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Abstract—The rapid growth of multimedia applications and
the rising expectations for an enhanced Quality of Experience
(QoE) among users have emphasised the need for innovative
approaches to ensure efficient delivery of video content in 5G and
Beyond 5G (B5G) networks. Machine Learning (ML) techniques
are increasingly being explored to address these challenges by
enabling intelligent traffic management and QoE optimisation.
Within this landscape, Software-Defined Networking (SDN) plays
a pivotal role as a facilitator of dynamic resource allocation
and QoE-centric network management. This paper introduces
AIMTWIN, a reinforcement learning (RL)-driven Digital Twin
framework designed to optimise multimedia traffic management
in B5G SDN environments. AIMTWIN integrates real-time
telemetry from physical networks with a dynamic virtual model
to provide adaptive and efficient traffic routing. By prioritising
static paths for QoS-critical multimedia flows and dynamically
managing background traffic, the framework delivers superior
network performance and user satisfaction. Experimental results
on small and medium scale topologies highlight AIMTWIN’s
ability to achieve consistently Excellent QoE compared to state-
of-the-art routing methods, positioning it as a scalable and robust
solution for next-generation networks.

Index Terms—Reinforcement Learning, Multimedia, Beyond
5G, Software-Defined Networks, Digital Twin, QoS, QoE.

I. INTRODUCTION

The rapid evolution of multimedia services has been a
significant driver for advancements in Beyond 5G (B5G)
networks. These networks must support diverse service classes
such as ultra-high-definition video streaming, real-time inter-
active applications, and emerging technologies like augmented
and virtual reality (AR/VR), all of which demand stringent
Quality of Service (QoS) requirements. Enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communi-
cations (URLLC), and Massive Machine-Type Communica-
tions (mMTC) represent critical service paradigms requiring
robust network infrastructures [1], [2].

Multimedia traffic management has grown increasingly
complex due to the heterogeneous nature of these service
classes. Traditional network architecture struggles to han-
dle the dynamic and stringent requirements of such traffic.
This challenge has been addressed through the adoption of

Software-Defined Networking (SDN) and Digital Twin (DT)
technologies, which collectively enable real-time network
adaptation and predictive management [3], [4].

SDN decouples the control and data planes, allowing cen-
tralised traffic management and dynamic resource allocation.
This programmability is particularly beneficial for handling
high-bandwidth, latency-sensitive applications, as SDN en-
ables network slicing to meet the specific needs of multimedia
service [4], [5]. Furthermore, integration with Network Func-
tion Virtualisation (NFV) enhances scalability and reduces the
operational complexity associated with managing Virtualised
Network Functions (VNFs) [6].

Digital Twin technology offers a sophisticated approach to
network modelling by creating a virtual counterpart of the
physical network. This virtual model, equipped with real-
time bi-directional communication, enables predictive analyt-
ics, scenario testing, and optimised decision-making without
disrupting the live network [4], [7]. The B5G DTs provide
a controlled environment to simulate and optimise traffic
scenarios, predict failures, and enhance QoS adherence. The
integration of Artificial Intelligence (AI) within DTs has fur-
ther revolutionised traffic management by facilitating adaptive
learning and resource optimisation [2], [3].

This paper introduces AIMTWIN (AI Multimedia TWIN), a
dynamic Reinforcement Learning (RL)-driven DT framework
for optimised multimedia traffic management in B5G SDN
core networks. AIMTWIN leverages reinforcement learning to
dynamically select the most suitable routing algorithms, effec-
tively managing background traffic while ensuring adherence
to Service-Level Agreement (SLA) objectives for multimedia
applications. By addressing the dual challenges of traffic
heterogeneity and stringent QoS requirements, AIMTWIN
paves the way for resilient, efficient, and scalable network
operations in the era of Beyond 5G.

II. RELATED WORKS

The growing complexity of network environments, driven
by the explosion of multimedia traffic, has necessitated the
development of advanced technologies such as SDN, DTs, and



Fig. 1: AIMTWIN Framework

AI. These innovations aim to enhance resource management,
ensure high QoS, and support the heterogeneous requirements
of B5G networks.

