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Abstract—This paper addresses the growing complexity of 6G
Radio Resource Management (RRM) due to the integration of
new multimedia services and sophisticated network functionali-
ties. To handle complex RRM control issues, machine learning is
recognized as a valuable tool for improving decision-making in
scheduling. However, the effectiveness of intelligent scheduling
methods can be limited without efficiently managing the large
volumes of data produced by network measurements, such as
Channel Quality Indicator (CQI) reports. To tackle this, we
propose a low-complexity framework that compresses extensive
CQI data into a compact, usable form for machine learning
applications. The framework adopts a metaheuristic approach
with simulated annealing to perform clustering and identify
global CQI data centers. These centers are then used to train
a Radial Basis Function Network (RBFN), enabling efficient
classification of CQI data into distinct patterns. These patterns
inform reinforcement learning-based scheduling decisions, which,
in turn, achieve significant gains, up to 20% improvement, in
fairness performance when scheduling multimedia consumers.

Index Terms—CQI Compression, RRM, Scheduling, Cluster-
ing, Simulated Annealing, RBFN, Reinforcement Learning.

I. INTRODUCTION

The rapid evolution of wireless networks is paving the way
for the sixth generation (6G), enabling transformative applica-
tions like pervasive intelligence, holographic communications,
and ultra-reliable low-latency automation. These ambitious
use cases demand unprecedented performance from Radio
Access Networks (RANs), including extreme data rates, ultra-
low latency, and seamless technology integration. To address
these challenges, 6G will adopt advanced technologies such
as terahertz communications, intelligent surfaces, and AI-
native architectures. Traditional Radio Resource Management
(RRM) struggles to meet the demands of real-time scheduling
in large-scale, heterogeneous 6G networks [1].

Open RAN plays a key role in introducing flexibility,
modularity, and interoperability through the decoupling of
hardware and software, enabling seamless integration of di-
verse technologies and scalable deployment of intelligent
solutions for real-time optimization. Open RAN enables
flexible RRM solutions given stringent Quality of Service
(QoS) requirements and dynamic network environments. In
this case, Machine Learning (ML) is emerging as a key
enabler, leveraging historical data and real-time observations

to optimize RRM functionalities. However, the scalability of
ML is challenged by the large and variable dimensionality of
data to be processed and ingested. Therefore, efficient data
processing algorithms are essential for applying ML in Open
RAN-enabled 6G systems [2].

Channel Quality Indicator (CQI) reports, which capture
user channel conditions, are vital for ML-based scheduling
and resource allocation but pose challenges due to high
data complexity. This paper proposes a CQI compression
framework for 6G networks, enabling efficient Reinforcement
Learning (RL) in RRM [3], [4]. By simplifying the input
space, RL benefits from faster and more accurate scheduling
and resource allocation, meeting stringent QoS demands.

II. RELATED WORK

Studies have explored various approaches to CQI com-
pression to enhance RRM in LTE systems. For example, an
adaptive threshold-based scheme to dynamically adjust CQI
reporting is proposed in [5], reducing signaling overhead while
maintaining throughput. In [6] the authors propose predictive
filtering schemes for sub-band CQI feedback compression in
LTE systems, significantly reducing signaling overhead while
maintaining performance. These approaches highlight the role
of efficient CQI compression in minimizing feedback while
ensuring system reliability, although they focus on earlier LTE
systems rather than more recent advancements.

Machine learning techniques have further improved CQI
compression. For example, in [7] a Support Vector Machine
(SVM)-based method for sub-band CQI feedback compression
is proposed, showcasing the potential of supervised learning
to reduce signaling overhead. Furthermore, in [8] a neural
network model is implemented to estimate CQI in 5G systems,
improving accuracy and efficiency in CQI assessment for
improved resource allocation. These studies underscore the
role of ML in addressing CQI compression challenges for
efficient RRM in modern wireless systems.

CQI compression offers more than just signaling overhead
reduction; it plays a vital role in data mining for RRM, espe-
cially in Open RAN. Compressed CQI can be used as input for
ML models, to optimize scheduling and resource allocation.
By transforming bandwidth and user dependent CQI data into



Fig. 1: System Model

compact representations will improve the intelligent decision-
making in dynamic, multi-service networks.

