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Abstract: The simplest Bayesian system used to illustrate ideas of probability theory is a coin and
a boolean utility function. To illustrate ideas of hypothesis testing, estimation or optimal control,
one needs to use at least two coins and a confusion matrix accounting for the utilities of four
possible outcomes. Here we use such a system to illustrate the main ideas of Stratonovich’s value of
information (VoI) theory in the context of a financial time-series forecast. We demonstrate how VoI
can provide a theoretical upper bound on the accuracy of the forecasts facilitating the analysis and
optimization of models.
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1. Introduction

The concept of value of information has different definitions in the literature [1,2].
Here we follow the works of Ruslan Stratonovich and his colleagues, who were inspired by
Shannon’s work on rate distortion [3] and made a number of important developments in
the 1960s [2]. These mainly theoretical results are gaining new interest thanks to the ad-
vancements in data science and machine learning and the need for a deeper understanding
of the role of information in learning. We shall review the value of information theory in
the context of optimal estimation and hypothesis testing, although the context of optimal
control is also relevant.

Consider a probability space (Ω, P,A) and a random variable x : Ω→ X (a measur-
able function). The optimal estimation of x ∈ X is the problem of finding an element y ∈ Y
maximizing the expected value of some utility function u : X×Y → R (or minimizing for
cost −u). The optimal value is

U(0) := sup
y∈Y

EP(x){u(x, y)} ,

where zero designates the fact that no information about the specific value of x ∈ X is
given, only the prior distribution P(x). At the other extreme, let z ∈ Z be another random
variable that communicates full information about each realization of x. This entails that
there is an invertible function z = f (x) such that x = f−1(z) is determined uniquely by the
‘message’ z ∈ Z. The corresponding optimal value is

U(∞) := EP(x){sup
y(z)

u(x, y(z))} ,

where an optimal y is found for each z (i.e., optimization over all mappings y : Z → Y). In
the context of estimation, variable x is the response (i.e., the variable of interest) and z is the
predictor. The mapping y(z) represents a model with output y ∈ Y.
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Let I ∈ [0, ∞] be the intermediate amounts of information, and let U(I) ∈ [U(0), U(∞)]
be the corresponding optimal values. The value of information is the difference [4]:

V(I) := U(I)−U(0) .

There are, however, different ways in which the information amount I and the quantity
U(I) can be defined, leading to different types of the value function V(I). For example,
consider a mapping f : X → Z with a constraint |Z| ≤ eI < |X| on the cardinality of
its image. The mapping f partitions its domain into a finite number of subsets f−1(z) =
{x ∈ X : f (x) = z}. Then, given a specific partition z(x), one can find optimal y(z)
maximizing the conditional expected utility EP(x|z){u(x, y) | z} for each subset f−1(z) 3 x.
This optimization should be repeated for different partitions z(x), and the optimal value
U(I) is defined over all partitions z(x), satisfying the cardinality constraint ln |Z| ≤ I:

U(I) := sup
z(x)

[
EP(z)

{
sup
y(z)

EP(x|z){u(x, y) | z}
}

: ln |Z| ≤ I

]
(1)

Here, P(z) = P{x ∈ f−1(z)}. The quantity I = ln |Z| is called Hartley’s information,
and the difference V(I) = U(I)−U(0) in this case is the value of Hartley’s information.
One can relax the cardinality constraint and replace it with the constraint on entropy
H(Z) ≤ I, where H(Z) = −EP(z){ln P(z)} ≤ ln |Z|. In this case, V(I) is called the value
of Boltzmann’s information [4].

One can see from Equation (1) that the computation of the value of Hartley’s or
Boltzmann’s information is quite demanding and may involve a procedure such as the
k-means clustering algorithm or training a multilayer neural network. Thus, using these
values of information is not practical due to high computational costs. The main result
of Stratonovich’s theory [4] is that the upper bound on Hartley’s or Boltzmann’s values
of information is given by the value of Shannon’s information, and that asymptotically
all these values are equivalent (Theorems 11.1 and 11.2 in [4]). The value of Shannon’s
information is much easier to compute.

