3
As noted by Dickson [1914a, 21] Cayley did not assume the presence

of a principal unit e (ex = x = xe for all x).

Caylej"s work in{1884b] was an extension of B. Peirce's classification

of algebras given in the important Linear Associative Algebra [188lal:

For double algebras, Peirce classified 'pure' algebras®
(1881a, 120 - 1221.

Cayley's seven systems included Peirce's 'pure' systems:

. X h -

x4 ap in [B. Peirce, 188la]
gyl v 0 commutative algebra

x__ Y
X1y l|o cp in [B.Peirce, 188lal
\1- o | o commutative algebra

X h B
x| x Y by in [B.Peirce, 1881a]
ylolo non-cormutative algebra

'plus the pure system not included in Peirce's list,

X v
X X | O non-commutative algebra
Yy lo
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The 'mixed'systems given by Cayley, but not included by Peirce were:

X
X[ X |0 Commutative alpgebra

YO |V

X b

X[ X fo
Commutative algebra

410 | o

L‘

X| o (o}
Commutative algebra

110 |0

Although any multiplication table defining a double algebra was able
(though a non-singular transformation) to be transformed to one of these
seven types it was not possible using Cayley's analysis to determine

a priori which type such a table represented. 1In particular Cayley

did not attempt to classify these algebras through the use of

invariants as was done later.? However, he must have been aware of

some relationship between invariants and linear algebras as his

analysis depended on the solution of quadratic and cubic equations
(1884b, 62] .

This is a curious omission as Cayley was usually astute in recognising

links between different branches of mathematics.

But even in algebraic researches where Cayley did state a connection
between different theories; the calculation and classification of
particular cases was put before the development of a general theory.
It would appear that calculations for Cayley were not merely

an adjunct to theory but an essential part of an algebraic problem

itself. -165-



Matrix Algebra

By the summer of 1882, Cayley had returned to England.
Sylvester, reflecting on his own work on matrix algebra wrote

to Cayley:

I have not done anything more with Matrices.
I have moreover been incapable so far of
drawing up my projected memoir on the
subject even with the aid of the copious
notes I have retained of my lectures -
Would there were any opening for me at

home in England! [ App.B, 3 viii 18827 6

The marginal interest taken b& Cayley in the theory of matrices
during the 1880s was due mainly to Sylvester's enthusiasm for the
subject but it did not absorb Cayley to the same extent.

In the brief span 1881-1885, Sylvester was addicted to

matrix algebra and during a flurry of activity, especially

in 1884 on his return to England, he published frequent notes on the

subject.

One aspect of Sylvester's work in the 'mew science of multiple quantity'
was his treatment of questions in the theory of equations where

the coefficients were matrices. Sylvester considered equations

such as P:X: ‘L, , Pix *XQ:, and the complete generalisation _

(his Nivellator Theory):

R.X%-&-?zxq,ﬁ s Pa%Xq Q. ghere P; , e X and C
represented square matrices. (For a full account of Cayley's

and Sylvester's work during this period see [Hawkins, 1977a, 101-1083,

In his considerations of these various problems, Sylvester examined
special cases. This was partly due to the exceptions be found to his
putative theorems but also to a belief that the general case was
learned from the knowledge of particular instances.
A plethora‘of special cases caused Cayley to offef some advice: =

I think you should take the bull by the

horns and consider the general quadric
equation

Xax + bxe +d=0
-166-



l1.e.

x y]la, af|x ¥y b b} [% yllCic |did,
+ + =
: wllmallz wl |bbllz wile ¢l Idid,

to fix the ideas, I have worked out the four
equations which are as follows [... four quadric
equations follow... ] The general quadric

0

n 1
= ('X,\f,i, W, |)=0 I5-[= [4constants

hence the four such equations
(.L'-"-O)V:-O w:o,E-:o

?
if perfectly general would contain 56 constants,
or combinatively 56-9 =47 constants & the
actual number being as above = 14, there is
plenty of room for geometrical relations between
the four hypersurfaces.

(App.B, 30 vi [1884] ; year estimated]
Although Cayley's advice was unhelpful in finding a solution to
the problem at hand, it illustrates his tactical approach of reducing
an equation in matrices to the corresponding set of linear equatioms.
This approach was also adopted for the simpler matrix equation
px = xq. Sylvester was probably more attuned to matrices at this
time and his method unlike Cayley's made use of latent roots.’
In [1884b], Sylvester gave a necessary and sufficient condition
for a non-zero solution to exist for px = xq (that matrices p, q have a
latent root in common). Cayley tackled the problem head on. In a

letter to Sylvester he explained how he was led to yet another

problem:

Your formula as to px=xq is of course quite
right. I had begun working it out in the

same way but made a mistake in the multiplica-
tion of the matrices - & I found some very
pretty & consistent results belonging not to
your problem at all but to the different one

X, 2|la,c X, vy |, ﬁ

Y, W b:‘i z, W X,S
(+s.) which I was thus led to by

a mere accident, would belong as a very
particular case of a theory more general

than that of the functions of a single
matrix - viz to the theory of the functions

of a matrix x & the transposed matrix tr. x.
(App.B, 11 vii 1884 ; year estimated].

,-\~

-
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Cayley published two papers.on the solution of px = xq. [1885g]
treated the question where p, q represented quaternions and

[1885h] where p, q represented binary matrices.

In both cases, Cayley sought an explicit solution in terms of a
formula but he did not attempt to generalise the problem nor did he
attempt to characterize properties of p, q, x for which a solution
existed. In the case of px = xq where p, q were quaternions

(over the complex numbers) he produced a 'synthetic' solution. He

communicated his working to Sylvester:

I have solved q,& = Q?}O in a very
compendious form = thus

Let ¢ = d+v q,’=d'+vf be

given quaternions

(d, d’ the scalars v, v! the vectors ) &

put for shortness

6=d-d
of = Vi-v'2
p = (v =2 —x*oyt-2]
then if we have the single relation
64" 20(61+F7. ‘-'-'O
we have a quaternion& such that
qQ-Qq'=0
or what is the same thing
9&*‘\’& -Qv'=0 viz. putting
M =-(L-6%)8
A= fp-o"
B s 4+ 61
the solution is
&= (M+Av)M+ Bv)
In fact for this value of ) we have identically
eq-vQ-Qv'= { M —v.vf‘ +vivEew/e) (8%- 24 6"—*}31}
and therefore if 94_.20{ B &+ (g"-. o)

we have the required equation

Ba+v@-QY=0 [38:QRq].
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This is a solution for which Tensor Q = O
[The tensor of a quaternion d + ('-X+J\[ + kz
is  d'rxtsyl e 2]

If 8 = 0 then alsoﬁ = 0 & we have Tait's

solution, containing an arbitrary vector =

and for which Tensor Q@ is not = 0.

(App B, 2 ix 1884 ] = [1885g; cp12,301] .

Sylvester described this solution as 'a very elegant one,

[App B, 4 ix 1884] . Cayley's method here is a good example

of his skill as a formal algebraist, a skill for which he was much
admired by his contemporaries. In describing the solution as
'synthetic' Cayley most likely meant that it was achieved without
recourse to his normal approach of reducing questions of this type

to a set of linear equations.8

The slightly later paper{1885h]treated the question of finding a
solution Q of the equation qQ = Qq/ but from a matrix point of view.
No use was made of latent roots; a solution was obtained from the
resulting set of four linear equations. The final outcome was

again an explicit formula for the required solution:
:{g-aq -hY ,(bE-a.rD;uu
~c§(a$ +aw>’ cq-LSh"u

[1885n; cp12, 313].

It wa stated to depend on one arbitrary parameter (because of
relationships between the parameters S, n, b , W) and
consequently cannot be correct. The important point is that Cayley
was driving towards an explicit solution and he saw the problem as
one of finding a formula. The problem of finding a genuinely general
solution Q is difficult to solve without the use of the Jordan form
of a matrix where it is equivalent to finding P with Tc‘,P - PJ%’,
where 3% and Ti’ are the Jordan forms of q and q’ .

It is significant that Cayley published two papers on’'a subject which
had such obvious similarities. Of course he was well aware of the

correspondence between quaternions and second order matrices. However,
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Cayley regarded the two theories as distinct theories, just as
in his [1872a] where a comparison between matrices and quaternions
methods was drawn. Similarities were observed (as in({1885h]) yet

the two theories belonged to different traditioms.

As an example of an algebra, quaternions lost some of their
importance for Cayley and Sylvester when it was realised that

binary matrices and quaternions were equivalent by virtue of the
correspondence :

a b «—r (a+d) =2 (a-d)i + (b-—c.)j =A(b+c)k
c

or equally
a+ bA c+dA
-C + dA a- ba

where ;\ denotes the complex number J‘-i as distinct from the

quaternion imaginaries i, j and k.

> a+LL+cJ+dk

By concentrating on the purely algebraic propertiss of quaternions
and ignoring them as a suitable method for application in anmalytic
geometry, Cayley and Sylvester were both criticised by -

P.G.Tait. This physicist was interested in real quaternions and saw
them as universally applicable both in geometry and the physical

sciences.

At this stage Cayley and Sylvester implicitly regarded a quaternion
as a complex quaternion (Hamilton's bi-quatefnion) and Sylvester
brushed aside the 'futile limitation' of real quaternions f1885¢c;
SP4, 2757 .

In treating the purely algebraic properties of bi-quaternions and by
regarding them as binary matrices, Cayley and Sylvester parted
company with Tait. With little to say on the use of quaternions

in Geometry and Physics, Sylvester was a little contemptuous of Tait's

"limited' view. Sylvester's opinion of quaternions is recorded in
a letter to Cayley:
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I have laboured hard to make Tait understand

the identity of Matrices and Quaternions and

set out at length the rules for passing

from one to another - but the enclosed

extract will serve to show you that he is

still walking in outer darkness: possibly

my note of this day in answer thereto

explaining how Matrices are subject to a

law of Addition may act as a ray of

illumination on this subject.

[App.B, 3 ix 18847 .
In the theory of linear associative algebras the algebra of
quaternions and the algebra of matrices presented the two most
important examples of the day. Of the two, quaternions were
well known to mathematicians, whereas matrices hardly received
any attention from British mathematicians until the late 1870s.
According to{Crowe, 1967a] , Hamilton had used his immense prestige
to publicise quaternions. However, Cayley appeared to do little
to accentuate the importance of matrices. Indeed matrices seemed
to occupy a very minor place among his interests. Cayley did not
appear to keep up with the work of other mathematicians on the
subject, and when Sylvester and Cayley returned to matrices in the
1880s, Continental developments in the subject were probably

unknown to them.9

Sylvester effectively finished his energetic researches in multiple
algebra at the beginning of 1885. Cayley produced further papers]O
during the following years but they were relatively unimportant
compared to his [1858a] and[1858b] .

Cayley's survey paper on Multiple Algebra [1887a] was most likely

prompted by Sylvester's idea of giving his Inaugural Lecture at Oxford

on the history of the geometrical interpretation of imaginary
quantities and hlS subsequent appeal to Cayley for help in its

preparatlon.1] Cayley separated ordlnary algebra from Multiple Algebra.

In Cayley's view, ordinary mathematics included ordinary algebra; the

theory of real or imaginary magnitudes and the symbols of

operation. Multiple Algebra referred to the theory associated with

'extraordinary' symbols introduced by Benjamin Peirce. An

important property of Multiple Algebra was that it provided an analytic

base for the geometrical theories established at an earlier time.

But of course Cayley did not seek a geometrical justification for

Multiple Algebra as had been done for complex numbers in an earlier

age. The quaternions constituted a valuable theory but, for Cayley,
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the word was not method, as Tait and Hamilton would have it.
Cayley was too imbued with the Cartesian method to take that
step.
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4.3. Calculation and binary quantics

.

Cayley's and Sylvester's approach to the calculation of covariants
for binary quantics received a setback in 1882 when it was shown by
James Hammond that the Fundamental Postulate was false.!2

Sylvester in particular had invoked that 'very reasonable'

postulate (Chapter 3, page 150) in satisfying himself that his

method gave the correct number of covariants and dependences.

The failure of the Fundamental Postulate

In his[1882§](presented‘12 xii 1882 ), Hammond produced a covariant

of degree 5 and order 13 for the binary quantic of order 7 and a
dependence of the same degree and order. One version of the Postulate
implied that a covariant and dependence could not co-exist for the
same degree and order. But by painstaking calculations Hammond was

able to find a counter example.

The number of linearly independent covariants of degree 5 and order 13
for the binary quantic of order seven was by Cayley's Law
(9=5 ,S= 13, n=1) equal to four. This was because

P(o,1,2,.. 711 - P(o,,2,.. )10 = 30-26 =4

( See Chapter 2, page 85 for this calculation) . By considering
the generating function for the seventh order binayy quantic and
applying the 'sifting' process it was found that these covariants
were composite covariants. In terms of their degree and orders they

could be represented by the products:

(1.7) (4.6)

(2.2)  (3.11)
(2.6) (3.7 .
(2.10) (3.3)

At this point Sylvester would have invoked the postulate to claim
the non existence of any linear .dependency between these covariants.

However, Hammond found such a dependence:

(1.7),(4.6)} = (2.6) (3.7) - (2.2) (3.11)
o [ Hammond, 1882a, 85] .
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The existence of this dependence meant that Sylvester's sifting process
only discovered at most three (of the four) linearly independent
covariants. There was therefore at least one covariant incapable

of being found by this 'sifting' process ' (Hammond's disproof

did not falsify Cayley's Law).

In a letter to Cayley, Sylvester compared his own findings with those
of Hammond:

Hammond has sent me a disproof of the

Postulate too late I ween for the prize as

I had previously announced my own disproof

of it in No.l Vol.V of the Journal

(1882a; SP3, 604] and in the Circular for
November, It is quite different from mine and
more explicit. He finds for instance a covariant
of deg-order 5.13 to the 7% which is a ground-
form but which the method of Tamisage does not serve
to disclose and which consequently will not be
found in my table of groundforms for the 7S!!!

[ App.B, 25 xii 1882] .

Cayley immediately responded to the news of the result:

The extreme importance of Mr.Hammond's result,
as regards the entire subject of Covariants,
leads me to reproduce his investigation

in the notation...[1883b; CP11, 4097 .

Cayley was hopeful that the disproof of the postulate in the case

of the binary form of order 7, might show other irreducible
invariants and covariants to exist and thereby clear up difficulties
associated with the binary seventhic. (As a general rule it was found
binary forms of prime order were more difficult to deal with

than those of composite order). In a letter to Sylvester, Cayley wrote:

I have just this moment, as I am writing,

received the A.M.J. = and I shall perhaps

find that you have been before me, in what

I was go [sic] to say - the disproof of the
fundamental postulate will at any rate necessitate
a revision of your table of the irreducible
covariants of the seventhic, and I am in
hopes!3-that it may turn out that there is .

an irreducible invariant of the degree 20:

"1 find it difficult to believe that the expansion
of the factor into.an infinite series can be.
right, Is it possible that there can be

 between the invariants of the 4, 8 and 12 a 'syzygy
of the degree 16, so as to give more than two new
invariants of that degree. It occurred to me that
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it might be worthwhile to study the
relations of the invariant by means of the
canonical form

(ax +by) + (ex +dy) +(ex +fy)" +(gx+hyY
-the invariants being the functions of the

determinants ad-bec, etc.
[App.B, 12 ii 18831].

According to [Morley, 1912a, 47] Hammond's counter exaﬁple in the
case of the binary seventhic was generally accepted by mathematicians
as nullifying Sylvester's method for binary quantics of order

greater than seven. However, Sylvester thought the binary form of
order seven was a special case and believed the Postulate to be

true for higher order binary quantics.l4 Morley [1912a] showed
that the Postulate failed for odd order binary forms of order seven
and above and for even order binary forms of order tem and above.
Thus Sylvester's method would work for binary forms of order 2, 3,

4, 5, 6, 8; precisely the cases where his results were

in agreement with those of other mathematicians.

To Cayley and Sylvester the binary seventhic was a more difficult
case than the binary quintic. New methods were needed. Sylvester

wrote to Cayley on the matter:

In some previous note you referred to the

7¢ and the necessity of finding whether or-
not there is a 20.0 (i.e. invariant of the
degree 20 attached to it). I had thought

of the Canonical determinants method for
ascertaining how this is but as you

say of your own efforts without success -

The 8¢ is by the great labours of Von Gall
and my own, saved from the general wreck [result-
ing from failure of the Fundamental Postulate]
there was only one doubtful ground-form the
10.4 and that I may recall to you I have
proved in the A.M.J. does not exist,

{App.B, 26 v 1883]

In effect, the failure of the Fundamental Postulate.destroyed
the generating function approach as a method of discovering the
irreducible covariants of a binary quantic. At the root of the
problem was the existence of an unknown number of linear
dependenceé Befwéén‘éov§¥ian€§ - the so-called‘}bfobléﬁ of the

syzygies.'
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4.4, Seminvariants

In the 1880s Cayley's attention was drawn to seminvariants rather than
to the invariants and covariants themselves. Allusion had been made to
these functions (which-satisfied..only eone of his:partiat differential
equations) at the time he wrote the Introductory Memoir on Quanties.
The postscript to this paper [1854c, CP2, 234] indicated their.later
importance, for by the formula in Cayley's Theorem (Chapter 2, page 78)

full covariant expressions could be retrieved from seminvariants.

A seminvariant is the coefficient of the first term of a covariant.
The seminvariants associated with the covariants U R H , § , \VJ

of the binary cubic are respectively:

a' .
ac - b
a*d-3abe + 21
dd*+ 4ac -babed + 4B d -3b%?

They are all 'annihilated' by the differential operator

G.’BL + 25}(_ + 3C ’A&

though only the last seminvariant in the list is annihilated by

the companion operator

d 9.+ 29, + 3bo,

and is therefore an invariant. Using Cayley's Theorem the full

covariant expressions were easily obtained.

Cayley had outlined the meaning of the term seminvariant in
[1860a; CP4, 241] and its importance in [1871e; CP8,566] but

seminvariants did not appear to assume great importance in Cayley's

general work until the 1880s. The impetus for Cayley's intensive study
of seminvariants came from a discovery by P.A.MacMahon.

MacMahon's Discovery

P

In 1883 P.A. MacMahon (1854-1929)15 made a dxscovery (the
(Correspondence Theorem) which effectlvely altered the course of

Cayley's work in Invarlant Theory. MacMahon linked the semvaarlants
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with the theory of symmetric functions and showed that the theory
of seminvariants could be considered as part of this well established
theory.

MacMahon's correspondence theorem was concerned with the binary quantic

o)

3

X"+ }_>_ X“-I\{ + x""‘\f' + d x"’:\[’.;. c. .

It stated that any (non-unitary) symmetric function of its roots
was a seminvariant when the symmetric function was expressed

as a function of the coefficients of the binary quantic [1884a, 131] 16

MacMahon, and following him, Cayley, used the analogybetween semin-
variants and symmetric functions to give a universal method for
forminglinearly independent lists of seminvariants of a given

weight and for finding the dependences between them.

In the 1850s Cayley had been concerned with partitions in counting
the covariants of a form, but now the arithmetic statement of the

problem in terms of symmetric functions (equivalent to partitions)
offered something more. It gave a means for actually computing

the seminvariants and their dependences.

The elementary symmetric functions could be computed if the weight

were not tOO. great.,

Zdt = b -c
E.o(‘/&‘ Tli (e ~4bd +3c)
2 oL* __GL (6b*-12 be +3c."+4f>o{-c>

and these non-unitary symmetric functions corresponded to the

seminvariants 2
b - ace

Ce - 4bd +3a¢
éw -2 abe + 3% + 4'&.7'54 - e

To the known relationships betweén‘the symmetric functions (in this

e T TS SOt

the éorrespondiﬁg dependences bgtween the seminvariants (and hence
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covariants) were automatically established. The relationships between

symmetric functions were easily written in terms of partitions as

here : [4] = [2][2] -2 [ 227,

Cayley regarded MacMahon's discovery as one of great importance and
it. provided the basis for his work in the 1880s.

Sylvester was not so impressed by MacMahon's discovery; to him

the result did not appear so novel. Remarking on the result to
Cayley, he noted 'This is pretty (and likely to be useful) enough =
but it does not seem to me to amount to a Revolution in the theory

as it existed in the Pre-Mac-Mahnic times' [ App,B, 9 viii 1883].]7

Cayley's reply (see Plate 5 ) reiterated the importance:

The great use of MacMahon's theory is in the means
which it affords for making out the whole theory
of the syzygies. It is a question of double

partitions. thus De

2122

Weight |2 |3 |4 |S| 6] 7
8 [2722|331 |44 | 53| LT
427|3%7| 427
22222 427
337

~
~
N
ro

ERENg ¥

2222

Of course 422 means ZoL4r3" YL, 4-22 means
Zot"'-Zp(l‘Zt and so in other cases.

The sum of all the numbers gives the weight
‘and the sum of all the first numbers gives the

degree. Now consider for instance the degree 4
= o4
44 | 4

422 |22
22.22 | 2-2
2222 | 22

viz., the term in 44 which contains °<
is /34' +-K4 + S4 ZP* =4 (for the number of
roots bemg 1ndef1n1te there is no occasion to

dllstlngulsh between 2.014 &— ZF )
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Similarly in 422 coeffk ookt is
i
Z A% =225 in 22,22 it is
Z/S‘Z/s‘- 2.7  and in 222.2

it is 22.

A preceding result at once verificable

is that there is a linear relation

between 4, 22 & 2,2

(the actual equation is 2.2=4 + 22{sicl)...
(App.B, 11 viii (18831 , year estimated]

The principal interest in the MacMahon's Theorem was the method it
gave for investigating the dependences between seminvariants.

It reduced (at least it provided a potential reduction) the
calculatory part of the theory of a binary quantic to a problem in
arithmetic. The chain of reasoning justifying this reduction

of a large part of Invariant Theory to a problem of arithmetic is
straight forward: The covariants were in one to one correspondence
with seminvariants which were shown by MacMahon's Theorem to
correspond to non-unitary symmetric functions. The tabulation

of symmetric functions is equivalent to the arithmetical problem

of finding the partitions of an integer.

In character, MacMahon's discovery was similar to Cayley's observa-
tion on groups of a few years earlier in which the study of abstract

groups was potentially reduced to the study of permutation groups.

MacMahon's result was especially interesting to Cayley. From the
failure of the Fundamental Postulate both Cayley and Sylvester were
deprived of their generating function approach for finding the
covariants and dependences in the higher order forms. Additiomally,
Cayley was thoroughly familiar with symmetric functions

(his [1857a] was a large work in the computation of Symmetric
Funclion Tables) and this subject and the Theory of Partitions
were never far removed from his calculatory approach to the Theory

of Invariants.18

Cayley followed MacMahon's paper with a series of four papers published
in the American Journal of Mathematics. The first paper [1885b]

was a long paper on the theory of seminvariant as it related to
symmetric functions; other papers [ 1885c, 1885d, 1885e] consisted

of tables connecting seminvariants with symmetric functions.1?
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Plate 4: Letter {first pagel from Sylvester to Cayley

regarding MacMahon's discovery in the theory of invariants.

(App.B, 9 viii 1883] . Original held at St.Johns College,
Cambridge [Sylvester Papers | .



Plate 5: Letter [first page} from Cayley to Sylvester in reply to

letter(displayed as Plate 4)explaining the importance of MacMahon's
discovery.

{App.B, 11 viii 1883] . Original held at St.Johms College, Cambridge
(Sylvester Papers] . '
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Plate 6: Letter [first page ] from Sylvester to Cayley
in reply to letter[ﬁisplayed as Plate S]and on Multiple Algebra.
[App,B, 22 viii 1883] . Original held at St.Johns College,

éambridge [Sylvester Papers] .



According to MacMahon's resumé [MacMahon,1896a, 5] of Cayley's

work at this transitional stage, the reduction of Invariant Theory to
a problem of arithmetic became a reality through this paper

on seminvariants [1885b] . Although MacMahon's result had relevance
for finite binary quantics, Cayley's interest in this paper was

confined to the binary quantic of infinite order:
a + b oy e dyte
I 2! 3!

No doubt MacMahon had this work on seminvariants in mind when he
remarked that about the year 1885, Cayley was involved with a vast
amount of purely numerical work [MacMahon, 1896a, 7].

In his approach to the binary quantic of infinite order, Cayley
needed a theory for the multiplication of symmetric functions (as

a product of symmetric functions corresponded to a seminvariant.) It
was the first step in the construction of an algebra of symmetric
functions. Cayley's method was direct and the multiplication rule was
obtained by observation in the simple cases [1885b, CP12, 240] :

ZoA®> Zp = 245 + ZoL3p7
3.2 S + 32

and the multiplication rule duly given was

«Qom = (,Q+m) + lm-

in the case for which Q',fm In the case 2:7& » the corresponding
pattern was: - - : . '
Za*ZE = ZAY + 22
2.2 = 4 + .22

with the multiplication rule:

LA - 20 +, 14

The idea was to obtain a formula for the multiplication of

(PP .. i) and (%.q,‘. .9, ) but the actual formula
obtained in the very simple cases proved to be very complicated.
Cayley gave results for the case (3‘2})“(3‘2#).
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Commenting on Cayley's 'ingenious algorithm', MacMahon remarked:

It gave the requisite facility in dealing
with combinations of forms represented

in the notation of partitions. The

great advance thus made will be apparent
when it is stated that it became
comparatively easy to deal with forms of
as high a weight as forty or fifty and

to assign the syzygies.

[ MacMahon, 1896a, 5)

Symmetric Functions

When Cayley had published his tables of symmetric functions in
[1857a ] his intention was to facilitate the computation of the
resultant of two polynomials.20 These tables applied to
the polynomial of indefinite degree:Z'

(b e, 10T = Qo)1= px)1-59). .

They gave the symmetric functions both in terms of the coefficients
of the polynomial and inversely the coefficients of the polynomial
in terms of the symmetric functioms.

For the cubic

T+ bx + et + dx?

the tables took the following form:

= | d | be |
(37 (-3 | 3 | -
Lz} 3 |-
Led | -

This is the basic table and is read along the rows.

20(3‘ = '34 *—3Lc_—l:3 .
31 =33 e302- (1)
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The 'inverse' table for the cubic took the form

1d [be | B
3] -|
121 -1 -3
LB - |3 |-¢€

It is read down the columns. For instance

B = - (52)-3( S - 6 (54pY)

or simply

(®)=-[3] -3[217 -¢[2]
Cayley's tables written in 1857 are complete for polynomials up

to and including degree ten. 22

On MacMahon's discovery, Cayley reproduced these tables in the case
where the equation was written
L+ bx+ex ¢ dor... = (1= L) =Rx)=¥x)...
i 2! 3!
where the coefficients (involving factorial denominators) were
substituted for the plain coefficients of the original polynomial,

In the case of the cubic polynomial .

| + B)( + 5; xz + Ei X3.
21 3

(1885¢; cp12, 263)
the table was \
= d bc bS
31 (-3 |9 |-¢
201 3 -3
L3l -1

All coefficients were to be divided by 6.. The table showed,e.8.
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[3] = 4 (34 +Qbe-6E)
or otherwise the seminvariant o -35(: *253 .