DT have emerged as a transformative technology for B5G
and 6G systems. A DT of the Network (DTN) provides a real-
time virtual representation of a network, enabling operators to
simulate, monitor, and optimise network behaviour without
impacting live operations. For instance, DTNs can predict
network failures, optimise resource allocations, and improve
service provisioning by analysing both historical and real-time
data [8], [9]. Lin et al., [8] discuss the theoretical underpin-
nings and design of DTNs for 6G systems, while Mozo et
al. [9] explores the B5GEMINI project, which integrates AI
and DTNs for resource optimisation in B5G networks. DTNs
are particularly advantageous in managing the dynamic and
heterogeneous demands of multimedia traffic by leveraging AI
and Machine Learning (ML) models for predictive analysis
and decision-making [10], [11].

The integration of SDN with DTNs is pivotal for enhancing
network programmability and dynamic resource management.
SDN’s centralised control architecture simplifies the collection
of network telemetry data, which can be fed into DT models
to predict and address potential performance bottlenecks. AI-
driven frameworks, like those incorporating reinforcement
learning, enable adaptive control of network resources to
maintain the SLAs for multimedia services [11], [12]. For
example, Boffetti et al. [11] discuss the design of AI-based
DTNs for multimedia service provisioning. The authors ex-
plore the Quality of Experience (QoE)/QoS prediction using
AI models like Long Short-Term Memory (LSTM) and Deep
RL for optimal resource allocation in multimedia networks.
RL is increasingly being utilised in DT-enhanced networks
for tasks like network slicing, traffic engineering, and SLA
management. RL algorithms interact with DT-based virtual
environments to learn optimal policies without directly affect-
ing the physical network. The use of RL has demonstrated
improved efficiency in scheduling problems [13], [14], and
when used in DTNs in resource allocation problems for
network slicing, the dynamic traffic demands are met by pre-
training the RL models in virtual environments [15], [16].

The integration of DTNs, SDN, and AI represents a cutting-
edge approach to multimedia traffic management in B5G.
These technologies collectively address the challenges of
dynamic traffic patterns, stringent QoS requirements, and effi-
cient resource utilisation, laying the groundwork for scalable
and resilient future network infrastructures.

In our prior research, we extensively applied RL algorithms
to dynamically schedule mobile users across time and fre-
quency domains, aiming to enhance throughput, minimize
delay and packet loss, while ensuring fairness among users
[17], [18]. When applied to SDNs, RL-based framework were
used to dynamically select the most suitable routing algorithm
for QoS-based traffic flows in an SDN environment [19], [20].
While this approach improved QoS provisioning, it treated
the routing strategy for background traffic as static, which
inadvertently led to frequent interruptions of QoS-based flows
due to the periodic re-routing decisions for video traffic. These
interruptions significantly impacted the users’ QoE.

In contrast to the earlier framework [21], AIMTWIN
introduces the concept of a Digital Twin (DT) to enable
more dynamic and intelligent traffic management. Unlike
prior approaches, AIMTWIN ensures that video flows remain
static, avoiding the disruptions caused by re-routing, while
dynamically adapting the routing of background traffic to op-
timise overall network performance and QoS objectives. This
novel methodology enhances network stability and ensures
higher levels of user satisfaction, addressing the limitations
of previous RL-based implementations.

III. PROPOSED AIMTWIN FRAMEWORK

The proposed AIMTWIN framework is illustrated in Fig.
1 and consists of the Physical Twin (PT), the DT and the
Twin RL Agent. The PT represents the real-world 5G SDN
network, encompassing the Radio Access Network (RAN),
transport/core network, and the service classes, including
eMBB, URLLC, and mMTC. This physical layer handles
live traffic flows and captures real-time telemetry, including
topology information, active flows, and performance metrics.
The network employs OpenFlow switches to enable pro-
grammability and interoperability with the SDN controller.
The DT mirrors the PT and provides a virtual environment for
real-time simulation, performance optimisation, and routing
decisions. This twin comprises several modules: Topology
Monitor – continuously observes the network topology and
logs updates; Flow Tracker - tracks active and inactive flows,
recording statistics such as throughput, latency, and packet
loss; Admission Control - decides whether to accept or reject
new traffic flows based on resource availability and Service
Level Objectives (SLOs); Routing Manager - dynamically
adjusts routing strategies by interacting with the TWIN RL
Agent to optimise background traffic flows.