Recall the definition of Shannon’s mutual information [3]:

I(X, Y) := EW(x,y)

{
ln

P(x | y)
P(x)

}
= H(X)− H(X | Y) = H(Y)− H(Y | X) ,

where W(x, y) = P(x | y)Q(y) is the joint probability distribution on X×Y, and H(X | Y)
is the conditional entropy. Under broad assumptions on the reference measures (see
Theorem 1.16 in [4]), the following inequalities are valid:

0 ≤ I(X, Y) ≤ min{H(X), H(Y)} ≤ min{ln |X|, ln |Y|} .

The value of Shannon’s information is defined using the quantity:

U(I) := sup
P(y|x)

[EW{u(x, y)} : I(X, Y) ≤ I] (2)

The optimization above is over all conditional probabilities P(y | x) (or joint measures
W(x, y) = P(y | x)P(x)) satisfying the information constraint I(X, Y) ≤ I. Contrast this
with U(I) for Hartley’s or Boltzmann’s information (1), where optimization is over the
mappings y(x) = y ◦ z(x). As was pointed out in [5], the relation between functions (1) and
(2) is similar to that between optimal transport problems in the Monge and Kantorovich
formulations. Joint distributions optimal in the sense of (2) are found using the standard
method of Lagrange multipliers (e.g., see [4,6]):

W(x, y; β) = P(x)Q(y)eβ u(x,y)−γ(β,x) , (3)
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where parameter β−1, called temperature, is the Lagrange multiplier associated with the
constraint I(X, Y) ≤ I. Distributions P and Q are the marginals of W, and function γ(β, x)
is defined by normalization ∑x,y W(x, y; β) = 1. In fact, taking partial traces of solution (3)
gives two equations:

∑
x

W(x, y) = Q(y) =⇒ ∑
x

eβ u(x,y)−γ(β,x) P(x) = 1 (4)

∑
y

W(x, y) = P(x) =⇒ ∑
y

eβ u(x,y) Q(y) = eγ(β,x) (5)

Equation (5) defines function γ(β, x) = ln ∑y eβ u(x,y) Q(y). If the linear transformation
T(·) = ∑x eβ u(x,y)(·) has an inverse, then from Equation (4) one obtains e−γ(β,x)P(x) =
T−1(1) or

γ(β, x) = − ln ∑
y

b(x, y) + ln P(x) = γ0(β, x)− h(x) ,

where γ0(β, x) := − ln ∑y b(x, y), b(x, y) is the kernel of the inverse transformation T−1,
and h(x) = − ln P(x) is random entropy or surprise. Integrating the above with respect to
measure P(x) we obtain

Γ(β) := ∑
x

γ(β, x) P(x) = Γ0(β)− H(X) ,

where Γ0(β) := ∑x γ0(β, x) P(x). Function Γ(β) is the cumulant generating function of
optimal distribution (3). Indeed, the expected utility and Shannon’s information for this
distribution are

U(β) = Γ′(β) = Γ′0(β) , I(β) = β Γ′(β)− Γ(β) = H(X)− [Γ0(β)− β Γ′0(β)] .

The first formula can be obtained directly by differentiating Γ(β), and the second by
substitution of (3) into the formula for Shannon’s mutual information. Function Γ0(β)−
β Γ′0(β) is clearly the conditional entropy H(X | Y) because I(X, Y) = H(X)− H(X | Y).

Note that information is the Legendre–Fenchel transform I(U) = sup{β U − Γ(β)} of
convex function Γ(β) (indeed, U = Γ′(β)). The inverse of I(U) is the optimal value U(I)
from Equation (2) defining the value of Shannon’s information, and it is the Legendre–
Fenchel transform U(I) = inf{β−1 I − F(β−1)} of concave function F(β−1) = −β−1Γ(β),
which is called free energy.

The general strategy for computing the value of Shannon’s information is to derive the
expressions for U(β) and I(β) from function Γ0(β) (alternatively, one can obtain U(β−1)
and I(β−1) from free energy F0(β−1) = −β−1Γ0(β)). Then the dependency U(I) is obtained
either parametrically or by excluding β. Let us now apply this to the simplest 2× 2 case.