III. SYSTEM MODEL

The model in Fig. 1 illustrates a scheduling system in
which, at each Transmission Time Interval (TTI) t, network
observations from all active users—treated as states—are
processed. Scheduling dynamically selects based on prede-
fined rules which users get access to the resources at each
TTI, while the allocation determines how those resources are
distributed across the system. To maximize QoS provisioning,
the scheduling rule is dynamically adapted at each TTI
based on the scheduler state, with a RL approach leveraging
neural networks to determine the most suitable rule. State
processing—particularly the manipulation and compression of
CQI reports—plays a pivotal role in enabling efficient data
handling and informed decision-making.
A. Reinforcement Learning based Scheduling

At each TTI t, the set of active users is denoted as It =
{1, 2, ..., It}, where It is the maximum number of users. The
system bandwidth is divided into J equal Resource Blocks
(RBs), represented as J = {1, 2, ..., J}. Assuming an error-
free and delay-free uplink channel, each user i ∈ It reports
their channel quality xi,j(t) = {1, 2, ..., N} on each RB j ∈
J , where a higher value indicates better sub-channel quality.
This information is essential for the scheduler in the base
station’s RRM to determine the data transmission capacity for
each user at every TTI. However, sharing bandwidth among
users is subject to constraints, turning resource allocation into
a multi-objective optimization problem, expressed as:

max
a

∑
i

∑
j
ai,j(t) · Γi(Qi, xi,j) · λi(xi,j),

s.t.
(1)∑

i
ai,j(t) ≤ 1, j = 1, 2, ..., J, (1.a)

ai,j(t) ∈ {0, 1}, ∀i ∈ It,∀j ∈ J , (1.b)
qi constrained by q̄i, i = 1, 2, ..., It. (1.c)

In (1), the decision variable ai,j(t) ∈ {0, 1} indicates
whether RB j ∈ J is allocated to user i ∈ It (ai,j = 1) or not
(ai,j = 0). The set of variables Qi = {qi, q̄i} represents the
QoS indicators and their requirements, respectively, in terms
of rate, delay, and packet loss. The function Γi represents a
scheduling rule designed to meet specific QoS requirements,
and λi(xi,j) is the achievable rate of user i on RB j. The
RL approach dynamically selects appropriate function Γi each
TTI based on state s(t) ∈ S , ensuring QoS requirements

q̄i are met for enhanced multimedia experiences. Here, state
space processing—specifically, CQI compression—plays a
critical role in achieving these objectives efficiently.
B. State Processing

The proposed CQI compression mechanism operates in
three stages: pre-processing, classification, and optional sta-
tistical refinement. The pre-processing stage standardizes CQI
data to be independent of bandwidth size, enabling consistent
input handling. During classification, the mechanism utilizes
an offline clustering process to identify CQI patterns and
trains a Radial Basis Function Network (RBFN) based on
these patterns. In online mode, the RBFN then classifies CQI
patterns in real-time. Optionally, a statistical stage can further
distill the classified patterns by emphasizing key features,
particularly useful when a large number of output classes
may hinder scheduling decisions in RL-based systems. If
xi(t) = [xi,1, xi,2, ..., xi,J ] is the CQI report at TTI t of user
i ∈ It, then the compressed CQI report becomes:

z(t) = F(x1,x2, ...,xIt), (2)

where z is the compressed CQI of all users at TTI t, and F
is the proposed distillation function encompassing the three
stages. This approach streamlines CQI data for efficient use
in ML-driven scheduling and resource allocation.
C. Simulated Annealing with Stochastic Tunneling

We propose a meta-heuristic approach leveraging a Simu-
lated Annealing algorithm combined with a Stochastic Tunnel-
ing (SAST) function to enhance the CQI data mining process.
This approach mitigates the risk of getting trapped in local
minima during clustering and optimizes the training of the
RBFN in the classification stage.

Given a current state of elements B and a candidate new
state of elements A, the acceptance probability of A from B
is determined based on [9]:

P(A|B) = min[1,F(A,B,T)], (3)

where T is the temperature, and F is the acceptance proba-
bility function with stochastic tunneling to enhance the quest
of global optimum solutions, defined as [9]:

F(A,B) = exp {−[F (A)− F (B)]/T} , (4)

where F : A × B → [0, 1] is the SAST function calculated
based on:

F (X ) = 1− exp {−[f(X )− f∗]/ω} . (5)