Perpetuants

A perpetuant was the terminology used for an irreducible seminvariant
of the binary form of infinite order. Sylvester chose this name
because perpetuants 'appeared and reappeared' as the leading terms of
irreducible covariants of binary quantics of finite order. 1In omne
sense the discovery of perpetuants and their dependences was less
difficult than the corresponding problem for finite binary quantics.
Aecording to [MacMahon, 1910a, 638] many of the technical problems
associated with nth order binary quantics disappeared when the
binary form of infinite order was considered. There was only one
perpetuant of degree ! (namely the seminvariant a) but of degree

2 there were an infinite number of perpetuants:
1
ac "l) ~ weight 2
ae-4bd + 3" veight 4
Qj’ — éLF +1Sce - IO({L weight 6

[ s . . . . . . . L3

It was found that as the degree of a seminvariant increased there was
greater chance that it could be reduced. Quite early in the work
Cayley thought that all seminvariants of degree six were reducible;

that is, there were no sextic perpetuants.23

Cayley's conjecture, if true, would have meant that all seminvariants
for the infinite order binary quantic could have been expressible in
terms of perpetuants of the first five degrees. Because of the
intimate relationship between perpetuants and seminvariants of finite
order quantics the correctness of Cayley's conjecture could have

led to a proof of Cordan's Theorem. 2% At least we are told by
MacMahon, Cayley's work in this direction 'led him to desire a purely
algebraic proof of Gordan's theorem concerning the finality of the

covariants of quantics of finite order'[ MacMahon, 1896a, 6 ].

Cayley's and Sylyeste;'s general method of treating algebraic
questions was repeated for perpetuants.

-183-



' gradual progress along the scale'

This was their
where in this case the scale meant n, the degree of a perpetuant.
Cayley and Sylvester both produced generating functions (the number of
perpetuants of weight W and degree B is the coefficient of x%)

of the generating function:

8-
NS —1

(= x2)(1-%x3) . . .(1-%x%)

gradually in the special cases o - 3, 4, 5. But although

the dependences” of degree 5 had been foun&, the sextic perpetuants
(9=é) and their dependences# proved a stumbling block.

Cayley could only surmise the result for B = 6. This was the

case in which he made his earlier conjecture and is likely the
difficulty of the sextic perpetuants to which he referred in a letter

to Dr. Craig of Johns Hopkins University:

I am quite stopped by a question in Seminvariants
partially solved by MacMahon & to which I have

no doubt he refers in the paper23 of his which

you have - but we are neither of us at present

able to make the next step: if I succeed in

doing so, I should be rather inclined to undertake a
treatise on the subject; but I do not at all see
my way.

[App.C, Craig, 12 viii 1885]

Sylvester was too immersed in matrix algebra to take part in Cayley's

new investigations:

Would that I could do anything to assist:-you
you in your most interesting investigation
concerning sextic Perpetuants: Unhappily I
am out of that dream and out of the partition
dream and have no present thought except

for Multiple Quantity.

[App.B, 3 ii 18847

The theory of the binary quantic of infinite order owed a great
deal to Sylvester's inception of the problem in his{1882a].
But his claims in .a letter to Cayley regarding the propriety

of the CorreSpondence Theorem were excessive. According to
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Sylvester, the study of perpetuants was partly a result of
Hammond's disproof of the Fundamental Postulate:

What wonderfully beautiful work you & MacMahon
appear to have been doing on Perpetuants! I must
try and get back on the track. We owe it all in
.origin to Hammond and my Prize Advertisement.
MacMahon will afford to forgo the credit of
"discovering" the correspondence theorem to
which he has not the shadow of a claim.

It is Brioschis + my remark.

EApp,B, 2 iii 1884]

Cayley carried out much of his work on seminvariants in the
mid 1880s in conjunction with MacMahon, as their Notes testify
[App.c,MacMahonJ . Contrary to Cayley's belief .

that sextic perpetuants were non-existent, MacMahon showed that
a sextic perpetuant did exist for weight equal to thirty-one.
MacMahon later proved (as did the German mathematician E.Stroh)
that perpetuants exist for each degree but the lowest weight

of a perpetuant of degree B (?2) was 26.‘—1 .26

Cayley's Law and Gordan's Theorem

Both these theorems received attention from Cayle& and Sylvester
during the 1880s. Sylvester had given his earlier proof of Cayley's
Law (Chapter 3, page 142 ) but in his lectures on Reciprocants,27
he provided yet another proof [1886a, SP4, 363) of this theorem.
Cayley appears to have taken little interest in the proof of Cayley's
Law. But one version of Sylvester's earlier proof [ 1878d; SP3, 229]
attracted David Hilbert's attention and he provided his own proof

in his (1887a, 20] . Hilbert's proof made use of differential

operators similar to Cayley's differential operators.28

Unaware of Hilbert's proof, E.B.Elliott published a proof of Cayley's
Law along similar lines in [Elliott; 1892a] 30

This theorem, on which rested a large part of the calculatory theory
of Invariant Theory,was vindicated by the series of different proofs

which appeared about this time.
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The other outstanding theorem in the theory of binary forms was
Gordan's Theorem. Both Cayley and Sylvester still desired a non-
symbolic proof of Gordan's Theorem. Through his work on perpetuants,
Cayley believed a simple proof to exist. Sylvester, too, sought

the elusive 'natural method' of proof [SP3, 572] . They both
worked almost entirely with the Cartesian expression of the forms and
to them the symbolic method was artificial. The symbolic method

of expression was also difficult to understand. In his own way,

Sylvester made this point(in a letter to the scientist, John Tyndall):

His{Gordan's] own demonstration is so long
and complicated and so artificial a structure
that it requires a very long study to master
and probably there is not one person in
Great Britain who has mastered it. 3!

What was hoped for was not a proof using the complex and abstract
machinery as had been developed by the German mathematicians, but a
proof which owed its power to directness and ingenuity. Their
common attack in the attempt to establish Gordaam's Theorem

was to construct a basis for the covariants of a binary quantic.

In this, they attempted to construct the basis for the seminvariants
but they met their perannial problem: constructing the basis for
the binary cubic and binary quartic was quite straight forward

but the binary quintic was again found to be of a different order of
difficulty.

In the case of the binary cubic, seminvariant basis consisted of
a
ac—-b*
a"ol. "'3a.l>c, t 253
A" +4ad = babed + 4Bd-3bc

And every seminvariant of the binary cubic was expressible as a

rational and integral function of these [ Cayley, 187le; CP%;546]

A more refined idea of a basis was introduced by Cayléy; They were
called by Sylvester, protomorphs |Sylvester, 1882a; SP3,579] For

a binary quantic of order n there existed n protomorphs but it
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was not possible to express every seminvariant as a rational and
integral function (division by a factor a may be necessary) of these

protomorphs or{base formsj. For the binary cubic there were thus

(A
3 protomorphs a, CLC-L R O}d—ZQLC + 21)3 Any
seminvariant could be expressed as a combination of these,

division by a being permissible. For instance, with the
seminvariant V

2

V=4 (cu:—l:")3 + L (ad=3abe 425
= &

The idea was that the system of protomorphs could be used to obtain
the basis for the seminvariants. However, as mentioned above,

this process was found to be of formidable complexity in the case of
thebinary quintic [§y1vester, 1882a, 580] .

Sylvester had to admit (to Cayley) that his attempts to find a

constructive proof were unsuccessful:

My supposed proof of Gordan's theorem was a
Delusion- but I have considerable hopes of being
able to found one upon the method of Deduction
aided by the actual application of this method
{of protomorphs] to the Quintic (as a Diagram)

[ App. B, 6 x 1882]

However, both of them were persistent in their struggle to provide
a proof. Four years later Sylvester was at Oxford and there he

he attempted to turn repeated failure into success. He wrote
to his friend:

In my off moments I have been thinking

again of Gordan's theorem and verily believe

that I have found the proof (...) Hammond is

settled here and we meet for several hours

daily. He will check me if I am under any

delusions as to the Gordanic business.[App.B,1 ii 1886}

and two weeks later the cheerless note:

I nourish the undying hope that through the
Protomorphs we shall be able to prove the.
finitude of the ground-forms of Invariants and
Reciprocants by some simple process of
teasoning. TApp.B, 18 ii 1886 ]
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MacMahon thought the Theorem would eventually be proved using
symmetric functions:

It is to be hoped that some of these facts
{about symmetric functions] may help to
forward the algebraical (as distinect from
the symbolical) treatment of the theory of
invariants; as yet, however, a purely
algebraical demonstration of Gordan's
great theorem concerning the finality of
the ground covariants seems as far distant
as ever,

As is well known, Hilbert provided a proof for any quantic of any
number of variables, not by constructing a finite seminvariant

basis, but by an existence argument.

Cayley was sent a copy of Hilbert's proof after it had appeared
in print in December 1888. From this he was stimulated to
supply a proof for the binary case using his own methods.

In a letter to Felix Klein he wrote:

I have read with great interest Hilbert's

paper in the Gott. Nachr.-which however I do not
understand- and that in the last No. of the
Math.Ann. It seems to me that if instead

of applying this to the invariants of the

binary function, we apply it to the covariants,

or what is the same thing the seminvariants,

we have a very simple & beautiful proof of the
finite number of the covariants= and I have written
this out and send it to you herewith.

T 4pp.C, Klein, 24 i 1889)

A week later, Cayley wrote to Hilbert admitting that he was unable
to merge his theory of seminvariants with Hilbert's abstract method

and so provide a constructive proof:

My difficulty was an a priori one, I
thought that the like process should be
applicable to semi-invariants, which
it seems it is not; and now I quite see

(...) I think you have found the solution
of a great problem.

[ Reid, 1970a, 33; letter dated 30 i 1889]
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However, these doubts seem to have disappeared by the time Klein
informed Cayley of an error in his reasoning but Cayley insisted
that the proof should be published:

Thanks very much for your letter:

I cannot see that there is any doubt
as to the proof which I sent you - it
depends only on the leading coefficient
of a covariant [seminvariant] being a
function of the differences of the
roots and seems to be perfectly
general. I shall be very much obliged
if you will publish it - and of course
any objections to it can afterwards

be published.

[App.C, Klein, 22 ii 1889]

Following Cayley's direction, Klein published the paper [1889c]
but the proof was found to be erroneous.33
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4,5, Last Years

In one of his last contributions to the Invariant Theory

Cayley investigated seminvariants with a view to establishing
criteria for the reducibility for covariants. One argument

which enabled Cayley to establish whether a covariant expression
was reducible was by Cayley's Law (Chapter 2, page 85) but in
[1893c] Cayley attempted to establish a criterion based on

the seminvariants. Reporting on this work, MacMahon ([1896a, 7]
noted that the subject 'bristled with difficulties and exceptional
cases' and concluded that Cayley's work in this direction was

only partially successful.

The direct approach adopted by Cayley was pitted against a problem

of great complexity made even harder by the lack of sophisticated
techniques.

Looking back over the whole field of Invariant Theory the actual
computed results must have appeared meagre to Cayley. Through his work
in the Tenth Memoir on Quantics [1878a] and Hammond's work in the
mid 1880s (Chapter 3, page 145 ) the complete system and
the dependences of the quintic had been found. Thus the work done on
the binary quintic had been successful. But what could be said
about the binary sextic? Although a great deal was known in this
case, the list of fundamental covariants was never completed by

- Cayley. Even for a mathematician of his computational skill

" the calculations would have appeared daunting. In [1881gl he listed
18 of the 26 seminvariants of the sextic and showed how the remaining
seminvariants might be calculated. Although the complete list

. of covariants for the binary sextic had been given by Gordan
in his revolutionary(1868a] , Cayley still endeavoured to
find the explicit forms. Cayley gave a partial list of

17 (out of 26) of the less lengthy covariants and published them
{1894b] . While it was known how to calculate the remaining

covariants it is understandable that they were left uncalculated

when their sheer length is considered. The covariants X, Y and
the invariant 2, for example, (all left uncalculated) consisted

of 1002, 2012 and 1636 terms respectively. 1In [1894b]34 they were

-190-



written:

X = (332,338 332)° 29 b 31 (x,y)"

Y- (ces,676, €68)735 £ 37 ()

S °
. z = ( lé?’é) 45 (xl\i) Invariant (Calculated by

Salmon).

Describing Cayley's work in the last few years of his life, MacMahon
observed that 'he worked largely on his own initiative, although
well acquainted with contemporary work on the €ontinent and in the
United States of America' [ 1896a, 7].

In spite of poor health Cayley remained committed to his originally
stated objective of [1846b1] "to find all the derivatives

of any number of functions, which have the property of preserving
their form unaltered after any linear transformations of the

variables.'
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Chapter 4

References

I. Cayley's lectures were mainly on Abelian functions

according to a letter written by Sylvester [ App.B, 6 ix 1882] .

Cayley compiled a substantial memoir on this subject in two parts
[1882c, 1885a) . A mathematical difficulty caused the break in the
published memoir according to Cayley [App.B, 6 ix [1882]];

later Sylvester was able to write:'Congratulations on the final success
with your great labour which at one time you had abandoned in

despair' [ App.B, 12 vii 18841 Cayley's work on this subject may

have prevented him from taking a greater interest in Sylvester's

matrix theory.

2, Theorie der Abelschen Functiomen (1866).

3. These double algebras do not include the ordinary complex
numbers (1, i are not linearly independent over the complex

numbers and consequently cannot be taken as x and y).

4. According to Benjamin Peirce, a double algebra was 'pure' if
each of the symbols x and y were connected by an 'indissoluble
relation' with the other symbol. If x and y of a double algebra

could be separated into two mutually independent(X\y =Yy¥ 20)

groups, the algebra was said to be a 'mixed' algebra. Peirce

classified "pure' algebras in his{1881a] .

5. Later the seven non-equivalent double algebras were derived
as a consequence of a general theory of linear associative algebras

vhich involved invariants [ Hazlett, 1914a, 6] .

6. After the death of H.J.S.Smith in 1883, Sylvester was
appointed as his successor at Oxford. Cayley was offered the vacant
chair at Baltimore, but he reflected that although he was impressed
by the University during his stay there in 1882: 'I am quite satisfied
here Cambridge and as well for myself and my wife as. on account of
the children, cannot bring myself to the-idea of abandoning England’
[letter to D.C.Gilman, 23 ii[1883 [sicl]held at Johns Hopkins

University, Baltimore, U.S.A .
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7. He . also: gave an explicit solution for px=xq. If the latent

roots of n x n matrices F were >\\ 30y >\.‘ and q were

P. RS’ ‘Ll.\ and if the first i roots were identical,
x= LV would be a solution of px=xq

U = (P"kiﬂ}--.(?"kn)
Ve (e b (g

[1884b, SP4, 177] .

The solution is inadequate for several reasons. Sylvester implicitly

where

assumed the existence of distinct latent roots (Hawkins' 'generic
reasoning' ) and his solution failed to give all solutions (when

)\a = /&& (=>l,...,0 for instance) and he was aware of this.

8. Cayley's formal solution is not watertight and does not give
all the solutions. For instance in the case

Q= Xt o, ‘{,""“ a solution & is ("“XL)

In this case O=1| ,°"'l, P =|  and the equation B*- 24 e+ ﬁt"o
is satisfied. The fact that M=0, A:O,B‘Z means that Cayley's
formal solution yields only Q =0 .

The formal nature of Cayley's work has been discussed by Hawkins

in [1977a] .

9. Sylvester and Cayley most likely heard of Frobenius'

work on matrices through a letter (sent to Sylvester 25 xii 1884
Sylvester Papexw, St. John's College, Cambridge) from Buchheim.
Cayley referred to Frobenins (1886) only in connection with work

on differential equations [CP12, 394] . The English mathematician,
Arthur Buchheim (1859-1888), an Oxford graduate, studied under
Klein at Leipzig and sought to bring matrices to a wider audience by

reconciling the ideas of Grassmann, Hamilton and Cayley [1885a] .

10. Cayley referred to Sylvester's earliér uiatrix papers in two
letters [App B, 8 xi 87] and to Sylves“i:er's

Nivellator theory [ App B, 16 xi 18877 [App B, 19 xi 1887]

‘Cayley"s further papers on Métrix Theory were [1887a; 'lé9la,

1891c, 1895al. o | - h
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11, A continuation of[1887a] was indicated but none appears
to be extant. Cayley's lectures (Michaelmas Term, 1887> were
titled 'Quaternions and other non-commutative Algebras' [CP8,x1v—x1vi]

[App B, 7 vi 84j§ But Sylvester gave his Inaugural Lecture on
Reciprocants.

12, James Hammond (1850-1930) was the eldest son of nine children.
He was educated at King's College, London and graduated from

Cambridge in 1874. He had a facility for patient and accurate
calculation and when Sylvester returned to Oxford in 1884, Hammond
became his secretary. Hammond suffered from a gradually worsening
paralysis but lived a long life [Elliott , 1931a, 78] .

13. See [Sylvester 1879b; SP3, 287] . Cayley's intuition was
quite right on this occasion. The invariant of degree 20 was
shown to exist by Hammond in 1890.

14. There were several reasons for this belief. It was the only
low order binary form for which he and Franklin had not found a finite
representative generating function [Sylvester,1879b; sp3, 2871].

In addition Sylvester had successfully shown the non-existence of a
covariant by way of an implication drawn from the Postulate

[ Sylvester, 1881b] . Defending his method several years later, he
wrote to Cayley: ‘'Has it ever occurred to you to consider why

my method [ of Tamisage] in spite of a possible error in the result
does as a matter of fact give all and not only some of the seminvariants
in all the cases to which it has been applied. viz. 5CS, 6CS, 8CS as
shown by comparison with Clebsch and Gordans and as regards the 8¢

by Von Gall's calculations.' [ App.B, 11 v 1885] .

15, Percy Alexander MacMahon (1854-1929) was born in Malta into
a military family and he himself became an officer in the British
Army. According to [ Baker, 1930a] he gained prominence in the
mathematical world by his discovery of the Correspondence Theorem and
his work on differential operators. Much of his work in combinatorial
theory is close to the theory of symmetric functions.

MacMahon's Collected Papers are at present (1981) being edited by

Professor George E. Andrews (M.I.T. Press) and Vol.l (Combinatorics)
has been published.
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16. Zo(P (5?'751. «.. 18 a non-unitary symmetric function
in the case where no one of p, q, r, .... is unity.

MacMahon's Theorem strictly applies only for binary quantic of

a 'high enough degree'; a non-unitary symmetric function for the
nth order binary quantic is not necessarily a seminvariant.

In the case of the cubic

o=

&
2 AR =5 (37— 4bd)

x3+\>x7'+%x + d

but QBL + 2b>c + SC}A (3C1-4Ld)#o and

t Ld L Ld
consequently B -4 bd is not a seminvariant. In the
. . ™
case of K2 4 however the symmetric function 2 o "/3
is a seminvariant.

On the contrary each seminvariant of the binary form of infinite
order (a function annihilated by O-'al., *Zbécf'“ . ad infinitum)
is a seminvariant of some nth order quantic and quantics of order2n
(the order n is determined by the highest letter ({extent)

appearing in the expression for the seminvariant).

17. Sylvester himself undoubtedly had a strong claim to part

of the credit. He had published his{1882a]on seminvariants to binary
quantics of unlimited order prior to the publication of MacMahon's
ﬁ884a]and felt inclined to dub it the MacMahon-Sylvester Correspondence
Theorem [App. B, 28 iii 1884] . An important point arising out of
Sylvester's (1882a) was the link between the failure of the Fundamental
Postulate and the introduction of binary forms of unlimited order.
Sylvester noted: 'Such a case (amounting to the Fundamental Postulate
being false) does not present itself for quanticsvof thévlbwer orders;
it seems natural and logical therefore to seek for it in the case of a
quantic of an infinite order' (1882a; sp3, 575] .

See also [App, B, 30 111 1886] for Sylvester's further comments on
MacMahon's theorem.
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18. Cayley gave tables for the unrestricted (no restriction on
number of parts) partitions of an integer n forn =1 ton = 18
[18813] . These partition tables are unusual in that they gave actual
partitions whereas later tables gave only the number of partitions

of a given integer [ Fletcher, 1962al . But this was, of course,
possible because he dealt with such small values of n. Like so

many of the other algebraic subjects which attracted his attention,
Cayley was a pioneer and his interest was focused on

classification for small values of n.

19. Cayley's (1885e] computed the actual linearly irdependent
seminvariants of lowest degree for weights up to and including

12. For weight 4, for example, Cayley found the linearly independent
seminvariants Qe -'“‘1' bd + 3 and a*c*-2a A"c. + b

For Weight 12, there were 32 linearly independent(and lengthy)
seminvariants [ CP12, 284-285] .

20, Cayley's [1857almade many corrections in Meyer—-Hirsch tables
(1808). Cayley's tables have been recalculated many times. See
[Fletcher, 1962a] . Euler and Cramer had used the symmetric
functions for this purpose in the course of calculating the number

of intersections of curves [Decker, 1910a, 4] .

21, - Cayley's notation

(\,b,e,...X1, x) = 4 bx +cxt+dx™ -
= (= x)(1= ) (1= ¥x) - - .

is equivalent to the more familiar form
i ‘(“ + LD"" + oj“-z.‘.
= (-4 Y-pIy-¥)--.

through the transformation Y = %{ . Cayley's arrow notation

( SE ) meant the polynomial written without binomial
coefficients.

22, [ cayley, 1857a ; CP2, 423] Cayley noticed (as did
E.Betti) the symmetry between the rows and columns in both the
partition tables(taken separately) (Decker, 1910aT .

Cayley=Betti Law: Coefficient of [P] in(Q)= Coefficient of[Qlin (P).

-
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23. Cayley's paper titled: 'Sextic Perpetuants of any weight
w, proof that number of'=0’, Johns ﬁopkins University Circulars,
3 (1884), 13. (Not listed in CP).

24, An irreducible seminvariant for a nth order binary quantic
was not necessarily a perpetuant. For example V is irreducible for
the binary cubic though it was found to factorise when considered

in terms of the quantic of infinite order:

V = (ac-b*Nae - 4bd +3c*)-a (ace+2bd-ad= e -c*)

25. This was most likely MacMahon's 'On Perpetuants'
American Journal Math., 7 (1885), 26=46. MacMahon computed

syzygies of the infinite binary quantic. He showed that the
simplest perpetuant was of weight 31 and correctly conjectured

the form of the generating function for the perpetuants of
degree 6.

26. MacMahon gave the complete system of perpetuants for

the binary form of infinite order. Though infinite, the members

of the system were identified by MacMahon [Grace and Young,

194la, 326] . According to [MacMahon, 1910a, 6381 the 'true method
of procedure' for the study of perpetuants was due to Stroh who
developed the theory using the symbolic method.

27. When Sylvester abandoned matrix algebra in 1885 he was
attracted by the promise of a new 'invariant theory' (involving
functions in which derivatives occur). In a letter to Cayley he wrote:

Am very glad you take an interest in my

new functions provisionally we may call

them Reciprocants(...) You will see that

the whole of the game so to say of invariants

has to be played out over again on a new

field and subject to new laws but giving

rise to a parallel theory of groundforms of

perpetuants and syzygies and revolving on the

same order of ideas. [ App.B, 24 x 1885 ]
Cayley took an interest in Reciprocants and wrote a survey article
[1893a] . He did not inqlude Lie‘s work in this article and it was
only later realised by English mathematicians that the work on
Rﬁciprocants was subsumed under Lie's theory of continuous

transformation groﬁbs.[Elliét;,11898a] .
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28, E. Stroh published a proof of Cayley's Law using the
symbolic method (1888a] .

29. Edwin Bailey Elliott (1851-1937) was an Oxford
mathematician. He was born in Oxford and graduated there in
1873. His name became known to English mathematicians
through his highly successful Algebra of Quantics [1964a]

first published in 1895. This book summarised the achievements of

the English school of Invariant Theorists and was written in the
non-symbolic method.(It has proved invaluable in the preparation
of this thesis) . Elliott carried the algebraic tradition of

Cayley and Sylvester into the twentieth century ({Turnbull, 1938a, 425].

30. Elliott effectively (but not in the same language) showed that
the range of Cayley's operator <L ( = a.B; + 2L, +--- )
regarded as a transformation of a P(o,..., h)eq, dimensional
space to a  P(o, ..., h)e(@—l) dimensional space,

_was an onto transformation [ Elliott, 1892a, 3041].

31. Letter dated 14 ix 1882 [Tyndall Correspondence, 4,p.1519,
Royal Institution of Great Britain] . This comment of Sylvester's
should not be taken too literally for he himself thought he had
understood Gordan's Theorem several years earlier. However, the
comment indicates the general difficulty the English mathematicians

had in understanding Gordan's symbolic approach.

32, From P.A.MacMahon 'Memoir on a new theory of symmetric
functions', American Journal Math., 11 (1889) 1 - 36
(Submitted 9 v 1888).

33. Cayley attempted to prove the theorem in terms of the
covariants arguing that Hilbert's proof process would be very much
simplified if it were applied directly to covariants or equivalently
to seminvariants. Hilbert was aware that Cayley's proof was
erroneous and the error was also pointed out by the Danish
mathematician, Julius Petersen [1890a, 112] . According to
Petersen,Cayley’'s method did not take into account seminvariants in
which the degree did not equal the weight of the seminvariant.(e.g.
the seminvariant ae—- 4bd + 3" is of degree 2 and
weight 4). It was in dealing with just these seminvariants that

the real difficulties occurred according to Petersen.
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34, This notation for a covariant in, for example,
- o (A
X=(332,33%,332)°29 31 (x,y)
meant that the covariant was of the form
k5
(A, B, ¢)(x,¥)
where %} possessed 332 terms of degree 10, weight 29

(8 possessed 338 terms of degree 10, weight 30
C possessed 332 terms of degree 10, weight 31.
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Chagter 5

A view of Cayley's mathematical thought

5.1. Introduction

One particular facet of Cayley's mathematics makes any view of his
mathematical thinking necessarily incomplete. This was his deeply
rooted reluctance to discuss the nature of mathematics in his

writings. Apart from his Presidential Address, delivered to the
British Association for the Advancement of Science in 1883, Cayley
rarely wrote about mathematics. According to {Roberts S, 1882a] the
'severe' style of British mathematicians was deliberately cultivated.
Cayley's preference for it is shown by a comment he made in some

work of Halphen's: 'l do not think so much talk is wanted before

coming to the question' [App.C, Hirst, 19 vi 1878] he remarked to
Hirst. J.J.Sylvester paid no heed to this convention but his predilec-
tion for embroidering his work with a philosophical commentary was
exceptional. Sylvester was conscious of Cayley's astringent style when

he sought Cayley's opinion:

I hope you will not be too severe in your
judgement on this departure from conventional
rules [in 1884a] . I know that you do not
in general approve of any deviation from
established usage in dealing with mathematical
subjects.