The TWIN RL Agent operates within the DT, learning
optimal policies to route background traffic based on the state
of the network. The RL model considers state variables such
as link utilisation, active flow metrics, and QoS violations
to decide actions (e.g., routing algorithm selection). These
actions are fed back to the DT for evaluation, creating a
feedback loop for continuous learning and optimisation. The
AIMTWIN framework workflow is as follows: (1) The SDN
controller collects real-time telemetry from the PT and shares
it with the DT. (2) The DT processes the data and uses the
TWIN RL Agent to simulate and evaluate potential routing
strategies. (3) The TWIN RL Agent selects the optimal
routing strategy, which the Routing Manager applies to the



background traffic flows. (4) Performance feedback from the
PT is sent back to the DT to refine future routing decisions.

IV. SYSTEM MODEL

The system model for the AIMTWIN framework is based
on the dynamic management of background traffic flows in
a B5G SDN core network, RL within a DT environment.
Specifically, the objective is to improve the QoS and QoE
of multimedia flows by adaptively re-routing the background
traffic with different algorithms.

A. Problem Formulation

The B5G SDN core network is modeled as a graph
G(N ,L), where N = {n1, n2, ..., nN} represents the set of
SDN switches with N as the total number of nodes. The set of
links connecting these nodes is denoted by L = {l1, l2, ..., lL},
with L being the total number of possible links within the
network graph G. Each link l ∈ L is characterized by a
capacity Ωl and a remaining bandwidth bwl, which depends
on the current routing state. Based on the links l ∈ L,
we form a set of paths P = {p1, p2, ..., pP }, where P is
the total number of paths that can be constructed within
graph G. Here, each path p ∈ P is a subset of L. Let us
consider C = {c1, c2, ..., cc} the set of traffic classes that
are active through graph G, with C the maximum number
of classes. Each of these classes has a particular set of flows
Fc = {fc,1, fc,2, ..., fc,Fc} that needs a routing or rerouting
decision at certain time steps t, where Fc(t) is the number
of flows belonging to service class c ∈ C following a certain
routing decision at time t. Once the routing algorithm decides
the path to follow for flow f ∈ Fc of class c ∈ C, the
remaining bandwidth of the link l ∈ L is computed as:

bwl = Ωl −
∑
c∈C

∑
f∈Fc

∑
p∈P

xc,f,p · yp,l · ρc,f,p, ∀l ∈ L, (1)

where yp,l = 1 if link l ∈ L is part of path p ∈ P , otherwise
yp,l = 0; xc,f,p = 1 if flow f ∈ Fc(t) traverses path p ∈ P ,
otherwise xc,f,p = 0; ρc,f,p represents the bit rate (throughput)
of flow f ∈ Fc(t) belonging to class c ∈ C when routed
through path p ∈ P .

The objective of a routing algorithm is to determine the
optimal paths for all active flows per service class in order to:
a) avoid congestion on network links and minimize rejection
rate of traffic class; b) meet the SLA requirements in terms
of minimum throughput of each flow; and c) reduce packet
loss for each flow in each class. Different routing strategies
are applied to satisfy heterogeneous QoS constraints while
adapting to network conditions. This transforms the routing
problem into a complex multi-objective optimisation problem,
which can be written as presented by (2). Here, the variables
are explained as follows: ρc,f,p is the throughput of flow f
corresponding to traffic class c when routed on path p; θc,f,p is
the packet loss rate of flow f of class c when routed on path p;
ηc represents the rejection rate of class c as a result of routing
decisions. The SLA requirements are specified for each of
these variables, as follows: ρmin

c,f,p is the minimum throughput
requirement, θmax

c,f,p the maximum requirement for packet loss,
and ηmax

c is the maximum allowable rejection rate in class c.

max
x,y

∑
c∈C

∑
f∈Fc

∑
p∈P

∑
l∈L

(τ1 · ρc,f,p − τ2 · θc,f,p) · xc,f,p(t)·

·yp,l(t)− τ3 · ηc,
s.t. :