2. Value of Shannon’s Information for the 2× 2 System

Let X×Y = {x1, x2} × {y1, y2}, and let u : X×Y → R be the utility function, which
we can represent by a 2× 2 matrix:

‖u(x, y)‖ =
[

u(x1, y1) u(x1, y2)
u(x2, y1) u(x2, y2)

]
=

[
u11 u12
u21 u22

]
=

[
c1 + d1 c1 − d1
c2 − d2 c2 + d2

]

It is called the confusion matrix in the context of hypothesis testing, where rows cor-
respond to the true states {x1, x2}, and columns correspond to accepting or rejecting the
hypothesis {y1, y2}. The set of all joint distributions W(x, y) is a 3-simplex (tetrahedron),
shown in Figure 1. The 2D surface in the middle is the set of all product distributions
W(x, y; 0) = P(x)Q(y), which correspond to the minimum I(X, Y) = 0 of mutual infor-
mation (independent x, y). With no additional information about x, the decision y1 to
accept or y2 to reject the hypothesis is completely determined by the utilities and prior
probabilities P(x1) = p and P(x2) = 1 − p. Thus, one has to compare expected utili-
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ties EP{u | y1} = p u11 + (1− p) u21 and EP{u | y2} = p u12 + (1− p) u22. The output
distribution Q(y) is an elementary δ-distribution:

Q(y1) =

{
1 if p

1−p ≥
u22−u21
u11−u12

= d2
d1

0 otherwise

The optimal value corresponding to I = 0 information is U(0) = p c1 + (1− p) c2 +
|p d1 − (1 − p) d2|. In the case when c1 = c2 = c and d1 = d2 = d, the condition for
y1 is d(2p − 1) ≥ 0 and U(0) = c + d|2p − 1|. With c = 1/2 and d = 1/2, the value
U(0) = 1

2 + 1
2 |2p− 1| represents the best possible accuracy for prior probabilities P(x) ∈

{p, 1 − p}. If additional information about x is communicated, say by some random
variable z ∈ Z, then the maximum possible improvement V(I) = U(I)−U(0) is the value
of this information. The first step in deriving function U(I) for the value of Shannon’s
information (2) is to obtain the expression for function Γ(β) = Γ0(β)− H(X).
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Writing Equation (4) in the matrix form ‖eβ u(x,y)‖T P(x) e−γ(β,x) = 1 and using the
inverse matrix (‖eβ u(x,y)‖T)−1 gives the solution for function e−γ0(β,x) = P(x)e−γ(β,x):

[
p e−γ(β,x1)

(1− p) e−γ(β,x2)

]
=

[
eβ u11 eβ u21

eβ u12 eβ u22

]−1[1
1

]
=

1
det ‖eβ u‖T

[
eβ u22 −eβ u21

−eβ u12 eβ u11

][
1
1

]
,

where det ‖eβ u‖T = eβ (u11+u22) − eβ (u12+u21) = 2eβ (c1+c2) sinh[β (d1 + d2)]. This gives
two equations:

p e−γ(β,x1) =
eβ u22 − eβ u21

eβ (u11+u22) − eβ (u12+u21)
= e−β c1

sinh(β d2)

sinh[β (d1 + d2)]
=: e−γ0(β,x1)

(1− p) e−γ(β,x2) =
eβ u11 − eβ u12

eβ (u11+u22) − eβ (u12+u21)
= e−β c2

sinh(β d1)

sinh[β (d1 + d2)]
=: e−γ0(β,x2)

Therefore, the expression for function Γ0(β) := pγ0(β, x1) + (1− p)γ0(β, x2) is

Γ0(β) = β [p c1 + (1− p) c2] + ln | sinh[β (d1 + d2)]| − p ln | sinh(β d2)| − (1− p) ln | sinh(β d1)| .
Its first derivative Γ′0(β) gives the expression for U(β):

U(β) = p c1 + (1− p) c2 + (d1 + d2) coth[β (d1 + d2)]− p d2 coth(β d2)− (1− p) d1 coth(β d1) .
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The expression for information is obtained from I(β) = H(X)− [Γ0(β)− β Γ′0(β)],
where H(X) = −p ln p− (1− p) ln(1− p). Two functions U(β) and I(β) define parametric
dependency U(I) for the value of Shannon’s information (2).