[ App.B, 8 xi 1884 ]

The general lack of explanation and failure to express viewpoints and

motivation makes Cayley's British Assocation Address {1883a] of

particular importance.

The views offered by Cayley on foundational questions are not so much
of interest in themselves as they were not particularly original.
They are the fairly orthodox views on the foundations of mathematics
by an important mathematician of the nineteenth century, and it is
from this that their interest is derived. While the contents of his
Address illustrate Cayley's philosophical insights, Cayley did not

generally channel his abilities into foundational questions and
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mathematical philosophy. As Glaisher specifically remarked,
Mathematical Philosophy was the only mathematical subject which
did not claim Cayley's attention [Glaisher, 1895a, 1747 .
However, he took more than a passing interest in foundational
questions and in spite of his great contribution to the technical
development of mathematics, Cayley must not be regarded as

an unreflecting mathematician.
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5.2. The 1883 Address - Foundations

Cayley's Presidential Address to the British Association for the
Advancement of Science was given at Southport in September 1883.
Cayley accepted the invitation to be President of the British
Association in 1882 while he was in America. 1In a letter to Hirst
he sketched out some likely topics for the Address:

I am astonished at my own audacity[in accepting

the Presidency] Glaisher wrote to me that you

and Adams were going to send me letters of

exhortation & persuasions, but I have not yet

received the one from Adams. I think I shall

make the Address on pure Mathematics - including

of course geometry - and the various directions -

imaginaries and imaginary space, hyperspace,

complex and ideal numbers, AbzZhlende Geometrie

etc, in which the science has in modern times

extended itself. I think it will be possible to

be fairly interesting to a largish part of a non-
" Mathematical Audience.

[App.C, Hirst, 31 iii 1882]

On his return to Cambridge Cayley resumed work preparing the first
draft. He informed Sylvester of his progress: 'I hardly see yet
what I shall be able to make of it, I shall have to go over [it]
again, with a good deal of difference in the point of view, much
that was given - very well indeed - by Spottiswoode in his
[ Presidential] Address at Dublin in 1878' [ App.B, 6 ix [1882],
year estimated | . And in turn Cayley received support and encourage-
ment from Sylvester:

I think that taken as a whole the Address is

exceedingly good(...) , I do not think that

the multitude will be greatly edified by it

as spoken = but the contre=coup of the

judgement following its perusal will I think

make ample amends and tend to support the merit

of the Association as a body seriously bent
on the promotion of science.

{app.B, 3 viii 1883)

That a mathematical Address would not appeal to an éudience used to
popular science and stories of technological success was also the
fear of the reporter for the Times newspaper [ Times, 1 ix 1883, Z] .
" Nevertheless, when Cayley rose to give his évehing lecture the
pavilion (with a seating capacity of over 2,00b'peop1é) ‘was

filled to capacity.l In discussing this period of
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British history, the historian, E.H.Carr, speaks of 'the

positive belief, the clear-eyed self-confidence, of the later
Victorian age.2 And it was this optimism applied to the future

of mathematics which Cayley radiated at Southport in 1883. Cayley

was writing for posterity as for the meeting itself and in the

choice of subject material,he made little concession to the Associatian
audience: 'I think it is right’that the Address of a President

should be on his own subject (...) So much the worse, it may be, for
a particular meeting; but the meeting is the individual, which
evolution principles must be sacrificed for the development of the
race' [Cayley, 1883a, 4] . Cayley surveyed the subject from a historical
perspective and with reference to recent progress. A significant

part of the Address was devoted to the foundations of Number,

Algebra and Geometry.

Time and Number

Cayley dissented from Hamilton's view that the idea of ﬁumber was

based on instances of time. But like Hamilton, he was influenced by the
philosopher, Immanuel Kant.  In accordance with the Kantian view,
Cayley held that time was not an empirical concept but was 'a necessary
representation lying at the foundation of all intuitions' [1883a, 5]

But Cayley rejected the basic notion of number as dependent on any
concept of time. This he asserted in his Address but he had stated

the view much earlier [1864a) :

I do not admit the assertion, that the idea of
number is derived from that of time, it appears

to me that it is derived from that of succession

in time or space indifferently. But I would rather
say that the idea of cardinal number is derived

and abstracted from that of ordinal number, viz.
(distinguishing the expressions 'set' and 'series',
the latter bring used to designate a set of things
considered as arranged in a definite order).

[1864a; cp5, 29273
But where does the notion of ordinal number come from. if not from time?

Cayley explained that his basic starting point was a notion .
of 'plurality®.-

At first glance, this seems to contradict Cayley's belief of ordinal

number logically preceding cardinal number. But as he explained:
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We think of, say, the letters, a, b, c, &c.,

- and thence in the case of a finite set = for
instance a, b, c, d, e = we arrive at the
notion of number; co-ordinating them one by
one with any other set of things, or, suppose,
with the words first, second, &c.,we find that
the last of them goes with the word fifth, and
we say that the number of things is five; the
notion of cardinal number would thus appear
to be derived from that of ordinal number.

[ Cayley, 1883a, 18]

In Cayley's way of thinking, logical precedence was obtained by
subtracting properties (here the natural order relation) and thereby
the conclusion that ordinal number preceded cardinal number.

This is, of course, in distinction to the conventional modern (and
Cantor'’s) view that cardinal number logically precedes ordinal
number. The modern view assumes that an entity logically precedes

another if the first entity has less structure than the second entity.

It {s possible that Cayley arrived at these ideas in collaboration

with Sylvester. In offering guidance to Cayley in his preparation

for the Address, Sylvester reminded Cayley of past conversations:

The observation of ordinal preceding cardinal

number in logical conception you got I believe

from me = but doubtless the parentage has escaped

your recollection as it was a long time ago

[1865?]) when the subject was mentioned = the matter

is of no importance but when I saw my baby nursed in
your arms it was impossible to restrain a cry of natural
affection and parental recognition.

[ App.B, 3 viii 1883]

Cayley, primarily an algebraist and geometer, did not seriously
address himself directly to the problem of placing the real numbers
on a firm foundation. He appeared content with the notion of real
numbers being a 'continuous' extension of rational numbers. His -
lack of interest in the ultimate nature of real numbers was most

likely a consequence of the English 'operational' apprbach to the
differential calculus. This made little use of the limit concept and

the derivative was considered as algebraic in nature. For Cayley,

real numbers were simply magnitudes capable of continuous variation
{1883a, 18] .
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And if Cayley rejected the idea that the natural numbers were based
on time, still less did he appreciate how complex numbers could be
placed on this foundation. He emphatically concluded: 'We do not

have in Mathematics the notion of time until we bring it there.'
[1883a, 19] .

Algebra

The emergence of symbolic algebra in the 1830s and 1840s removed the
necessity for algebraic symbols to be interpreted. Cayley had

clearly understood this when at twenty—three years of age

he first encountered the quaternions (Chapter 1, page 40) . The
quaternions were readily accepted by Cayley as valid even if they

were not commutative. 'Why should they be' noted Cayley, stressing
consistency as the important criterion which symbolic algebra should
satisfy. The geometrical interpretation of quaternions found
subsequently by Cayley was not an argument for justifying the existence
of the quaternion entities. However, Cayley did not accept that
symbolic multiplication was entirely arbitrary. This condition of
consistency being understood, Cayley substituted 'utility' in

place of the earlier 'interpretability.' Commenting on the quaternions

in the course of a review of Hamilton's (1853a] Cayley wrote:

Sir W.R. Hamilton's quaternion imaginaries are
a set of symbols subject to laws of combination
different from those of the ordinary algebraical
symbols. Definitions in analysis as in any other
science are not to be considered as arbitrary; they
must satisfy the condition of utility as regards
the science to which they belong, i.e. they must be
such as to admit of being made the foundation of a
system of dependent truths the development of which
forms part and extends the limits of the science, and
the interest of such resulting theory is a test of the
value of the definition. The analytical. theory
of Quaternions is an eminently interesting and
beautiful one, and the beauty is heightened by the
singularity of the subject matter viz.symbols subject
to laws of combination different from the laws with which
mathematicians have hitherto been concerned. [Stokes,
1907a, 386 .

This is an echo of Peacock's own view of Algebra:
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Algebra may be considered, in its most general

form, as the science which treats of the combinations

of arbitrary signs and symbols by means of defined
though arbitrary laws: for we may assume any laws

for the combination and incorporation of such

symbols, so long as our assumptions are independent,

and therefore not inconsistent with each other: in order,
however, that such a science may not be one of useless
and barren speculations, we choose some subordinate
science as a guide merely...

[Peacock, 1830a, 71 his italics’) .

But Cayley needed no subordinate science,for quaternions came to him

as a ready made symbolic algebra.

A potential source for examining Cayley's algebraic viewpoint is his
[1864a]'On the Notion and Boundaries of Algebra. The paper was an
attempt to delineate the chief characteristics of algebra but the

motivation for the paper being written was not explained.

Cayley excluded all infinite analysis and considered only the

subject matter which had hitherto been described as finite Analysis.
Similarly to De Morgan [1839a]., cayley regarded Algebra as

an Art and a Science. Algebra as an Art was judged to be the most
important. This was concerned with operations which were either
'tactical' or 'logistical.' A 'tactical' operation described

the strategy by which an algebraical result might be deduced while the
'logistical' operation referred to the ensuing manipulation.

In modern language, Algebra as an Art referred to the art of using
symbols and might loosely be described as calculatory or manipulative
algebra. In Algebra as an Art there was no question of interpretationm.
Algebra as a Science (of lesser importance in Cayley's view) contained

the predictivé part of the subject:

qua Science Algebra affirms a priori, or predicts,
the result of any such tactical or logistical (or
tactical and logistical) operations. (1864a, CP5, 293]

Algebra as a Science is concerned with the interpretation of symbolic

results.
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Geometry and Algebra

In the memoir on Abstract Geometry (1870) Cayley explained how an

understanding of abstract n-dimensional geometry could be useful

in dealing with algebraic problems:

In fact whenever we are concerned with
quantities connected together in any

manner, and which are, or are considered

as variable or determinable, then the

nature of the relation between the quantities
is frequently rendered more intelligible

by regarding them (if only two or three

in number) as the co—-ordinates of a point

in a plangor in space: for more than three
quantities there is, from the greater
complexity of the case, the greater need of
such a representation; but this can only be
obtained by means of the notion of a space

of the proper dimensionality; and to use such
representations, we require the geometry of such
space.

[ 1870; cp6, 456)

An instance of this approach was seen in Cayley's treatment of the
matrix equation px = xq, where a four dimensional space was entailed
(Chapter 4, page 167). If any branch of Cayley's mathematics was
his speciality, it was Algebraic Geometry.4 (See Appendix A

for an indication of Cayley's path in Algebraic Geometry). The

link between Geometry and Algebra was of course the 'method of

co-ordinates.'

An indication of the extent that Cayley considered the method of
co-ordinates to be the essential tool in geometry (as distinct from
the synthetic method or the quaternionic method) is seen from his
choice of 'Descartes and the invention of co-ordinates' as subject
for his Inaugural lecture as Sadleirian Professor at Cambridge .in
1863. And in his 1883 Address he briefly commented that 'Descartes'

method of co-ordinates is a possession for ever.' [1883a, 37) .

For Cayley, a Cartesian equation representing a curve or surface had
the advantage of being able to convey its meaning immediately. This
was in distincﬁion,to an equation expressed in a more compact form.
This fact was the point of Cayley's well-known 'pocket mép' allegory
with regard to:equatidﬁslekpréssed in the quaternionic notation:

'l compare a quaternion formula to a pocket-map - a 6a§£tal thing

to put in one's pocket, but which for use must be unfolded: the

formula, to be understood, must be translated into corordinates.’
(1895b, 2727 . -207-



Cayley's affinity for the Cartesian method and notation can be

observed in his treatment of purely algebraic subjects. 1In the

Theory of Invariants he was predominantly interested in the

full Cartesian form of a quantic and its covariants. The compact
notation which the German mathematicians used to great advantage did not
hold the same attraction for Cayley. The suggestion here is that

the symbolic notation for a covariant, like the guaternion, would have

to be 'unfolded' to be properly recognised by Cayley.

A similar parallel can be drawn in Cayley's treatment-of matrices. The
'‘Cartesian form' of a matrix corresponding to the matrix expressed as
an array of its elements (or of a linear substitution in terms of the
linear equations) and the compact form corresponding to the single
letter symbol representing the array. Cayley referred to matrices
(when used to express a linear substitution of variables) as a very
condensed notation in his treatment of the transformation of a bilinear
form [1861&; CP4, 391] . 1In this he gave both the transformation in
terms of the single letter symbolism and in terms of the corresponding
linear equations. Cayley regarded the transformation of a bilinear
form when expressed in the single letter symbolism as being of 'no
difficulty' but he also 'unfolded' this condensed notation to give

its meaning in terms of the linear equations.5

Though Cayley was one of the first mathematicians to grasp the importance
of n-dimensional geometry (to Cayley this had little to do with reality
and was termed an ideal space) his geometric researches were

principally concerned with real Euclidean space. Cayley was an
Euclidean geometer concerned with the study of curves and surfaces

in this space. He identified this space with physical space and firmly
upheld its a priori character: ‘

My own view is that Euclid's twelfth axiom in Playfairs
form of it (Through a point not on a given line there
exists a unique parallel line] does not need
demonstration, but is part of our notion of space,

of the .physical space of our experience - the space,
that is, which we become acquainted with by experience,
but which is the representation lying at the :
foundation of all external experience. [ 1883a, 9]
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He saw that the removal of Euclid's Twelfth Axiom gave rise to non-
Euclidean geometries but these were understood to be immersed in
Euclidean space.Because geometry meant Euclidean geometry to Cayley

he was unable to contemplate a non-Euclidean geometry distinct from

Euclidean geometry. D.M.Y.Sommerville judged that Cayley:

never quite arrived at a just appreciation of the
science. In his mind non-euclidean geometry scarcely
attained to an independent existence, but was always
either the geometry upon a certain class of curved
surfaces, like spherical geometry, or a mode of
representation of certain projective relations in
Euclidean geometry. [ Sommerville ,1958a, 158].

Complex Numbers

Cayley stressed the importance of complex numbers in geometry:6

it is a notion of a complex number

implied and presupposed in all the con-

clusions of modern analysis and geometry.

It is, as I have said, the fundamental

notion underlying and pervading the whole

of these branches of mathematical

science C 1883a, 141}
By the 1880s the mysteries surrounding the existence of V-1
had largely been dispelled.. No longer was there the need to
interpret J-1 as a physical entity. Cayley's interpretation
of complex numbers in geometry was based on the Principle of
Continuity originally inspired by Kepler. Both Sylvester and
Cayley invoked this principle freely. As a philosophical

principle it lay at the core of their mathematical outlook.

As a youth, Cayley was aware that Jci— needed no physical
justification. The 'right angle' interpretation which was not
Cayley's, throws some light on Cayley's view of the connection
between algebra and geometry. In a review of a paper (by A.J.Ellis)
Cayley noted that it contained:'Some of the views [of George Peacock
and William Walton] in regard to imaginaries in algebra and
geometry = which I in no-wise agree to-are perhaps as orthodox as my
own [ Roy, Soc.London, RR. 4.72] . The implication of .this
interpretation of J-| meanmt that while Cayley would regard

X"+ 11 = o or y = t,/a?- x*
as the equation of a circle in real space, Walton and Peacock would

obtain another curve (for XY a ) relative to a new axis
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at right angles to the x and y axes. Cayley studied curves in
real Euclidean space and a geometric interpretation as an actual
geometric entity correspondingl to the symbol f:T was not given.
Cayley invoked the Principle of Continuity to preserve generality
in his algebraic reasoning. Cayley's line of argument in an

elementary case illustrates how the real geometrical picture was
made to comform to the algebraic conclusions using this Principle:

In the case of a straight line and a circle
this [the eurve of intersection] is a
quadric equation; -it has two roots, real or
imaginary. There are thus two values, say
of x, and to each of these corresponds

a single value of y. There are therefore
two points of intersection - viz. a straight
line and a circle intersect always in two
points, real or imaginary (1883a, 13)

But no satisfactory meaning could be offered for an actual

imaginary entity save a constructional argument in which the reader
was eventually called upon to 'imagine' the so-called imaginary points.
Cayley's difficulty was that his geometry was concerned with real
Euclidean space and not with a space over the complex numbers. From
his need to preserve generality in his algebraic reasoning, Cayley
accepted such geometrical statements as: any two (plane) circles
intersect in two points; from any point in the plane there are

always two tangents to a conic; two lines meet at a point. His
justification for employing the Principle of Continuity in geometry

was that it could not be contradicted by experience.
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5.3. Cayley as a scientist

Cayley paid little attention to the traditional areas of applied
mathematics., In this sense of 'Cayley as a scientist' his
contribution could be described briefly. He worked on such
subjects as Theoretical Dynamics, Astronomy, curve tracing
apparatus, the Principles of Double Entry Book-keeping, and an
unsuccessful attempt to design a machine for tracing engineering
drawings.® This is not the meaning of the phrase 'Cayley as

a gcientist' as will shortly be discussed.

Cayley was ready to give help to scientific colleagues on mathe-
matical questions (including the performance of extensive ltnar:
calculations) but at the beginning of his career, as recounted

to Boole, his real preference was for pure mathematics:

I did in pursuance of our agreement make a feint
attempt to read some physical optics, but I found
myself, getting back always to my favourite
subjects - linear transformations & analytical
geometry, & gave up in despair.

[App C, Boole, 3 xii [1845],year estimated]?

Cayley's lack of enthusiasm for the questions which interested
'applied mathematicians' did not pass without criticism. His
friend, Sir William Thomson, perhaps reflecting his own bias,
(in a letter dated 31 vii 1864 to Helmholtz) lamented Cayley's
lack of interest in the 'advancement of the world':

The full working out of the solution, too,

for the circular plate, shows no small amount
of courage, skill, and well=-spent labour.
[Kirchoff's work on Plates ] Oh! that the
CAYLEYS would devote what skill they have to
such things instead of to pieces of algebra
which possibly interest four people in the
world, certainly not more, and possibly also
‘only the one person who works. It is really too
bad that they don't take their part in the
advancement of the world, and leave the labour
of mathematical solutions for people who would
spend their time so much more usefully

in experimenting. '

[ Thompson, S.P, 1910a, 433)

But although Cayley did not join with such men as Thomson, Stokes

or "Maxwell ~in their mathematical theories of the physical
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world, his own methods within mathematics were not so different
as their own. Indeed it will be argued that Cayley's methods
had much in common with the traditional activities of Victorian
scientists generally. This is the meaning of the phrase

"Cayley as a scientist.'l0

Cayley had more reason for pressing these primitive lines of

attack than a mathematician today. To Cayley the axiomatic

method was unavailable, whereas a modern mathematician is able

to think of a specific mathematical entity in terms of an axiomatic
framework. Cayley discovered these entities in a theoretical

vacuum. Deduction, the concomitant of the axiomatic method,

naturally played a lesser part in Cayley's mathematics. In his Notice
on Cayley, the mathematician, Max Noether, referred to him as the
'natural philosopher amongst mathematicians' [1895a, 479] . And

he meant by this, that Cayley was primarily a discoverer of mathe-

matical truths with a strong leaning towards the Heuristic.

Sylvester compared (in the course of an Address to a non-mathe-
matical audience) their work in the Theory of Invariants to the
work of the physicist. The essential constituent of course was

discovery:

And, as it is a leading pursuit of the
Physicists of the present day to ascertain
the .fixed lines in the spectrum of every
chemical substance, so it is the aim and
object of a great school of mathematicians
to make out the fundamental derived forms,
the Covariants and Invariants, as they are
called, of these Quantics.

{1877d; sp3, 76}

Thus Cayley was concerned with finding processes which would generate
the covariants. As has been seen ' (Chapter 1, page 30) Cayley estab=-
lished a number of different processes for finding covariants. . The
criterion for deciding on the best process was based on its efficiency
as a calculating device. A process might be valuable theoretically
but it would be disregarded in favour of a process which was more

efficient in the production of covariants.

As the Victorian scientist gathered his specimens, Cayley gathered

his covariants. The outlook is palpably conveyed by a seemingly
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innocuous remark in conclusion to the Fourth Memoir on quantics

[1858d] . After observing that a certain resultant of two polynomials

would yield a succession of covariants, he remarked:

The modes of generation of a covariant

are infinite in number, and it is to be
anticipated that, as new theories arise, there
will be frequent occasion to consider new
processes of derivation, and to single out and
to define and give names to new covariants.

[1858d4; cp2, 526, my italics]

Classification

Cayley's intention 'to single out and to define and give names to

new covariants' is the first principle of any general classification
procedure.!! Faced with the vast array of invariants and covariants,
classification by name was a natural way of organising the infant
theory and perhaps accounts for the introduction of an abundant
terminology. 'Progress in these researches', wrote Sylvester at

the beginning of the 1850s, 'is impossible without the aid of clear
expression; and the first condition of a good nomenclature is that
things shall be called by different names' [sP1, 280].

Cayley was extremely circumspect about the introduction of

terminology into mathematics but he supported Sylvester in the
endowment of the subject's spectacular vocabulary. In deriving

their terminology from Latin and Greek it is evident that they

were hoping to achieve a 'state of fixity' of terminology as was

also striven for in the Natural Sciences. Although the words used were
possibly less obscure to the ‘British:mineteenth century

mathematician, it amounted to a private language between Cayley,
Sylvester, Salmon and possibly a few others. If Salmon had difficulty
with the terminology, the general reaction of the Continental mathe-
maticians could only have been one of bemusement.. While visiting

Europe in 1857, Hirst recorded the views of Joseph Liouville(1809-82):
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He[Liouville] acknowledged their ability but

he protested against their wilful obscurity.

He considers Cayley and Sylvester to be in some
measure the disciples of Cauchy in this respect. ,
In order to attain a broader view of the subject, |
they lose precision. Ordinary phraseology hampers i
them, and without hesitation they coin a language
of their own, useful to them, no doubt, but for
others decidedly inferior to the ordinary language.
To be precise and clear is equivalent in their
eyes to being tedious. Rather than march over
their difficulties and through their conquered ‘
territory with a firm, steady step, they leap and |
turn somersaults. It is possible that by so doing
they are able to take a rapid and sufficient view
of their subject, but others decidedly see better
with their heads upwards.

[ App.C, Hirst Diaries, 3, 1327,
18 xi 1857

Liouville failed to appreciate that aspect of Cayley's mathematical
activity which dwelt on calculation and the advances Cayley made

as a result of this work.

Induction and analogy

According to the mathematician, E.W.Hobson, writing in 1910:

The actual evolution of mathematical theories
proceeds by a process of induction strictly
analogous to the method of induction employed

in building up the physical sciences; observationms,
comparison, classification, trial, and generalisa-
tion are essential in both cases.

[ Hobson, 1910a, 5207 .

Both Cayley and Sylvester were anxious to stress fhese aspects

of their mathematics to scientific colleagues. 1In the Theory of
Invariants, Hobson's characteristics had all played a part.

That Cayley did not see Geometry as a purely deductive procedure can
be seen in a response to an attack on the position of geometry in

the mathematical curriculum by Sir George Airy:
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Whereas Geometry (of course to an intelligent
student) is a real inductive and deductive
science of inexhaustible extent, in which he
can experiment for himself - the very tracing
of a curve from its equation (and still more
the consideration of the cases belonging to
different values of the parameters) is the
construction of a theory to bind together the
facts - and the selection of a curve or surface §
proper for the verification of any general theorem i
is the selection of an experiment in proof or

disproof of a theory. [ App.C, Airy, 6 xii 1867]

But as a method, induction from elementary cases in

algebra and from physical geometrical models in

geometry provided a fruitful point of departure for ensuing generalisa-
tions. When Sylvester wrote to Cayley on whether to apply to the

Royal Society for a grant in order that a model of an algebraic

surface should be constructed Cayley replied:

you may with great propriety apply to the R.S.
for a grant (...) I should be very glad if a few more
algebraical surfaces could be modelled.

[4pp B, 14 iii 1865] 12, 13

To Cayley these models were as the 'drawings in the sand'. Cayley
definitely did not subscribe to Induction (in Mill's sense) as the
process through which notions of the primary elements (straightness,
line) were obtained. As with many mathematicians of the pineteenth
century, Cayley believed in certainihvate ideas not derived from
experience of any kind. The truths of geometry were truths because they

were concerned with independently existing 'Universals':

I would myself say that the purely imaginary
objects are the only realities, the dwTwg OyTa
[really real] , in regard to which the
corresponding physical objects are as the shadows
in the cave.

[cayley, 18833; 71
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Generalisation

While the study of particular cases occupied much of Cayley's
attention,he was of course interested in the more general
theory. In the case.of determinants, the 'cubic' determinants'
were immediately considered,leading to the ultimate generalisationm in
the Permutant (Chapter 2, page 60 ). But generalisation is not
abstraction and Cayley should be considered as a 'generalising'
mathematician rather than an 'abstract' mathematician.
Cayley's paper on groups [1854a] is well known and it
serves to illustrate this distinction. In this work Cayley
created a set operator, a concept which included the substitutions
of Galois. G.A.Miller [1935a, 1, 427] considered (with hindsight)
this paper to have inaugurated the theory of abstract groups. But
the concept there int;oduced was not abstract (in the sense of
axioms and deduction from axioms) but was rather a more general'
notion of a group than had hitherto been considered. The elements
of Cayley's groups were operations not symbols satisfying a
list of axioms. The set operators as a generalisation is evident
from the wording of a letter he sent to Sylvester:

I consider a substitution, when applied to

an arrangement as corporified, and using the

word group as primarily applicable to

substitutions (or to my more general set

operators as I propose to call them) I use the

expression corporate or corporal group

to denote a group of permutations. But

the word group may be understood as denoting
or including corporate group.

C App. B, 18 viii 1860]

Cayley was interested in proving for his set operators the theorems
which Cauchy had proved for substitution groups:

the very theorem which I mentioned to you

that I was in want of - which I wish you

would consider - viz. that any group what-

ever of set operators every prime factor of

the order of the group presents itself
as the index of at least one operator.