Here, X ∈ {A,B}, ω is the tunneling parameter, f(A) and
f(B) are the energies of states A and B, respectively, and
f∗ is the lowest energy discovered so far. In general, if
f(A) < f(B), then A is a better option than B. By employing
the SAST function, the energy of each state is reported to
the minimum value discovered so far during the optimization
process. Therefore, if F (A) ≤ F (B), then A is always
accepted. Otherwise, A is accepted with probability P(A|B)
based on temperature T. The principle of simulated annealing
is to start with an initial temperature T0 which is decreased
gradually. As this temperature decreases, the probability of
accepting A from B also decreases when F (A) > F (B).
The idea is to explore more at the beginning a broader
neighborhood of B with good solutions, while drifting towards



more narrowed regions with low-energy as the temperature
approaches to its minimum value. We propose to calculate
the initial temperature as follows [9]:

T0 =

{
−
∑L

d=1
[Fd(A)− Fd(B)]

}/[
L · ln(P0)

]
(6)

where L is the number of iterations needed to approximate the
average value of F (A)−F (B) and P0 is the initial acceptance
probability. The temperature is reduced according to [9]:

Tnew = Told ·RT , (7)

where RT ∈ [0, 1] is the temperature reduction factor.

IV. PROPOSED FRAMEWORK
A. Pre-processing Stage

To reduce dimensionality, we transform the original CQI
report xi of dimension J into a new vector x′

i of dimension
N , where each x′

i,n counts the occurrences of quality level
n ∈ {1, 2, ..., N} in xi. This transformation is given by:

x′
i,n =

1

J

∑J

j=1
xi,j=n

xi,j ,∀i ∈ It, n = {1, 2, ..., N}, (8.a)∑N

n=1
x′
i,n = 1,∀i ∈ It. (8.b)

Even though the dimensionality of x′
i is reduced (since N ≪

J), values in x′
i are typically not uniformly distributed. To

simplify computation further, we focus on the top M values
in x′

i for each report, retaining the most significant CQI values.
For each i ∈ It, we define two sets from x′

i: - Mi =
{x′

i,n,m}, the set of top M data features where m =
1, 2, ...,M , and Ri = {x′

i,n,r}, the residuals after determining
the top M features, where r = 1, 2, ..., N − M . To ensure
that the transformed vector maintains linearity as per (8.b), the
residuals are assigned to the top m features. The assignment of
elements from Ri to Mi minimizes the index difference in x′

i.
This results in refined residual sets Ri,m = {x′

i,n,r(m)}, where
each residual x′

i,n,r(m) is matched to a top feature x′
i,n,m.

Here, m = 1, 2, . . . ,M and r(m) = 1, 2, . . . , R(m), with
R(m) representing the number of residual features assigned
to top feature m. This process is formalized as:

x′
i,n,p =

{
x′
i,n,m +

∑R(m)
r(m) x′

i,n,r(m), m ≤ M,

0, otherwise.
(9)

Thus, we obtain the pre-processed CQI vector from xi =
[xi,j ], to x′

i,M = [x′
i,n,p], where {n, p} = 1, 2, . . . , N with M

being the number of top data features from x′
i.

B. Classification Stage

In this approach, CQI data is gathered from multiple active
users i ∈ It over an extended time horizon across TTIs t. We
denote by XM the processed collection of CQI data points
from all users, with each data point represented by its top
M most significant features. The goal is to identify patterns
within the collection of CQI data points XM , and subsequently
classify new CQI data according to these patterns. The clas-
sification process involves two levels: offline and online. In
offline mode, clustering is first applied to uncover patterns
in historical data, followed by RBFN training to generalize
these patterns for classification. In the online mode, the trained
RBFN classifies incoming CQI reports in real-time, assigning

them to the identified patterns. This dual-stage framework
enables offline classifier training while supporting rapid and
accurate categorization of CQI data in online settings based
on established patterns.

1) Clustering: addresses the location-based problem of
identifying the most suitable data centers for organizing the
collected data XM . Let us define the set of centers as CM =
{ck | k = 1, 2, . . . ,K}, where each center is represented by
ck = {c1,k, c2,k, . . . , cN,k}, and K denotes the total number
of centers. This set CM is derived from the collected data
parameterized by M ; however, the resulting centers may not
satisfy the condition specified in (9). The goal of clustering is
to determine the optimal set of centers C∗

M that minimizes the
average distortion, typically measured as the mean squared
distance, and calculated as:

d(CM ) = 1/XM ·
∑XM

u=1
||x′

u,M − ck(u)||2, (10)

where ck(u) denotes the centroid of the cluster to which the
data point x′

u,M is assigned, and ||·||2 represents the squared
Euclidean distance.

