
TACAS
Evaluation
Artifact

2020
Accepted

Describing and Simulating
Concurrent Quantum Systems

Richard Bornat1,4 , Jaap Boender2,5 , Florian Kammueller1,6 , Guillaume
Poly3,7 , and Rajagopal Nagarajan1,8

1 Department of Computer Science, Middlesex University, London, UK
2 Hensoldt Cyber GmbH, Taufkirchen, Germany

3 Widmee, Région de Bordeaux, France
4 R.Bornat@mdx.ac.uk

5 jacob.boender@hensoldt-cyber.com
6 F.Kammueller@mdx.ac.uk

7 guillaume.gwigwi.poly@gmail.com
8 R.Nagarajan@mdx.ac.uk

Abstract. We present a programming language for describing and analysing
concurrent quantum systems. We have an interpreter for programs in the
language, using a symbolic rather than a numeric calculator, and we give
its performance on examples from quantum communication and cryptog-
raphy.

Quantum cryptographic protocols such as BB84 QKD [3] and E92 QKD [7]
offer unconditional statistical security. These protocols have been implemented in
commercial products; various QKD networks have been built around the world;
and China has launched a dedicated satellite for quantum communication. The
security of the protocols has been established information-theoretically, but their
implementations may have security loopholes. We intend to investigate the se-
curity question, eventually by using formal methods to verify the properties of
implementations, but first by simulation of protocols expressed as programs.

Large companies are developing full-stack solutions for implementing quan-
tum algorithms, and quantum computers will likely be network-linked. Although
we have focused on quantum communication and cryptography protocols, as-
pects of our work will be applicable to distributed quantum computation.

Concurrent quantum systems, such as communication and cryptographic pro-
tocols assume physically-separated agents (Alice, Bob, etc.) who communicate
by sending each other qubits (quantum bits: polarised photons, for example)
and classical bit-strings. There are a few dedicated, high-level programming lan-
guages for quantum systems such as Microsoft’s Q# [2]. They focus on single-
machine computation and lack a treatment of communication, but a protocol
simulation must ensure, for example, that a qubit transferred from one agent
to another can’t be used again by the sender and can’t be used by the receiver
before it is sent. We decided therefore to take a process-calculus approach, and
we have implemented a tool inspired by CQP [9]. Our implementation is called
qtpi [1], and uses symbolic rather than numeric quantum calculation. Programs

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 271–277, 2020.
https://doi.org/10.1007/978-3-030-45237-7_16

http://orcid.org/0000-0002-7261-0233
http://orcid.org/0000-0002-7066-8554
http://orcid.org/0000-0001-5839-5488
http://orcid.org/0000-0002-5687-6023
http://orcid.org/0000-0002-9724-4962
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_16&domain=pdf


are checked statically, before they run, to ensure that they obey real-world re-
strictions on the use of qubits (no cloning, no sharing). Unlike CQP, which
preserves all possible outcomes, labelling each with a probability, qtpi takes a
single execution path, making probabilistic choices between outcomes.

We have used qtpi to simulate simple protocols such as teleportation, and
some more involved ones including the quantum key-distribution protocols BB84
[3] and E92 [7]. Each of these involves transmission of qubits and public trans-
mission of classical messages (in the case of BB84, over an authenticated channel
[13]), all of which is simulated. It is early days in our development of the tool,
so there is as yet no provision for formal proof, but in these examples we can
already simulate well over 1M qubit transfers per minute on a small laptop – i.e.
we can simulate largish examples in a useful time.

1 Processes

Protocols are carried out by agents which send each other messages but share
no other information. We simulate agents by processes which share no data or
variables. Typical protocol steps from the literature are

– obtain a qubit, perhaps initialised to one of |0〉, |1〉, |+〉 or |−〉;
– put a qubit through a gate such as I, H, X, etc.;
– measure a qubit;
– send or receive a qubit;
– send or receive a classical value, such as a list of numbers or bits.

In addition an agent may perform a calculation, such as generating 1000 ran-
dom bits or encrypting/decrypting a message or checking the values received in a
message. Calculations aren’t protocol steps and don’t affect qubit state, though
they often depend on the results of measuring qubits and their results often
influence subsequent protocol steps. Our processes have analogues of protocol
steps and calculations. In addition we are able to create processes, to choose
conditionally between different processes and to set up a collection of processes
running simultaneously.