[App.B, 18 viii 1860 ]

Cayley touched on abstraction (in group theory) in the late 1870s
(1878c, 18784 ], but hé:qid not appear to pursue an abstract
development.lA" -
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In Cayley's work there are projects involving large scale calculations
pertaining to a very special case and work involving conceptual
extensions of immense generality. However, a theoretical develop-
ment obtained from clearly stated axioms is missing. Cayley was

able to obtain putative axioms by generalisation but as his

reaction to Hilbert's proof of Gordan's Theorem (Chapter 4, page 188)
perhaps showed, an abstract deductive approach to proof was beyond
his ken. Without the theoretical developments and powerful

techniques which are possible with the axiomatic method, Cayley was

compelled to proceed with relatively unsophisticated methods.

Proof and Rigour

In reviewing Cayley's attitude to proof in mathematics it is
interesting to know that Cayley's attitude was the rule rather than
the exception. Referring to the Greek ideal of deductive proof

from explicit axioms, Morris Kline remarked:

It is one of the astonishing revelations of the
history of mathematics that this ideal of the
subject was, in effect, ignored during the two
thousand years [200 B.C. to about 18701 i

which its content expanded so exten31ve1y.
[1972a, 10247 .

It is a paradox that British mathematicians, in particular,
should have manifested such a casual attitude to proof,

when one considers the central position which that bible of

the axiomatic method, Euclid's Geometry, enjoyed in Victorian
Education. Not only this, but, when moves were afoot to banish
Euclid from the school curriculum, Cayley defended its retentionm.
And in his Address he declared 'there is hardly anything in
mathematics more beautiful than his Euclid's wondrous fifth.
book ...' [1883a, 217 .

How did Cayley reconcile his esteem for Euclid with the lmpllcatlon

contained in a note from Sylvester?

I am revising the proofs of my paper on
compound determinants (...). It is a

large subject largely treated.and (which
will please you) containsno proofs whatever.
It all rests on faith - There will be about
two dozen pages of pure assertion in it.

A N (App.B, 12 vii 1879] .-
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The answer is that Cayley esteemed the content of Euclid but ignored
the method. In Invariant Theory, as well as other algebraic
researches, the object was calculation and taxonomy. Actual

'proof' was relegated to a secondary positionm.

However, Cayley was not opposed to proof in principle. The desire
to provide a proof of Gordan's Theorem is ample evidence of this.
But this was a theorem thought worthy of proof. Frequently a
statement was regarded as true on the evidence of its truth for
simple examples. This was the case for theorems on determinants,
matrices and quantics of degreen(for example: Chapter 1, page 42;
Chapter 2, page 76). But perhaps the most commonly quoted

example of Cayley's failure to provide a proof occurred in his
[1858a] where the Subsequentiy named Cayley-Hamilton Theorem was
stated but a proof provided only in the case of second order
matrices. In fact, the absence of such a proof on this particular

occasion was criticised by the referee, George Boole:

One theorem referred to on p.2 of the Introduction
[the Cayley-Hamilton Theorem] and illustrated in
Articles 21,..., 24 is less elementary than the
others. The author after giving a particular
exemplification of it in the case in which the
subject quantities are two in number, and stating
that he has verified it in the case in which their
number is three, adds "but I have not thought it
necessary to undertake the labour of a formal
proof.”" It certainly if generally true ought to
admit of a symbolical proof not involving much
complexity but resulting from the first principles
of symbolical algebra - this being the kind of
proof, which according to analogy and from the
intrinsic character of the theorem ought to be
sought for. And I must add that I cannot but
regard the memoir as essentially incomplete without
such a proof.

Even with this. defect, however, I have no hesitation

in recommending the paper for publlcatlon in the

Philosophical Transactions. '

[Royal Soclety of London, RR. 3. 55} 15
Cayley‘was unused to the discipline of proof although it is just
conceivable that a proof based on the identity
BaiJB =dtB 1+

would have been possible for n = 3. This identity was a known fact

{ cayley,1858a; CP2, 481) . Glaisher's description of Cayley -
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distinct roots. In considering only the 'general' case Cayley
implicitly assumed by 'continuity' that similar properties held
in the limit. The special cases could thus be disregarded.

Cayley did not make a deep enough impression on the theory of
matrices to appreciate that there could be a 'discontinuity

of property' associated with matrices which possessed characteris-

tic polynomials with equal roots. 19, 20

Frequent use was made by Cayley of proof by the 'method of
verification.' A specific result would be obtained by any means

and it was subsequently verified that a correct result had been
obtained. Thus in a problem to find [ =/M [1872a]

'whererﬂ was an arbitrary matrix, a formula was sought by a method
chosen purely for its expediency. The result was verified by showing
the symbolic identity L*=M

Cayley's attitude to mathematical proof had a great deal of affinity
to  that of Felix Klein. According to Constance Reid [1970a, 146],
Klein never possessed the patience to provide logically perfect
demonstrations for theorems which he was convinced were true.

Cayley appeared to only supply enough detail to convince

himself of the correctness of the result. It was more exciting

to discover results than ponder over a carefully reasoned argument
in support of a result that one thought was true. As indicated by
Kline, Cayley's attitude to proof was not unusual amongst a wide
group of nineteenth-century mathematicians. His particular
interest was discovery and in this enterprise logic played little
part. One of Koestler's remarks is particularly aptiz

A locksmith who opens a complicated lock with a
crude piece of bent wire is not guided by
logic, but by the unconscious residue of.
countless past experiences with locks, which
lend his touch a wisdom that his reason does
not possess. '

Calculation

The task of the V1ctor1an sc1ent1st was to locate and order and to

collate and name. To 'Cayley‘the Sc1€ntlst' workrng in the Theory

of Invarlants, to locate meant to calculate the 1nvar1ants and

covarlants. The task of calculat1on was a dauntlng one from the

beglnnlng of the lheory. Cayley was undeterred by the prospect
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of long drawn out calculations. His equanimity in the face of such
calculatory work is seen in an early letter written to
George Boole:

I have a plan just now of effecting to a certain
extent, the elimination of the variables between
three quadratic equations: the results as far

as I mean to expand it will contain about 7 or
800 terms, each of them the product of four
determinants of the third order and linear

in the coefficients of each of the equationms.

I can do so without any excessive trouble by

a method given by Hesse.

[app.C, Boole, 11 xi 44]

Although Cayley was interested in calculation it should not be
inferred that he was interested in numerical calculation for
the purposes of approximation. Cayley's interest in calculation
was limited to the exact calculation which had a bearing on the
theoretical development of a subject. The difference between
the numerical solution of equations and the calculations of the
symmetric functions was a case in point. A mild reproach from
Sylvester for not taking more of an interest in numerical
approximation is illuminating:
Why should you despise this subject?
LQuadrature Methods] or regard it

only as a mere matter of Numerical

Approximation? Your question "et puis?”

( and after?] would have choked many a

grand theory in the bud.

{App.B, 20 xi 1862]
Cayley's love of calculation was both a help and a limitationm.
Through the calculative element he was able to develop an intuition
by familiarity with elementary cases. But his adopted methods
were not so successful with higher order binary quantics and in
the 1880s he pursued the listing of invariants at the expense of
developing an abstract theory. The original objective of [1846b]
which was to 'find' the invariants was double edged. It meant
that when Cayley considered theoretical questions he appeared to
favour techniques which were efficient as devices for calculation,
irrespective of their theoretical potential. This occurred in Cayley's
adoption of the 'mew synthesis' (Chapter 2, page 64). With hindsight
it was seen that important theoretical results could be obtained

by the derivational symbolic method.
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Cayley's role in algebra was classificatory. He played a leading
part in the establishment of algebraic theories but the discovery
of mathematics was part of the Spirit of the Age and not axiomatic
mathematics. A comment by A.N.Whitehead on the Natural Sciences

is perhaps applicable to the ultimate scope of these classificatory

methods:

Classification is a half-way house between the
immediate concreteness of the individual

thing and the complete abstraction of
mathematical notions. The species take
account of the specific character;,. and the
genera of the generic character (...).
Classification is necessary. But unless

you can progress from classification to
mathematics, your reasoning will not

take you very far.

[ Whitehead, 1927a, 37]
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5.4. Cayley and Cambridge

The scarcity of University positions in mid nineteenth century
Britain meant that even Cayley found some difficulty in securing
a suitable academic appointment (Chapter 2, page 107).

By the time he was appointed to the Chair at Cambridge(in 1863
when he was 41 years of age), he had established an impressive record
as a research mathematician but was relatively inexperienced as

a teacher, On his appointment, research activities continued

to occupy most of his attention, for the teaching duties attached
to the Sadleirian Chair were light. For a number of years they
consistdd of only one term's course of lectures in an academic
year. The organisation of the Mathematical Tripos Examination

contributed to the fact that Cayley's classes attracted few students.

In its content, according to [Glaisher 1886a] , the Tripos had
remained fairly static during the period 1850 - 1873. The only
change appeared to be a growth in Analytical Geometry and Higher
Algebra. In 1867 there was movement towards the introduction

of 'applicable mathematics' (subjects such as Electricity and
Magnetism) being included. One of those in favour of reform
was Sir W. Thomson who was against students 'wallowing in conic
sections® in order to score high marks [ App.C, 20 xii 1866] .
With change imminent, Cayley resolutely affirmed the teaching
terms of his Sadleirian Professorship: ' to explain and teach

the principles of pure mathematics.’

Cayley's approach to the teaching of mathematics was not anti-
pathetic to the needs of science. He took a positive outlook and
regarded it his duty to teach mathematics for the subject itself
with little attention paid to external considerations. By this
means, he argued, students might understand mathematics and
thereby be more proficient in its application. Cayley's

position is summarised in a brief exchange of letters with Airy
in 1867. Airy complained that students were wasting valuable
time on such Subjects as Analytic Geometry and 'useless
algebra', subjects, he claimed, having little practical relevance.
Airy, was something of a University politician who worked hard to
reform the educational curricula. Cayley, the devotee of Pure
Mathematics for its own sake, found himself on the defensive

against an Astronomer Royal bent on establishing mathematics as
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a tool for the physical sciences. The different standpoints are
apparent from their, statements on. the subject of partial differential

equations. Airy thought that:

the Partial Differential Equations are very
useful and therefore stand very high (in
ability to solve problems), as far as the
Second Order ..... Beyond that Order they
apply to nothing.

[App.C, Airy, 8 xi 67]
Cayley's reply took due account of theoretical progress in

the subject:

As to Partial Differential Equations, they
are "high" as being an inverse problem
{Integration problem], and perhaps the most
difficult inverse problem that has been dealt
with. 1In regard to the limitation of them to
the second order, whatever other reasons exist
for it, there is also the reason that the
theory to this order is as yet so incomplete
that there is no inducement to go beyond

it;

[ App.C, Airy, 6 xii 67]

Airy was primarily interested in thg-app%icatiqn”of'gxigting
mathematics while Cayley saw the cbqlquge_gf'mat@gm;pics_per se
and was more far sighteéd. Cayley was not arguing against reform,
but in defence of Pure Mathematics:

But admitting (as I do not) that Pure Mathematics
are only to be studied with a view to Natural and
Physical Science, the question still arises how
are they best to be studied in that view. I
assume and admit that as to a large part of Modern
Geometry and of the Theory of Numbers, there is no
present probability that these will find any
physical applications. But among the remaining
parts of Pure Mathematics we have the theory of
Elliptic Functions and of the Jacobian and
Abelian Functions, and the theory of Differential
Equations, including of course Partial Differential
Equations. ‘

[ App.cC, Airy, 10 xii 67]

The reforms were agreed and came into operation in 1873. The

University itself was also changing. In 1857 the function of
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the University was judged to be one of education but in the
succeeding decades it gradually changed its philosophy to one
of research. A Commission of 1877 sought to help the University

become an institute for original research.

By the late 1870s there was a} least a prospect of Professors with
interests in research becoming less isolated from the principal
concerns of the University. A glimpse of Cayley at this time
is offered by Karl Pearson inbalreminiscence of the day he sat

for a Smith's Prize examination:

The next day we went to Cayley's. His first words
were, "Throw off your gowns, gentlemen, you

will work more easily without them", and

accordingly they were dropped in a heap in a

corner of the room, and we set to work unencumbered. -
Of course I knew nothing of the topics of Cayley's
paper. My chance of scoring marks in the Tripos

had depended only on my applied mathematics, and

my pure mathematics were but sufficient to help in
the former branch. But I took things leisurely,

as if nothing depended on speed, and worked as omne
might work in solving crossword puzzles on a train
journey. Cayley did not appear at lunch;

sandwiches, biscuits and other light refreshments
were brought up on a tray, accompanied by a

decanter of excellent port wine; Cayley had not
spared his cellar. After sampling a glass, I

tried to persuade my co-examinees to do so likewise;
two, I think, took a driblet, but the future

Smith Prizeman, speaking from his conscience, refused -
he was true to what he had originally said in our
first term. He had come to Cambridge for examination
ends; perhaps he thought I was tempting him to drop
the prize already well within his grasp. Back we went
to our writing, I feeling the better for Cayley's
port, and the others satisfied in their consciences
that they had done the right thing under examination
stress . Cayley evidently did not think good port

at all incompatible with the discussion of invariants
or higher algebra.

[Pearson, 1936a, 32}

But the man who wés perhaps influenced\most by Cayley's mathematical
interests was Andrew Russell Forsyth (1858-1942). Onékpf Cayley'é
students, he was also Cayley's biographer and sqcéessor to the
Sadleirian Chair in 1895. Forsyth recalled that few undergraduates
attended Cayley's lectures because of their advanced character.22
They were always on his latest research and 'old notes were never

used a second time' [Forsyth, 1895a, xvi - xviil .
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The subjects taught were hardly ever examined. According to

Forsyth the Theory of Invariants was ignored as an examination

subject (other than in geometrical topics) in the Tripos[1935a,171]
Even among the most advanced students Cayley, Sylvester and
Salmon were a 'world-triumvirate in a dark continent of
invariants.' An expressive account of a Cayley lecture is given

3,
by Forsyth (taken from a letter to J.J.Thomsog'ln 1935): 4

They [a course of Cayley lectures] were in the
Michaelmas Term 1879, nominally on differential
equations: the subject was never mentioned after
the first ten minutes: instead, he discussed
1cosahedral functions, groups, covariants, and

so on: as comprehensible by me at that stage as

if he had been dealing with Chinese syntax. The
audience was small: five of us sitting in a row
on a form. There was no chalk: the single blackboard
was used as a rest for Cayley's blue draft-paper
manuscript, held several feet away from the nearest
pair of eyes. Cayley held the manuscript more or
less in place with his left hand; his right
forefinger would move along a formula which he
spoke aloud. Once or twice, he broke off, in order
to write on a sheet of paper some "very important"
formula: once, it was

Cos (A+B) cos(A-B) = Cos'A - sin* B
At the furthest end of the row sat Glaisher,
reading proof sheets (Messanger or Quarterley,
or something equivalent): Then Pendlebury, who
could see nothing and could not hear much for
even then he was a little deaf: Then R.C.Rowe,
who mostly stood up in his place and looked over
Cayley's shoulder while he tried to make
notes on the scribbling paper at arms length
on the desk in front of him: then myself, writing
down whatever could be seen or heard, a disconnected
jumble to be developed into something more or less
coherent by much labour: finally, nearest the door, and
looking slantwise across the distant blue paper on
the board, J.D.H. chkson, writing much, sometimes
notes of his own, sometimes fragments of mine. Not
much of a lecture, one would say: but the great
man was at work, and we all believed in him.

An exception to the small number of students at Céyley's lectures was
the Michaelmas term of 1881, In that year there were 12 students which
he remarked was an "exceptional number. n25 Forsytﬁ also gave an
account of these lectures (in continuation of the prevxously :

quoted passage): : 26
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The course, to which your letter refers, was

(I think) the course given in the Michaelmas Term

1881: somehow, Abelian functions had sprung into

a semblance of popularity: by that date Cayley had
begun to chalk on the blackboard, though never at

ease, and he had many a half-furtive look at his watch
long before the hour was up. The class had grown to
nearly 15. Miss Scott was there.27 W.D.Niven

came, certainly for a time, and even now I can remember
the surprised admiration Niven expressed for an
algebraical theorem of Jacobi's. Once Sir William Thomson
came; and he sat for the whole hour, without a single
interrupting question. But again, it was not the
information given us that mattered: again, it was

the great man at work.

In 1882 the Tripos was altered to include an advanced part with an
exam detached from the competitive order of merit examination.
Something needed to be done if G.H.Darwin's view was accurate. In his
Inaugural Lecture he noted: 'I think it is not too much to say that
there is no vitality [in mathematicé}here ' 28 But the changes in
the regulations which allowed for mathematics of an advanced
character to 'count' as part of the degree came too late for

Cayley. He had few post-graduate students and he did not lead a school
of mathematicians as did Sylvester at Baltimore.29 Some of the younger
mathematicians , desired a mathematical school similar to

research schools such as Klein's Seminar at Gottingen. Cayley
pursued his research as an individualist and personally worked on the

kind of calculative work Klein would have delegated to students.

During the last part of the nineteenth century the Cambridge
Mathematical School was criticised from many quarters on account
of its insularity. In her reminiscences of Cambridge in 1889

Grace Chisholm Young had this to say:

Mathematical Science had reached the acme of
perfection. Through the long future ages, no new
ideas, no new methods, no new subjects.were to
appear. The edifice of mathematical science was
complete, roof on and everything. All that remained
to be done was to consolidate and repair the
masonry, and add to and correct the ornamentation.

This was the view in those days, and the atmosphere
was stifling to the young mathematician. Cayley,
unconscious himself of the effect he was having -

on his entourage, sat, like a figure of Buddha on
its pedestal, dead-weight on the mathematical school
of Cambridge. ([Grattan-Guinness, 1972a, 115]
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From his own survey of the scene at Cambridge, Glaisher conceded:
'T am afraid that the old saying that we have generals without
armies is as true as ever' |Glaisher, 1890a, 7247 .

Arthur Cayley died at Cambridge on the 26th of January 1895 following
a period of poor health. On the occasion his friend and colleague,
Lord Kelvin, wrote:

In Cayley we have lost one of the makers of
mathematics, a poet in the true sense of the
word, who made real for the world the ideas

which his ever fertile imagination created for
himself. He was the Senior Wrangler of my
freshman's year at Cambridge [Preface, page 4]}
and I well remember to this day the admiration
and awe with which, before the end of my first
term, just fifty-four years ago, I had learned to
regard his mathematical powers. When a little
later I attained to the honour of knowing him
personally, the awe was evaporated by the sunshine
of his genial kindness; the admiration has
remained unabated to this day, and his friendship
has been one of the valued possessions of my
life.

[ Thompson, 1910a, 950]

At this time, Invariant Theory was perceived by many mathematicians

as occupying a central place in Pyre Mathematics. Writing

in 1897, Forsyth's estimate of its influence was unequivocal:

It had invaded the domain of geometry, and has
almost re-created the analytical theory; but it
has done more than this, for the investigations
of Cayley have required a full reconsideration
of the very foundations of geometry. It has
made its way into the theory of differential
equations; and the generalisation of its ideas
is opening out new regions of the most

advanced and profound functional analysis. And
so far from its course being completed, its
questions fully answered, or its interest extinct,
there is no reason to suppose that a term can be
assigned to its growth and its influence.

( Forsyth, 1897a, 548)

L3 3 [ i3 30
In one sense Cayley's Invariant Theory died with him. His blunt
methods resulting in cumbersome computation, often pursued with

little regard for abstraction or proof, became unfashionable
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with succeeding generations. Cayley's expertise was in the finite
processes of algebra and the development of formal calculi with
little attention being paid to infinite processes. 'The absence
of analysis reflected the isolation of British pure mathematics
from the Continent' wrote Sir Edward Collingwood [1966a]

and continued: 'By the turn of the century the isolation had

been broken and the emphasis in pure mathematics here England

as abroad, lay heavily on analysis (...) and in particular the

theories of functions of a real variable and a complex variable.'

In Invariant Theory, Cayley's lines of attack fell into desuetude.
Elliott's Algebra of Quantics, which embodied Cayley's non-symbolic
method was published in 1895, the year of Cayley's death. While

it carried Cayley's method into the twentieth century, Grace and
Young's Algebra of Invariants, published in 1903 and written

in the German symbolic notation, was thought to be more

important by the rising generation of algebraists., With its
streamlined approach to the subject, H.W.Turnbull [1941a] judged
that a 'new era dawned for the teaching and progress of higher

algebra.'

Invariant Theory has now lost its position as one of the great
theories of Pure Mathematics., Yet many of Cayley's underlying
ideas continue to inspire new mathematics. Cayley's
contribution to Invariant Theory and to Algebra generally

permeates the entire Su‘bject:31

Yet I doubt not through the ages one
increasing purpose runms, ‘

And the thoughts of men are widened with
the process of the suns.
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Chapter 5

References
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and Botany. The appearance of newly found covariants has an obvious
parallel with newly discovered animal and plant species linked through
genera., Both Cayley and Sylvester make frequent use of the terms
species and genera in their work. An example where classification was
perhaps more apparent occurred in the classification of plane curves.
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of curves:
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=231~



13. As a young mathematician, Cayley was greatly influenced by
Pliicker's work on curves. Plucker described his models of quartic
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why he called the modulus the "aullity." At any rate, I asked
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30. But not entirely: some aspects of Cayley's Invariant
Theory have been reconsidered in recent years due mainly to the

current interest in combinatorics (1981).

Further back was the little known application of seminvariants in
statistics. The Danish mathematician, T.N.Thiele (1838-1910)
developed a theory of half-invariants in his[1931a] published in
Copenhagen in 1889. From an algebraic standpoint they are identical
to Cayley's seminvariants though the development was independent.

Thiele wrote his half invariants (central moments)

/A( =-§-‘; ) /l*t : 'g‘:t (315,-5':‘) 3 Mg s E'j (533-1'3525:’«’ +2s));

LS .
where Sk =k power sums of the observations o(l oo a("
The relevant facts can be found in [Dressel, 1940a] (I am grateful

to John Aldrich for this reference).

The statisticians, F.N.David and M. Kendall, produced (without the
assistance of a computer) symmetric functions in the 1950s considerably
more detailed than Cayley's tables. Apparently these writers were
unaware of Cayley's work at the outset of their own calculatioms.

See [Fletcher, 1962a] for references to tables of symmetric functionms.

31. Cayley's chosen ending for his British Association
Address [1883a], Quoted from Locksley Hall (written 1842) by
Alfred Lord Tennyson (1809-1892).
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PHOTOGRAPHS - -

(Plates 7 - 13)



Plate 7

Portrait of Arthur Cayley (1821-1895)

Original (undated) held at Trinity College,
Cambridge (Wren Library)
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Plate 8: The Senior Wrangler, 1842

Reproduced from [ Huber, 1843a] . For a detailed commentary
on this portrait see [Watson, 1939a] .

Details of other published portraits of Cayley are given in

(Watson 1939a] . Photographs of Cayley in later years are

held at Trinity College (Wren Library).



Plate 9: The Cayley family home at Blackheath.

This was the Cayley family house at Blackheath (5 Montpelier Row)
from about 1852 to about 1871. Early part of Cayley's life
probably spent at 59 Lee Road, Blackheath [demolished 1961]

and from 1847 to about 1852 at Cambridge House, The Grove

[ now West Grovel » Blackheath [burnt down, 1881]
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Plate 10: 2 Stone Buildings, Lincolns Inn

Many of Cayley's papers were sent from this address. Cayley
worked as a barrister (specialising in conveyancy) in this part
of Lincolns Inn. It is little changed from Cayley's day though
it acquired a new facade following war damage in the Second
World War.
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Plate 11: Arthur Cayley as a young man

ESame size reproduction, undated] .

This photograph is little known. It is kept at St.Johms
College, Cambridge [Sylvester Papers | . It is difficult to
date exactly but seems to be a photograph of Cayley in his

late thirties.
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Plate 13: Gravestone of Arthur Cayley

Cayley's gravestone in sad state of disrepair.

Photograph taken at Mill Road Cemetery, Cambridge.



APPENDIX A

CHRONOLOGY

CHRONOLOGY OF CAYLEY'S
MATHEMATICAL INTERESTS




APPENDIX A
Chronology of Cayley's Mathematical Interests

The Chronology is an attempt to chart Cayley's mathematical interests
over his lifetime. In total, nine categories have been chosen.
There are five broad divisions (Algebra, Geometry, Theory of
Functions, Mechanics and a General divisiom) but because of the
emphasis in this dissertation, Algebra has been further sub-divided
into Algebraic Forms, Algebraic Systems, General Algebra, Combina-
torial Analysis and Group Theory.

The results of this categorisation are summarised in Chart 1.

In éddition, a year by year pure page count is displayed graphically
in Chart 11. This shows the pattern of Cayley's extraordinary
mathematical production during the whole period 1840-1895.

1. Outline of Classification with Limitations on its Use.

The principal source used for the compilation of this chronology
is the Collected Mathematical Papers. The division into categories
is a modern one but I have been guided by Cayley's own classifica-

tion as in, for example, [ CP1, xv] and the Classification System for

Pure Mathematics contained in the Internmational Catalogue of

Seientific Literature,

"2, 'Classification Categories

The following categories haye been chosen:

" Algebraic Forms Algebraic Forms (including classical

Invariant Theory and Reciprocants)
Theory of Elimination

Determinants and their generalisatioms
Linear Substitutions, Transformations
L Systems of Equations

"'Algebraic Systems. : Hypercomplex Numbers

~ Quaternions

Cayley Numbers
(Iﬁeory of Matrices
Multiple Algebra

' "General Algebra o . -Theor& of a\single’equation
\'Symmétric Functions |
Algeﬁréic Logic
Eiéménﬁsnof Algebra, (including Binomial
Theoren, Number Theofy)
-1-



Combinatorial Analysis Arrangements

Partitions
Factorials
Probability

Enumeration of Treees and Isomers

Group Theory

Geometry Curves, (including conics, planar
‘ and twisted curves)
Surfaces
Geometrical theory of the equation
u = 0 (where u is an algebraic
function)
Co-ordinates
Polyhedra
Linkwork
Hyperspace
Non-Euclidean Geometry
Topology

Theory of Functions Algebraic Functions (elliptic,

abelian and theta functions)
Differential Equations

Theory of Integration (including
multiple integrals)

Series, Finite Differences

Logarithms, Trigonometry

Mechanics Potential Theory
) Astronomy
General  Addresses

Contributions to Encyclopaedias

British Association Reports _

Smith's Prize Questions and Solutions
3. Method of Classification

The classification has been mainly carried out by direct appeal to the
title of each paper and, in general a detailed examination of the

‘contents of each paper has not been attempted. ,The contents of papers

.has been examined-in_the cases where terminology used in a.title has
been sufficiently arcane to make the classification unclear. One
obvious difficulty with such a scheme is that a paper may easilyfall
into two or more categories. This is especially the case with a writer

-2—



such as Cayley whose universal interests were coupled with a tendency
to draw subjects together.Forthis reason it has been decided to count
the number of contributions to each category. Some papers, therefore,
have been listed as contributing to more than one category.