The clustering algorithms work in iterations l = 1, 2, ..., L,
where L is the maximum number of iterations. If Cl

M is the
set of processed CQI centers computed up to and including
iteration l, then the goal of any clustering algorithm is to find
the optimal set of centers C∗

M within the maximum number of
iterations, such that the distortion d(C∗

M ) is minimized. Two
types of algorithms are studied to deal with this objective:

a) K-means: at each iteration, the neighborhood V l
k is

determined for each center k, where V l
k defines the sub-set

of data points for which clk is the nearest neighbor; then, the
weighted centroid of each neighbor becomes:

c̄lk = 1/|V l
k|·
∑|Vl

k|

v=1
x′

v,M , (11)

where, |V l
k| is the number of data points within the neighbor-

hood V l
k; next, each point in the collection XM is assigned to

its corresponding new centroid, resulting in an updated set of
centers denoted by Cl+1

M = {c̄l1, c̄l2, . . . , c̄lK}. These steps are
repeated for the number of iterations L, until optimal C∗

M is
found. To speed-up the neighborhood search in each iteration,
the collected data XM is stored in a kd-tree [10], and for
each new calculated centroid, the neighbors are automatically
given. K-means is susceptible to converging to local minima,
and this paper proposes methods to address this challenge.

b) Swap Heuristic: Instead of explicitly determining
neighborhoods and centroids, this algorithm randomly selects
a data sample from XM as the new center at each iteration and
continues this process until the specified number of iterations
is reached. This approach helps avoid local minima but may
take more time to reduce average distortion.

To enable the use of the proposed meta-heuristic algorithm
in clustering, we divide the original number of iterations L in
E epochs, where e = 1, 2, ..., E is the epoch index with Le

iterations. Each epoch starts with the swap heuristic clustering
and then continues with k-means until the number of iterations
Le per epoch is achieved in order to minimize the average
distortion from (10). To minimize distortion and avoid the
convergence to suboptimal minima, the set of initial centers
C0
M at the beginning of each epoch becomes important. In



Algorithm I: SAST for Clustering

1: input parameters {M,XM ,K,E, Le,T0}
2: for each e ∈ {1, 2, ..., E}
3: for each l ∈ {1, 2, ..., Le}
4: if (l = 1)
5: randomize one center ∀c1k ∈ XM , k = 1, ..,K
6: else
7: determine neighborhood Vk for each clk ∈ Cl

M

8: calculate centroid c̄lk based on (11)
9: assign cl+1

k = c̄lk
10: assign each point x′

i,M ∈ XM to closest clk ∈ Cl
M

11: calculate distortion d(Cl
M ) based on (10)

12: if d(Cl
M ) < d∗ then C∗

M = Cl
M

13: if (l = Le)
14: if d(CLe

M ) < d(C0
M ) then C0

M = CLe
M

15: else
16: calculate P(CLe

M |C0
M ) based on (3), (4), (5)

17: if P(CLe
M |C0

M ) ≥ Pa, then C0
M = CLe

M

18: else keep C0
M

19: decrease temperature Tnew based on (6), (7)
20: end iteration
21: end epoch
22: return C∗

M

normal way, C0
M should be the best set of centers discovered

so far in the previous epochs. But as seen, this leads to local
minima solutions. To avoid this, we employ a solution that
accepts non-better solutions from the previous epoch based on
the simulated annealing approach introduced above. If A =
CLe

M and B = C0
M are the sets of centers at end and beginning

of epoch e, respectively, then the initial set of centers at the
beginning of the next epoch is decided based on:

C0
M =


CLe

M , d(CLe

M ) < d(C0
M ),

CLe

M , d(CLe

M ) ≥ d(C0
M ) & P(CLe

M |C0
M ) ≥ Pa,

C0
M , d(CLe

M ) ≥ d(C0
M ) & P(CLe

M |C0
M ) < Pa,

(12)

where P(CLe

M |C0
M ) is the acceptance probability of CLe

M as
initial set when the current initial set of centers is C0

M and Pa is
the probability threshold. At the beginning, the temperature is
high and the non-better set of centers have higher probability
to be accepted as the initial centers at the beginning of the
next epoch. As the temperature gradually decreases, better
solutions have a greater probability of acceptance. It is worth
mentioning that the algorithm keeps track of optimal set C∗

M

that minimizes distortion in each epoch. Algorithm I presents
the proposed meta-heuristic clustering approach.