The aim of our work is to mathematically analyse programs which describe
quantum systems. Towards that end we have a semantics of quantum-mechanical
calculation [5], written in Coq [10]. That is work in progress: for the time being
we are able to execute our protocol-programs using our simulator [1].

1.1 A programming language

Our language has two distinct notations: a protocol-step language, which is de-
rived from the pi-calculus [11], and a functional calculation language, somewhat
in the style of Miranda [12]. Neither language has assignment, although qubit
measurement does change program state and so needs special attention. The
protocol-step language has recursion, but only tail recursion: i.e. nothing can fol-
low a process invocation step (but note that parallel execution of sub-processes
provides more complexity).

272 R. Bornat et al.



Following the pi-calculus we use channels to communicate between processes.
So Alice doesn’t send to Bob, she sends down a channel which Bob can read from
– or perhaps it might be Eve, if there is interference. Channels are values, so
you can set up communication between two processes by giving them the same
channel-argument when you create them, and you can send channel values in
messages to alter connections dynamically.

In the protocol-step language steps are separated by dots (‘.’) and choices
are made between processes rather than single or multiple steps. Channels are
created by (new c); send is C!E, .., E; receive is C?(x, .., x); qubits are created
by (newq q); quantum gating is Q, .., Q>>G; quantum measurement Q−/−(x).

In the expression language there is function application (f arg), arithmetic
and Boolean calculation, conditional choice and recursion. It uses infinite-precision
rationals for numerical calculations.

1.2 Symbolic quantum calculation

Quantum calculations can be described using quantum circuits : diagrams such
as Fig. 1 show how qubits (one per line) are put through gates (boxes, line-
connectors) and/or measured (meter symbols) giving a classical 0/1 result.

In quantum mechanics the state of a qubit is a vector a |0〉 + b |1〉, with
|a|2 + |b|2 = 1. Here |0〉 and |1〉 are the computational basis vectors, a and b are
complex amplitudes, and |a|2 and |b|2 give the probability of measuring the state
as |0〉 or |1〉. In qtpi a single isolated qubit is therefore a pair of complex numbers,
and quantum gates, such as the H, X and Z gates of Fig. 1, are square matrices
of complex numbers which modify the state by multiplication. The state of n
entangled qubits is a 2n-element vector, matrices which manipulate all of it have
to be 2n × 2n, so calculations with large entanglements can rapidly grow out
of the range of straightforward simulation. Luckily, quantum security protocols
typically work with a small number of qubits at a time.

Because our calculations are simple, we can afford to implement them sym-
bolically. We use h for

√
1/2; it is also equal to sin (π/4) and cos (π/4). A great

deal of formulae can be expressed in terms of powers of h: for example cos (π/8)
=

√
(1 + h)/2.

Symbolic calculation involves lots of symbolic simplification. That makes it
relatively slow, compared to calculation with floating-point numbers, but it is
absolutely accurate – h2 + h2, for example, is exactly 1. When measuring, we
must convert symbolic probabilities into numbers. But that is part of a statistical
calculation, so minor inaccuracy is acceptable.

z |ψ〉 • H •

x |+〉 •

y |0〉 X Z |ψ〉

Fig. 1. Quantum circuit for teleportation

Describing and Simulating Concurrent Quantum Systems 273



proc System () =

(newq x=|+>, y=|0>) x,y>>CNot .

(new c:^bit*bit) | Alice(x,c) | Bob(y,c)

proc Alice (x:qbit, c:^bit*bit) =

(newq z)

out!["initially Alice’s z is "] . outq!(qval z) . out!["\n"] .

z,x>>CNot . z>>H . z-/-(vz) . x-/-(vx) . c!vz,vx . _0

proc Bob(y:qbit, c:^bit*bit) =

c?(b1,b2) .

y >> match b1,b2 . + 0b0,0b0 . I

+ 0b0,0b1 . X

+ 0b1,0b0 . Z

+ 0b1,0b1 . Z*X .

out!["finally Bob’s y is "] . outq!(qval y) . out!["\n"] . _0

Fig. 2. Teleportation of an unknown quantum state, with logging

1.3 No cloning

In the real quantum world there is no way of cloning a qubit – you can’t start
with a qubit in some arbitrary state and finish up with two qubits in that state.
That, plus the fact that measurement irrevocably alters a qubit’s state, is what
provides quantum security protocols with unconditional security – though the
uncertainty of measurement means that the guarantee is probabilistic, not abso-
lute. A programming language which simulates quantum effects should therefore
not allow copying of the value of a qubit variable. We use language restrictions to
facilitate anti-cloning checks: in particular we severely restrict the use of qubits
in data structures, in messages, and after measurement or transmission. Those
checks are partly implemented by typechecking, partly by an efficient static sym-
bolic execution before simulation begins.