\
In compiling the classification certain conventions and ground rules

have been adopted:

(i) Where a title indicates that a paper contains material which
falls into more than one category, the paper is recorded under each
category. The classification records contributions to categories
though it is normally the case that each paper falls into a single
category.

(ii) Papers are recorded by year of publication as year of
presentation is not easily available for all cases.

(iii) Papers published by the Royal Astronomical Society are recorded

under Mechanics.

(iv) Smith's Prize Questions with Solutions are catalogued under

General. They have not beengiven a separate subject classification.

) Cayley's book on Elliptic Functions [1876a7] is included in

the classification.

The following writings of Cayley are not recorded in the overall
classification:
(a) Cayley's long standing contributions to the Educational Times
as a proposer and solver of numerous mathematical problems.
These contributions were made between the following dates:

1863 - 1865 [cps, 608}

1866 - 1869 ({cpr7, 607]

1870 - 1894 [cP10, 615]

(b) Cayley's contributions to basic texts. For example, Salmon's
(1879a; CP11,217) and (1928a ; CP11,224] . '

(¢) Translations of Cayley's“owﬁ'papers.

Presentation of Results

The Chronology of Cayley's mathematical interests-is shown graphically
in ‘Chart 1. An estimate of Cayley's mathematical output throughout the
period 1840 - 1895 is shown in Chart II.

e A
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Chart I

The following symbols have been used to indicate the number of

contributions in any one year.

o 1 = 3 contributions
o 4 - 6 contributions
(:) 7 or more contributioms

A continuous line shows a prolonged period of extensive publication.

Chart 1 illustrates Cayley's catholic interests .at all times.

In the Theory of Invariants his interest is continuous but there are
periods where the interest is greater than in others. Noticeable
periods of intense interest in the Theory of Invariants are

1854-1860 and 1878-1885 with, in comparison, a lull in the long period
1861-1877 (but with two exceptional years 1867 and 1871).

In Geometry there is a long period of continuous extensive output
between 1857-1883 and in the Theory of Functioné, 1871-1887.

Chart I1

The upper graph indicates Cayley's total mathematical production by
simple page count from 1840-1895. The lower graph indicates Cayley's
annual publication by page count in European (French, German and

Italian) and American journals.,

To reduce the effect of time lag in publication, the actual page
count has been replaced by a simple two point moving average; the
number of pages in year n(shown in Chart II)is the arithmetic average
of page count of work published in year n with that of year n + 1.

Cayley's voluminous production amounts to an average of

153 pages a ‘year

taken over a period of 55 years. This is a lower bound in view

of the comments made in (a), (b) and (c) above. Neither does this
computed average take into account any of Cayley's verbal - '
communications or deficiencies in the compteteness of the Collected

Mathematical Papers.

The average was consistently exceeded in his most productive years

from 1856 to 1878. During this period, Cayley was between the ages of

-lite ' T
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35 and 57. There are two noticeable declines. Thé first decline
occurred in 1863, the year of his appointment to the Sadleirian
Chair at Cambridge. The second decline was in 1874. The drop

in publication in this year, which under the averaging procedure
is influenced by the 1875 production figure, coincides with the

preparation period for his Treatise on Elliptic Functions [1876a].

Between 1855-1878 Cayley's production in foreign journals
decreased in proportion to his total output. After 1878 the
increase in proportion is accounted for by his many contibutions

to the newly founded American Journal of Mathematics.

.....
L
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APPENDIX B

CORRESPONLENCE BETWEEN ARTHUR CAYLEY
AND
JAMES JOSEPH SWESTER




APPENDIX B

Correspondence between Arthur Cayley and James Joseph Sylvester
St. Johns College, Cambridge

The Sylvester side of the CGorrespondence, (apart from
a few exceptions) was recelved by St. Johrs College on the
death of Cayley's wldow 1in 1923. On this side of the
Correspordence, there are some five hundred items consisting
of letters, notes and scraps written by Sylvester to Cayley.
The correspondence btegan inthe days when both were young
men studying for the Bar and ended two yeers short of
Cayley's death 1n 1895. The contents of these letters
cover mathematical work on such topics as the Theory of
Groups, Theory of Partitions, matrices, geometrical problems
and above all, the Theory of Invariants.

The Cayley slde of the Correspondence found 1its way
to St. Johns College as part of Sylvester's bhotes and papers
after Sylvester's death in 1897,  Sylvester had earller
been a student at St. Johrs College. This side of the
Correspondence is much sraller than the Sylvester side.
One reason for this is that Sylvester travelled extensively
and was less organised in his affairs than Cayley. There
are some sixty letters on .thls side of the Correspondence.

Thus the notion of a dialogue 1mpiicit in the word
'correspondence' 1s unfortunately missing. There are few
occasions where the letters actugll& link togethtr. (One
such occasioﬁ ié iliustratedkbﬁ Plates 4., & and 6) . |

On many occasions,Cayleﬁ is silent‘and thé:correspon;
dence from which we have quoted extensively, often says-more-

f

about Sylvectcr than his partner. However, the extent to ~-

-1 -



which Sylvester depended on Cayley for personal support and
encouragement 1is well lllustrated.

The impression given by the fine portrait of Syl§ester
written by Fablan Franklin [1897a], is borne out on close
examination of the Correspondence. Sylvester's bouts of
depression were coupled with briiliant perlods of unbridled
enthusiasm for mathemastics. Cayley, shy and fetiring,
is the ideal complement.

Sylvester even quarrelled with hils friend. This 1is
seen on a few occasions in the letters, but we are told by
Fﬁanklin that Cayley merely left them unanswered until the
one-sided quarrel was forgotten.

But in no sense was thelr working relationship a
collaboration in the sense of Hardy and Littlewood.
Sylvester was very much aware of the narrow line between
actually having an 1dea and being recognised as its author.
The seal of priority was publication and this criterion
may well account for the speed which both Cayley and
Sylvester committed their ideas to print.

Cayley's letters and papers were sent to Professor
We W. R. Ball at Trinity College, Cambridse on the death of
Cayley's widow in 1923.1 The vast quantity of material
(one tin trunk and two brown parcels) comprised rough
mathematical notes, draft manuscripts of memoirs and an
extensive collection of letters that Cayley had accumulated

during his long career. =According to Rouse-Ball, much of

lyrs. Susan Cayley died 27.v.1923. There were two children:
Mary (died unmarried, 14.vi.1950) and Henry (died = '~
22.v111.1949 without issue). Henry Cayley J.P., A.R.I.B.A.

{5830-1949) graduated (24th VWrangler) from Cambridge in

- 2 -



the correspondence dealt with the preparation of mathema-
tical papers for publication and consisted of trivial
matters such as the correction of misprints and the removal
of ambliguitiles.

The letters recelved from deceased mathematiclans
were destroyed and thosé from living mathematicians were
returned to thelr authors. The rough drafts which Cayley
used in the preparation of his memolrs were destroyed
except for a handful thought worth saving. These were sent
to mathematicians thought to be interested 1n having a
memento of Cayley and a list of these mathematiclans 1s

kept at Trinity College. (Wren Library, Add. ms. 0.6.6).

The Catalogue List

The distribution of the lettsrs between 1847 and 1894
is extremely uneven. There are very many between 1883-1885
for instance, but comparatively few in the early years of
their partnership. Many letters are without a date. In
some cases it has been possible to assign an approximate
date. When this has not been possible and this has
.especially been the case with fragments, information sbout
these has been placed at the end of the Catszlogue. In
these cases an approximate date has been suggested based on
the subject content of the fragment as well as other clues,

One final word of caution is needed for 1ntendiﬁg
readers of this Corresgondence. The letters are difficult
to understand. Cne obstacle in the way of the modern

reader 1s fathoming the meaning of Cayley and Sylveéter's



terminology. Thls private language was sometimes intro-
. duced only to be forgotten in the next moment. Another
source of diffculty is Sylvester's desperately poor hand-

writing.,

Notes on Catalogue Entrles

First Column date of letter
Second Column ‘g&z;gg'indicates letter written by Cayley
fo Sylvester
‘blank'means . a letter written by
Sylvester to Cayley

Middle Column round parentheses enclose key words found

in letter,

X.p Indicates x pages 1in letter.

square parentheses encloses a brief

editorisl comment.



1847 ‘

24 Nov (reproductive, recurring eduations,
Fermat's Theorem, Eisenstein's formula)
4.p.

24 Nov (rational functions, Legendre) 2.p.

1849

18 Apr (differential equation) 4.p.

20 Nov (surfaces of 3rd order) 6.p.

28 Nov (hyperplanes, hypersurfaces, finite

difference equations, involutes,
deplars, determinant, conics) 16.p.:

21 Dec (equal roots, Sturm functions, conic
test theorem, ellipse, hyperbola) 4.p.

1850

8 Jan (personal note) 3.p.

3 Feb (compound determinants) 4.p

7 Feb (Collin's theorem) 3.p.

2 Mar (rational functions, geometrical/
algebraic proofs, determinants) 8.p.

3 [ﬁar?] (cublc, Aronhold's theorem) 5.p.

21 Mar (multiplication of determinants,
Gardinal theorem) 4.p.

27 Mar (simultaneous tralsformation)'4.p.

5 Apr (determinants, Jacobi,'ultra:determi-

: nants, hyperdeterminants) 4.p.

20 Apr (cuplex tcahsformation, concs) 4.?.

5 May (tﬁeory of cc-constituency) 4.p.

24 May (ihtefsection cf cohicéi 8.D.

29 May (contact of conics) 8.p.

2] M#y éd;uble contact of conics, D U+AV )

(2] day (double contact) 4,p.



(1850)

18 Jun (intersection of conics) 4.p.

26 Jun (Pascal's theorem, extensions) SeDe

29 Jun ' (intersection of conics) 4.p.

3 Jun (ditto) | 3.D»

4 Sep (elimination) 4.p. |

29 Sep (correction of proof sheets) 3.p.

25 Nov (contact of conics) 4.p.

30 Nov (ditto) 4.p.

5 Dec (contact of conics, systems of curves
general co-ordinates) 4.p.

19 Dec (curve of intersection of surfaces) 4.p.

21 Dec (points of flexure) 4.p.

26 Dec (general equation of 3rd deg, Boole's
theorem) 4.p. ,

1851

8 Mar (contact problem, matrix, Hessian
determinant) 4.p.

20 Mar (hyperdeterminants, compound determi-
nants, priority) 4.p.

21 Mar (twenty-seven lines) 4.g.

24 Mar (personal note) 2.p.

25 Mar (reciprocal of curve) 3.p.

22 Apr (Aronhold's hyperdeterminant of 6th
deg., cublc functlon, Hessian) 9.p.

{ 2]May (calculations) l.p. Cfragment]

18 Jun (defivatives of canonical sextic) 4.p.

10 Jul (e;eﬂxdegfée forms) 4.p.

[?]Jul (Eikfb}f R i ;.b;‘iestiméted date]

30 Jul (transformation of ternary gquadratic

SysteIH) 40140



(1851)

12 Aug (surface of 2nd order) 4.p.

25 Aug (terms in mathematics) 4.p.

2 Sep (transformation of partial differential
coefficlents) 4.p

1 Nov CAYLEY (determinants of matrix, Hessian) 2.p

5 Dec  CAYLEY (partial differential operator and
invariants) l.p.

(Oct 1851CAYLEY (canonisation of functions) 2.p.
(estimated date]

[1851] CAYLEY (reciprocal polars) 2.p. [estimated
date]

(1851)  CAYLEY (Sylvester's law for number of

invariants) 2.p. estimated date

1852

5 Feb (orthogonal invariants) 4.p.

13 Feb (ditto) 8.p.

3 Mar (covariant, Divellent) 2.p.

8 Mar (polar reciprocal) 4.p.

8 Mar (emanants) 4.p.

9 Mar (multiple points) 4.p.

13 Mar (reciprocity) 4.§.

17 Mar (ﬁatrix, guintic function)
(incomplete letter] 4.p.

23 Mar (canonizant) 4. p.

25 Her (ditto) - 4.p.

26 Mar (ditto) ' 10, p.‘

29 Mar (personal) 3. P.

7 Apr (covariant) 2.p..

11 Apr (discriminant, partial differential
, equations) 8 p.

(eextic, invariants of sextic) 8eDe



(1852)

15 Apr

16 Apr

19 Apr

(undated]

4

(undated]

19

19

2l
20
21

350
15
16

May

May

Jun

Jun

Jun
Aug
Sep

Sep
Oct
Oct

loet]

{oct)

[undated]

18
26

Oct

Oct

ksextic, invariants of sextic) 4.p.
(quintic) 4.p. |
(polar reciprocity) 8.p.

(ditto)

(multiplicity of point) 3.p.

(double point)l.p. [fragment;
estimated date]

(evectant-polar reciprocal of curve)
40po

(Eerrers) 2.p.

(Sturms theorem, Hermite) l.p.
(dittoy {date estimated]
(ditto) [date estimated]
(personal) 2.p.

(binary groups) 8.p.

(determinants, rule for multiplica-
tion) 4.p.

(theorem on triangles) l.p.
(8 spheres in pyramid) 4.p.
(resultant of three quadratics) 4.p.

(dialytic extensions) 3.p.{estimated '
date]

(orthogonal invariants) 4.p.
lestimated date]

(Hes='s method, polar reciprocal of
cubic curves) 4.p. ‘[estimated date)

(Socio- gredience) 4.p. [estimated
date]

(InVariants of a system) 3P

(pair of quadratic forms, reduction)
l.p.



(1852)
28 Oct

15 Nov

1853

[Jan}
[Jan]
24 Jan

24 Jan

1854

[ May]

27 May
4 Jun
12 Qct

{oct]
" [oet]

17 Nov
2 Dgc

CAYLEY

CAYLEY

CAYLEY

CAYLEY
CAYLEY

CAYLEY

(Cayleyans, Jacobian, Hessian,
contact of forms) 4.p.

(biquadratic systems) 4.p.

(Salmon's theorem) 2.p. (estimated
date]

(Salmon's theorem, Resultants) 6.p.
[estimated date]

(Bezoutian quadratic) l.p.
[estimated date]

(Bezoutian quadratic, Evection,
Hesslan) 4.p. [estimated date]

(quotient scale, emanants) 3.E.
[letter incomplete]

(quotient method, Bezoutian quad-
ratic) 6.p.

(covariants of a guintic) l.p.
[estimated date]

(quintic, Hermite's covariant) l.p.
(invariants?) 3.p.

(Number of invariants of a quantic)
3ePe

(finiteness of invariants) 4.p.
lestimated date]

(law for number of asyzygetic
covariants) S.p. ' [estimated date]

(differentisl operator)

(devglopment of’(jag(iii joint

investigations) 4.p. -



1855

11

15
19
13
8

Apr

Apr
Apr
Aug
Sep

1856

22

26
13

22
25
30

16
10

26

10
20
23
3l

Jaﬁ

Feb

Fedb

May

Jul
Aug
Aug
Sep
Sep
Sep

Sep
Oct
Oct
Oct
Oct
Oct

CAYLEY

(roots of x* - px'~1 &+ @) 3.p.
[fragment]

(roots of polynomial) l.p. [ fragment]
(Euler, partition problem) 3.p.
(personal letter) 4.p.

(Elimination, Woolwich, Stokes) 4.p.

(personal letter) 4.p.

(partitions, personal letter) 4.p.
[incomplete]

- (motion & projectile) ll.p.

(prime circulators, Euler's problen)
8.p

(personal) l.p. [fragment]

(personal) 7.p.

(complex numbers, cubic equation) 4.p.
(transformation of cubic equation)8.p.
(ditto) 4.p.

(progress in cubic form)

(cubic forms) Lestimated date)
(invariants of cubic forms) 4.p.
(cubic forms) 4.p.

(cubic forms) 4. b.

(ternary cubic) 4.p. [estimated date]
(a1tto) 3.p.

(1nvar1ants) 4 p.

(ditto, Tlucker theorem) 3.p.

(cubic forms) 2 32 {estimated date;
fragment ] -

- 10 =



(1856)
31 Oct
10 Nov

25 Nov

26 Nov
10 Dec

18857

19 Mar
7 Jul
11 Jul
21 Aug
24 Aug
14 Sep

25 Sep

26 Sep
19 Nov
1858

25 Fedb
14 Apr

27 Sep

28 Sep

30 Sgp

CAYLEY

CAYLEY

(curves of third order) 3.p.
(cubic substitutions) l.p. [fragment)

(invariant, a intic derivative) 3.p.
[estimated date]]

(ditto, Plucker's points) 3.p.

(differential equations E¢ =Py Iy = ¢)
SeDe

(personal, journals) 3.p.

(Buler's formula, cubic forms) 6.p.
(Euler's method) 4.p.

(personal, Elliptic functionsi 4.p.
(Elliptic functions) l.p. [fragment]
(personal, Gnoll College) 3.p.
(Elliptic functions) 4.p.

(aitto) 4.p.

(ditto) 4.p.

(ditto, Jacobi's theorem, Gnoll
College) .

(Cayley-Hamilton theorem) 3.p.

(personal) 6.p.
(pattition prob) 3.p. lestimated date)
(personal) 2.p..

(Symnetric functions, .Fhilosophical
Magazine) 4.p. '

(partitions for two or more equations)
4.p. o ) R

(compound partitions) 8.p. .. -

LS

- 1;].._..



(1888)

1l

16
2l
22
26

8

29

10
25
27
28
22

Oct
Oct
Oct
Oct
Oct
Oct

Oct

Oct
Nov

Nov

Nov
Nov
Nov
Nov
Nov
Nov
Nov

Dec

1889

22

5
29
1
2
4

Feb

Mar
Mar
Apr
Apr
Apr

(compound partitions) 4.p.
(ditto) 13.p.
(ditto, proof of theorem) 4.p.
(compound partitions) 6.p.
(ditto) 4.p.

(ditto) l4.p.

(partition theory) 4.p.
(ditto) 4.p.
(compound partitions) 6.p.
(ditto) 8.p.

(partitions and Elliptic functions) .
SePo

(partitions) 8.p.

(partitions, prime groups! 4.p.
(partitions) 8.p.

(d1tto) [incomplete letter] 4.p.

(ditto) ' 4.p.
(ditto) 7.p.
(d1tto) 4.p.

personal) 4.p.

(compound partitions, ternary
system) 8.p.

(Serrets function of 6 letters) 4.p.
(ditto, higher waves) 4.p.

(denumerant) 4.p.

(S

-

(classes of ternary systems) 12.p.

(function of & letters, substitutions

B < .-
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(1859)
(4 Apr)

5 Apr

16 Apr
24 Apr
26 Apr
1l May
3 lMay
12 May
13 May

18 May

23 NMay
21 Jun

29 Jun

6 Jul
1859/60

1858/60
1860

11 Aug
16 Aug

17 Aug
18 Aug

31 Aug

CAYLEY

CAYLEY

CAYLEY
CAYLEY

CAYLEY

leaving function unaltered) 4.p.
(ditto , groups) 8.p.

(tabulation of ternary linear systems)
4.p.

(normal order) 4.p.

(morphology) 12.p.

(definitions in partition theory) 9.p
(ternary systems) 4.p.

(ditto, morphology) 20.p.

(normal order) 4.p.

(compound partition, probability) 3.p

(Heliclic line) 4.p. [ incomplete
fragment ]

(ditto, normal orders, generating
function) 4.p.

(ditto, generating functions) 8.p.
(matrix, minors) l.p.

(forthcoming lectures on partitions)
2P

(model curves) SePe

(polygons, Euler's theorem)
{9stimated date] 3.p.

(closed curves, polygons)
[estimated datel 3.p

(groups, inscribed polygon)

(group, quintic.equation, group of
20 and 120)

(remarks on Cauchy's notation in
groups) 4.p.

(six valued function group of substi-
tutions) S5.p.

(Theory of ordinstion) 4.p.

- 13 -



1861

26
7
28
1l

21

18
22
24

26
28

29

50

31

Jan
Jan
Feb
Feb

Feb

Mar

Mar
Mar

Mar

Mar

kar

Mar

Mer

Apr

CAYLEY

(series) 4.p.

(Astronomy, Liouville) 4.p.
(quadratic residues) 3.p.
(quadratic residues) 2.p.

(A Diophantine problem) 8.p.
(Lineo-linear system) 4.p.
(Chasles) 4.p.

(hypervoloid) 3.p.

(minors) 4.p.

(determinant of torsion) 4.p.
(statical group) 3.p.
(Walton) 2.p.

(tractors) 4.p.

(determinants and geometry,
distances, spheres) 4.p.

(radius) 4.p.

(5 1lines) 4.p.

(compound determinants) 4.p.
(grand torsion determinant) 4.p.
(tracéors) 3ePs

(5 lines) 4.p.

(theory of metharmony) 6D
(three circles and fourth) 2. p.
(circle paradox) 4.p.
(hyperboloid) 4.p.

(sixth line) 4 p. |

'(dittc, cofilature) 4.0,
(ditto) 4 p.

e e

- 14 -
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(1861)
[22] apr
5 Apr
10 Apr
[112]apr

15 Apr
18 Apr

19 Apr
22 Apr

24 Apr
25 Apr

[ ?2]apr
30 Apr
30 Apr
30 Apr
[?1May
lay

May

“May
May
May
May

May

© O N 9 0 6 o «w v ¢

Hay

CAYLEY

CAYLEY

CAYLEY
CAYLEY

CAYLEY

CAYLEY

CAYLEY

(hyperbdloid, tractors)
(A syzygy) 4.p.
(double points, cusps, six lines)

(Miller, anharmonic ratio and
crystals) 4.p.

(double points, cusps)

(experiment, torsion) 4.p. .
(hyperboloids, degrees of contact)4.p
(systems of tangents, 27 lines) 4.p.
(lines in involution, simpliciter)3.p

(hyperboloids, conjugation of lines
and points) 4.p.

(co-ordinates on hyperboloid) 4.p.
(27 lines) 4.p.

(triple tangent planes) 8.p.
(27 lines)

(cuboids, hypefboloids) 4.p.
(ditto, involution) 3.p.
(dLtto) 4.p.

(binomisl triads) 4.p.
(tractors, hyperboloids) 4.p.
(Metharmony, 6 lines) 4.p.
(mechanics) 4, p.

(Metharmony, 1nvolution) 6ePe
(non-intersectors) -
(ditto) L.p.. [fragment]
(skew surfaces) 8.p.

(27 lines, personal) .p.

(classification of skew quartics)

e
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(1861)

9 May CAYLEY (cubic)

11 May (rule of symmetry) 2.p.

11 May (reciprocity theorem) 2.p.
11 May ~ (rule of intersections) 4.p.
13 May (27 lines) 3.p.

14 May (ditto) 4.p.

15 May (priority) 6.p.

16 May (tangent planes) 4.p.

(ruled surfaces, priority) 3.p.
[estimated date]

21 May (roots of equation) 4.p.

26 May (personal letter) 4.p.

26 May (ditto) 4.p.

15 Jun (Cayley and teaching) 4.p.

27 Jun (Chasles and geometry) 4.D.

15 Jul (tactic, Kirkman's problem) 4.p.

15 Jul (Kirkman's problem) 2.p. Lfragment ]

' CAYLEY (Kirkman's problem) 3.p.
[estimated date]

26 Jul (theorem on tactic) 8.p.

15 Aug ' (substitution group, list, Kirkman's
problem) 6.p.

17 Aug (groups, tactic) 4.p.

21 Aug (factor group) 4.p.

30 Aug (hyper-Pfaffians) 4.p.

3 Nov CAYLEY (roots of equation, Lagranges

theorem) 3.p.

1862

{undated] ("on mathematicians") 4.p.
estimated date, letter from Florence]

- 16 -



(1862)

26

1l
19

10
15
23
14
23
10
21

20

21

® =N o O W

13
14

Feb
Mar

Mar
Mar
Apr
Apr
Apr
Apr
May
May
Jul
Sep

Nov

Nov
Nﬁv
Nov
Nov
Dec
Dec
Dec
Dec
Dec
Dec

Dec

(personal, hypercumulants) 4.p.
[letter from Florence]

(continued fractions) 4.p. [letter
from Florence]

(minimum sum of squares) 4.p.
(Italians and invariant theory) 4.p.
(approximation to line in space)4.p.
(minirmum linear function) 4.p.
(ditto, volume of tetrahedron) 4.p.
(sum of squares) 4.p.

(tetrahedron theorem wrong) 2.p.-
(personal) 3.p.

(personal) 3.p.

(Euler's constant) 3.p.

(on integration) 2.p.

(en A" (i) ) 7.p.

(roots of equation) 2.p.

(approximation methods, Gaussian
quadrature, double determlnsants,
lioolwich) 6.p.

(approximation of area under curve,
Gauss) 8.p.

(ditto, invériant) 4.p.
(multiple 1ntegral) 7ePe
(tneorem due to Cauchy) 2.p.
(sywmetric functions) 4.p.
(ditto) 4.p. ”
(Canonizant) é p.»'
(quadrature) 5 Pe

(ditto) 3.p.

(dittO) 4opo

- 17 =



(1862)

16 Dec (quadratic transformation duplex)4.p

21 Dec éigvariants, quadratic transformation)

23 Dec . (quadrature, duplex, invariants)7.p.

1863

2 Jan . (duplex, quadratures) 4.p.

2 Jan (duplex, transformation) [estimated
year, postscript ]

3 Jan (personal, Bishop Colenso) 4.p.

8 Feb (personal) 4.p. ’

14 Feb (double determinants) 4.p.

27 Feb CAYLEY (compound determinants) 4.p.

27 Feb CAYLEY (condensed notation) 3.p. Lfragment]

"5  Mar (bipartite functions) 4.2,

5 Mar (personal) 2.p.

18 kar (deploid; counters) 3ePe

7 |lar (determinant) 3.p.

14 Mar (ditto) | 4.p.

1 Apr (personal, double determinant) 4.p.

6 Apr (symbolic multiplication, double
dgterminants) 8.p.

10 Apr o (ditto) . 44D

15 Apr (1ife tebles) 4.p.

20 Apr (deploid) Z.pe

25 Apr (counters in.boxes) 4.p.

[?]Apr (diplars, umbral matrix) 7.p.

8 Aug CAYLEY (six cross dilagonal planes,

potential theory of perspective,
umbilicus) 4.n.