2) Classification: aims to create an automatic prediction
model able to classify each preprocessed observation x′

i,M

of user i ∈ It in the corresponding pattern. We define
P = {p1,p2, ...,pK} the set of encoded patterns, where
pk = [pk,1, pk,2, ..., pk,O] with O being the total number of
bits needed to encode K, with pk,o ∈ {−1, 1}, o = 1, 2, ..., O.
The proposed classification function maps XM in a finite set
of patterns P based on the following labeled set:

G = {(x′
u,M ,pu)|x′

u,M ∈ XM ,pu ∈ P, u = 1, XM}. (13)

Given G, let Φ be such a classification function that takes the
form of a RBF function:

Φ(x′
u,M ) = Φ2[W × Φ1(x

′
u,M )] = pu, (14)

where, W = {wk,o|k = 1, 2, ...,K; o = 1, 2, ..., O} is the
matrix of weights connecting the hidden and output layers,

and Φ1 = [ϕ
(1)
u,1, ϕ

(1)
u,2, ..., ϕ

(1)
u,K ] is the vector of RBF functions

of the the hidden layer. Among multiple representations, the
RBF function ϕ

(1)
u,k : [0, 1]N → [−1, 1] for each hidden node

k takes the Gaussian form given by:

ϕ
(1)
u,k = exp

(
−

||x′
u,M − ck||2

2σ2

)
, (15)

where σ > 0 is the Gaussian parameter that is a prori
tuned. Finally, Φ2 = [ϕ

(2)
1 , ..., ϕ

(2)
O ] is the vector of non-linear

transformations, taking the form of tangent hyperbolic.
In practice, a perfect interpolation in (14) is difficult to

achieve since a complete set of XM with all possible com-
binations of the pre-processed CQI reports is complicate to
be found, especially for M > 2. Therefore, we can train
the vector of weights W to obtain a good approximation of
classification function Φ̃, represented as:

Φ̃(x′
u,M ) = Φ(x′

u,M )−∆(W,x′
u,M ), (16)

where ∆ is the loss or the error function. Then, the main
objective of the classification stage would be to minimize
the loss function by training the weights W without getting
stuck into local minima solutions. In this sense, we keep G
as a validation set and get a training data set H that can be
collected from the network and defined as:

H = {(x′
i,M ,pi)|x′

i,M ,pi ∈ P, i = 1, It}. (17)

We train the RBFN similar to the clustering algorithms
by using E number of epochs and Le iterations, where
e = 1, 2, .., E. Since the RBFN training is coupled to the
network, an epoch is represented by all CQIs received in
one TTI. In each iteration l = 1, 2, ..., Le, a data sample
(x′

M ,p) is selected from H or G, and the set of Wl is updated
based on error back-propagation. To enhance generalization
and avoid local minima solution, we employ a decision-
making algorithm based on the same SAST principle to pick
up samples from training or validation sets at each iteration.
Based on the same principle, the initial set of weights W0

at the beginning of each epoch is selected to find optimal
weights W∗ and minimize error ∆. Therefore, three processes
are followed when training this structure:
a) Sample Feed-Forward: each epoch starts with samples from
H and continuously monitor when a data sample from G
should be forwarded in the RBFN. Let us consider A = W l

and B = W l−1 as the weight sets updated in iterations l and
l − 1, respectively. Validation samples are preferred starting
with iteration l + 1, if the next condition is met:

(x′
M ,p) ∈


H, ∆(W l) < ∆(W l−1),

H, ∆(W l) ≥ ∆(W l−1) & P ≥ Pa,

G, ∆(W l) ≥ ∆(W l−1) & P < Pa,

(18)

where P = P(W l|W l−1) is the acceptance probability of
W l when the previous set of weights is W l−1 based on data
samples from H.
b) Error Back-Propagation: in each iteration l = 1, 2, ..., Le,
the error ∆(W l) is calculated based on the RBFN response
p̂ and the real pattern p and is reinforced to update the set of
weights based on the gradient descent principle:

Wl = Wl−1 + η · x′
M ×∆, (19)



Algorithm II: SAST for RBFN Training

1: for each e(TTI t) ∈ {1, 2, ..., E}
2: for each l ∈ {1, 2, ..., Le}
3: get a CQI report xi

4: preprocess xi to x′
i,M based on (8.a), (8.b) and (9)

5: assign pattern pi based on closest neighborhood and CM

6: feed-forward x′
i,M from H or G

7: calculate error ∆ based on p and p̂
8: back-propagate ∆ and update W l−1 to W l based on (19)
9: calculate P(W l|W l−1) based on (3), (4), (5)

10: determine next sample based on (18)
11: reduce temperature inner SAST based on (7)
12: if l = Le