1.4 Other notable features

Randomised priority queues of runnable processes and waiting communication
offers ensure non-deterministic execution, and are used to eliminate infinite un-
fairness. Logging steps can be pushed into subprocesses to clarify protocol de-
scriptions, leaving a marker in the logged process to show where it should occur
(see examples in artifact [6]). Type descriptions are almost entirely optional.

2 Straightforward description

Our aim is to provide a programming language in which protocol descriptions
are transparently easy to read. For example, Fig. 2 shows teleportation [4] using
three processes: Alice and Bob carry out the protocol, and System sets up the

274 R. Bornat et al.



communication between them. The calculation follows the circuit in Fig. 1, but
is shared between agents obeying the anti-cloning restrictions.

The System process creates qubits x and y (newq ..), initialised to |+〉 and
|0〉, and entangles them using a CNot gate (x,y>> ..). It creates a channel c
which carries pairs of bits (new c ..), and then splits into two subprocesses: one
becomes Alice, taking one of the qubits and the channel; the other becomes Bob,
with the other qubit and the same channel. Those processes run in parallel.

The Alice process creates a new qubit z, without specifying its state, and logs
that state (the anti-cloning restrictions make this tricky). Then it puts z and x
through a CNot gate (z,x>> ..), puts z alone through a Hadamard gate (z>>H),
and finally measures first z (z-/-(vz)), then x (x-/-(vx)), giving bits vz and
vx. Finally it sends those bits to Bob on the c channel (c!...). The overall effect
is subtle, because first System’s actions entangle x and y, so that measurement
of x constrains y, and then Alice entangles z, x and y, so that measurement of
z constrains both x and y.

The Bob process waits to receive Alice’s message (c? ..), and calculates a
gate (match ..) to process the results depending on one of four possibilities for
the two bits it receives (note one of the gates is the matrix product of Z and
X). It puts y through that gate (y>> ..) and logs the result. The output of this
program is always

initially Alice’s z is 2:(a2|0>+b2|1>)

finally Bob’s y is 1:(a2|0>+b2|1>)

where a2 and b2 are unknown symbolic amplitudes. A sample execution trace,
edited for brevity, shows the states produced by Alice’s actions: qubit 0 is x, 1
is y, 2 is z; initially 0 and 1 are entangled, and the first step entangles all three.

Alice (2:(a2|0>+b2|1>),0:[0;1](h|00>+h|11>)) >> Cnot;

result (2:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>),

0:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>))

Alice 2:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>) >> H;

result 2:[2;0;1]

(h(2)*a2|000>+h(2)*b2|001>+h(2)*b2|010>+h(2)*a2|011>

+h(2)*a2|100>-h(2)*b2|101>-h(2)*b2|110>+h(2)*a2|111>)

Alice: 2: (.. as above ..) -/- ;

result 0 and (0:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>),

1:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>))

Alice: 0:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>) -/- ;

result 1 and 1:(b2|0>+a2|1>)

Chan 2: Alice -> Bob (0,1)

Bob 1:(b2|0>+a2|1>) >> X; result 1:(a2|0>+b2|1>)

Tracing several executions shows that Alice’s measurements don’t always give the
same results in vz, vx and qubit 1, so Bob doesn’t always use the same gate(s).
The qubit z is never sent in a message, is destroyed by Alice’s measurement, and
its amplitudes are unknown to the program, but y always finishes up in the state
that z began in. Without symbolic calculation we couldn’t do such a simulation.