Notice that function Γ0(β) (and hence U(β) and I(β)) depends in general on P(x) ∈
{p, 1− p}. If, however, c1 = c2 = c and d1 = d2 = d, then, using the formula sinh(2x)

sinh(x) =

2 cosh(x), we obtain simplified expressions: Γ0(β) = β c + ln[2 cosh(β d)] and

U(β) = c + d tanh(β d) , I(β) = H(X)− [ln[2 cosh(β d)]− β d tanh(β d)] .

Let us denote θ := U−c
d = tanh(β d) ∈ [0, 1]. Then the expression for information is

I(θ) = H(X)− ln[2 cosh(tanh−1 θ)] + θ tanh−1 θ

= H(X) + ln
1
2
+

1
2

ln(1− θ2) +
1
2

θ ln
1 + θ

1− θ

= H2[p]− H2

[
1 + θ

2

]
.

In the first step we used the formulae cosh(tanh−1 θ) = 1√
1−θ2 and tanh−1 θ = 1

2 ln 1+θ
1−θ .

The last equation is written using binary entropies H2[p] = −p ln p− (1− p) ln(1− p),
which shows that an increase of information in a binary system is directly related to an
increase of the probability (1 + θ)/2 ≥ max{p, 1− p} due to conditioning on the ‘message’
z ∈ Z about the realization of x ∈ X. Additionally, substituting θ = (U − c)/d we obtain
the closed-form expression:

I(U) = H2[p]− H2

[
1
2
+

1
2

U − c
d

]
(6)

Let us derive the equations for the output probabilities Q(y) = ∑x P(y | x) P(x). This
can be done using Equation (5), which in the matrix form is ‖eβ u(x,y)‖Q(y) = eγ(β,x). Thus,
we obtain

[
q

1− q

]
=

[
eβ u11 eβ u12

eβ u21 eβ u22

]−1
[

eγ(β,x1)

eγ(β,x2)

]
=

1
det ‖eβ u‖

[
eβ u22 −eβ u12

−eβ u21 eβ u11

][
eγ(β,x1)

eγ(β,x2)

]
,

where det ‖eβ u‖ = eβ (u11+u22) − eβ (u12+u21) = 2eβ (c1+c2) sinh[β (d1 + d2)]. This gives
two equations:

Q(y1) =
p

1− e−2β d2
+

1− p
1− e2β d1

, Q(y2) =
1− p

1− e−2β d1
+

p
1− e2β d2

.

It is easy to check that Q(y1) + Q(y2) = 1. Additionally, if p = 1− p, then Q(y1) ≥ 0
and Q(y2) ≥ 0 for all β ≥ 0. However, when p 6= 1− p, there exists β0 > 0 such that either
Q(y1) < 0 or Q(y2) < 0 for β ∈ [0, β0). The value β0 can be found from Q(y1) = 0 or
Q(y2) = 0. For d1 = d2 = d this value is

β0 =
1

2d

∣∣∣∣ln
(

p
1− p

)∣∣∣∣ .

One can show that I(β0) = 0 and U(β0) = c+ d|2p− 1|. Thus, the output probabilities
are non-negative for all β ≥ β0, which corresponds to positive information I ≥ 0 and
U(I) ≥ U(0).

It is important to note that in the limit β → ∞, corresponding to an increase of
information to its maximum, the output probabilities Q(y) ∈ {q, 1− q} converge to P(x) ∈
{p, 1− p}.
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3. Application: Accuracy of Time-Series Forecasts

In this section, we illustrate how the value of information can facilitate the analysis of
the performance of data-driven models. Here we use financial time-series data and predict
the signs of future log returns. Thus, if s(t) and s(t− 1) are prices of an asset at two time
moments, then r(t) = ln[s(t)/s(t− 1)] is the log-return at t. The models will try to predict
whether the future log return r(t + 1) is positive or negative. Thus, we have a 2× 2 system,
where x ∈ {x1, x2} is the true sign, and y ∈ {y1, y2} is the prediction. The accuracy of
different models will be evaluated against the theoretical upper bound, defined by the
value of information.