]

-18 -



1864

15

Nov

1865

14

Mar

1866

2
4

235

23

12

20

24

25
29
29

Feb

Peb

Feb
Feb
dar
Nov
Nov

Nov

Nov

Nov

Nov
Nov

Nov

[21Nov

30

Nov

CAYLEY

CAYLEY

CAYLEY

CAYLEY

(No. of (4m+2) invariants of a
quintic) 4.p. (estimted year]

(amphigenous surface) [ London
Mathematical Soclety Collection,
D. M. dWatson Library, University
College, London]

(motion of body) 7.p

(ditto) 8.p.

(elliptic functions) [part of
letter reproduced in SP2,591 ;
estimated date]

(mechanics, Cayley's work) 4.p.
(mechanics) 4.p.

(curves in space) 7.p.
(pgrsonal; operators) 4.p.

(E operators) 3.p.

(ditto, properties of & operators)
3.D.

(problem on forces for Educational
Times) 2.p. [original held Columbla
University, D. E. Smith Historical
Collection]]

(on matrices) Upart of letter reprinted
in SP2,576; esti mated date]

{polycephalons, pertradantive systems
matr%cgs) %fpﬂ

\(d;££5) é.p:
(atto)  4.p.
(ditto)  4.p.
{(ditto) * 4.p.
{(ditto) ..4.p. ..

- 19 -



(1866)

5 Dec
7 Dec
8 Dec
[ 2]Dec

1867
24 Feb
28 Feb

4 Mar

7¢ Marp
8 Mar
8 Mar

9 Mar

L2]Mar
10 Har
11 Mar
12 Uar

14 Mar

18 lar

19 Mar

(proof of symbolic operator equation)
(part of letter reprinted in 8P2,611;

estimated date]

(log (1 + x))® (ditto) 6.p.
(ditto) 4.p.

(ditto) 2.p.

(ditto) 4.p.

(cubic forms) 4.p.
(geometrical derivatives) 8.p.
(ditto) 2.p.

(ditto) 4.p.

(ditto) S.p.

(unicursal derivation) 2.p.
(cubics) 3.p.

(ditto) 3.p.

(ditto) 4.p.

(ditto) 4.p.

(ditto) 4.p.

(ditto) 8.p.

(éﬁbiés, contact)yé;p.
tditto) 4.p. . . .
(?iﬁékeff 2;p. [fréément]
(twenty-seven tangents) 4.p.
(ditto) 4.p.

(derivation, general transformation)
4,p.

(Clebseh's theorem) 6.p.

(involution) 3.p.

W

- 20 -



(1867)

26 Mar (double determinants) 4.p. [ fragment]
20 Mar (residuals, Berlin prize) 4.p.
20 Apr (probability gquestion, Educational
Times) 4.p.
20 May (probability) 2.p.
27 lMay (personal) 2.p.
14 Jun (Clifford) 3.u.
15 Nov (Curves, priority) 4.p.
1868
28 Feb (formula of reduction) 4.p.
4 Mar (personal) 3.p.
? Oct {quantics of even degree,
partitions) 4.:.
8 Oct CAYLEY (binary quantic) 4.p.
28 Oct (quantics, cyclodes) 4.p.
5 Nov (di1tto) 4.p.
6 Nov (ditto, partitions) 4.p.
1869
2 Mar (S functions) 2.p.
21 [Jul?l (mechanical problem, roots,

singular cyclodes) 8.u.

25 liay CAYLEY (single partitions, generating
* functions) 3.p. [fragment ]

- A

1873

23 Dec CAYLEY (Intercalation theory of B(x), )
. 4'p' § ot - ’ f(X)
i875 aLn [N oyl

g Jun (set of equations) 4.p.

11 Jul (Roberts 3-bar motion, Hert's

‘case) 5.p.

- 21 -



(1875)
12 Jul

13 Nov
18 HNov
9 Dec

1876

[ 18767)
20 Feb
20 Feb
1877

26 Jan
14 Har

23 Apr
9 May

10 May
11 May

23 May
28 May
20 June

30 Aug
1l Sep

CAYLEY

CAYLEY

CAYIEY

CAYLEY

(Roberts 3-bar motion, Hart's
case) 4.p.

(combinatorial theorem, matrix)4.p.
(ditto, synthemes) 6.p.

(existence of nodes unicurssal curves
rectangular matrix) 7.p.

(curves, linkwork) [estimated year:
possibly 1875%2)

(3 bar link work) (estimated year;
poss=ibly 1875%)

(3 bar 1link work) (estimated year;
possibly 1875%)

(symmetric functions, Taylor's
theorem, Salmon's theorem) 5.p.

(number of covariants, functions of
two variables) 4.p.

(Gordan's theorem, invariants) 6.p.

(invariants, partitions, tenary
forms) 8.p.

(cubic curve) 4.p.

(d;éto) 4.p.

(diﬁto){2.p.‘
(covarian?s{}contravariants) 2.p.
(tena?i f;féé) |

(generating functions) [address
London] -S.p.

(d1tto) -4.p.

- (nebular theory) 4.p. -

(linear quadratic nebulars) 4.p.

- 22 -
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4 Sep (sum of squares problem) 4.p.

12 Sep (orthogonal invariants) 3.p.

26 Sep (numerators, Bezoutiants) [from
Johns Hopkins University] 3.p.

12 Oct (generating functions) 4.p.

5 Nov CAYLEY (expression for AP, double functions
elliptic functions)

6 Nov (theorem on invariants) 4.p.

7 Nov (ditto) 4.p.

24 Nov (Babbage, invariants, covariants) 6p

30 Nov CAYLEY (1ink work for x°2) [original extarit

published in part. American
Journal of iMathematics 1 (1878), 386]

20 Dec (chemical theory,Gordan's theorem)
4.p' .

21 Dec (ditto) 4.p.

23 Dec (ditto) 8.p.

1878

7 Feb CAYLEY (personal, covariants of quintic,

elliptic functions) CUreply to
previous letter]

15 Jul (Numerical Generating Function,
calculation) Cfrom England) 3.p.

19 Jul (ditto, personal) 2.p.

21 Aug :(ditto) 4.p.

28 Aug (daitto) 4.p..[ incomplete]

28 Aug (d1tto) 4.p..

7 Sep w(ditto)'4.p.

12 Sep f(éiﬁéoficiféféfd) alp.

13 Sep j{éi;éo,;seQenthic) Bele

13 Nov ff%é#éntﬂiéi 4.p.

28 Oct “(ditto) 4.p.

- 23 -



1879
11 Jan

3 Mar
16 Jun

24 Jun
3 Jul
S5 Jul
12 Jul
13 Jul

15 Jul
25 Jul

1880

24 Apr‘

Summer

6 May

11 May
17 May
19 May
7 Jul

Aug
Avg
Aug
Aug

[ N A Y \v B ()

CAYLEY

CAYLEY

(calculation of Numerical Generating
Function) 2.p. {continuation from
previous letter: original held in
D. E. Smith Collection, Columbia
University, New York; published in
[Archibald, 1936a.]] v

(personal) Creply to previous letter]

(personal, ground forms) 4.p.
[incomplete]

(double skew determinants) 4.p.
(Pfaffian) 4.p.

(persymmetrical matrix) 2.p.
(personal) 4.p.

(law for persymmetrical determinants)
4opn

(Table of ground forms for 102)4.p.

(ternary bigquadratics, Gordan) 4.p.

(method of Tamisage, primitive solu-
tions, graphs)

(octic curves in space) [estimated
year]

(cubic curve, mixed concomitants,
Tyndall ) 4 oPo

(ditto) 3.p..
(ditto) 4.p..
(ditto, and operators) 4.p.

(Eachman, forms, elliptic functions)
4 p'« ,~,mw - .

(roots of unity) 5 p. emi
(ditto) 2.p. B

N
AAAAAA 15

(ditto) 2. p.‘&,ﬁf“

S R P

(dittO) 4.‘p LIS HE R

e B LT Ce sl
AN Sowlegiae
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(1880)

4 Aug (roots of unity) 4.p.

4 Aug (ditto) 4.p.

3 Sep (16 squares, Lucas, J. R. Young)3.p.

24 Dec CAYLEY (theory of equations) [estimated year)

1881

19 Jan (roots of unity) 4.p. lcontinuation
from prevlious letter]

23 Mar (Gordan's Theorem, Franklin) 4.p.

26 Mar (Fundamental Postulate) 4.p.

2 May (personal, cubic curves) 2.p.

5. May : (personal, roots of unity, norms,
students) 4.p.

12 May (personal, American Mathematical
Soclety) 8.p.

18 Jun (personal) [from England] 3.p.

21 Jun (octavic quantic) 4.p.

28 Jun (Cayley's lectures at Johns Hopkins

. University) 3P

19 Jul (non-existence of ground forms) 4.p.

23 Jul (aitto) 4.p. |

1882

15 Jun (totient integral) 2.p.

3 Aug (Oxford chair, matrices) 4.p.

6 Sep CAYLEY (British Association Address)
lcontinuation. of previous)

6 Sep (subinveriants) 4.p.

14 Sep (Gordan's: Theorem,’ Fundemental: -

Postulate disproved) 4 p.

6 Oct (cuintic, Gordan's Theorem not
proved,  matrices) 3.p.-

22 Oct (Tables of symmetric functions,
Cayleys Law) 3.p.

25 Dec (Clebsch theory, Partitions) 4¢.p.
- 25 -



1883

12

16

10 &

13
26

10
31

1l
22

24

25

12
12

Feb
Feb
Feb
Feb

Jul
Jul

Aug

Aug
Aug
Aug
Aug

Aug

Aug
Sep

Sep
Sep
Sep

(?21sep

13

Sep:

CAYLEY

CAYLEY

(number theory) 4.p.
(vulgar fractions) 3.p.
(number theory) 2.p.

(disproof of Fundamental
Postulate ) 3.p.

(partitions, Durfee's square) 7.p.

(compound partitions, elliptic
functions) 6.p

(seminvariants, partitions) 4.p.

(partitions, Fary series,
"Uberschiebung™) 10.p.

(Oxford chair) 4.p.

(personal) 2.p.

(Cayley's British Association
idgfess, ordinal and cardinal number)
(Macﬁaﬁon) 2.p.

(Macliahon's discovery) 4.p.

(ditto) [contimetion of previous)

(miltiple algebra) Ucontinuation of
previous) 4.p.

(involﬁtion of matrices of 3rd
order) 2. p.

(ditto) 4, p.

(involutant, matrices) 8.p.
Lestimated year)

(invariants and matrices) 2.p.
(involutants) S.p. .. -

(cubic matrices) 4.p.: [ estimated cdate]
(involutants) 4.p.':Cestimated date]
(ditto, cublc matrices) 9.p.-. -

R PR R o e Y PR PR R - .
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(1883)

14 Sep (matrices, involutants) 4.p.

21 Sep (d1tto) 4.p.

22 Sep (British Association Address) 8.p.

22 Sep (quaternions)

15 Oct (multiple algebra) 2.p.

20 Oct (multiple algebra) 4.p.

8 Nov (multiple algebra, involutants) 2.p.

8 Nov No.2 (multiple algebra, perpetuants) 2.p.

13 Dec (Oxford chair) 1l2.p.

1884

20 Jan (quaternions and geometry) 4.p.

22 Jan (cormittee on invariants) 4.p.

24 Jan (Klein's appointment) 4.p.

29 Jan (pure analytic geometry) 4.p.

30 Jan ic;mmutativity of matrices, nonions)

3 Feb (ditto) 6.p.

5 Feb (ditto) 4.p.

[ 2] Feb ‘(ditto, latent roots, matrices in
involution) 4.p. [estimmted date]

2 Mar (correspondence theorem) 4.p

7 Mar (derogatory matrices) 3.p.

8 Mar (square root of matrix) 6.p.

(transformations, substitutions)3.p.

14 Mar (quaternion equations) 4.p.

16 Mar (matrix equations) 3.p.

24 Mar (symmetric functions) 4.p.

26 Mar (corresrondence theorems) 3.p.

27 Kar . (symmetric. functions, quaternions)4,p.
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(1884)

28 MNar (non-associative systems) 4.p

30 Mar (MacMahon's Theorem, Gordan's
theorem) 4.p.

31 Mar (Gordan's Theorem) 4.p.

2 Apr (ditto) 4.p.

(Correspondence Theorem, subinvariants)
4.p. [ year estimated]

8 Apr ' (Solution of px ='q in quaternions)4.p

20 lay (Hamilton's equation) 4.g.

27 May (golution of x2s+qxsr=0 in quaternions)
.p.

7 Jun ~ (quaternions) 4.p.

23 Jun (quadratics and quaternions) 4.p.

25 Jun (personal) 2.p.

30 Jun CAYLEY (matrix equations). Ccontinuation

of previous] 3.p. [estimated datel
11 Jul (quaternions) 4.p.

(matrices) 4.p.

11 Jul CAYLEY (quaternions px=xq) 3.p.[estimated
date]
[12%]dul (lineer equation in nmatrices)

(ditto) 4.p.
(ditto) S.p.
17 Jul (a1tto) 4.p.
17 Jul gditto)';.pl
(ditfoj é.p.
(ditfo)é;;p;qa;
(aitto) 4.p. -

18 Jul (ditto) 3.p.

| (o el e
19 Jul Sditto) S.Do
20 Jul © (dltto) 4.p.

- 28 -



(1884)
23 Jul
24 Jul
[? Jui]

S Aug
29 Aug
2 Sep

3 Sep
4 Sep
7 Sep

12 Sep
21 Sep
22 Sep

24 Sep
26 Sep
27 Sep

30 Sep
15 Oct

16 Nov

19 Oct
20 Oct

22 Oct

24 Qct

Usic}

CAYLEY

CAYLEY

(=, ) 4.p.
(lineer equations in matrices) 4.p.

(linear equations in matrices)
[fragment, estimated date]

(ditto) 7.p.

(Tait, Nivellator) 3.p.

(aQ = Qq') 3.p.

(quaternions and maﬁrices) 4.p.
(aitto) 3.p.

(px=xq, Nivellator) 4.p.

(matrices, homogeneous co-ordinates)
4opo ’

(ordinary algebra) 3.p.
(nmullity defined) 4.p.

(derogatory matrices, Hamilton's
equation) 4.p.

(Harriot's Law) 3.p.
(nullity) S.pe.

(cubic surface) 3.p.
(ditto) 2.p.

(multiple quantity) 4.p.

(plen of inaugural lecture, equation
in qusternions) 4.p. [from Parisl

(eqﬁations in multiple quantity) 4.p
[from Paris]

(dLtto) 4.p. . [from Paris]

(i¥8vius transf, Poincere, M@=gu)
3.pe. [estimated year] )

(equations with matrix coefficlents)
4.p.

(ﬁéirices) 4.De

- ég";



(1884)

2 Nov '(analytical geometry, Poincaré
groups, distances) 4.p.

8 Nov (multiple quantity,) 4.p.

1885

16 Jan (personal) 3.p.

19 Fedb (variable plane) 2.p.

22 Feb (ditto) 2.p.

23 Feb (lectures on matrices) 6.p.

9 Mar (perpendiculars) 4.p.

10 Mar (partitions) 4.p.

15 lar (vérigble plane) 4.p.

18 Mar (ditto) 2.p.

23 Mar (ditto, derived partitions) 4.p.

28 Mar (homological matrix, nullity,
vaculty) 4.p.

31 Mar (distaﬁcés, bordered determinant)4.p.

2 Apr (cycles, determinants, norms) 4.p.

6 Apr (éersonai) 2.p.

9 Apr | (detéfmihént) 3.DP.

14 Apr (distéhce, MacMahon) 4.p.

16 Apr . (;osiﬁépruie) 4.5.

17 Apr (ditto) 4.p. .

18 Apr (distance) 4.p.

22 Apr (Points in space) 6.p.

28 Apr (niveau, homaloid, flat).3.p.

7 May ’ (seminvariants, matrices, Haclighon's
:gsul€2h4.p.“

11 May (éiétd} %.ﬁ:w

16 Méy' {géénué tﬁéérem) 4,p.

-
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(1885)
20 May

21 May

18 May

18 May
30 Hay
12 Jun

19 Jun

[Junl
{Jun]

20 Jun
22 Jun

23 Jun
2 Jul
[au1]

CJul)

4 [Ju1?)
12 Aug
15 Avug
24 Oct

25 Oct
27 Oct

(semivariants, MacMahon's transforme-
tion) 4.p.

(geometry, Magnus theorem, Cayley's
kinectic matrix, equations of con-
gruity) 4.p.

( Letter held at Trinity College,
Cambridge, ref. 0.6.6%']

(quadric, plane) 3.p.

(ax1ls of homology) 4.p.

(higher plane curve) 2.p.

(septic equation) 4.p.

(homology, projective geometry) 7.p.
(ditto) l.p.

(homology) 7.p.

(equations of homology, split
matrix) 4.p. [estimated date]

(homology) 4.p. [estimated date]
(homology) 4.p.

(geometry) l.p. [fregment]
(homology) 4.p.

(Klein for Hoyal Society)
(homography) 4.p.

(homography, matrix) 2.p. [estimated
date] o

(homology) 4.p. [ estimated date’]
(Kempe) .
(ééffelé%éd co-ords, knots) 4.p.
(Littles knot theory) 3.p.
(Reciprocants) 4.p.
(Reciprocants) 2.p.
(ditto).4.p. .
(ditto) 2.p.
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(1885)
29 Oct
1 Nov
1 Nov
1 ENov?l
2 Nov
2 “'Nov
9 Nov
28 Nov

1886
1l Feb
18 Feb

20 Feb
16 Jun
13 Jul

1887
8 Nov

16 Nov

19 Nov

1888
24 Feb

1891

13 Apr
17 Apr
19 Apr

CAYLEY
CAYLEY
CAYLEY
CAYLEY

i

-

(non-linear substitutions) 4.p.
(MacMahon, Hammond for R.S.) 2.p.
(reciprocants) 4.p.
({reciprocants) 4.p.

(ditto) 4.p.

(d1tto) 2.p. [estimated year]
(ditto) 4.p.

(ditto) 4.p.

(Gordan's Theorem, reciprocants)4.p.

(partial differential operators,
Gordan's Theorem) 4.p.

(reciprocants) 4.p.
(ditto) 4.p.

(Inaugural lecture) 4.p.

(pxl="xq) SeDe
(orthogonal matrices) 2.p.
(Nivellator, matrices) 3.D.

(Nivellator, matrices) 2.p.

a

U
T -
A a0 .

(combinatorial problem) 2.p.
(fragments] ' o

(partitions) 2.p.
(prime numbers) S.p.
(prime numbers) 4.p.

32 -

-



(1891)
27 May
11 Jun
22 Jun
26 Jun
27 Jun
17 Jul
27 Jul

1892

24 Jun
26 Jun
4 Nov

1893

30 May
1 Jun
28 Sep
30 Sep
2 Oct
4 Oct

1894
1l Oct

(prime factor theorem) 4.p.
(Poincaré) 4.p.

(Dirichlet's theorem) 8.p.
(Goldback-Euler theorem) 3.p.
(general Dirichlet's theorem) 4.p.
(arithmetical series,) 8.p.

(prime numbers) 4.p.

(British Associlation tables) 3.p.
(triangle of reference) 2.p.

(Sego's function) 3.p.

(tables, calculations) 3.p.
(tables) 3.p.

(trisection of 60°) 4,p.
(trisection of angle) 3.p.
(quadratic) 3.p.

(F%ﬁlgs) 2.p:

(personal) (original held John Hay
Library, Brown University,
Providence Long Island, 2

(I am grateful to Dr. E. Koppe man
for this reference)



Unplaced Cayley Letters with Estimated Dates

[May 1861%2] CAYLEY
[18697] CAYLEY
[18777] CAYLEY

(binomial coefficients) 4.p.

(single pertitions) 2.p. [ fragment]
(group on 4 letters) 4.p.

Unplaced Sylvester Letters with Estimated Dates

L1851]

[18527)
18617}
[18587]

4 May [18597]
[May 1859¢]

[18617]
[18617]
[18772]
(18777]

[1e837]
[1884/57)
T18932]

(wave surface) 2.p. [ fragment)
(sign of tetrahedron) 2.p.
(hyperbolas in involution) 4.p.

(post-script - self residuzl points)
2.p. [fragment]

(morphs) 4.p.

(announcing solution of Compound
Partition Problem) 2.p.

(personal) 4.p. (fragment]

" (tractors) 2.p. | fragment]

(double skew dsterminants) 2.p.

.7A»(Sy1§éétér's address, sextic) l.p.
{fragment]

(Real Generating Function)
(MacMahon'!s theorenm) 4.p.
(personal - Talt, Royal Medal) 4.p.

(personal) 2.p. | fragment]
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APPENDIX C

Bibliography of Unpublished Manuscript Sources

This Appendix contains details of manuscripts and letters of
Arthur Cayley which are cited in the main text and details of
other letters which may be useful to historians of mathematics.
The principal collections of Cayley letters known to be extant
are the Cayley-Sylvester Correspondence ( Appendix B) , the
Cayley to Boole Correspondence and the Cayley to Hirst
Correspondence. Cayley's correspondence with other scientists
and mathematicians is scattered widely. Below we give the

locations of some holdings.

Cayley to J.C.Adams : Seventeen brief notes
Most are undated
One is dated 1860
One is dated 1872
Subject: Astronomy, Questions for the Smith's Prize Examination,
Attraction of an Ellipsoio;
The letters are held at“St.Joho's College, Cambridge.

Cayley to C. Borchardt One letter
Dated 20th Sept 1856

Subject: Remarks on notation, matrices.associated with quadratic

forms. Letter held at Niedersichsische Staats-Und Universitits—

bibliothek, Géttingen. ORY

Cayley to George Boole .o+ Thirty-four letters 1844-1863
Thirty letters 1844-1849
R R t..,:also 1854, 1861, 1863(two letters)
These letters’ prov1de unique insight to work carried out by Cayley
and Boole durlng the ‘early perlod of Invarlant Theory.

SubJect. Invarlants, 1ntegrals, theory of attractlon and potential.
The .letters . are held at Trlnlty College, Cambrldge.

Cayley to Dr. Craig- .~ . Six letters 1885-1892
Craig was a- mathematlclan at Johns Hopklns UanétSlty, Baltimore,
U.S.A.7 ‘ Coeir ' ‘

Subject: ~“Covering 'letters for Articles to be published in’



American Journal of Mathematics.

The letters are held at Johns Hopkins University.

Cayley to Thomas Archer Hirst

Forty letters 1859-1888

Hirst was a geometer and one of the main forces in the establishment
of the London Mathematical Society.

Subject: Miscellaneous.

The letters are held in the L.M.S. Collection at the D.M.S. Watson
Library, University College, London.

Hirst, Thomas Archer (1830-1892)

Journals of Thomas Archer Hirst

Contains valuable information and insights into world of London
mathematicians of the nineteenth century. Cayley and Sylvester
are frequently mentioned.

5 Volumes:

Vol 1 = 1847 - 1850
Vol 2 - | 1850 - 1855
Vol3 - 1855 - 1863
Vol 4 - 1863 - 1884
Vol 5 - 1885 — 1892 includes Index

Original Journal held at Royal Institution of Great Britain,
21 Albermarle Street, London, England.

Cayley to D. Gilman Ten letters 1881 - 1884
D. Gilman was President of JohngHopkins University.

Subject: Administrative matters oonnected with Cayley's
stay at JohngHopkins in 1882, Also offer of Chair
to Cayley after Sylvester's resignation.

The letters are held at JohnsHopkins University.




Cayley to Felix Klein Twenty—-seven letters 1878-1894

Subject: Group theory, Savilian chair of geometry, Hilbert's
Basis Theorem.

Letters held at Niedersichsische Staats Und Universitatsbibliothek,
Gdttingen.

Cayley to P.A.MacMahon Approximately fifty notes
. (mid 1880s)

Subject: Seminvariants, Theory of Partitions
Letters held at St. Johns College, Cambridge

Cayley to James Clerk Maxwell Three letters

Subject: Cartesian Ovals
Held at D.E.Smith Historical Collection, Columbia University.

Subject: On dissertations 30 vii 187? (Add 7655/1I,209)
7 x 1876 (Add 7655/1I,120)

Held at Cambridge University Library, England.

Sir William Thomson to Cayley Three letters written by
Thomson

One letter 20 xii 1866

Subject: On mathematical education
Letter held at Trinity College, Cambridge (Wren Library)
Two letters:

20 iv 1868 (Add 7655/II,29)
5 xii 1871(Add 7655/1I,54)

Subject: Geometrical questions
Letters held at Cambridge University Library, England.
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Appendix D
Bibliography of publishéd works

Publications in the text are cited using the Harvard reference system.
The preamble to this thesis (Reference System) contains details of how
works are referred from the text to this Bibliography.

Abhyankar, S.S.

l976a. ‘Historical rambllngs -in algebralc geometT e eeoosocs’
American Math. Mon., 83 (1976), 409-448,

Airy, Sir George Biddell - (1801-1892)
1896a. (Ed, by his son, Wilfred Airy). Autobiography of
Sir George Biddell Airy (1896, Cambridge). (includes Cayley-Airy
correspondence 1867-6%)

Aitken, Alexander Craig (1895-1967)
19623. 'H.W.Turnbull (1885-1961)', Biog.Not. Fellows Royal
Soc., 8 (1962), 149-158.

Archibald, Raymond Clate (1875-1955)
1936a. 'Unpublished.letters of James Joseph Sylvester and other

new nformation concerning his Life and Work', Osiris,1(1936)
85-154.
Baker, Henry Frederick (1866-1956)
1908a. 'On the invariants of a binary quintic.s.e...’
Proc. London Math.Soc., (2) 6 (1908), 122-140.

1930a. 'Percy Alexander MacMahon', Journal of the London Math.
~ Soc., 5 (1930), 307-320.

Ball, Walter William Rouse (1850-1925)
1889a. History of the Study of Mathematics at Cambridge, (1889,
Cambridge).

1912a. 'The Cambridge School of Mathematics, Maths. Gaz.,
T (Id12), 311-323. -

1960a. A short account of the History of Mathematics, (1960, Dover
Reprint, New York) (First Edition, 1888).

Basalla, G.
1970a. (Ed. Wlth others) Victorian Science (1970, New*York)

Bell, Eric Temple (1883-1960)
1945a. The Development of Mathematics (1945 2nd Editionm,
New York and London).

Boole, George (1815-1864)
1840a. 'Researches on the theory of analytical transformations with
speclal appllcatlon to the reduction of the general equation of the
second order', Camb. Math.Journal, 2 (1840), 64-73,

| 18408, 'Analytlcal Geometry ‘Camb.Math. Journal 2 (1840),
179-188. .

