
SPECIAL SECTION ON SMART CACHING, COMMUNICATIONS, COMPUTING AND CYBERSECURITY
FOR INFORMATION-CENTRIC INTERNET OF THINGS

Received May 23, 2018, accepted June 21, 2018, date of publication July 4, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2852329

M-SSE: An Effective Searchable Symmetric
Encryption With Enhanced Security for
Mobile Devices
CHONGZHI GAO 1,2, SIYI LV3, YU WEI3, ZHI WANG3, ZHELI LIU 3, AND
XIAOCHUN CHENG4, (Senior Member, IEEE)
1School of Computer Science, Guangzhou University, Guangzhou 510006, China
2State Key Laboratory of Cryptology, Beijing 100878, China
3College of Computer and Control Engineering, Nankai University, Tianjin 300071, China
4Department of Computer Science, Middlesex University, London NW4 4BT, U.K.

Corresponding author: Zhi Wang (zwang@nankai.edu.cn)

This work was supported in part by the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars under
Grant 2014A030306020, in part by the Guangzhou Scholars Project for universities of Guangzhou under Grant 1201561613, in part by the
Science and Technology Planning Project of Guangdong Province, China, under Grant 2015B010129015, and in part by the State Key
Laboratory of Cryptology, Beijing, China.

ABSTRACT Searchable encryption allows mobile devices with limited computing and storage resources
to outsource data to an untrusted cloud server. Users are able to search and retrieve the outsourced data;
however, it suffers from information and privacy leakage. The reason is that most of the previous works rely
on the single cloud model, which allows that the cloud server gets all the search information from users.
In this paper, we present a new scheme M-SSE that achieves both forward and backward security based on a
multi-cloud technique. The new scheme is secure against both adaptive file injection attack and size pattern
attack by utilizing multiple cloud servers. Experiment results show that our scheme is effective compared
with the other existing schemes.

INDEX TERMS Searchable symmetric encryption, multi-cloud technique, forward security, backward
security.

I. INTRODUCTION
With the wide use of cloud computing, a huge amount of data
are outsourced to the cloud servers from users with limited
computing and storage resources in Internet of Things (IoT).
Though cloud computing is able to provide the powerful
outsourcing services to users, the security and privacy have
become challenges. The reason is that the cloud servers and
the users are not in the same trust domain. Usually, the cloud
servers cannot be fully trusted by the users in the system. As a
result, how to protect the security and privacy of users is a crit-
ical issue for the wide application of cloud computing [20].

In order to protect data security, the users usually encrypt
their data before uploading them to the cloud [26]. Keyword
search and other data utilization become challenging for
applications in outsourced data, such as machine learning
and other data utilization with privacy protection [11], [12].
Traditional encryption methods such as symmetric encryp-
tion or hybrid encryption can be used here to protect the

data security. However, after data encryption, data opera-
tions become a challenge because the users cannot perform
operation over ciphertexts such as keyword search and range
query [22].

Searchable encryption is one of the most basic preliminar-
ies for the data utilization in cloud computing [29]. How-
ever, all the previous works have only considered the basic
security requirements such as the confidentiality of data and
revocation of the search privilege etc. However, in cloud
computing environment, the adversary would launch stronger
and different attacks for the cloud data [16], [42], [44]. Thus,
the security and privacy issues for searchable encryption have
to be considered for variants attacks.

A. SEARCHABLE ENCRYPTION
To implement keyword search over ciphertexts, search-
able encryption requires the client to upload both the

38860
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7778-6775
https://orcid.org/0000-0002-2984-2661

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

keyword ciphertexts and the encrypted documents to the
cloud [6], [34]. When the client wants to search the docu-
ments containing a certain keyword, the client generates a
trapdoor for this keyword and sends it to the server. After
confirming that a keyword ciphertext is matched with this
trapdoor, the server returns the matched document identifiers
back to the client [23]. Then, the client can retrieve the
document by its document identifier.

There are two kinds of searchable encryption methods,
Public Key Encryption with Keyword Search (PEKS) [1]
and Searchable Symmetric Encryption (SSE). Derived from
public key cryptographic primitives, PEKS is mainly applied
in the design of complex SE schemes, such as conjunctive-
subset, multi-dimensional keyword search. Based on the sym-
metric primitives, SSE can achieve good performance, and it
has gained more attention and been widely used in encrypted
storage and encrypted email systems.

1) LEAKAGES OF SEARCHABLE ENCRYPTION
However, in SSE, the (often symmetric) deterministic encryp-
tion enables the cloud server to observe the repeated queries
and other leakages [7], [19]. Typically, these leakages can be
divided into three types:

• Size pattern [39]. Some leakages of the SSE scheme are
about the size of the entries, the total number of key-
words and so on. That is to say, the server can learn the
number of keyword-document pairs stored in a database.

• Search pattern [10]. This means that the server can learn
that the current query is linked with a past query. The
server can also learn the deterministic tokens of repeated
queries.

• Access pattern [10]. The server can observe the access
operation of the client, and then it can learn the doc-
ument identifiers and document matching keyword.
We can store documents in an ORAM when we request
the documents; the access pattern will be oblivious.

2) ATTACKS OF SEARCHABLE ENCRYPTION
By abusing these leakages, the malicious server can launch
attacks such as inference attack [15], leakage abuse attack [5],
file injection attack [43], and so on. For the adversary, nomat-
ter how small the leakage is, it can attack SSE schemes
to reveal the client’s privacy. The file injection attack is a
novel attack that abuses the leakage of the access pattern.
It injects files containing pre-defined keywords into the client
and observes the file access pattern on the server. When an
injected file is fetched but others are not, the malicious server
can determine which keyword is searched in the fetched
injected file. In this way, the malicious server can know
the query privacy and even the plaintext of the encrypted
document.