The data used here are from the set of close-day prices s(t) of several cryptocurrency
pairs between 1 January 2019 and 11 January 2021. Figure 2 shows the price of Bitcoin
against USD (left) and the corresponding log returns (right). Predicting price changes is
very challenging. In fact, in economics, log returns are often assumed to be independent
(and hence prices s(t) are assumed to be Markov). Indeed, one can see no obvious relation
on the left chart on Figure 3, which plots logreturns r(t) (abscissa) and r(t + 1) (ordinates).
In reality, however, some amounts of information and correlations exist, which can be seen
from the plot of the autocorrelation function for BTC/USD shown on the right chart of
Figure 3.
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Phys. Sci. Forum 2022, 1, 0 6 of 9

3. Application: Accuracy of Time-Series Forecasts

In this section, we illustrate how the value of information can facilitate the analysis of
performance of data-driven models. Here we use financial time-series data, and predict
the signs of future log-returns. Thus, if s(t) and s(t− 1) are prices of an asset at two time
moments, then r(t) = ln[s(t)/s(t− 1)] is the log-return at t. The models will try to predict
whether the future log-return r(t + 1) is positive or negative. Thus, we have a 2× 2 system,
where x ∈ {x1, x2} is the true sign, and y ∈ {y1, y2} is the prediction. The accuracy of
different models will be evaluated against theoretical upper bound, defined by the value
of information.

Jan 01
2019

May 01
2019

Sep 01
2019

Jan 01
2020

May 01
2020

Sep 01
2020

Jan 01
2021

BTC / USD 2019−01−01 / 2021−01−11

10000

20000

30000

40000

10000

20000

30000

40000

Jan 02
2019

May 01
2019

Sep 01
2019

Jan 01
2020

May 01
2020

Sep 01
2020

Jan 01
2021

BTC / USD log−returns 2019−01−02 / 2021−01−11

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

Figure 2. Close day prices of BTC/USD (left) and the corresponding log-returns (right).
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Figure 3. Log-returns of BTC/USD on two consecutive days (left); the autocorrelation func-
tion (right).

The data used here is the set of close day prices s(t) of several cryptocurrency pairs
between 1 January 2019 and 11 January 2021. Figure 2 shows the price of Bitcoin against
US Dollar (left) and the corresponding log-returns (right). Predicting price changes is very
challenging. In fact, in economics, log-returns are often assumed to be independent (and
hence prices s(t) are assumed to be Markov). Indeed, one can see no obvious relation on
the left chart on Figure 3, which plots log-returns r(t) (abscissa) and r(t + 1) (ordinates). In
reality, however, some amounts of information and correlations exist, which can be seen
from the plot of the autocorrelation function for BTC/USD shown on the right chart of
Figure 3.
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Figure 3. Log returns of BTC/USD on two consecutive days (A); the autocorrelation function (B).

The idea of autoregressive models is to use the small amounts of information between
the past and future values for forecasts. In addition to autocorrelations (correlations
between the values of {r(t)} at different times), information can be increased by using
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cross-correlations (correlations between log-returns of different symbols in the dataset).
Thus, the vector of predictors used here is an m × n-tuple, where m is the number of
symbols used, and n is the number of time lags. In this paper, we report the results of
models using the range m ∈ {1, 2, . . . , 5} of symbols (BTC/USD, ETH/USD, DAI/BTC,
XRP/BTC, IOT/BTC) and n ∈ {2, 3, . . . , 20} of lags. This means that the models used
predictors (z1, . . . , zm×n), where m× n ranged from 2 to 100. The model output y(z) is the
forecast of the sign x ∈ {−1, 1} (the response) of future log return r(t + 1) of BTC/USD.
Here we report results from the following models:

1. Logistic regression (LM). This model has no hyperparameters.
2. Partial least squares discrimination (PLSD). We used the SIMPLS algorithm [7] with

three components.
3. Feed-forward neural network (NN). Here we used one hidden layer with three logistic

units.