S



Boole, George (continued)-

1841a. 'Exposition of a genmeral theary of linear transformations',
Camb. Math. Journal, 3 (1841), 1-20.

1841h. ‘Exposition of a general theory-of linear transformatioms’,
Camb. Math. Journal 3 (1541), 106-119.

1843a. 'On the transformatlon of multiple integrals', Camb. Math.
Jou Journal, 4(1843), 20-28.

1845a+ 'Notes on linear transformations', Camb. and Dublin Math.
Journal, 4(1845), 167-171.

1847a. The mathematical analysis of Logic (1847, Cambridge)

1851a. 'On the theory of linear transformations', Camb. and Dublin
Math.Journal, 6(1851), 87-106.

1851b. 'On the reduction of the general equation of the nth degree',
Camb. and Dublin Math. Jourmal, 6(1951), 106-113.

Bottazzini, Umberto

1980a. 'Algebraische Unterschungen', Historia Mathematica,
7(1980), 24-37.

Boyer, Carl B.
1956a. History of Analytic Geometry (1956, New York)

Brioschi, Francesco (1824-1897)

1895a. 'Notice sur Cayley' : Bull. des Sciences Math.,
I57(1895), 189-200.

Bristed, Charles Astor (1820-1874)
1852a. Five Years in an English University (1852, New York)

Brock, W.H.
1967a. (Editor) The Atomic Debates (1967, Leicester)

Buchheim, Arthur (1859-1888)

1885a. 'On the Theory of Matrices', Proc. London Math.Soc.,

Cajori, Florian (1859-1930)

1929a. A history of Mathemat1ca1 Notations, 2 Vblumes,
(1929, London) -

19803. A History of Mathematics (1980 3rd Edltlon, New York)
(First Edition, 1893). ,

Campbell,; Lewis and Garnéct, William ,
1882a. The life of James Clerk Maxwell (1882, London)

Lt



Cayley, Arthur (1821-1895)

CP The Collected Mathematical Papers of Arthur Cayley,
13 volumes + Supplement, (1889-1898, Cambridge) =
(1963, Reprint, New York). (Cayley edited volumes 1 = 7,
8 (pages 1 - 38); A.R.Forsyth edited volumes 8-13;
Forsyth did not compile the Index in the Supplement).

184la. 'On a Theorem in the Geometry of Position',
Camb. Math. Journal, 2 (1841), 267-271; CPI, 1l-4.

1843a, 'On a Theory of Determinants', Camb., Phil. Tranms,,
8 (1843), 1-16; CPI 63-79.

1843b. 'Chapters in the Analytical Geometry.....'
Camb. Math. Journal, 4 (1843), 119-127; CPI, 55-62.

1845a. 'Note sur deux FormulesS.....', Journal f. reine u. angewandte
Math., 29 (1845), 54-57; CPI, 113-116.

1845b. 'On the Theory of Linear Transformations', Camb. Math.
Journal, 4 (1845), 193-209; CPI 80-94.

1845c. 'On certain results relating to Quaternions', Phil. Mag.,
26 (1845), 141-145; CPI, 123-126.

1845d. '"On Jacobi's Elliptic Functions, in reply to the
Rey. B. Brouwin: and on Quaternions', Phil. Mag. 26
(1945), 208-211; CPI, 127.

1845e. 'On Algebraical Couples‘', Phil. Mag., 27 (1845), 38-40;
CPI, 128-131.

1846a. 'On the Reduction of du<=4W .....', Camh. Dublin Math.
Journal, I (1946), 70-73; CPI, 224-227.

1846h. 'On Linear Transformations', Camb. Dublin Math. Journal,
T (1846), 104-122; CPI 95-112.

1846c. '"Mémoire sur les Hyperdéterminants', Journal £. reine u.
angewandte Math., 30 (1846), 1-37. (Translation of 1845a.,
1946a,)

1847a. 'Note on a System of Imaginaries', Phil. Mag.,
30 (1847), 257-258; CPI 301.
/ .
1847b. 'Recherches sur 1'Elimination......' Journal f. reine u.
angewandte Math,., 34 (1847), 30-45; CPI, 337-35l.

1847c. 'Note sur les Hyperdéterminants', Journal f. reine u.
angewandte Math., 34 (1847), 148-152; CPI, 352-355.

1848a. 'Sur‘leleetermiﬁants Gauché', Journal f. reine u.
angewandte Math., 38 (1848), 93-96; CPI, 410-413.

185la, 'Note sur la Théorie des Hyperdeterminants', Journal f£.
reine u. angewandte Math,, 42 (1851), 368-371; CPI, 577-579.

1852a. 'On the Theory of Permutants', Camb. Dublin Math. Journal,
7 (1852). 40—51 CP2 16—26




Cayley, Arthur (continued)

1852b. 'Correction to the Postsecript......', Camb. Dublin Math.
Journal, 7 (1852), 97-98, CP2, 27.

1852c. 'Demonstration of a Theorem relating to the Products of
Sums of Squares', Phil. Mag., 4 (1852), 515-519; CP2, 49-52.

1853a. "On a theorem for the development of a factorial'
Phil .Mag., 6 (1853), 182-185; CP2, 98~101.

1853b. 'On the Rationalisation.......', Camb.Dublin Math. Journal,
1853), 97-101; CP2, 40-44.

[Cb

1854a. 'On the Theory of Groups.....' Phil.Mag., 7 (1854), 40-47;
CpP2, 123-130. .

1854b. '"Nouvelles Recherches sur les Covariants', Journal f. reine
u. angewandte Math., 47 (1854), 109-125; CP2, 164-178.

1854c. 'An Introductory Memoir on Quantics', Phil.Trans.,
144 (1854), 244-258; CP2, 221;234.

1855a. 'Remarques sur la Notation des Fonctions Algébriques',
Journal f. reine u. angewandte Math., 50 (1855), 282-285;
CcpP2, 185-188.

1855b. 'Note sur les Covariants.....', Journal f. reine u. angewandte
Math., 50 (1855), 285-287; CP2, 189-191.

1855c. 'Researches on the Partition of Numbers', Phil., Trams.,
145 (1855), 127-140; CP2, 235-249.

1856a. 'A Second Memoir on Quantics', Phil, Tramns., 146 (1856),
101 - 1263 cp2, 250-275.

1856b. 'A Third Memoir on Quantics', Phil. Trans., 146 (1856),
627-647; CP2, 310~335.

1857a. 'A Memoir on the Symmetric Functions,....', Phil,Trams.,
147 147 (1857), 489-496; CP2, 417-439.

1857b, 'Two letters on Cubic Forms', Quart. Math. Journal, 1 (1857),
85-87, 90-91; CP3, 9 - 12. , )

1857d. 'On the Theory of the Analytical Forms called Trees',
Phil, Mag., 13 (1857), 172-176; CP3, 242-246.

1857f. 'Note sur la méthode d'élimination de BeZzout', Journal £, reine
U._angewandte Math., 53 (1857), 366-367; CP4, 38-39.

1858a. - 'A Memoir on“thelThéory of Matrices', Phil. Trans., 148
(1959), 17-37; CPZ, 475-496.

1858b. 'A Memoir ‘on the Automorphlc Linear Transformation of a
Bipartite Quadric Functlon', Phil, Trans., 148 (1858) 39-46;
Cp2, 497-505. ¢¢': . o

1858¢c. 'Supp{gmentary Researches on the Partition of Numbers'
Phil. Trans., 148 '(1858), 39-46; CP2, 506-512. ‘ "
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Cayley, Arthur (continued)

1858d. 'A Fourth Memoir on Quantics', Phil. Trans., 148(1858)
315-427; CP2, 513-526.

1858e. 'A Fifth Memoir on Quantlcs', Phil. Trans., 148(1858),
429-460; CcP2, 527-557.

1859a. 'A Sixth Memoir on Quantics', Phil. Trans., 149(1858)
61-90' CP2, 561-59.

1859b. 'On the Theory of GroupS......', Phil.Ma Mag., 18(1859), 34-37;
CP4 88-91.

1859c. 'On the Analytical Forms called Trees', Phil.Mag., 18(1859)
374-378; CP4, 112-115.

1860a.. 'On the Equation of DifferenceS....', Phil. Trams.,
150 (1860), 93-112; CP4, 240-261.

1860b. 'On a Problem of Double Partitions', Phil. Mag., 20(1860)
337-341 CP4, 166-170.

1860c. 'A Supplementary Memoir on the Problem of Disturbed E111pt1c
Motion'. Memoir Royal Astron. Soc., 28(1860), 217-234;CP3, 344-359.

1860d. 'Note on the value of certain Determinants.....' Quart.
Journal Math., 3(1860), 275-277; CP4, 460~462.

186la. 'On an Extension of Arbogast's Method of Derivations',
Phil. Trans., 151(1861), 37-43; CP4, 265-271.

1861b. 'On a New Auxllxary-Equatlon in the Theory of Equatiomns of
Fifth Order', Phil. Tranms., 151(1861), 263-274; CP4, 309-324.

1861c. 'A Seventh Memoir on Quantlcs', Phil, Trans., 151(1861),
277-292; CP4, 325-341.

1861d. 'On Tschirnhausen's Transformation', Phil.Trans., 151(1861),
561-578; CP4, 375-394.

186le. 'A Memoir on the Problem of the Rotation of a solid Body!,
Mem. Roy. Astron. Soc., 29(1861), 307-342; CP3, 475-504.

1861g. 'Note on the Theory of Determinants', Phil.Ma ges 21
(1861), 180-185; CP5, 45-49,

1861h. 'Note on Mr.Jerrard's Researches,....' Phil.Mag., 21
?__)1861 210-214; CP5, 5054, \ -

1862a., Report on the Progress of the- Solution of certain special
Problems of Dynam1cs B A. Regor (1862) 184-252; CP4, 513-593.

1864a, 'On the Notion and Boundaries of Algebra', Quart. Math.Journal
6(1864), 382 384 CPS 292—294. .

-

1864b., 'Note on Bezout s Method of Elimination', Oxford, Camb.
Dublin Mess. Math., 2(1864), 88-89; CP5, 555=556.
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‘Cayley, Arthur (continued)

1865a. 'On a property of Commutants', Phil.Mag., 30 (1865),
411-413; CP5, 495-497.

1866a. 'A Supplementary Memoir on the Theory of Matrices',
Phil. Trans., 156 (1866), 25-35; CP5, 438-448.

1866c. 'On the Higher Singularities of a Plane Curve', Quart.
Math.Journal, 7 (1866), 212-223; CP5, 520-528.

1866d. 'A Theorem on Differential Operators', Phil,Mag., 32
(1866), 461-472; CP7, 8.

1867a. 'An Eighth Memoir on Quantics', Phil. Trams., 157 (1867),
513-554; CP6, 147-190.

1868b. 'On the Conditions for the existenee of three equal Roots....'
Phil. Trans., 158 (1868), 577-588; CP6, 300-3l1.

1868d. 'On the Curves which satisfy given Conditions', Phil.Trams.,
- 158 (1868), 75-143; CP6, 191-262.

1868e. 'Second Memoir on the Curves...s...', Phil. Trams., 158
(1868), 145-172; CP6, 263-291.

"1871a. 'A Ninth Memoir on Quantics! Phil.Trans. Rov.Soc., 161 (1871)
17-30; CP7, 334-353.

1871lc. 'Plan of a curve—tracing apparatus', Proc. Lond. kath.Soc.
4 (1871-1873), 345-347; CP8, 179-180.

1871e. '0n the Number'of Covariants of a Binary Quantic',
B.A.Report (1871), 9-10; CP8, 566-567.

1872a. 'On the extraction of the square root of a matrix of the third
order', Proc. Roy. Soc. of Edinburgh, 7 (1872), 675-682.
(This paper is not contained in Collected Papers).

1872b. 'On the Development of the Disturbing Functiom.....',
Mon. Notices Roy. Astron. Soc., 32 (1872)
(Abstract of Second Part of Memoir CP3, 293-318; not contained in CP).

1872c. 'On a theorem in covariants', Math.Ann., 5 (1872), 625-629;
CP8, 404-408.

1873a. 'On the the6r§’of the éingular solutions of differential
equations of the first order', Mess.Math., 2 (1873), 6-12;
CP8, 529-534.

1873b. Repart on Mathematlcal Tables, B.A.Report, (1873) 3-4;
CP9, 424-425. (Extract).

1875b. 'On the analytical, forms called Trees.....', B.A.Report,
(1875), 257-305; CP9, 427-460 . .

1875¢c. Report on the Commxttee on Mathematical Tables, B.A.Report,
(1875), }0§?336;hCP9,_461f499. e
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Cayley, Arthur (continued)

1876a. An elementary treatise on elliptic functions (1876, Cambridge)
(2nd Edition published 1895).

1877b. 'On the theory of the singular solutions of differential
equations of the first order', Mess.Math., 6 (1877), 23-27; CP1O,
19-23.

1878a. 'A Tenth Memoir on quantics', Phil. Trans. 169
603-661; CP10, 339-400.

1878b. 'A theorem on groups', Math.Ann., 13 (1878), 561-565; CP10, 149-152,

1878c. 'On the theory of groups', Proc. Lond. Math.Soc., 9 (1878),
126-133; cp10, 324-330.

1878d.. 'The theory of groups', American Journal Math., 1 (1878), 50-52;
CP10, 401-403.

1878e. 'The theory of group9° graphical representation', American
Journal Math., 1 (1878), 174-176; CP10, 403-405.

1878f. 'Note on Arbogast'Sfmethod of derivations', Mess.Math., 7
(1878), 158; CpPll1l, 55.

1878y 'Equation', Enc.Brit., 9th Edition, 8 (1878), 497-509; CPll,
490-521.

1879a. ‘Remarks on 'On a question of probabilities' by W.S.B.Woolhouse,
Inst.Act. Journal, 21 (1879), 204-213 (not contained in Qg).

1879b. 'On a theorem reléting to covariants', Journal £. reine u.
angewandte Math., 87 (1879), 82-83; CP10, 430-43l.

1879d. ‘Geometry (analytical)', Enc.Brit., 9th Edition, 10 (1879),
408-420; CP11, 546-582.

1879%e. *Calculation of the minimum N.G.F. of the binary seventhic',
American Journal Math., 2 (1879), 71-84; CP10, 408-421.

1880b. 'On the transformation of co-ordinates', Proc. Camb. Phil.
Soc.,_& (1880), 178-184; CPll, 136-142.

188Q0c. 'On the finite groups-of linear transformations.....',
Math.Ann., 16 (1880),-260-263; 439-440; CP1l, 237-241.

1880d. 'On the matrix ﬁa;‘b veer', Mess. Math., 9 (1880), 104-109;
CPil, 252-257. ,_F;"\

1880e, 'On a theorem relating to the multiple theta-functions',
Math. Ann., 17 (1880), 115-122; CP1l, 242-249.

188la. 'Spec1men of-a:literal table for blnary quantics, otherwise
a partition table!, American‘Journal Math., 4 (1881), 248-255;
CPl1l, 357-36&.

1881c.- 'On the theorem of the f1n1te number of the covariants of a

51nary quantic', Quart. Math Journal, 17 (1881) 137-147;
CPll, 272-280. I
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Cayley, Arthur (continued)

1881d. 'On the theorems of the 2, 4, 8, and 16 squares', Quart.
Math.Journal, 17 (1881); 258-276; CPll, 294-313.

1881f. 'On the 8-square imaginaries', American Journal Math., 4
(1881), 293-296; CPll, 368-371.

1881g. 'Tables for the binary sextic', American Journal Math., &
TI881), 379-384; CPll, 372-376.

1882a. 'A solvable case of the quintic equation', Quart. Math.
Journal, 18 (1882), 154-157; CPll, 402-404.

1882b. 'On associative imaginaries', J.H.Univ.Circulars, No.l5
(1882), 211-212; CP12, 105~-106.

1882c. 'A memoir on the Abelian and Theta Functions', American
Journal Math., 5 (1882), 137-179; CP12 109-148

1883a. Presidential Address to the British Association, B.A.Report,
(1883), 3-37; CP1l, 429-459.

1883b. (On the Fundamental Postulate) Proc. London Math.Soc.,
14 (1883), 88-91; CPll, 409-410.

1883d. 'Note on the standard solutions......', Quart. Math.Journal,
19 (1883), 38-40; CP12, 19-21.

1883e.'0n seminvariants', Quart. Math. Journal, 19 (1883),
131-138; Cprl2, 22-29.

1884a. 'Partition of Numbers', Enc. Brit., 17 (1884), 614;
CPll, 589-591.

1884b. 'On double algebra', Proc. London Math.Soc., 15 (1884),
i85-197; cr12, 60-71.

1885a. 'A memoir on the Abelian and Theta Functions', American
Journal Math., 7 (1885), 1017167; CPl2, T 149-216.

1885b. ' A memoir on seminvariants' American Journal Math,,
7 (1885), 1-25; CP12, 239-262.

1885¢c. 'Tables of the symmetric functions...,.', American Journal
Math., 7 (1885), 7-56 CP12, 263-272.,

1885d. 'Non-unltary partltlon tables', American Journal Math.,
7 (1885), 57-58; CP12 273-274.'

1885e. 'Seminvariant tables', American Journal Math., 7 (1885),
39- 73; CP12,. 275'289. N

1885g.'0On the quaternlon equation qQ-Qq* = O ', Mess.Math., 14
(1885), 108-112' CP12,:300-304.,

1885h. 'On the'matr1c1al equatlon qQ-Qq'=0', Mess.Math., 14 (1885)
176-178; CP12,311-313,. -

1885i. 'On a theorem relating to seminvariants', Quart. Math, -
Journal 20(1885), 212-213; CPl12, 326-327.

-8-



Cayley, Arthur (con;inued)

1886a. 'On the theory of seminyariants', Quart. Math.Journal,
1z1886), 92-107; CpP12, 344‘357.

1886b. 'On the invariants of a 11near differential equation',
Quart. Math. Journal, 21(1886), 257-261; CP12, 390-393.

1887a. 'On multiple algebra®, ggart. Math.Journal, 22(1887), 270-308;
CPlZ 459-489.

1887b. 'On the intersection of curves', Math.Ann., 30(1887), 85-90;
CP12, 500-504.

1888a. 'Note on the two relations.......', Mess.Math., 17(1888),
94-95; Cr12, 576-577.

1889a. 'Numerical Tables...... ’ (1889) CP2, 276-281 (first
publication).

1889b. 'Tables of the cov#riants.....‘, (1889), CP2, 282-309 (new
3 -
organisation of Tables).

1889c. 'On the finite number of the covariants of a binary
quantic', Math.Ann., 34 (1889), 319~320: CP12, 558.

1889d. 'Note on the relatlon........ . Mhss Math., 18(1889),
100-102 Crl12, 581-583.

1889e., 'On the theory of groups*, American Journal Math.,
11(1889), 139-157; CP12, 639-636.

1890a. 'The thangents of the Qulntlc Ann.Math., 5(1890),
109-110; cP13, 21.

1891a. 'Note on the involutant of two matrices', Mess.Math.,
20(1891), 136-137; CP13, 74-75.

1891:. 'Note on a theorem in matrices', Proc. Lond.Math.Soc.,
22(1891), 458; CP13, 114.

IS

'On the substitution-groups.......', Quart.Math.Journal,
91), 71-88, 137-155; CP13, 117-149.

1o
\D
ey
Q.
-

189le. 'Addition to the Memoir on an Extension of Arbogast's
Method of Derivations', CP4, 272-275 (first publication).

1892a. 'Note on a hyperdeterminant identity', Mess.Math.,
25(1892), 131-132; CP13, 210-211.

1892b. 'Corrected seminvariant tables...,.', American Journal Math.,
.14 ( 92), 195-200; CP13 217‘223.

1893a. 'On semxnvarlants . Quart Math.Journal, 26(1893),66-69;
. CP13, 362-365.

1893b. 'On Reclprocants and Differential Invariants', Quart.Math.
Journal. 26(1893), 169-194, 289-307; CP13, 366-404.

1893c. 'On 'symmetric functions and seminvariants', American Journal
Mathy, 15(1893), 1-74; CP13, 265-332,

Q=



Cayley, Arthur (continued)

1894b. 'Tables of covariants of the binary sextic', CP11, 377-388.
(first publication)

1894d. The Principles of Book-keeprng by Double Entry (1894,

Cambridge) (not contained in CP).

1895a. 'On the sixty icosahedral substitutions', Quart. Math.
Journal, 27 (1895), 236-242; CP13, 552-557.

1895b. 'Co-ordinates versus quaternions', Proc.Roy.Soc.Edin.,
20 (1895), 271-275; CP13, 541-544.

1896a. 'Vier Briefe von Arthur Cayley Wber elliptische Modulfunctionen',
Math.Ann., 47 (1896), 1-19.

(Letters to H. Weber; includes a commentary on the letters by

Weber; not contained in CP).

Clebsch, Alfred (1833-1872)
1872a. Theorie der binaren algebraischen Formen (1872, Leipzig)

Cockle, Sir James (1819-1895)

1888a. 'On the Confluences and Bifurcations of certain Theories’,
Proc. London Math. Soc,, 20 (1888) 4-14.

Coolidge, Julian Lowell (1873-1954)

1968a. A History of the Conic Sections and Quadric Surfaces,
(1968), Dover Reprint, New York) (First Edition, 1945).

Collingwood, Sir Edward foyle (1900-1970)
1966a. ‘A century of the London Mathematical Society',
Journal London Math. Soc., 41 (1966), 577-594.

Coll1ngwood, Robin George (1889-1943)
1972a. The Idea of History (1972, Reprint, New York)

Crilly, Anthony J.

1978a. 'Cayley~s antlclpatlon of a generalised Cayley-Hamilton
Theorem Historia Mathematlca (1978) 5, 211-219.

Crowe, Michael J.
1967a. A Hxstory~of Vector Analysxs (1967, London)

Crowther, James Gerald
1974a. The Cavendlsh Laboratogz;1974-1974 (1974, London)

Davenport, Harold (1907-1969)
1966a. 'Looking Back', Journal London Math. Soc., 41 (1966)
1 -10.,

Darmois,zGeorgeé'(188841960)
1928a. Statistique Mathématique (1928, Paris)

Decker, Floyd Fiske:. =, -

1910a. The Symmetrlc Functxon Tables of the Fifteenthic (1910,
Wash1ngton, D C) o

de Morgan, See Morgan o
-10~



Dickson, Leonard Eugene (1874=1954)
19143. Linear Algebras (1914, Cambridge)

1914b. Algebraic Invariants (1914, New York)

1919a. 'On quaternions and thelr generallsatlon and the history
of the eight square theorem', Annals of Math., 20 (1919),
155-171.

Dressel, Paul L.
1940a. 'Statistical Seminvariants and Estimates with Particular
Emphasis on their Relation to Algebraic Invariants', Annals of
Math. Statistics, II (1940), 33-57.

Eisele, Carolyn
1976a. (Editor) The New Elements of Mathematics by Charles S.Peirce,
Volumes 1 - 4, (1976, The Hague).

Eisenstein, Ferdinand Gotthold (1823-1852)

1844a, 'Théoremes sur les formes cubiques.....' Journal f.
reine u. angewandte Math., 27 (1844), 75-79.

1844b. 'A1ggme1ne Auflésung der Gleichungen.....',
Journal f. reine u. angewandte Math., 27 (1844), 81-83.

1844c., 'Untersuchungen ueber die cubischen Formen.....',
Journal f. reine u. angewandte Math., 27 (1844), 89-104.

1844d. 'Ueber eine merkwiirdige identische Gleichung',
Journal f. reine u. angewandte Math., 27 (1844), 105-106.

Elliott, Edwin Bailey (1851-1937)
1892a. 'A Proof of the Exactness of Cayley's Number of
Seminvariants of a given Type', Proc. London Math.Soc.,
23 (1892), 298-304.

1892b. 'Some Properties of Homogeneous Isobaric Functioms',
Proc. London Math. Soc. 24 (1892), 21-36.

1898a. 'Some Secondary Needs and Opportunities of English
Mathematicians', Proc. London Math. Soc. 30(1898), 5-23.

1931a. 'James Hammond 1850—1930', Journal London Math. Soc.,

€ (1931), 78-80.

1964a. An introduction to the Algebra of Quantics (1964, 2nd Edition
Reprint, New York)q“(First.Edi;ion, 1895, Oxford)

Ellis, Alexander John (1814-1890)
1843a. (translation.of Ohm, 1842a) (1843, London)

1859a. 'On the Laws of Operation.....', Proc. Roy. Soc. London

T0 (1859-60), 85 = .

Fang, J.
1970a. Hllbert (1970, New York)

Fiﬁ di Bruno, Francesco (1825-1888)" .
1876a. Théorie des Formes:Binaires, (1876, Turin)

-1 l_



Pisher, Charles S.
1966a. 'The death of a mathematical theory: a study in the
socxology of knowledge', Archiye for Hist, of Exact
Sciences, 3 (1966), 137-159.

1967a. 'The Last Invariant Theorlsts » Archiv. europ. sociol., 8

(1967), 216-244.

Fletcher, A.

1962a. (and others). An Index of Mathematical Tables, 2 volumes,
(1962, 2nd Edition, Edinburgh).

Forsyth, Andrew Russell (1858-1942)
1895a. 'Arthur Cayley', Proc. Roy. Soc. London, 58 (1895),
1-x11if; A.Cayley, The Collected Mathematical Papers, Vol.8
(1895, Cambridge), i=-xxxviii.

1897a. Presidential Address, B.A.Report (Section A) (1897)
541-549,

1930a. 'Major P.A. MacMahon, F, R.S ' (obituary) Nature, 125(1930)
243-245.

1930b. 'James Whitbread Lee Glaisher', (obituary) Proc. Roy. Soc.
London, Al126(1930), i=-xi. 4

1935a. 'Qld Tripos Days at Cambridge', Math Gaz., 19 (1935),
162-179.

Foster, Joseph
1894a. Pedigrees of the County Families of Yorkshire, Volume 3,
(1894, London).

Franklin, Fabian (1853-1939)
1880a. 'On the Calculation of the Generat1ng FunctionS.e...'
American Journal Math., 3 (1880), 128-153.

1897a. 'James Joseph Sylvester' Bull. American Math. Soc.,
3 (1896-97), 299-309.

Galton, Francis (1822-1911)
1908a. Memories of my Life (1908, London)

Garnett, William
see Campbell, 1882a. ‘
Glaisher, James Whitbread Lee (1848-1928)
1886a. 'The Mathematical Tripos", Proc. London Math. Soc.,
18 (1886), 4-38. :

N .. B
LSRN . W

1890a. Presidential Address, B.A.Report (Section A), 1890;
719-727,

TR T
t

189584 'Arthur Cayley', The Cambridge Review, February 7, 1895,
174-176

Gordan, Paul (1837-1912) e ~
1868a. 'Beweiss, -dass jede Covariante.....', Journal f. reine u.
. angewandte Math., 69.(1868), 323-354.

e

EREE €
LIEN PO [ JE RN
R .