(2)

bwl ≥ 0,∀l ∈ L (2.a)
yp,l ∈ {0, 1}, ∀p ∈ P,∀l ∈ L, (2.b)
xc,f,p ∈ {0, 1}, ∀c ∈ C, f ∈ Fc, p ∈ P, (2.c)∑

l∈L
yp,l ≤ L, ∀p ∈ P, (2.d)∑

c∈C

∑
f∈Fc

∑
p∈P

xc,f,p ≤ P, (2.e)

xc,f,p · ρc,f,p ≤ Ωmax, ∀c ∈ C, f ∈ Fc, p ∈ P, (2.f)

xc,f,p · ρc,f,p ≥ ρmin
c,f , ∀c ∈ C, f ∈ Fc, p ∈ P, (2.g)

xc,f,p · θc,f,p ≤ θmax
c,f , ∀c ∈ C, f ∈ Fc, p ∈ P, (2.h)

ηc ≤ ηmax
c , ∀c ∈ C. (2.i)

In multi-objective optimisation, it is essential to normalize
objectives to ensure each contributes appropriately to the
overall goal. A common approach is to assign weights to each
objective, often based on their respective SLA requirements.
For instance, setting weights as the inverses of these require-
ments - such as τ1 = 1/ρmin

c,f , τ2 = 1/θmax
c,f , τ3 = 1/ηmax

c -
effectively normalizes the objectives.

In the proposed optimisation problem, the routing algorithm
specifies the variables xc,f,p and yp,l for each active flow
f ∈ Fc of class c ∈ C, ensuring a certain degree of SLA
satisfaction in terms of their requirements. Constraints (2.a)
requires that each link l ∈ L should not be congested.
Constraints (2.b) and (2.d) preselects the links for each
possible path p ∈ P . Constraints (2.c) and (2.e) indicates
that the number of possible paths should not be greater than
the maximum value P when routing all flows from all traffic
classes. The throughput of each flow in each class should not
exceed the maximum capacity as denoted by constraints (2.f).
Finally, the constraints (2.g) - (2.i) aim to respect the SLA
requirements in terms of throughput, packet loss and rejection
rate, respectively, in each service class c ∈ C.

B. TWIN RL-Based Solution

The proposed solution addresses the optimisation problem
from (2) by selecting the most suitable algorithm to reroute
traffic flows, ensuring adherence to SLA requirements in each
class. Given the diverse nature of traffic types with varying and
stringent QoS demands, we divided the service classes C into
two classes: a) QoS-Based Traffic Flows (Cqos) that includes
multimedia services such as live HD streaming, which require
higher bandwidth and lower latency; b) Background Traffic
Flows (Cbkg) that encompasses services like web browsing
(HTTP), file transfers (FTP), and buffered SD videos which
have less stringent QoS requirements. In the proposed frame-
work, background traffic is dynamically rerouted by selecting
appropriate routing algorithms in each iteration, while main-
taining a consistent routing strategy for the QoS traffic class.
This approach optimises rerouting strategies for background
traffic to better accommodate services with more stringent
QoS requirements, such as live HD multimedia streaming.



AIMTWIN utilizes Q-learning to dynamically select routing
algorithms for background traffic, ensuring that high-priority
QoS traffic receives the necessary resources and optimal paths,
thereby maintaining service quality and network efficiency. At
each time step t, the system observes the current network state
St ∈ S , which reflects how well the QoS traffic flows meet
their SLA requirements. Based on this state, the Q-learning
algorithm selects an action At ∈ A, indicating to the Routing
Manager which routing algorithm to apply for the background
traffic. After executing this action, the system receives a
reward Rt+1(St, At), representing the QoS revenue after
rerouting the background traffic using algorithm At in QoS
traffic state St. Both the state space (S) and action space (A)
are discrete, allowing the accumulated Q-values to be stored
in a tabular form for each state-action pair. The Q-learning
algorithm iteratively processes tuples of (St, At, Rt+1, St+1)
over a finite number of iterations, exploring the entire state
and action spaces multiple times to learn optimal policies
for selecting appropriate routing algorithms. The components
used by the AIMTWIN framework are:

1) States: In each iteration, the system observes a discrete
network state St ∈ S, focusing exclusively on QoS traffic.
This state is represented by the vector:

St = [T,L,Pt,Θt,Ht], (3)

where: T represents the type of network topology used during
the training of Q-values; L indicates the traffic load for QoS
traffic, with discrete values such as L = 0 for low, L = 1
for medium, and L = 2 for high traffic load; Pt is a binary
variable indicating whether the throughput constraints are met
for QoS traffic at time step t, specifically, Pt = 1 when all
constraints in (2.g) are met, and Pt = 0, otherwise; Θt a
binary variable indicating whether the packet loss constraints
are met for QoS traffic at time t, specifically, Θt = 1 when
all constraints in (2.h) are met, and Θt = 0, otherwise; Ht a
binary variable indicating whether the rejection constraints are
met for QoS traffic classes at time t, specifically, Ht = 1 when
all constraints in (2.i) are met, and Ht = 0, otherwise. The
size of S would be 9, when training the algorithm separately
for each combination of topology and traffic load.

2) Actions: are decided in terms of the routing algorithm
for the background traffic at each time step as At ∈ A =
{A1, A2, A3, A4}, where: A1 is the Minimum Hop Algorithm
(MHA), A2 is the Widest Shortest Path (WSP), A3 is the
Shortest Widest Path (SWP) and A4 is the Minimum In-
terference Routing Algorithm (MIRA) algorithm. While the
background traffic is rerouted by dynamically selecting a
different algorithm by the Q-learning, the QoS traffic is using
a constant routing scheme.

3) Rewards: are designed to optimise traffic management
for different service classes. We implement a reward function
at the level of each traffic class c ∈ C, as follows:

Rc = wρ ·Rc,ρ + wθ ·Rc,θ + wη ·Rc,η, (4)

where Rc,ρ, Rc,θ, Rc,η represent the rewards associated with
the SLA requirements for throughput, packet loss, and rejec-
tion rate, respectively, and calculated as detailed in [20]. The

TABLE I: PSNR to MOS Mapping [22]

PSNR [dB] MOS

≥ 45 5 (Excellent)
≥ 33 & < 45 4 (Good)
≥ 27.4 & < 33 3 (Fair)
≥ 18.7 & < 27.4 2 (Poor)

< 18.7 1 (Bad)

TABLE II: QoS Requirements [21]

QoS-based Traffic Class ρmin θmax ηmax

Live HD Video 658 Kb/s 1% 25%

Background Traffic Class ρmin θmax ηmax

Buffered SD Video 279 Kb/s 2% 35%
HTTP 14 Kb/s 0% 35%
FTP 180 Kb/s 0% 35%

weights {wρ, wθ, wη} reflect the relative importance of each
SLA objective, and typically, they are set to equal values.
Then, the total reward is calculated as follows:

R =
∑

c∈C
wc ·Rc, (5)

where wc ensures prioritisation between QoS and background
traffic. In this study, the AIMTWIN framework’s reward
function is designed to optimise traffic management across
four traffic classes C = {c1 : HD, c2 : SD, c3 : FTP, c4 :
HTTP}, where c1 ∈ Cqos represents the live HD multimedia
corresponding to QoS category, while {c2, c3, c4} ∈ Cbkg con-
stitute the background traffic classes. The weights represent
the priority of each class, with the values set to wHD = 0.63,
wSD = 0.19, wFTP = 0.09, and wHTTP = 0.09, respec-
tively, ensuring that their sum equals 1.

4) Q-values: are associated with each state-action pair and
updated upon each visit using the following formula:

Qnew(St, At) = (1− α) ·Qold(St, At) + α ·
[
Rt+1+

γ ·maxa′∈AQ
old(St+1, a

′)
]
,

(6)

where α is the learning rate, γ is the discount factor, Qold

are the old Q-values and Qnew are the updated values. In this
framework, we consider as time step the network trial number
with 1500 seconds run time per each trial. In train phase we
updated the Q-values for a number of 60 trials, using ϵ−
greedy policy to choose actions between states with α = 0.1
and γ = 0.9 [21]. In test phase, the trained Q-table decides
the action to be applied in each network state.