Describing and Simulating Concurrent Quantum Systems 275



3 Performance on examples

We can run various simulations of the quantum key-distribution protocol BB84
[3], with Alice and Bob and various Eve processes. In order to generate a one-
time key to encrypt an n-bit message, Alice needs to send many more bits than
n, and our simulation allows us to experiment with various parameters of her
calculation to see what happens. Here is a shortened display of part of the output
of an example simulation (timing measurements made on VirtualBox Ubuntu
18.10, on a 7-year-old MacBook Air with 8GB RAM):

length of message? 4000; length of a hash key? 40;

minimum number of checkbits? 500; number of sigmas? 10;

number of trials? 100

13718 qubits per trial; 0 interfered with; 100 succeeded

It takes about 0.6 seconds for each trial, but overall it makes 1.3M qubit transfers
and measurements in 60 CPU seconds. With an intercept-and-resend Eve, the
same exchanges take 95 seconds, but Eve’s interference is detected every time.
With a very short message and very few checkbits we can show that even such
a naive Eve can sometimes win, as statistical analysis predicts.

Our simulation of E92 QKD [7] uses 20 000 entangled qubit pairs per trial for
the same-sized problem. Because the protocol calculations are more complicated
and our calculation language is interpreted rather than compiled, simulation
takes over 4 CPU minutes.

Qtpi can handle larger entanglements. In about 13 seconds it’s able to set up
and measure one ‘brick’ (ten qubits, all CZ-entangled) of the measurement-based
quantum computing mechanism in [8] – but that’s too small to be useful, and
larger entanglements are exponentially worse.

4 Conclusions

We have a quantum programming language which allows description of protocols
with multiple agents. It has protection, built from well-understood computer
science foundations, against cloning of qubits within a simulation. It is not yet
able to deal efficiently with entanglements of more than a few qubits. Its symbolic
calculator is fast enough for the protocols we have examined.

5 Data Availability and Acknowledgements

The qtpi interpreter and the examples referred to in the paper are available
at https://doi.org/10.6084/m9.figshare.11882592. Our research was supported
by UK National Cyber Security Centre through the VeTSS project “Formal
Verification of Quantum Security Protocols using Coq”. Nagarajan was also
supported by EU Cost Action IC1405 “Reversible Computation - Extending
Horizons of Computing”. We thank Simon Gay for helpful discussions.

276 R. Bornat et al.

https://doi.org/10.6084/m9.figshare.11882592


References

1. Qtpi protocol simulator, https://github.com/mdxtoc/qtpi, accessed on 2020.02.13
2. The Q# Programming Language, https://docs.microsoft.com/en-us/quantum/

quantum-qr-intro, accessed on 2020.02.13
3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and

coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing. p. 175. India (1984)

4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70(13) (1993)

5. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols
using Coq. In: The 12th International Workshop on Quantum Physics and Logic.
vol. 195, pp. 71–83 (2015). https://doi.org/10.4204/EPTCS.195.6

6. Bornat, R., Boender, J., Kammüller, F., Poly, G., Nagarajan, R.: Figshare (2020),
https://doi.org/10.6084/m9.figshare.11882592, visited 2020/02/21

7. Ekert, A.K., Rarity, J.G., Tapster, P.R., Massimo Palma, G.: Practical quantum
cryptography based on two-photon interferometry. Phys. Rev. Lett. 69, 1293–1295
(Aug 1992). https://doi.org/10.1103/PhysRevLett.69.1293

8. Ferracin, S., Kapourniotis, T., Datta, A.: Reducing resources for verification of
quantum computations. Physical Review A 98(2), 022323 (2018)

9. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: 32nd Sympo-
sium on Principles of Programming Languages (POPL 2005). pp. 145–157 (2005).
https://doi.org/10.1145/1040305.1040318, also arXiv:quant-ph/0409052

10. INRIA: The Coq Proof Assistant, https://coq.inria.fr, accessed on 2020.02.13
11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. Comput.

100(1), 1–40 (1992)
12. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.

In: Proc. of a conference on Functional programming languages and computer
architecture. pp. 1–16. Springer-Verlag New York, Inc., New York, NY, USA (1985)

13. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of computer and system sciences 22(3), 265–279 (1981)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Describing and Simulating Concurrent Quantum Systems 277

https://github.com/mdxtoc/qtpi
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro
https://doi.org/10.6084/m9.figshare.11882592
https://coq.inria.fr
http://creativecommons.org/licenses/by/4.0/

	16 Describing and Simulating Concurrent Quantum Systems
	1 Processes
	1.1 A programming language
	1.2 Symbolic quantum calculation
	1.3 No cloning
	1.4 Other notable features

	2 Straightforward description
	3 Performance on examples
	4 Conclusions
	5 Data Availability and Acknowledgements
	References