In order to analyse the performance of models using the value of information, one
has to estimate the amount of information between the predictors z1, . . . , zm×n and the
response variable x. Here we employ two methods. The first uses the following Gaussian
formula [4]:

I(X, Z) ≈ 1
2
[ln det Kz + ln det Kx − ln det Kz⊕x] ,

where Ki are the covariance matrices. Because the distributions of log returns are generally
not Gaussian, this formula is an approximation (in fact, it gives a lower bound). The second
method is based on the discretization of continuous variables. Because models were used
to predict signs of log returns, here we used discretization into two subsets. Figure 4
shows the average amounts of information I(X, Z) in the training sets, computed using the
Gaussian formula (left) and using binary discretization (right). Information (ordinates) is
plotted against the number n of lags (abscissa) and for m ∈ {1, 2, . . . , 5} symbols (different
curves). One can see that the amounts of information using Gaussian approximation
(left) are generally lower than those using discretization (right). We note, however, that
linear models can only use linear dependencies (correlations), which means that Gaussian
approximation is sufficient for assessing the performance of linear models, such as LM and
PLSD. Non-linear models, on the other hand, can potentially use all information present in
the data. Therefore, we used information estimated with the second method to assess the
performance of NN.
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Figure 4. The average amounts of mutual information between predictors and response in the
training sets, computed using Gaussian approximation (left) and using binary discretization (right).
Abscissa shows the numbers n of lags; different curves correspond to numbers m of symbols used.
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Figure 4. The average amounts of mutual information between predictors and response in the
training sets, computed using Gaussian approximation (left) and using binary discretization (right).
The abscissa shows the numbers n of lags; different curves correspond to numbers m of symbols used.

For each collection of predictors (z1, . . . , zm×n) and response x, the data were split into
multiple training and testing subsets using the following rolling window procedure: we
used 200- and 50-day data windows for training and testing, respectively; after training
and testing the models, the windows were moved forward by 50 days and the process
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repeated. Thus, the data of approximately 700 days (January 2019 to January 2021) were
split into (700− 200)/50 = 10 pairs of training and testing sets. The results reported here
are the average of results from these 10 subsets.

Figure 5 shows the accuracies of models plotted against information amounts I in the
training data. The top row shows results on the training sets (i.e. fitted values) and the
bottom row for new data (i.e., predicted values). Different curves are plotted for different
numbers of symbols m ∈ {1, . . . , 5}. The theoretical upper bounds are shown by the
Accuracy(I) curves computed using the inverse of function (6) with c = d = 1/2 and
p = 1/2. Here we note the following observations:

1. The accuracy of fitting the training data closely follows theoretical curve Accuracy(I).
The accuracy of predicting new data (testing sets) is significantly lower.

2. Increasing information increases the accuracy on training data, but not necessarily on
new data.

3. Models using m > 1 symbols appear to achieve better accuracy than models using m = 1
symbol with the same amounts of information. Thus, surprisingly, cross-correlations
potentially provide more valuable information for forecasts than autocorrelations.
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Figure 5. Accuracy of fitted values on training data (top row) and of predicted values on testing
data (bottom row) for three types of models plotted as functions of information in the training data.
Theoretical curves are plotted using the inverse of function (6) for c = d = 1/2 and p = 1/2. Different
curves correspond to the number m of symbols used.

4. Discussion

We have reviewed the main ideas of Stratonovich’s value of information theory [2,4]
and applied it to the simplest 2× 2 Bayesian system. We explicitly performed the main
computations for the cumulant generating function Γ(β) = Γ0(β)− H(X) and derived
functions U(β) and I(β) defining the dependency U(I) and the value of Shannon’s infor-
mation V(I) = U(I)−U(0). The main application of the considered binary example the is
evaluation of the accuracy of model predictions or hypothesis testing. The analysis the of
performance of data-driven models can be enriched by the use of the value of information.
However, one needs to be careful about the estimation of the amount of information in
the data. Gaussian approximation of mutual information can be used for linear models.
However, other techniques should be used for the analysis of non-linear models, such as
neural networks. Here we applied the value of information to the analysis of financial
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time-series forecasts. These methods can be generalized to many other machine learning
and data science problems.
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