The above leakages can be protected by utilizing ORAM,
like TWORAM [13]. Unfortunately, ORAM always involves
a huge bandwidth cost, massive storage usage and frequent
interactions between the client and the server. That is to say,

the SSE schemes based on ORAM are not practical [17].
As a result, when designing a practical SSE scheme, we must
solve the trade-off between efficiency and leakage. Efficiency
involves storage requirements, latency and bandwidth, while
leakage concerns the size pattern, search pattern and access
pattern. Considering efficiency, most SSE schemes aban-
don the ORAM and assume these leakages can be allowed.
Although some attacks have been proposed as described
above, in 2016, Zhang et al. [43] noted that the adaptive file
injection attack cannot be applied to a forward privacy SSE
scheme. Thus, the forward privacy becomes the basic security
goal of a practical SSE scheme.

B. MOTIVATION
Until now, there have only been a few schemes that achieve
forward privacy [3]. If the SSE scheme supports forward
privacy, it means that a malicious server cannot learn whether
a newly added document matches previous search queries.
Backward privacy is defined in the sense that a searching
keyword does not reveal the matching documents identifiers.
In 2017, Bost et al. [4] proposed an SSE scheme that achieves
both forward and backward security. As far as we know,
it is the first scheme that is not based on ORAM to achieve
forward and backward security.

We stress that there is still too much information (size
pattern, search pattern, access pattern) to be leaked in SSE
schemes that achieve forward and backward security. And
many attacks can be launched. Further reducing leakages
is the objective of the design of the SSE scheme. There-
fore, we want to draw support from the multi-cloud tech-
nique to reduce the leakage and improve efficiency. In other
words, we try to distribute these leakages into different non-
colluding clouds. For example, we allow a single cloud to
observe part of the size and search information, but we do
not leak the whole size pattern or search pattern to each cloud
because the clouds are non-colluding.

C. OUR CONTRIBUTIONS
We construct a forward and backward searchable encryption
scheme based on a multi-cloud technique called ‘‘M-SSE’’.
This is a dynamic SSE scheme that supports both add and
delete operations, and it shows optimal performance com-
pared to typical SSE schemes. More specifically, we draw
support from the multi-cloud technique to distribute part of
the leakages to different clouds and avoid a single cloud
knowing the whole size or search pattern. Therefore, M-SSE
achieves small leakages.

As shown in Table 1, we can conclude that: 1) M-SSE
and Fides have the same asymptotic complexity in search
and update. The experiment result shows that M-SSE is
2× greater than Fides [4] in terms of speed because the
client can get the index matching keyword w from two clouds
simultaneously in M-SSE; 2) M-SSE and Fides can achieve
both forward and backward privacy, but onlyM-SSE achieves
the protection of the size pattern by distributing leakages to
different clouds.

VOLUME 6, 2018 38861

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

TABLE 1. Comparison with prior SSE schemes. N is the number of entries, which can be written as keyword/document pairs in the database, while W is
the number of distinct keywords, and D is the number of documents; nw is the size of the search result set matching keyword w , and aw is the total
number of entries matching keyword w . FP denotes forward-private, BP denotes backward-private, and SiP denotes size pattern.

II. RELATED WORK
A. SEARCHABLE ENCRYPTION
Cloud computing allows users to share cloud data securely
with other users [20] and outsource computing to the cloud
servers [36], [37], [40]. How to perform the data utilization is
a critical problem. In 2000, Song et al. [38] proposed the first
practical searchable encryption scheme implemented with
symmetric primitives. Many SSE schemes were subsequently
proposed, including static and dynamic schemes [8], [9].
Compared to dynamic SSE scheme, the static SSE scheme
does not support adding and deleting entries in the initialized
database or storage system. From a practical point of view,
dynamic SSE schemes are much more valuable.

Generally speaking, there are three approaches: inverted
index, tree and direct index of SSE. Among them, the inverted
index approach is used the most widely. The element in
inverted index is a (key, value), where key is a keyword and
value is the document identifiers that contain the keyword.

When searching for a keyword, we obtain all the docu-
ment identifiers matching the keyword. Therefore, compared
with other approaches, the inverted index approach costs the
minimal search time. This approach [10] was first proposed
in 2006; later, many SSE schemes [18], [35] were proposed
based on it.

There are also many other works on the data utilization for
cloud computing, such as the privacy machine learning [25].
To solve these above data utilization problems, some crypto-
graphic techniques have been proposed such as homomorphic
cryptography [30], [31], [41], cloud data retrieval and verifi-
able computing [28]. The multiple cloud setting has also been
considered by [21] to realize the reliability of the data dedu-
plication. Actually, there are many similarities between the
construction of deduplication and keyword search because
both of them need to perform search over the cloud data with
some query.

Constructing the SSE scheme is challenging. We should
achieve less leakage and more optimal search and update
complexity. The SSE scheme implemented with ORAM
[13], [14] achieves the highest security guarantee. However,
the overhead of ORAM makes the search and update com-
plexity less optimal.

B. FORWARD AND BACKWARD PRIVATE SE SCHEMES
The notion of ORAM [24], [33] has been proposed to protect
the privacy of data retrieval. Stefanov et al. [39] proposed

an ORAM-inspired forward-private SSE construction and
was the first to outline the forward privacy concept. Later,
Bost [2] proposed a forward private SSE scheme that is only
implemented with trapdoor permutation and achieved opti-
mal search and update complexity. In 2016, Zhang et al. [43]
noted that the forward private scheme can defend against
the adaptive file injection attack; thus, forward privacy
has become the basic security goal of the SSE scheme.
Until now, several forward private SSE schemes have
been proposed, including sizepattern [39], TWORAM [13],
6oϕoς [2], and so on.
In 2017, Bost et al. [4] gave a formal backward private def-

inition and proposed the first SSE scheme that achieves both
forward and backward security without utilizing ORAM.
According to the number of metadata leakages about the
inserted and deleted entries, there are three levels of back-
ward private definitions: 1) Weak backward privacy. When
inserting documents, it leaks the document’s currently match-
ing keyword w, when the update operations occurred, and
the information of the cancel operation; 2) Backward pri-
vacy with update pattern. Compared with weak backward
privacy, when inserting documents, it reduces the informa-
tion leakage of insertion and deletion; 3) Backward privacy
with insertion pattern. Compared with Backward privacy
with update pattern, when inserting documents, it further
reduces information leakage when the update operations
occurred.