13: calculate P(WLe |W0) based on (3), (4), (5)
14: determine next W0 based on (20)
15: reduce temperature outer SAST based on (7)
16: end if
17: end iteration l
18: end epoch e

where η ∈ [0, 1] is the learning rate that sets the learning
speed of the RBF network.
c) Acceptance of Weights: in each iteration, we keep track of
W∗, corresponding to the lowest error observed so far. To
prevent the solution from getting trapped in a local minimum,
we adopt a similar acceptance strategy at the beginning of
each epoch, as described in (12). Consequently, the initial set
of weights W0 is set according to the following principle:

W0 =


WLe , ∆(WLe) < ∆(W0),

WLe , ∆(WLe) ≥ ∆(W0) & P(WLe |W0) ≥ Pa,

W0, ∆(WLe) ≥ ∆(W0) & P(WLe |W0) < Pa.
(20)

Since this optimization targets two decisions, we denote two
loops of SAST algorithm: a) the inner SAST, which involves
selecting the data sample to be input into the RBFN and resets
at each TTI; and b) the outer SAST, which determines the
initial set of weights and spans the entire training session of
the RBFN structure. This is outlined in Algorithm II.

In real-time networking conditions, the trained RBFN op-
erates at each TTI t, producing a set P(t) = {p̂i, i =
1, 2, ..., It}, where each p̂i = [p̂i,1, p̂i,2, ..., p̂i,O] represents
the encoded pattern output by the RBFN for user i ∈ It.
Decoding p̂i reveals the cluster index k to which the prepro-
cessed CQI sample x′

i,M belongs. Clusters are indexed from
1 to K, where cluster 1 corresponds to the worst channel
conditions and cluster K corresponds to the best. At each
TTI, the number of appearances of each cluster k is denoted
as yk, and the resulting classification output is represented by:

y(t) = [y1, y2, ..., yK ]. (21)

C. Statistical Stage

Integrating the classification vector y into RL-based
scheduling presents challenges due to its dependence on the
number of clusters K, which can vary across scenarios.
A high K can complicate the RL-based scheduler’s ability
to effectively process the classification vector, potentially
overlooking other critical data features. Thus, we process y
using statistical functions to reduce it to a fixed-dimensional
representation, that remains independent of K. We focus on

four key features derived from y, such as: a) na, the number
of active clusters in y, b) σa, the dispersion of active clusters
in y, c) dy , the minimum Euclidean distance between y
and support classification vectors ȳk for k = 1, 2, ...,K
where ȳk has 1 at position k and 0 elsewhere; d) k, the
index that minimizes the distance in c). By transforming y
into these features, we provide a consistent and manageable
input for RL-based schedulers, enabling effective decision-
making regardless of K, and producing the final compact
representation at each TTI t:

z(t) = [na, σa, dk, k]. (22)

V. SIMULATION RESULTS

We analyze downlink transmissions for I = 1000 users
within a 20 MHz bandwidth (J = 100) in a microcell urban
environment, modeled using the Jakes Model with 12 fading
paths. Users travel at a speed of 120 km/h in random directions
to enhance the diversity of CQI reports. Each CQI report
contains N = 15 quality levels and is collected every 1ms
across 19 cells. For data collection, the top M = {3, 4, 5} CQI
elements are extracted, with the process terminating once no
new data points are detected. This results in datasets of sizes
X3 = 33596, X4 = 144179 and X5 = 206473. These datasets
are then used to train clustering algorithms and RBFN to
classify CQI reports into distinct patterns. The trained models
are subsequently applied in real-time to compress CQI reports
and generate input states for RL-based scheduling algorithms,
aiming to optimize fairness in multimedia service delivery.
Network simulations and data collection were carried out
using the simulator from [11], which is an extended version
of [12], enhanced with data processing and RL algorithms.

A. SAST-based Clustering

Two clustering settings with K = {64, 512} centers are
analyzed, employing iterative k-means with kd-tree, a swap
heuristic, and the proposed SAST-based clustering method.
Additionally, a simulated annealing approach without stochas-
tic tunneling, as described in [9], is evaluated. Each clustering
method is tested over E = 100 epochs, with Le = 10
iterations per epoch. For the simulated annealing approach,
the parameters include a tunneling factor ω = 0.02, an initial
acceptance probability P0 = 0.5, and a temperature reduction
factor RT = 0.95. Table I provides a performance comparison
of the clustering algorithms based on average distortion and
CPU time required to compute the sets of centers C3, C4
and C5. Among the evaluated methods, the iterative k-means
algorithm is the most computationally intensive, whereas the
swap heuristic yields the highest distortion. By strategically
accepting non-better solutions, clustering algorithms utiliz-
ing the simulated annealing approach achieve lower average
distortion across all scenarios. The inclusion of a tunneling
function in the simulated annealing-based method enhances
both distortion and computational complexity compared to
its initial implementation [9]. The SAST-based clustering
method demonstrates the most significant distortion reduction
for M = 3, followed by M = 4 and M = 5. The center
sets obtained from the SAST algorithm will subsequently be
applied in RBFN for further processing.