V. EXPERIMENTAL SETTINGS AND EVALUATIONS

A. Experimental Setup

The performance of the proposed AIMTWIN framework
was evaluated under an experimental setup hosted on Open-
Stack, that mirrors realistic network conditions. One virtual
server was used for the DT environment integrating the SDN
controller (Floodlight) and the TWIN RL algorithm, and
another virtual server was used to emulate the Physical Twin



Fig. 2: Throughput Results for Each Traffic Type Considering Different Traffic Loads Over a) GetNet and b) Sprint Topologies

(PT) by running the Mininet test-bench that emulates the data
plane of the SDN network.

The experiments use two distinct network topologies from
Internet Topology Zoo [23]: Sprint, a middle scale topology
consisting of 11 nodes and 18 links, and GetNet, a small-
scale topology, consisting of 7 nodes and 8 links. SDN Open
vSwitches were used to replace the network nodes.

Traffic generation was performed with the VLC Media
Player with a Constant Bit Rate (CBR) encoder for HD and
SD video traffic while Ostinato traffic generator was used for
FTP and HTTP traffic. The QoS-based traffic class consists
of live HD multimedia streaming, characterised by, 1280x720
pixels resolution, 24fps frame rate, 665Kbps average bit rate
and 5 minutes duration. The background traffic consists of
buffered SD video streaming with 640x360 pixels resolution,
24fps, 285Kbps and 5 minutes duration, while FTP and HTTP
are modelled using standard benchmarks for data and latency
characteristics. The WSP algorithm is employed as the static
routing strategy for live HD multimedia streaming to ensure
high QoS and prevent interruptions. Background traffic flows
employ a dynamic routing decision made by the TWIN RL
Agent, which selects from MHA, WSP, SWP, and MIRA.

The experiments evaluate the network under three load
levels, such as: Low (50% of Ωl), Medium (75% of Ωl), High
(100% of Ωl). The performance of AIMTWIN is compared
against other state-of-the-art routing algorithms from the liter-
ature, such as MHA, WSP, SWP, and MIRA. The evaluation
is done based on throughput, rejection rate, Peak Signal-to-
Noise Ratio (PSNR) and Mean Opinion Score (MOS). The

PSNR to MOS mapping is done as per Table I [22], while
Table II [21] lists the QoS requirements for each traffic class.

B. Performance Evaluation

The results represent the average of five simulation runs per
scenario, each lasting 1500 seconds. Consistent experimental
conditions were maintained across all scenarios to ensure a
fair comparison of the different solutions. Figures 2.a and
2.b present the throughput results for each scheme across
different traffic classes, varying traffic loads, and two network
topologies, GetNet and Sprint, respectively. Under the small-
scale GetNet topology, with low to medium traffic loads,
the throughput performance remains comparable across all
solutions. However, AIMTWIN demonstrates a more effective
balance in meeting the diverse requirements of different
classes. When the traffic load increases to high, as seen in Fig.
2.a, AIMTWIN prioritises HD video traffic, achieving higher
throughput for this class while maintaining results comparable
to conventional routing algorithms for other traffic types.

As the topology shifts to the medium-scale Sprint network
topology, the advantages of AIMTWIN become increasingly
apparent, particularly under medium to high traffic loads, as
shown in Fig. 2.b. At low traffic loads, all routing schemes,
including AIMTWIN, deliver maximum throughput for both
HD and SD traffic classes, ensuring that QoS-based traffic
flows meet the requirements specified in Table II. This can be
attributed to the algorithms’ ability to efficiently route incom-
ing flows while rejecting those that could cause congestion.
However, as the traffic load escalates to medium and high



TABLE III: Averaged Estimated PSNR and MOS

MHA WSP SWP MIRA AIMTWIN
low med high low med high low med high low med high low med high

GetNet Network Topology
PSNR 60 55.9 30.3 60 55.4 30.7 60 48.9 30.7 60 55.4 31.1 60 54.51 56.03

HD MOS Exc. Exc. Fair Exc. Exc. Fair Exc. Exc. Fair Exc. Exc. Fair Exc. Exc. Exc.
PSNR 60 53.9 46 60 50.5 54.9 58.4 48.6 44.7 60 52.8 58.4 58.78 57.26 48.04

SD MOS Exc. Exc. Exc. Exc. Exc. Exc. Exc. Exc. Good Exc. Exc. Exc. Exc. Exc. Exc.