C. TRAPDOOR PERMUTATION TECHNIQUE
A trapdoor permutation family

∏
comprises three

algorithms: Gen,Eval and Invert .

• Generate(1λ) is a randomized generation algorithm; the
input is 1λ and the output is the description i of a
permutation along with the corresponding trapdoor td

and x
R
←− Di. Furthermore, td is the trapdoor allowed to

evaluate π−1.
• Evaluate(1λ, i, x) is a deterministic algorithm, which

takes as input i ← Gen(1λ), x
R
←− Sample(1λ, i) and

outputs y ∈ Di. Eval(1λ, i, ·) is a permutation od D for

all (i, td)
R
←− Gen(1λ).

• Invert(1λ, (i, td), y) is a deterministic algorithm, which

takes as input (i, td)
R
←− Gen(1λ), y ∈ Di and out-

puts x ∈ Di. Therefore, Invert(1λ, (i, td), ·) inverts a
permutation.

38862 VOLUME 6, 2018

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

FIGURE 1. Trapdoor permutation technique.

The output of the Generate algorithm is a probability dis-

tribution5 on permutations; therefore, (π, π−1)
R
←− 5; here,

π is a permutation and π−1 is the inverse permutation.
Definition 1: The advantage of algorithm A in inverting

a trapdoor permutation family is:

AdvInvertA = P[x = A(1λ, (i, td), y) : (i, td),

x
R
←− Generate(1λ), y← Evaluate(1λ, i, x)].

TDP in 6oϕoς . As shown in Figure 1, only the client
who owes the trapdoor sk can generate the permutation (for-
ward chain), but the server who owes the public info pk can
evaluate this permutation (backward chain). We can also see
that the permutation about w is built by encrypting a random
value ST0(w) many times using the trapdoor sk (i.e., π−1sk).
Meanwhile, it can be retrieved by decrypting the last one
using the public info pk (i.e., πpk).
The 6oϕoς [2] exploits the TDP to achieve the forward

secure searchable encryption. In particular, for each key-
word w, there is a permutation over the set that contains the
search tokens of keyword w denoted by D(w). In 6oϕoς [2],
the client maintains a counter c and its search token STc(w)
for each keyword w. When a keyword-document pair for
keyword w is added, the client will first produce a search
token by STc+1(w) ← π−1sk (STc(w)) and then produce a
storage position (update token)UTc+1(w) using a keyed hash,
and finally update its client state and store the document
identifier in UTc+1(w) in the server. Because the latest search
token is stored in the client, the malicious server cannot know
where the UTc+1(w) is produced.

III. PRELIMINARIES
A. NOTATIONS
Let λ be the security parameter and negl(λ) be the negligible
function. As a λ bits string, the symmetric key is sampled
from {0, 1}λ. Let EK (m) denote encrypting m with key k and
Dk (c) denote decrypting c with key k . Let H (k,m) denote a
keyed hash function that takes as input message m and key
k and outputs a λ bits string. Let W denote the keyword set
stored on the client side. |W| denotes the number of distinct
keywords stored on the client side.

B. MULTIPLE CLOUD MODEL
With the development of cloud technology, we can divide our
database into small-scale databases stored in different clouds
that are non-colluding. In this paper, we use three clouds,
i.e, cloud c1, c2 and c3. Cloud c1 and c2 are used to store

documents and the indexes of keywords, while cloud c3 is
used for temporary storage to store the searched documents.

When the client performs a keyword search, we will search
from cloud c1 and c2 and then store the searched docu-
ments in cloud c3. That is, we do not write these searched
documents back immediately. If we do so, the malicious
servers (c1 and c2) can observe the connection between the
searched trapdoor and documents. On the contrary, we store
the searched documents in cloud c3. At some point in the
future, we can then write the part of the stored documents
back to the cloud c1 and c2. Therefore, c1 and c2 only get
a part of the search pattern leakage. Furthermore, with c3,
we can break the linkability between the searched keyword w
and the documents which match w.

C. SEARCHABLE SYMMETRIC ENCRYPTION
In order to use cloud resources, the client can store encrypted
documents in the cloud; this brings about the challenge
of how to search the encrypted document’s matching key-
word w. The SSE scheme can solve this problem. When a
client wants to search a keyword w, it computes a search
token t matching w and then sends t to the server. The
server can compute and retrieve the document’s identifier
with token t and then send these identifiers to the client side.
According to these identifiers, the client can download those
documents matching w.
A dynamic searchable encryption scheme always consists

of one algorithm and two protocols between clients and
server:
• Setup(DB): This is an initialization algorithm that takes
database DB as an input and gets (EDB, K , σ) as an
output, in which EDB is the encrypted database, K is
a secret key stored by the client and σ is the state of the
client.

• Search(K, q, σ ; EDB): On the client side, the proto-
col takes the key K and its state σ as the input and
outputs a query q about the keyword w. On the server
side, the protocol takes EDB as the input and outputs
the document identifiers matching keyword w. In this
paper, we only consider searching a single keyword
operation.

• Update(K, σ , op, in; EDB): Adding and deleting a
document matching keyword w belong to the update
operations. When the client adds a document, the opwill
be set to add ; otherwise, it will be set to del. The client
takes the key K , operation op, state σ and in as input.
Generally speaking, the client will generate a new block
and upload it to EDB on the server side.

D. FORWARD PRIVACY SECURITY
We borrow the formal definition of forward-secure in [2].
If the update operation does not leak any other infor-
mation more than itself, the scheme is forward pri-
vate. In particular, the server cannot determine whether
the updated document matches a keyword we queried
before.