TABLE I: Performance Comparison of Clustering Techniques (Distortion and CPU Time)

Method M = 3 M = 4 M = 5

K = 64 K = 512 K = 64 K = 512 K = 64 K = 512

k-means 0.0193 / 16.09 0.0022 / 75.01 0.0111 / 56.90 0.0027 / 223.80 0.0084 / 137.19 0.0030 / 504.21
swap 28.1% / -1.2% 54.3% / -2.2% 31.2% / -4.1% 32.5% / -3.5% 26.4% / -3.1% 27.5% / -2.7%

sa -7.1% / -3.3% -5.7% / -3.9% -2.4% / -3.8% -3.5% / -3.0% -1.5% / -5.7% -2.8% / -1.6%
sast -7.3% / -3.4% -5.9% / -4.0% -2.6% / -6.8% -3.9% / -2.2% -1.8% / -6.8% -3.3% / -1.9%

TABLE II: RBFN Hyperparameters and Best Mean Error for Differ-
ent Configurations

Params M=3 M=3 M=4 M=4 M=5 M=5
K=64 K=512 K=64 K=512 K=64 K=512

η 0.089 0.022 0.050 0.006 0.032 0.002
σ 50 440 90 370 120 310
∆(G) 0.028 0.037 0.034 0.115 0.073 0.169
∆(HG) 0.01 0.048 0.042 0.152 0.091 0.228

B. SAST-based RBFN Training

The RBFN weights W are trained using the sets of data
centers C3, C4 and C5 with K = {64, 512}, which are derived
from the SAST-based clustering algorithm. Since the collected
datasets X3, X4 and X5 cannot fully represent all possible
combinations in the CQI reports, it is critical to train the
RBFN effectively to enhance generalization. This ensures that
new, previously unseen samples are classified into the correct
pattern classes. To achieve this, the dataset G is reserved for
validation, while the training set H is dynamically linked to
the network simulator. However, as the CQI data in H may
lack diversity in the short term, there is a risk of overfitting the
RBFN. To mitigate this, the SAST principle is applied at each
iteration to select training samples alternately from H and G.
Furthermore, SAST is employed at the end of each training
epoch to decide whether to accept non-better weights. This
allows the algorithm to explore better solutions in subsequent
iterations, ultimately improving the RBFN’s robustness and
generalization capabilities.

We perform 4-fold cross-validation on the validation set to
determine the optimal RBFN hyperparameters, including the
learning rate (η) and Gaussian parameter (σ), by minimizing
the error (∆). The results are presented in Table II. During
RBFN training, we replicate the same network conditions
used during data collection, setting the number of epochs
to 100.000 TTIs and the number of iterations per epoch to
Le = 1000, equal to the number of active users in the
network. The SAST-based algorithms are applied consistently
for both inner and outer loops, as in the clustering stage. At
the end of training, we compare the mean error (∆) between
two approaches: training the RBFN solely on G without
SAST (∆(G)) and training the RBFN with both inner and
outer SAST algorithms (∆(HG)). As shown in Table II, the
SAST-based approach yields a slightly higher training error
compared to the traditional method. However, this trade-off
promotes better generalization and results in improved weight
configurations, enabling the RBFN to more effectively classify
new CQI observations into the desired patterns. The trained
RBFN models for all configurations (M = {3, 4, 5} and
K = {64, 512}) are then used to compute compressed states

z. These states serve as inputs for various RL algorithms to
enhance user fairness in scheduling multimedia content on the
6G radio interface.

C. Impact on Scheduling Performance

To evaluate the impact of the proposed CQI compression
approach on scheduling, we use the fairness criterion defined
by the Next Generation Mobile Networks (NGMN) alliance,
as detailed in [13]. This criterion requires the Cumulative
Distribution Function (CDF) of user average throughput at
each TTI to fall within a specified region, as illustrated
in Fig. 2. Figure 2.a demonstrates cases of unfairness and
overfairness: in the unfair scenario, users with favorable CQI
conditions are prioritized, maximizing overall throughput at
the expense of fairness, while the overfair scenario excessively
prioritizes fairness, leading to inefficient resource usage. The
desirable case, shown in Fig. 2.b, positions the CDF within the
feasible area, ensuring that system throughput is maximized
while meeting the NGMN fairness criterion.