-12=



Grace, John Hilton (1873-1958) and Young, Alfred (1873-1940)
1941a. The Algehra of Inyariants, .1941 Repnnt, New York)
(Flrst Edltlon, 1903, Camhridge).

Grattan—Gulnness, Ivor

1972a. 'A‘Mathematlcal‘Unlon. William Henry*and Grace Chisholm
Young', Annals of Science,’ 29(1972), 105-186,

1972b. 'Uanerszty“Mathematlcs...... , Annals of Science, 28(1972)
369-384.

1977a. Dear Russell = Dear Jourdain (1977, London)

Graves, Charles

1847a. 'On Algebraic Trlplets , Proc. Roy. Irish Soc.,
3(1847), 51-54, 57-64, 80-84, 105-108.

Graves, John Thomas (1808-1870).

1845a. 'On the connection between the General Theory of
Normal Couples......' Phil.Mag., 26(1845), 315-320.

Graves, Robert Percival
1882a. The Life of Sir William Rowan Hamilton, 3 volumes,
plus addendum, (1882-1891, Dublin).

Gray, Jeremy J.
1980a. 'Olinde Rodrigues’ Paper of 1840 on Transformation
Groups, Arch.Hist. Exact Sciences, 21(1980), 375-385.

Greenhill, Alfred George (1847-1927)
1893a. 'Collaboration in Mathematics', Proc. London Math.Soc.,
(1893), 5-16.

Gregory, Duncan Farquharson (1813-1844)

1845a. A treatise on the a lication of analysis to Solid
Geometry (1845, Cambridge) (initiated by Gregory and completed
by William Waltom, 2nd Edition, 1951).

Hall, A.Rupert
1969a. The Cambridge Phxlosophlcal Society. A .History (1819-1969)
(1969, Camhridge).

Hamilton, Sir William Rowan (1805-1865)
1844a. 'On Quaternions.....', Phil.Mag.(3) 25 (1944), 10-13

1853a. Lectures on Quaternions (1853, Dublin)
1967a. Mathematical Papers, 3 volumes (1967, Cambridge)

Hammond, James (195011930)
1882a. 'Note on an exceptional case......', Proc. London Math,Soc.,
14(1882), 85 88.

1886a. 'Syzygy Tables for the Binary Quintic', Amerlcan JOurnal
Math., 8(1886), 19-25. S0

Hankins, Thomas L

1977a. 'Triplets and Triads: Sir W.R.Hamilton on the Metaphys1cs
of Mathematics';-ISIS, 68(1977), 175-193.. °

Harley, Robert (1828-1910)

1895a. (Obituary) 'Sir James Cockle®, Manch.Lit.Phil.Soc.,
9(1894-1895), 215-228.

—13_



Harre, Rom
1969a. (Editor) Some Nlneteenth.Century British Scientists
(1969, Oxford)

Hawkins, Thomas
1972a. 'Hypercomplex Numbers, Lie Gtoups, and the Creation of Group

Representatlon Theory', Archive Hist. Exact Sciences,
8 (1972), 243-287

1974a. 'The Theory of Matrices in the 19th Century', Proceedings
Int. Congress Mathematicians, Vancouver (1974) 561-570

19753, 'Cauchy and the Spectral Theory of Matrices’,
Historia Mathematica, 2 (1975), 1=-29.

1977a. ‘Another look at Cayley and the Theory of Matrices',
Archive Internat. d'Hist. des Sciences, 27 (1977), 82-112

1977b. 'Weierstrass and the Theory of Matrices', Archive Hist. Exact
Sclences, 17 (1977) 119-163.

Hazlett, Qlive (1890~ )
1914a. ‘'Invariantive Characterization of some linear associative
Algebras' Annals of Math. 16 (1914), 1-6.

Hearnshaw, Fossey John Cobb
1929a. Centenary History of King's College, London (1828-1928)
(1929, London).

Henrici, Olas Magnus ‘Friedrich (1840- )
1884a., Presidential Address, Proc. London Math.Soc., 16 (1884)
1-5 .

Hermite, Charles (1822-1901)
1854a. 'Sur la Théorie des -Fonctions Homogenes 3 deux lndetermlnes,
Camb. Dublin Math. Journal, 9 (1854), 172-217.

Hilbert, David (1862-1943)
1887a. 'Ueber eine Darstellungsweise der invarianten Gebilde im
binaren Formengebiete', Math.Ann. 30 (1887), 15-295 1965a.,
Ges. Abhand,, Vol.2, 102-116.

1888a. 'Zur Theorie der algebraischen Gebilde I', Gott Nachrichten,
i 1888), 450-457; 1965&. Ges. Abhand., Vol.2, 176'183.

1965a. Gesammelte Abhandlungen, '3 volumes (1965, Chelsea Reprint,
- New York) - (1932-1935, First Edition, Berlin)

Hilton, Harold (1876- '*)1'
1932a.- Plane Algebraic Curves (1932 2nd Edition, London)

Hobson, Ernest William (1856—1933) '
1910a. 'Pre31dent1a1 Address » B.A. Report (1910), 509-519

Hodge, Sir William' Vallance’Douglas (1903- D)
1957a. 'Henry‘Frederlck Baker' Journal London Math.Soc., 32(1957),
112-128. .. . .

R N Ve S P

: e



Huber, Victor Aime
1843a. The English Universities, 3 volumes, (1843, London)

Hymeys, John
1830a. A treatise on analytical Geometry... . (1830, Cambridge)
1837a. ‘A treatise on conic sections.... (1837, Cambridge)
1845a., A treatise on conic sectioms.... (1845, Cambridge’

3rd Edition )

Jordan, Camille (1838-1922)

1876a. Mémoire sur les covariantS......' Journal de Liouville . (3)
2 (1976), 177-232; Oeuvres III, 153-211.

1879a. 'Mémoire sur les covariants.....' Journal de Liouville , (3)
5 (1879), 345-378.

Kiernan, B.M.

1971a. 'The Development of Galois Theory from Lagrange to Artin',
Archive Hist. Exact Sciences, 8 (1971), 40-154.

Klein, Felix (1849-1925)
1939a. Geometry (1939, Dover Reprint)

1956a. The Icosahedron (1956, Dover Reprint)

Kline, Morris .

1972a. Mathematical Thought from Ancient to Modern Times
(1972, New York)

Knott, Cargill Gilston "

1911a, Life and Scientific Work of Peter Guthrie Tait
(1911, Cambridge) (contains quotations from Cayley-Tait correspondence
1872-1894).

Koppelman, Elaine

197la. 'The Calculus of Operations and the Rise of Abstract Algebra',
Archive Hist., Exact Sciences, 8 (1971), 155-242.

Lamé, Gabriel (1795-1870) " . .. ..
1859a. Lecons sur les Coordonnées Curvilignes (1859, Paris)

Lardner, Dionysius
1823a. 'A system of Algebraic Geometry , (1823, London)
Lodge, Sir Oliver i&éephi(1851-1940)

1931a. Past Years (an autobiography of Sir Oliyer Lodge)
(1931, London). . _

MacDuffee, Cyrus Colton
1946a. The Theory of Matrices (1946, New York)
—15-




Macfarlane, Alexander (1851-1913)
1916a. Lectures on Ten British Mathematicians of the Nineteenth
Century (1916, New York)

MacMahon, Percy Alexander (1854-1929)

1884a. 'Seminvariants and Symmetric Functions', American Journal
Math. 6(1884), 131-163.

1884b. 'Symmetric functions of the 13ic ' American Journal Math.

1894a. (Review of CP Volumes 1-6), Nafure, Supplement January 18,
49(1894) iv-vi.

1896a. 'Combinatory AnalysiS......', Proc. London Math.Soc., 28(1896)
-32 .

.

1910a. 'Algebraic Forms', Enc.Brit., I(1910), 620-641.
1910b. 'Combinatorial Analysis', Enc.Brit., 6(1910), 752-758.

1914a. 'Robert Harley, 1828-1910', (Obituary), Proc.Roy.Soc.,
§1A( 1914) i-v.

Mathews, George Ballard (1861-1922)

1897a. 'On the Partition of Numbers'!, Proc. London Math.Soc.,
28 (1897), 486-490.

1898a. (Review of CP Volumes 8, 9) Nature, 57(1898), 217-218.

1898b. (Review of CP Volumes 10,11) Nature, 58(1898) 50.

1917a. (Review of Macfarlane 1916a). Nature, 99(1917), 221-222.
McClintock, Emory John (1840-1916)

18923. '0On the Computation of Covariants by Transyection',
American Journal Math., 14(1892), 222-229.

Meyer, Friedrich Wilhelm Franz (1856-1934)
1898a. 'Invariantentheorie' Vol.l, Art.B2, Ene.Math.Wiss., (1898-1904)

Miller, George Abram (1863-1951)
1916a. Historical Introductlon to Mathematical Literature, (1916,
New York). S -

1935a. Collected Works of G.A.Miller (1935, Urbana),

1961la, (with others) Finite Groups (1961, Dover Reprint)

Mills, Stella : ,
1976a. British Group Theory 1850-1890 Oct. 1976 (ph.D. thesxs,
Unlversxty of ermlngham)

x.

Morgan. Augustus de (1806 1871) :
1839a., '0n the Foundation of Algebra', Trans.Camb, Phil. Soc.,
(1839) [ 173-1870 g ) o P i - s

B

-16-



Morgan, Augustus de (1806~1871) (continued)

1844a. 'On the Foundations of Algebra Iy', Trans, Camb. Phil. Soc.,
8318 44), 241-254,

Morgan, Sophia de
1882a. Memoir of Augustus de Morgan (1882, London)

Morley, Raymond K.

1912a. 'On the Fundamental Postulate of Tamisage', American Journal
Math., 34(1912), 7-68.

Muir, Sir Thomas (1844-1934)
1882a. A Treatise on the Theory of Determinants (1882, London)

1906a. The &heory of Determinants in the Historical Order of
Development, 4 Volumes, (1906, London)

1930a. Contribution to the History of Determinants, 1900-1920.
(1930, London and Glasgow).

Neville, Eric Harold (1889 - )

1942a. 'Andrew Russell Forsyth (1858-1942)', (Obituary), Journal London
Math. Soc., 17 (1942), 237-256,

Newcomb, Simon (1835-1909).
1903a. The Remlnlscences of an Astronomer (1903, London)

Noether, Max (1844-1921)
1895a. 'Arthur Cayley' (Oblcuary) /Math Ann., 46(1895), 462-480.

Novy,Lubos
1973a. Origins of modern algebra (1973, Prague)
(translated by Jaroslav Tauer).

Ohm, Martin (1792-1872) . ,
1842a. Der Geist der mathematischen Analysis.,.. (1842, Berlin)
(translated by A.J.Ellis, 1843a.) ' :

Osgood, William Fogg (1864-1943)
1892a. 'The Symbolic Notation of Aronhold and Clebsch', American
Math.Journal, 14 (1892), 251-261,

Packer, Lona Mosk
1963a. Christina Rossettl, (1963, Cambridge and University of
California)

Peacock, George (1791-1858)
1830a. A Treatlse on Algebra, (1830, Cambridge)

R

1833a. 'Report on the Recent Progress......' B.A.Report, (1833),
185-352. . .

1842a. A Treatlse on Algebra, Vol.1, Arlthmetlcal Algebra, (1842
Cambrldge. -

1845a. A. Treatlse on Algebra (18&5 Cambrldge) Vol 2. On Symbolical
Algebra and its appllcatlons to ‘the Geometry of Position).




Pearson, Karl (1857-1936)
1914a. The Life, Letters and Labours of Francis Galton, 4 yqlumes,
(1914,. Camhrldge) (edlted by Pearson)

1936a. '01d Trlpos Days at Cambrldge....... » Math.Gaz., 20(1936)
27-36. .

Plerce, BenJamln C1809-1880)

188la. 'Linear Associative Algebra', Amerlcan Journal Math.,
4(1881)

Petersen, J.- .
1890a. 'Ueber die Endlxchkelt des Formensystems einer bindren
Grundform', Math.Ann., 35(1890), 110~112.

Petersen, S. R. .
1955a. 'Benjamin Pelrce.‘Mathematzclan and Philosopher', Journal
Hist. of Ideas, 16(1955), 89-112,

Prasad, Ganesh (1876-1935)
1933a. Some great mathematicians of the nineteenth century...
2 vaolumes, (1933-1934, Benares).

Pycior, Helena M.
1976a. 'The role of Sir W.R. Hamllton on the development of British
modern algebra', Diss.Abstracts Int. (1976) 37:1184-A.

Reid, Constance
1970a. Hilbert (1970, London)

Rhind, Neil
1976a. Blackheath Vlllage and Environs 1790-1970 (1976, London)

Roberts, Michael (1817-1882)
186la. 'On the covariants of a binary quantic of the nth degree’,

1862a. 'On the covariants of a binary quantic of the nth degree',
Quart. Journal Math., 5(1862), 18-19, 144-151.

Roberts, Samuel (1827-1913)
1882a." 'Remarks on Mathematical Terminology.......' Proc. London
Math. Soc., 14 (1882-83), 5-15.

Rothblatt, Sheldon ,
1967a. The Revolution of “the Dons (1967a, London).

Rouyray, Dennis H.
1977a. 'Sir(sic) Arthur Cayley—mathematlc1an/chem13t' Chemistry
in Britain, 13(1977), 52-57.

Salmon, George'(1819-1904)
1854a. 'Exerclses 1n the Hyperdeterminant: Calculus , Camb.Dublin Math.
1869a." Con1c ‘Sections (Iggﬁlnféh Eﬂl%ggé, ﬁg; n)
1876a. Lessons ‘introductory to the Modern Higher Algebra (1876, 3rd
detlon, Dublxn)

1879a..A’treatlse on the hlgher plane curves (1879, 3rd Edltlon, New
York

-1 8=



Salmon, George (continued)

1883a. 'Arthur Cayley', (aided by J.W.L.Glaisher) Nature,
28 (1883), 481-485. —

1928a. A treatise on the Analytical Geometry of three dimensions
(1928, 7th Edition, London)

Schafli, Ludwig (1814-1895)
1905a. 'Briefwechsel von Ludwig Schldfli mit Arthur Cayley',
Mitteilungen der Naturforschenden Gesellschaft in Betrn,1591-1608,
(1905), 70-107. (Edited by J.H.Graf. The published
correspondence dates from 1856-1871 and contains a letter from
Sylvester to Schlifli).

Scott, Charlotte Angas (1858-1931)
1895a. 'Arthur Cayley', Bull. American Math. Soc., 2(1895),
133-141

Scott, Robert Forsyth
1879a. 'On cubic determinantS.....' Proc. London Math.Soc.,
I1(1879), 17-29.

1880a. A Treatise on the Theory of Determinants... (1880,
Cambridge).

Semple, J.G. and Kneebone, G.T.
1959a. Algebraic Curves (1959, Oxford)

Sharlin, Harold Issadore
1979a. Lord Kelvin, the dynamic Victorian (1979, University
Park and London).

Simons, Lao Genevra (1870 - )
1945a. 'Among the Autograph Letters.......‘, Scripta Math.,
TI(1945), 247-262.

Smith, David Eugene (1860-1944) and Ginsburg, Jekuthiel (1889-1957)
1934a.. History of Mathematics in America before 1900
(1934, Chicago).

Smith, Henry John Stephen (1826-1883)
186la. 'On systems of linear indeterminate equations and
congruences', Phil,.Trans.Roy.Soc. London, 151(1861), 293-326.

Collected Mathematical Papers, 1894, (2 volumes, Oxford)
(ed. J.W. L. Glalsher)

Sommerville, Duncan- McLaren Young (1879-1934)
1958a. The elements of on-Euclidean Geometry (1958, Dover Reprint)
(First Edition, 1914).

Spattiswoode, William (1825-1883)
1872a. 'Remarks on‘'some Recent Generalisations of Algebra', Proc.
London Math.Soc., 4(1872), 147-164.

1878a. Presidential Address, B.A.A.S.Report; (1878, 1-32)

1883a. 'William Spottiswoode' Nature, 27(1883), 597-601 ('Sclentlflc
Worthies' not Obltuary, Anonymous author),

=19+



g e AT DY, TR 1 ST 1 e S

Stephen, Sir Leslie (1832-1904) ’
1885a, Life of Henry Fawcett (1885, London)

Stokes, Sir George Gabriel (1819-1903)
1907a. Memoirs and Scientific Correspondence, 2 volumes,

(1907, Cambridge) (contains part of Cayley-Stokes correspondence
1849-1880).

Stroh, E.

1888a. 'Ueber einen Satz der Formentheorie', Math.Amn.,
31(1888), 441-443.

Sylvester, James Joseph (1814-1897)

SP. The Collected Mathematical Papers of James Joseph Sylvester
4 Volumes, (1904~1912, Cambridge)

1852a. 'On the Principles of the Calculus of Forms.
Camb. Dublin Math. Journal, 7(1852), 52-97; 179-217;
SP1, 284-363.

1853a. 'On the Calculus of Forms.....'
Camb. Dublin Math. Journal, 8 (1853), 62-64; 256~ 269.
SP1l, 402-403; 411-422 (contlnuatlon of 18523)

1854a, 'On mu1t1p11cat10n by aid of a table of single
entry', Assur. Mag., 4(1854), 236-238 (not contained in SP)

1854b. 'On the calculus of FormS.«...' Camb.Dublin Math.Journal,
9 9 (1854), 85-103; SP2, 11-27 (continuation of 1853a).

1858a. 'On the problem of the virgins......' Phil.Mag. 16(1858),
371‘376, sp2, 113-117.

1864a. 'Algebraical researches.....' Phil.Trans.Roy.Soc. London,
154 (1864), 579-6663; SP2, 376-479. ‘

1866a. 'Notes on the properties of the test operators.....'
Phil.Mag., 32(1866), 461-472; SP2, 567-576.

1867a. 'On the multiplication of partial differential operators',
Phil.Mag., 33 (1867), 48-55; SP2, 608-614.

1869a. 'Outline trace of the theory of reducible Cyclodes’,
Proc. London Math.Soc., 2(1869), 137-160; SP2, 663-688.

1877a. 'Sur les Invariants fondamentaux....', Comptes Rendus,
84(1877), 240—244:.SP3, 52-57.

1877b. 'Sur une méthode algébrique......' Comptes Rendus, 84(1877),
1113‘1116, 1211-1213; SP3, 58-62. o

1877c. 'Sur les Invariants', Comptes Rendus, 85(1877), 992-995;
SP3, 93-94.

1877d.U'Address‘on-Cdmmemoratioﬁ'Day....' SP3, 72~87.

187§a;é'?roéf of t§é'hithefto undemonstrated fundamental theorem
of invariants', Phil.Mag., 5(1878), 178-188; SP3, 117-126.

-20=



T o T

'Sylvester, James Joseph (continued)

1878b. 'Sur les covariants.....', Comptes Rendus, 87(1878),
505-509; SP3, 140-143.

1878c. 'Sur la forme binaire.....', Comptes Rendus, 87(1878),
899- 903, SP3, 144-147.

1878d. 'Sur les Actions mutuelles.....' Journal f. reine u. ange-
wandte Math., 85(1878), 89-114; SP3, 218-240.

1878e. 'A synoptical Table.....' American Journal Math.,
1 (1878). 370-378; SP3, 210-217.

1878f. 'Détermination du nombre exact.....' Comptes Rendus,
§121878), 477-481; SP3, 136-139.

1878g. 'On the limits to the order and degree.....' Proc.Roy.
Soc. London, 27(1878), 11-12; SP3, 101-102.

1878h. 'On an application of the new atomic theory.....'
American Journal Math., 1(1878), 64=125; SP3, 148-206.

1879a. 'Tables of the generating functions.....', American Journal
Math., 2(1879), 223-251; SP3, 283-31l1.

1879b. 'On the complete system of the "Grund formenV..,.'
American Journal Math., 2(1879), 98-99; SP3, 281-282.

188la. 'Tables of the geueratlng functions....." American Journal
Math., 4(1881), 41-61; SP3, 489-508.

1881b. 'A demonstration of the impossibility......! American
Journal Math., 4(1881), 62-84; SP3, 509-529.

188lc. 'Sur les covariants irréductibles......' Comptes Rendus,
93(1881), 192-196; 365-369;. SP3, 481-488.

1881d. 'Note on the theory of simultaneous linear differential....'
American Journal Math., 4 (1881), 321-326; SP3,551-5356.

1882a. 'On subinvariants.....' American Journal Math., 5(1882),
79-136; SP3, 568-622.

1882b. 'On the 8-square 1maglnar1es » J.H.Univ.Circulars, 1(1882)
203; SP3, 642-643. '

1883a. 'On the involution and evolution of quaternions', Phil.Mag.,
l§(1883); 394-396; SP4, 1123114, :

1883b. 'On the involution of two matrices of the second order .
B.A.Re Report, (1883), 430-432; SP4, 115-117.

.1883c. 'Sur les quantités formant un groupe de nonions....', .

Comptes Rendus, 97(1883), 1336-1340; SP4, 118-121.

''1884a. 'The genesis of an idea.....', Nature, 31(1884), 35-36
-.(Not contained in SP). . ° —_— = It

)=



e e B

Sylvester, James Joseph (continued)

1884b, 'Sur 1'equation en matrices px=xq, Comptes Rendus,
99(1884), 67-71; 115-116; SP4, 176-180.

1884c. 'On the solution of a class of equations in quaternions',
Phil. Mag., 17(1884), 392-397; SP4, 225-230.

1884d. 'On Hamilton's quadratic equation.....' Phil.Mag., 18(1884)
454-4583 SP4, 231-235.

1884e. 'Note on Captain MacMahon's transformation.....' Mess.Math.,
13(1884), 163-165; SP4, 236-237.

1884f. 'On Involutants....' Johns Hopkins Univ. Cires., 3(1884)
9-12, 34,35; SP4, 133-145.

1884g. 'Sur la solution explicite.....' Comptes Rendus, 99(1884),
555-558, 621-631; SP4, 188-198.

1885a. 'A New Example of the Use of the Infinite and Imaginary....'
Nature, 32(1885) 103-105, 271.
(Not contained in SP; related to Sylvester 1885d).

1885b. 'On certain new terms...' Nature, 32(1885), 576-578.
(nog contained in SP - related to Sylvester 1885d.)

1885c. 'Sur une nouvelle théorie de formes algébriques‘, Comptes
Rendus, 101(1885), 1042-1046, 1110-1111, 1225-1229, 1461-1464;
SP4, 242-251.

1885d. 'Note on certain elementary geometrical notions and determina=-
tions', Proc. London Math.Soc., 16(1885), 201-215; SP4, 259-271.

1885e. 'On the trinomial.....' Quart. Math.Journal, 20(1885),
305-312; SpP4, 272-277.

[y

886a. 'Sur une extension du théoréme.....', Comptes Rendus,
102(1886), 1430-1435; SP4, 515-519.

uy

886b. 'Lectures on the Theory of Reciprocants', American Journal
Math., 8(1886), 196-260; 9(1887), 1=-37, 1133161, 297-352; 10(1888)
1-16; SP4, 303-513.

1886¢c. 'On the method of Reciproéants....} Nature, 33(1886), 331-332
(Not contained in SP - errata to SP4, 278)

1887a. 'Note on a proposed addition.....' Nature, 37(1887), 179
(Not contained in SP - errata to SP4, 588)

1887b. 'On the so-called Tschirnhausen transformation', Journal f.
reine u. angewandte Math., .100(1887), 465-486; SP4, 531-549.

1888a. 'The late Arthur Buchheim' (Obituary), Nature, 3_(1888),
515-518 (Not contained in SP).

1897a."0ut1in€§'of seven lectures.....' Proc. London Math.Soc.
28(1897), 33-96; SP2, 119-175 (First printed 1859).




Tanner, Henry W. Lloyd (1851-1913)
1891a. 'On the History of Arbogast‘s Rule, Mess. of Math.,
20(1891), 83-101.

Thiele, Thorrald Nicolai (1838-1910)
1931a. 'Theory of Observations', Annals Math.Stat., 2(1931),
165=-306; Trans. of Almindelig Iagttagelseslaere (1889, Copenhagen)

Thompson, Silvanus Phillips (1951-1916)
1910a. The Life of William Thomson, 2 Volumes, (1910, London)

Thomson, Joseph John (1856-1940)
1936a. Recollections and Reflections (1936, London)

Thomson, Sir William (Lord Kelvin) (1824-1907)
1847a. ‘Archibald Smith' (Obituary), Proc. Roy. Soc.,
London, 22(1874), i-xxiv.

Todd, J.A.
1958a. 'J.H.Grace (1873-1958)" Biog. Mem. Fellows Roy.Soc.,
4(1958), 93-97.

Todhunter, Isaac (1820-1884)
1861la. Theory of Equations (1961, Cambridge)

Turnbull, Herbert Westren (1885-1961)
1919a. Some Memories of William Peveril Turnbull (1919, London)

1926a. 'Recent developments in invariant theory' Math.Gaz.,
13(1926), 217-221.

1938a. ‘'Edwin Bailey Elliott' (Obituary), Roy.Soc.Obit., Not.,
2(1936-38), 425-431.

+

1941la. 'Alfred Young (1873-1940)' Obituary Notices of Fellows Roy.
Soc., III(1941), 761-778.

Turnbull, H.W. and Aitken, A.C.
196la. An introduction to the theory of canonical matrices
(1961, Dover Reprint) (First Edition, 1932).

Tvrda, Jana

1971a. 'On the origin of the theory of matrices', Acta historiae
rerum naturalium necnon technicarum, Special Issue 5,
Czechoslovak Studles in the History of Scilence.

Walton, William (1813 - )

1852a. 'On the doctrine of impossibles in algebraic geometry',
Camb. and Dublin Math.Journal, 7(1852 ), 234-242.

1865a. The Mathematical Writings of D.F.Gregory (1865, London).

Watson, E.C,

1939a. 'A possible portrait of Arthur Cayley......' Scripta Math.,
6(1939), 32-36,




Weyl, Hermann (1885-1955)
1935a. 'Emmy Noether' Scripta Mathematica 3(1935), 201-220.

White, Henry Seely (1861-1943)
1899a. 'Report on the progress of projective invariants.....',
Bull. American Math. Soc., 5(1899), 161-175.

Whitehead, Alfred North (1861-1947)
1927a. Science and the Modern World (1927, Cambridge)

Williams, Iolo Wyn
1966a. 'The Western University of Great Britain', Collegiate
Faculty of Education Journal (Uniy. College, Swansea)
(1966), 32-40.

- 24 -