VOLUME 6, 2018 38863

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

Definition 2: An L-adaptive-secure SSE scheme is for-
ward private if the leakage during the update operation can
be written as

LUpdt (op, in) = L ′(op, (indi, ui)),

where (indi, ui) is the modified documents with the matching
keyword.

E. BACKWARD PRIVACY SECURITY
Backward privacy makes sure that the server can learn less
on keyword w. Generally speaking, for a keyword/document
pair (w, ind), it is added and then later deleted from
the database. When searching keyword w, the result does
not reveal ind [39]. TimeDB(w) denotes a timestamp list
matching keyword w. When inserting a document into the
database, we record a timestamp in TimeDB(w). When
deleting documents, we delete the timestamp of when
they were inserted. Formally speaking, TimeDB(w) can be
defined as:

TimeDB = {(u, ind)|(u, add, (w, ind)) ∈ Q and ∀u′,

(u′, del, (w, ind)) /∈ Q},

whereQ denotes the query list. Then,DB = {ind |∃s.t.(u, ind)
∈ TimeDB(w)}.
Updates(w)is a list of timestamps of updates on w. It can

be defined as:

Updates(w)={u|(u, add, (w, ind)) or (u, del, (w, ind))∈Q},

where Q denotes the query list.
DelHist(w) denotes the list of timestamps for the whole

deletion matching keyword w. It can be defined as:

DelHist(w)={(uadd , udel)|∃ ind s.t. (udel, add, (w, ind))∈Q}.

With these notions introduced here, we can describe three
levels of backward private.
Definition 3: For a L− adaptively− secure SSE scheme,

if the leakage function of search LSrch and update LUpdt can
be written as follows, this scheme is an insertion pattern
revealing backward-private.

LSrch(w) = L′′(TimeDB(w), aw),
LUpdt (op,w, ind) = L′(op),

where L′ and L′′ are stateless.
For a L− adaptively− secure SSE scheme, if the leakage

function of search LSrch and update LUpdt can be written as
follows, this scheme is an update pattern revealing backward-
private.

LSrch(w) = L′′(TimeDB(w),Updates(w)),
LUpdt (op,w, ind) = L′(op,w),

where L′ and L′′ are stateless.
For a L− adaptively− secure SSE scheme, if the leakage

function of search LSrch and update LUpdt can be written as
follows, this scheme is weakly backward-private.

LSrch(w) = L′′(TimeDB(w),DelHist(w)),

LUpdt (op,w, ind) = L′(op,w),

where L′ and L′′ are stateless.

IV. OUR CONSTRUCTION
In this section, we give a detailed description of our con-
struction named ‘‘M-SSE’’, a forward and backward secure
searchable encryption scheme based on the multi-cloud tech-
nique. It not only supports add-and-delete operations but also
can defend against adaptive file injection attacks.

A. STORAGE STRUCTURE
Our M-SSE adopts inverted index schemes like 6oϕoς .
Let Lw denote the indexed list storing the identifiers (ind0,
ind1, . . . , indnw) of documents which contain keyword w.
Furthermore, the size of Lw is nw.
We adopt three clouds, i.e., cloud c1, c2 and c3. One cloud

(c3) is used as temporary storage, but the others (c1 and
c2) are used as the normal servers supporting the keyword
search. For the cloud c1 and c2, the client uploads encrypted
documents and keyword ciphertexts to them. But for a docu-
ment, the client will randomly select a unique cloud to store
it. When performing search operations, the client sends two
different tokens to both the cloud c1 and c2 at the same time.
For cloud c3, it never supports a keyword search because it
is only designed to be temporary storage. After keyword w is
searched, we obtain the inverted list Lw and all the documents
containing keyword w. For security considerations, we will
not update these data to cloud c1 and c2 immediately; on the
contrary, we will encrypt these documents and then cache
them to cloud c3.
On the client side, we adopt a map W to store the state of

each keyword. The state of keyword w can be denoted as the
tuple stw = (tokenl, tokenr , tag), where tokenl is the token of
the inverted list on cloud c1 and tokenr is that on cloud c2.
Tag is a label to show whether documents matching keyword
w are on c3. For each keyword w ∈ W , the map W stores its
state stw.
Figure 2 shows the structure of M-SSE. Unlike 6oϕoς ,

we store Ekw (ind, op) instead of (ind, op), where op can be

FIGURE 2. Framework of M-SSE. There are three clouds in the scheme:
cloud c1 and c2 store documents and indexes as other SSE paradigm;
c3 is a temporary storage that stores the searched documents.

38864 VOLUME 6, 2018

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

add or del, meaning add or delete operations, respectively.
This approach provides backward privacy.

B. OUR CONSTRUCTION
Algorithm 1 shows the formal description of our scheme,
M-SSE. The scheme supports both add and delete opera-
tions, and the client sends these data blocks with different
operations to cloud c1 or c2. In our scheme, H is a keyed
hash function whose output is µ bits long; furthermore,
Ek (m) andDk (c) are implemented by an IND-CPA symmetric
encryption.

Algorithm 1M-SSEBasic Construction ofMulti-Cloud SSE
Setup()

1: K6
$
←− {0, 1}λ

2: (SK ,PK)
$
←− KeyGen(1λ)

3: W ,T ← empty map
Search(w, σ ; EDB)
Client:
1: Kw← F(K6,w)
2: (STc, c)← W [w]
3: If (STc, c) = ⊥ and Tag 6= ⊥
4: documents matching w are stored in c3
5: Else
6: Send (Kw, STc.tokenl, cl) to c1, (Kw, STc.tokenr , cr)
to c2
Cloud c1 and c2:

7: Run 6oϕoς − B.Search(w, σ ; EDB) and get
EKS (ind, op),
store the result in S

8: Send S to the client.
Client:

9: Decrypt S and get {ind : ∃ i, (indi, opi)
∩∀j > i, (indj, opj) 6= (ind, del)}

Update(w,c1, c2; EDB)
Client or cloud c3:

1: KS
$
←− {0, 1}λ

2: Randomly select documents sending to c1 and c2 respec-
tively.