The primary objective of the RL-based scheduler is to adjust
the scheduling decisions at each TTI to ensure that the user
throughput CDF remains within the feasible region, achieving
both fairness and optimal resource utilization. This can also
be achieved by extending the basic parametrization of the
Proportional Fair (PF) scheduling rule from [13]:

Γi(λi, xi,j) = λi(xi,j)
βt−1/Λαt

i (23)

where Λi is the average user throughput used to calculate
CDF. Various RL algorithms [14] (Q-learning, SARSA, QV-
learning, ACLA, CACLA) are trained to select the optimal
scheduling parameters [αt, βt] at each TTI to maximize a
reward function aligned with NGMN fairness requirements.
The training is conducted under two state definitions: a) s ∈ S,
including Λi statistics and the compressed CQI state z, as
defined in (22); and b) s ∈ S with Λi statistics but without z.

The RL algorithms are trained using the network settings
described in [14] for scheduling multimedia services with
full-buffer traffic. Their performance is evaluated across 10
different network configurations, and the results are averaged.
Table III presents the mean percentage of TTIs where the
scheduler operates in the UF (unfair) and FS (feasible)
regions for various RL algorithms, state-of-the-art approaches
(AS, PF) [14], and different CQI compression configurations.
The results show that without the compressed CQI state, RL
algorithms fail to surpass the state-of-the-art AS algorithm.
However, when the compressed CQI state z is included in the
RL state s, performance generally improves with higher values
of M and K. The best results are achieved by the CACLA
algorithm, which operates in the FS region for over 97% of



Fig. 2: NGMN Fairness Requirement: a) unfair and over-fair cases; b) feasible case

TABLE III: Performance Comparison of RL-based Scheduling Approaches in terms of Mean Percentage of TTIs when the CDF is Located
in the Unfair (UF) / Feasible (FS) Areas

Algorithm No Compression M=3, K=64 M=3, K=512 M=4, K=64 M=4, K=512 M=5, K=64 M=5, K=512

PF 1.1 / 0.5 1.1 / 0.5 1.1 / 0.5 1.1 / 0.5 1.1 / 0.5 1.1 / 0.5 1.1 / 0.5
AS 10.7 / 85.9 10.7 / 85.9 10.7 / 85.9 10.7 / 85.9 10.7 / 85.9 10.7 / 85.9 10.7 / 85.9
Q 1.9 / 13.0 11.0 / 86.7 25.8 / 72.5 2.8 / 76.4 12.7 / 77.9 6.3 / 80.0 2.8 / 86.2

SARSA 2.9 / 69.7 1.9 / 88.0 32.2 / 58.1 2.5 / 90.8 1.7 / 83.7 2.5 / 92.8 8.1 / 89.8
QV 11.4 / 80.3 3.4 / 90.5 8.5 / 91.1 5.9 / 92.0 5.3 / 89.7 6.1 / 92.5 1.7 / 95.6

ACLA 9.9 / 83.0 4.6 / 90.9 4.1 / 94.2 3.3 / 94.5 4.2 / 92.1 5.0 / 93.6 7.3 / 91.5
CACLA 16.9 / 82.7 2.1 / 96.8 1.8 / 96.5 1.7 / 96.7 1.7 / 97.8 1.7 / 97.6 1.8 / 97.4

TTIs with M = 4 and K = 512. Additionally, increasing
M and K yields up to a 2% performance gain, indicating
that even the lowest configuration (M = 3,K = 64) offers a
practical and efficient option for deployment.

VI. CONCLUSION

This paper introduces a novel compression mechanism
designed to reduce the state space complexity arising from
large CQI reports in 6G networks. The proposed approach
leverages simulated annealing optimization with a stochastic
tunneling function to enhance the search for optimal solutions
and improve the classification of CQI data. A clustering-based
method is employed to identify the best set of CQI centers,
and RBFN structures are trained for various configurations
of the compression scheme to generate a compressed state
that retains the most valuable information. When applied
to fairness-oriented scheduling using reinforcement learning,
the results demonstrate significant performance improvements.
Incorporating the compressed CQI state into the RL algo-
rithm’s state representation achieves gains of up to 20%,
showcasing the effectiveness of the proposed approach in
improving resource allocation and fairness in 6G networks.
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