Sprint Network Topology
PSNR 50.5 26.6 23.4 51.4 26.8 25.2 57.7 27.8 25 52 28.3 24.9 57.33 45.32 44.12

HD MOS Exc. Poor Poor Exc. Poor Poor Exc. Fair Poor Exc. Fair Poor Exc. Exc. Good
PSNR 52.7 47.9 47.3 53.5 49.8 44 59.1 44 46.1 53.1 51.7 48.6 56.77 47.78 42.15

SD MOS Exc. Exc. Exc. Exc. Exc. Good Exc. Good Exc. Exc. Exc. Exc. Exc. Exc. Good

levels, the network experiences heightened resource compe-
tition among traffic classes. In these scenarios, AIMTWIN
continues to prioritise HD video traffic, ensuring increased
throughput, whereas conventional algorithms exhibit a decline
in throughput for the HD traffic class.

Table III further highlights the estimated PSNR and MOS
values when analyzing the classes of HD and SD video
traffic in both network topologies. Even within the GetNet
topology, AIMTWIN consistently achieves an ”Excellent”
user-perceived quality for both HD and SD video traffic across
low, medium, and high traffic loads, without significantly
penalising other traffic types. By contrast, as traffic load in-
creases from medium to high, conventional routing algorithms
such as MHA, WSP, SWP, and MIRA experience a degra-
dation in user-perceived quality, with MOS scores dropping
from ”Excellent” to ”Fair” for HD video, though SD traffic
maintains an ”Excellent” rating. The Sprint topology presents
more pronounced differences in performance. While all rout-
ing algorithms achieve ”Excellent” MOS ratings under low
traffic loads, their performance diverges under medium and
high traffic loads. AIMTWIN maintains a gradual decrease in
MOS for HD traffic, transitioning from ”Excellent” under low
and medium loads to ”Good” under high load. In contrast,
conventional algorithms suffer a drastic decline, with MOS
scores for HD traffic dropping from ”Excellent” under low
load to ”Poor” under high load, underscoring their inability
to manage congestion effectively.

Figure 3 evaluates the performance of the proposed
AIMTWIN framework alongside other routing algorithms, fo-
cusing on rejection rates across various traffic classes, network
topologies, and traffic loads. Figures 3.a and 3.b illustrate the
total number of flows supported by the GetNet and Sprint
topologies, respectively, as traffic load increases from low to
high. Figures 3.c and 3.d depict the number of rejected flows
for the GetNet and Sprint topologies, respectively, under the
same escalating traffic conditions, detailing results for each
traffic class and routing strategy. At high traffic loads, the
rejection rates for all solutions rise significantly. Despite this,
AIMTWIN effectively manages flow prioritisation, rejecting a
similar number of HD video traffic flows compared to conven-
tional algorithms while rejecting more non-critical background
traffic. This behaviour underscores AIMTWIN’s ability to

outperform other state-of-the-art solutions by prioritising HD
video flows without disproportionately compromising the per-
formance of other traffic classes.

In comparison to AIMTWIN, conventional routing algo-
rithms exhibit a tendency to accommodate more QoS-based
flows at the expense of user-perceived QoE. This results in a
significant degradation of MOS scores, as seen in the Sprint
topology, where MOS for HD video traffic plummets from
”Excellent” under low loads to ”Poor” under high loads.
Consequently, the conventional routing algorithms fail to meet
QoS requirements for critical traffic classes under high load
conditions, unlike AIMTWIN, which achieves a more robust
and balanced performance across diverse scenarios.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents AIMTWIN, a novel RL-driven Digital
Twin framework that addresses the challenges of multimedia
traffic management in B5G SDN networks. By leveraging a
tightly integrated feedback loop between the physical and vir-
tual environments, AIMTWIN achieves dynamic and efficient
routing of background traffic while maintaining static paths for
QoS-sensitive flows. This tightly integrated loop between the
Physical and Digital Twins ensures that AIMTWIN remains
adaptive, efficient, and capable of managing the stringent
requirements of multimedia traffic in B5G SDN networks. Ex-
perimental results validate the framework’s ability to outper-
form conventional routing algorithms, ensuring high QoS, user
satisfaction, and network resource utilisation. Future work will
look at incorporating AIMTWIN within 6G environments to
explore its adaptability to emerging use cases like holographic
communications.
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