3: Run 6oϕoς − B.Update(w,EKS (ind, op), σ ;EDB) on
cloud c1 and c2

1) UPDATE OPERATION
When updating a document matching keyword w, the client
will generate a new data block and randomly send it to cloud
c1 or c2. Adding and deleting a document are implemented
with the update operation. As for the add operation, the docu-
ment can be a fully new document and also a document stored
in c3, which has been searched and downloaded. As for the
delete operation, the document must have already been stored
in the database. The following is a detailed approach:
Step 1 (Select Target Cloud Randomly): Select the cloud

that the new block will be sent to. The new block contains the

encryption of the new document identifier and the operation.
Therefore, a new block has two possible locations and thus it
support more privacy.
Step 2 (Generate a New Token): According to the result of

step 1, the client generates a new token for the new block. The
token has a corresponding relationship with the new block
matching keyword w. So the one who obtains the token can
get the corresponding document matching w.
Step 3 (Update the Map W): If the new block is sent to

cloud c1,W [w].STw.tokenl andW [w].cl will be updated with
the new value; otherwise,W [w].STw.tokenr andW [w].cr will
be updated with the new value.

2) SEARCH OPERATION
The client generates a search token t corresponding to key-
word w. Search token t will allow the server to retrieve
document identifiers matching keyword w. Following is the
detailed approach:
Step 1 (Retrieve Map W): According to keyword w,

we will get the state of w. If W [w].STc.tokenl is not ⊥,
we will sendW [w].STc.tokenl to cloud c1. Otherwise, we will
send W [w].STc.tokenr to cloud c2. If W [w].STc.tokenl and
W [w].STc.tokenr are ⊥, we will check whether the docu-
ments match w in cloud c3.
Step 2 (Merge the Identifier): The data blocks received

from clouds are encrypted with KS , so the client will decrypt
these blocks first. For any indi, if there exist both (indi, add)
and (indi, del), we will ignore this indi.
Step 3 (Get the Documents): For any indi =

DKw (EKw (indi, op)), according to the position map, we can
know the position of the documents. Then, sending the
corresponding ind from step 2 to different clouds can get the
documents.
Step 4 (Upload the Searched Result to Cloud c3): Once we

have searched keywordw and got the documents, wewill then
send the encrypted documents and identifiers to c3 and reset
Tag. After a while, we will update these documents to c1 and
c2 as new documents.

C. SECURITY ANALYSIS
We can use the Random Oracle Model to prove the security
of M-SSE.
Theorem 1 (Adaptive security of M-SSE): Define LS =

(LSearchS ,LUpdateS), where

LSearchS = (sp(w),Hist(w)), LUpdateS (op,w, ind) =⊥ .

M-SSE is LS − adaptive− secure.
Proof: Deriving several games from SSERealM−SSEA (λ),

which is a real-world game that can help prove the theorem.
GameG0: G0 is the real world SSE security game SSEReal.

Formally speaking,

P[SSERealM−SSEA (λ) = 1] = P[G0 = 1].

Game G1: When confronting a new keyword w, G1 picks
a new key randomly instead of calling F when generating

VOLUME 6, 2018 38865

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

KW . Furthermore, KW will be stored in a table key, so the
next time the same keyword w is confronted, we get the
KW from key. Therefore, if there is an adversary that can
build a reduction that is able to distinguish between F and
a truly random function, we can say that the adversary can
distinguish between G0 and G1. Formally speaking,

P[G0 = 1]− P[G1 = 1] ≤ AdvPRFF,B (λ),

where B is an efficient adversary.
According to the proof in 6oϕoς , we can conclude that

M-SSE is LS − adaptive− secure.
Theorem 2 (M-SSE can Protect Size Pattern): Define

c.num = (c1.num, c2.num), where c1.num is the number of
documents matching keyword w in cloud c1 and c2.num is
the number of documents matching keyword w in cloud c2.
M-SSE can protect the size pattern.

Proof: We divide an encrypted database into two small
databases and store them in cloud c1 and c2. When perform-
ing a search operation, we send two tokens to c1 and c2. Then,
we merge the index and request document matching w. For
c1, it only knows the number c1.num of document matching
w stored in c1; for c2, it only knows the number c2.num of
document matchingw stored in c2. The total number c.num of
documents matchingw is c1.num+c2.num. For non-collusive
clouds, they only know the number of documents stored on
them except the total number. Formally speaking,

P[c2 knows c1.num] = negl(λ),

P[c1 knows c2.num] = negl(λ),

where negl(λ) is the negligible function.
Therefore, we can say that with the support of the multi-

cloud technique, M-SSE can protect the size pattern.

D. LINKABILITY ANALYSIS
When searching keyword w, the client sends a trapdoor
Tokenl and Tokenr to the server and gets the index from the
clouds; then, the client can get the documents D matching w
from c1 and c2. If the client updates these documents to c1
and c2 immediately, the server can know w, Tokenl , Tokenr ,
and the documents D are related. In order to reduce the link-
ability between w and the searched documents that match w,
we use another cloud c3 as a temporary storage to store the
documents that match w and have already been searched.
In this way, when searching keyword w′, the client sends
Token′l and Token

′
r to the server and then gets the index. The

client encrypts the index and gets the true identifiers of the
documents and then asks the server for these documents D′.
Next, these documents are sent to c3 temporarily. Therefore,
the server cannot know thatw′, Token′l , Token

′
r and documents

D′ are related.

V. EXPERIMENTS AND EVALUATIONS
Our experiment focuses on the comparison of efficiency
between M-SSE and other typical SSE schemes. In the
M-SSE scheme, the search operation can be divided into two

parts; one is generating the token on the client side, and the
other is searching on the server side. The update operation
can also be divided into two parts; one is generating a new
block on the client side, and the other is uploading this new
block to the server side. We divide these operations into two
parts and observe the bandwidth, computation on the server
side and client side.

A. IMPLEMENTATION DETAILS
We implement the core function and benchmark of M-SSE
with C/C++. The cryptographic primitives in M-SSE use the
code provided by 6oϕoς [2]’s source code. We use HMAC
as the keyed hash function and use the OpenSSL’s BigNum
library to implement RSA. And we use RSA to implement
trapdoor permutation.

1) EXPERIMENT ENVIRONMENT
For server storage, we use RocksDB to store the map. Our
experiment is run on a desktop computer; it has single Inter
Core i7-7700 3.60HZ CPU, 2GB of RAM on ubuntu 14.0.4.

2) PARAMETER
We set the secure parameter λ to 128 bits. The maxi-
mum number of keyword/document pairs range from 140 to
14000000, which is determined by concrete benchmarks. For
symmetric primitives, cryptographic keys are 128 bits long,
and the length of RSA keys is 2048 bits long.

B. EVALUATION
We evaluated the performance of M-SSE with 140000
keyword-document pairs. Three operations are considered
in the experiment: token generation, search operation and
update operation.

1) TOKEN GENERATION
As shown in Figure 3, during the search operation, we eval-
uate the performance of token generation. To the best of our
knowledge, Fides has the best performance in terms of token
generation. M-SSE and Fides are all based on the 6oϕoς
scheme. While generating tokens, M-SSE and Fides perform
the same operation, so the performance of token generation

FIGURE 3. Comparison of token generation.

38866 VOLUME 6, 2018

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

is almost the same. The result of the experiment shows that
the speed of M-SSE is not worse than that of Fides, and
it is almost the same as Fides. However, M-SSE protects
more privacy than Fides. Figure 3 also shows that TWORAM
is the most inefficient one although it leaks the minimum
information.

2) SSE OPERATION
As shown in Figure 4 and Figure 5, we compare the perfor-
mance of search and update operations with other schemes.
For M-SSE and Fides, RSA operations will not be fully inter-
leaved with disk accesses at the beginning of the search oper-
ation. However, mutexes and storage accesses will induce
latency. M-SSE stores the index matching keyword w on two
clouds; thus we can get the index simultaneously. There-
fore, the speed of the search operation is nearly 2× better
than that of Fides. For TWORAM, because of the com-
plexity of ORAM itself, the efficiency of the search oper-
ation and update operation are much lower. We test these
schemes with the same keyword/document pairs, keyword
sets and benchmarks. Therefore, the initialization and bench-
marks are the same. We can conclude that M-SSE has
the same performance as Fides and is much better than
TWORAM.

FIGURE 4. Comparison of Search operations.

FIGURE 5. Comparison of Update operations. Keyword-document pairs is
set to 140000.

3) SECURITY LEVEL
With the support of the multi-cloud technique, M-SSE can
distribute the leakages to different clouds. If the clouds are
non-collusive, M-SSE can reduce the information known by
each cloud. Therefore, M-SSE can protect the size pattern.
Furthermore, M-SSE can support forward-privacy, so it can
defend against file injection attacks. Based on the backward-
private level, M-SSE realizes backward privacy with the
update pattern.

M-SSE has nearly the same optimal performance as Fides,
which has the best performance of SSE, but it provides a
higher secure level. TWORAM leaks the minimum privacy,
but the performance is much worse than that of M-SSE.
Reducing the leakages from secure searchable encryption is
the main point of M-SSE. Therefore, we can say that M-SSE
strikes a good balance between efficiency and security.

VI. CONCLUSION
In this paper, we focus on how to improve the performance
of the SSE scheme and reduce its leakages. Based on non-
colluding clouds, we propose the M-SSE scheme, which
achieves both forward and backward security. Apart from the
good performance, M-SSE can protect the size pattern. Dis-
tributing the leakages to different clouds to reduce the infor-
mation leakage may be a new idea to protect users’ privacy.
In future work, we plan to design more secure searchable
encryption with better performance and the forward secure
order-preserving encryption scheme.

REFERENCES
[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Pub-

lic key encryption with keyword search,’’ in Proc. Eurocrypt, 2004,
pp. 506–522.

[2] R. Bost, ‘‘6oϕoς : Forward secure searchable encryption,’’ in Proc. ACM
CCS, 2016, pp. 1143–1154.

[3] R. Bost, P.-A. Fouque, and D. Pointcheval, ‘‘Verifiable dynamic symmet-
ric searchable encryption: optimality and forward security,’’ Int. Assoc.
Cryptol. Res., Las Vegas, NV, USA, Tech. Rep. 2016/062, 2016, vol. 62.
[Online]. Available: https://eprint.iacr.org/2016/062

[4] R. Bost, B. Minaud, and O. Ohrimenko, ‘‘Forward and backward private
searchable encryption from constrained cryptographic primitives,’’ inProc.
ACM CCS, 2017, pp. 1465–1482.

[5] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, ‘‘Leakage-abuse attacks
against searchable encryption,’’ in Proc. CCS, 2015, pp. 668–679.

[6] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, ‘‘Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,’’ in Proc. CRYPTO, 2013, pp. 353–373.

[7] D. Cash et al., ‘‘Dynamic searchable encryption in very-large databases:
Data structures and implementation,’’ in Proc. NDSS, vol. 14. 2014,
pp. 23–26.

[8] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, ‘‘Verifiable computation over
large database with incremental updates,’’ IEEE Trans. Comput., vol. 65,
no. 10, pp. 3184–3195, Oct. 2016.

[9] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. S. Wong, ‘‘New
algorithms for secure outsourcing of large-scale systems of linear equa-
tions,’’ IEEE Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 69–78,
Jan. 2015.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable sym-
metric encryption: Improved definitions and efficient constructions,’’
J. Comput. Secur., vol. 19, no. 5, pp. 895–934, Jan. 2011.

[11] C. Gao, Q. Cheng, P. He, W. Susilo, and J. Li, ‘‘Privacy-preserving
Naive Bayes classifiers secure against the substitution-then-comparison
attack,’’ Inf. Sci., vol. 444, pp. 72–88, May 2018.

VOLUME 6, 2018 38867

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

[12] C. Gao, Q. Cheng, X. Li, and S.-B. Xia, ‘‘Cloud-assisted privacy-
preserving profile-matching scheme under multiple keys in mobile social
network,’’ Cluster Comput., pp. 1–9, Feb. 2018, doi: 10.1007/s10586-017-
1649-y.

[13] S. Garg, P. Mohassel, and C. Papamanthou, ‘‘TWORAM: Round-optimal
oblivious RAMwith applications to searchable encryption,’’ inProc. Annu.
Cryptol. Conf., 2016, pp. 563–592.

[14] O. Goldreich and R. Ostrovsky, ‘‘Software protection and simulation on
oblivious RAMs,’’ in Proc. JACM, 1996, pp. 431–473.

[15] M. Islam, M. Kuzu, and M. Kantarcioglu, ‘‘Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,’’ in Proc.
NDSS, vol. 20, 2012, p. 12.

[16] R. H. Jhaveri, N. M. Patel, Y. Zhong, and A. K. Sangaiah, ‘‘Sensitivity
analysis of an attack-pattern discovery based trusted routing scheme for
mobile ad-hoc networks in industrial IoT,’’ in IEEE ACCESS, vol. 6,
pp. 20085–20103, 2018, doi: 10.1109/ACCESS.2018.2822945.

[17] S. Kamara and T. Moataz, ‘‘Boolean searchable symmetric encryption
with worst-case sub-linear complexity,’’ in Proc. EUROCRYPT, 2017,
pp. 94–124.

[18] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. CCS, 2016, pp. 965–976.

[19] K. Kurosawa and Y. Ohtaki, ‘‘UC-secure searchable symmetric encryp-
tion,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., vol. 7397, 2012,
pp. 285–298.

[20] J. Li, X. Chen, S. S. M. Chow, Q. Huang, D. S. Wong, and Z. Liu, ‘‘Multi-
authority fine-grained access control with accountability and its applica-
tion in cloud,’’ J. Netw. Comput. Appl., vol. 112, pp. 89–96, Jun. 2018.

[21] J. Li et al., ‘‘Secure distributed deduplication systems with improved reli-
ability,’’ IEEE Trans. Comput., vol. 64, no. 12, pp. 3569–3579, Dec. 2015.

[22] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, andW. Lou, ‘‘Secure deduplication
with efficient and reliable convergent key management,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[23] J. Li, X. Chen, F. Xhafa, and L. Barolli, ‘‘Secure deduplication storage
systems supporting keyword search,’’ J. Comput. Syst. Sci., vol. 81, no. 8,
pp. 1532–1541, 2015.

[24] B. Li, Y. Huang, Z. Liu, J. Li, Z. Tian, and S.-M. Yiu, ‘‘HybridORAM:
Practical oblivious cloud storage with constant bandwidth,’’ Inf. Sci.,
pp. 1–13, Feb. 2018, doi: 10.1016/j.ins.2018.02.019.

[25] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, ‘‘Differentially private Naive Bayes
learning over multiple data sources,’’ Inf. Sci., vol. 444, pp. 89–104,
May 2018.

[26] J. Li, Z. Liu, X. Chen, X. Tan, and D. S. Wong, ‘‘L-EncDB: A lightweight
framework for privacy-preserving data queries in cloud computing,’’
Knowl.-Based Syst., vol. 79, pp. 18–26, May 2015.

[27] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, ‘‘Enabling efficient multi-
keyword ranked search over encrypted mobile cloud data through blind
storage,’’ IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1, pp. 127–138,
Mar. 2015.

[28] J. Li, L. Wang, L. Wang, Z. Huang, and J. Li, ‘‘Verifiable Chebyshev
maps-based chaotic encryption schemes with outsourcing computations in
the cloud/fog scenarios,’’ Concurrency Comput., Pract. Exper., pp. 1–10,
Jun. 2018, doi: 10.1002/cpe.4523.

[29] H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, ‘‘Achieving secure
and efficient dynamic searchable symmetric encryption over medical
cloud data,’’ IEEE Trans. Cloud Comput., pp. 1–11, Nov. 2017, doi:
10.1109/TCC.2017.2769645.

[30] Q. Lin, J. Li, Z. Huang, W. Chen, and J. Shen, ‘‘A short linearly homo-
morphic proxy signature scheme,’’ IEEE Access, vol. 6, pp. 12966–12972,
2018.

[31] Q. Lin, H. Yan, Z. Huang, W. Chen, J. Shen, and Y. Tang, ‘‘An ID-based
linearly homomorphic signature scheme and its application in blockchain,’’
IEEE Access, vol. 6, pp. 20632–20640, 2018.

[32] Q. Liu, Y. Guo, J. Wu, and G. Wang, ‘‘Effective query grouping strategy in
clouds,’’ J. Comput. Sci. Technol., vol. 32, no. 6, pp. 1231–1249, Nov. 2017.

[33] Z. Liu, Y. Huang, J. Li, X. Cheng, and C. Shen, ‘‘DivORAM: Towards
a practical oblivious RAM with variable block size,’’ Inf. Sci., vol. 447,
pp. 1–11, Jun. 2018.

[34] Z. Liu, T. Li, P. Li, C. Jia, and J. Li, ‘‘Verifiable searchable encryption with
aggregate keys for data sharing system,’’ Future Generat. Comput. Syst.,
vol. 78, pp. 778–788, 2018.

[35] M. Naveed, M. Prabhakaran, and C. A. Gunter, ‘‘Dynamic search-
able encryption via blind storage,’’ in Proc. Secur. Privacy, May 2014,
pp. 639–654.

[36] J. Shen, Z. Gui, S. Ji, J. Shen, H. Tan, and Y. Tang, ‘‘Cloud-
aided lightweight certificateless authentication protocol with anonymity
for wireless body area networks,’’ J. Netw. Comput. Appl., vol. 106,
pp. 117–123, Mar. 2018.

[37] J. Shen, C. Wang, T. Li, X. Chen, X. Huang, and Z. Zhan, ‘‘Secure
data uploading scheme for a smart home system,’’ Inf. Sci., vol. 453,
pp. 186–197, Jul. 2018, doi: 10.1016/j.ins.2018.04.048.

[38] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. Secur. Privacy, May 2000, pp. 44–55.

[39] E. Stefanov, C. Papamanthou, and E. Shi, ‘‘Practical dynamic searchable
encryption with small leakage,’’ in Proc. NDSS, vol. 71, 2014, pp. 72–75.

[40] C. Wang, J. Shen, Q. Liu, Y. Ren, and T. Li, ‘‘A novel security
scheme based on instant encrypted transmission for Internet of Things,’’
Secur. Commun. Netw., vol. 2018, May 2018, Art. no. 3680851, doi:
10.1155/2018/3680851.

[41] J. Xu, L. Wei, Y. Zhang, A. Wang, F. Zhou, and C.-Z. Gao, ‘‘Dynamic
Fully Homomorphic encryption-basedMerkle Tree for lightweight stream-
ing authenticated data structures,’’ J. Netw. Comput. Appl., vol. 107,
pp. 113–124, Apr. 2018.

[42] X. Zhang, X. Chen, J. Wang, Z. Zhan, and J. Li, ‘‘Verifiable privacy-
preserving single-layer perceptron training scheme in cloud computing,’’
Soft Comput., pp. 1–14, May 2018, doi: 10.1007/s00500-018-3233-7.

[43] Y. Zhang, J. Katz, and C. Papamanthou, ‘‘All your queries are belong to
us: the power of file-injection attacks on searchable encryption,’’ in Proc.
USENIX Secur., 2016, pp. 707–720.

[44] X. Zhang, Y.-A. Tan, C. Liang, Y. Li, and J. Li, ‘‘A covert channel over
VoLTE via adjusting silence periods,’’ IEEE Access, vol. 6, pp. 9292–9302,
2018.

CHONGZHI GAO received the Ph.D. degree in
applied mathematics from Sun Yat-sen Univer-
sity in 2004. He is currently a Professor with the
School of Computer Science, Guangzhou Univer-
sity. His research interests include cryptography
and privacy in machine learning.

SIYI LV received the B.Eng. degree from the
College of Computer and Control Engineering,
Nankai University, in 2016.

YU WEI is currently pursuing the bachelor’s
degree in engineering and law with the College of
Computer and Control Engineering, Nankai Uni-
versity.

ZHI WANG received the Ph.D. degree in infor-
mation security from Nankai University in 2012.
From 2005 to 2007, he was with Fortinet, Inc.,
as an Antivirus Engineer. From 2013 to 2015, he
was with S2Lab ISG RHUL as a Post-Doctoral
Researcher. He is currently with Nankai Univer-
sity as a Lecturer. His research interests include
malware analysis and machine learning.

38868 VOLUME 6, 2018

http://dx.doi.org/10.1007/s10586-017-1649-y
http://dx.doi.org/10.1007/s10586-017-1649-y
http://dx.doi.org/10.1109/ACCESS.2018.2822945
http://dx.doi.org/10.1016/j.ins.2018.02.019
http://dx.doi.org/10.1002/cpe.4523
http://dx.doi.org/10.1109/TCC.2017.2769645
http://dx.doi.org/10.1016/j.ins.2018.04.048
http://dx.doi.org/10.1155/2018/3680851
http://dx.doi.org/10.1007/s00500-018-3233-7

C. Gao et al.: M-SSE: Effective Searchable Symmetric Encryption With Enhanced Security for Mobile Devices

ZHELI LIU received the B.Sc. and M.Sc. degrees
in computer science and the Ph.D. degree in com-
puter application from Jilin University, China,
in 2002, 2005, and 2009, respectively. After a
Post-Doctoral Fellowship at Nankai University,
he joined the College of Computer and Control
Engineering, Nankai University, in 2011, where
he is currently an Associate Professor. His current
research interests include applied cryptography
and data privacy protection.

XIAOCHUN CHENG (SM’04) received the
B.Eng. degree in computer software in 1992 and
the Ph.D. degree in artificial intelligence in 1996.
He is currently the Secretary for the IEEE SMC
UK&RI. He is a member of the IEEE SMC: Tech-
nical Committee on Systems Safety and Security.
He is also a Committee Member of the European
Systems Safety Society.

VOLUME 6, 2018 38869

	INTRODUCTION
	SEARCHABLE ENCRYPTION
	LEAKAGES OF SEARCHABLE ENCRYPTION
	ATTACKS OF SEARCHABLE ENCRYPTION

	MOTIVATION
	OUR CONTRIBUTIONS

	RELATED WORK
	SEARCHABLE ENCRYPTION
	FORWARD AND BACKWARD PRIVATE SE SCHEMES
	TRAPDOOR PERMUTATION TECHNIQUE

	PRELIMINARIES
	NOTATIONS
	MULTIPLE CLOUD MODEL
	SEARCHABLE SYMMETRIC ENCRYPTION
	FORWARD PRIVACY SECURITY
	BACKWARD PRIVACY SECURITY

	OUR CONSTRUCTION
	STORAGE STRUCTURE
	OUR CONSTRUCTION
	UPDATE OPERATION
	SEARCH OPERATION

	SECURITY ANALYSIS
	LINKABILITY ANALYSIS

	EXPERIMENTS AND EVALUATIONS
	IMPLEMENTATION DETAILS
	EXPERIMENT ENVIRONMENT
	PARAMETER

	EVALUATION
	TOKEN GENERATION
	SSE OPERATION
	SECURITY LEVEL

	CONCLUSION
	REFERENCES
	Biographies
	CHONGZHI GAO
	SIYI LV
	YU WEI
	ZHI WANG
	ZHELI LIU
	XIAOCHUN CHENG

