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Abstract. This paper describes the simulation of a flexible robot link, which is programmed in ACSL; a Fortran 
based simulation language. The simulation of this flexible link manipulator is based on the finite difference 
solution of a Lagrange-Euler formulation.  The effects of stiction torque have been included in an existing 
simulation to improve the simulation step response compared with the prototype especially for the case of 
different directions and payloads.The manipulator was controlled by classical PD and Fuzzy PD controllers.  
The step responses of the simulation before and after the changes in the model were validated through 
correlation coefficients and the characteristics of the simulation responses. It was shown that the correlation 
coefficient of the simulation is greater than 78% without the effect of stiction torque and that the parameter 
changes can improve the overshoot performance of the simulation to 94% in one direction.  Simulation with the 
fuzzy controller can achieve correlation coefficients of 99% without payload. 
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1.0 ROBOT SYSTEM 

This section gives a description of the prototype of 
the robot arm and its‘ simulation.  This arm control 
system was developed to enable very large and 
hence flexible links to be used in the nuclear 
industry.  To provide a challenging test for the 
chosen fuzzy controller a very poor mechanical 
structure was designed. It had a flexible arm, with a 
lowest natural frequency of 16.5 Hz, bolted joints 
and considerable friction in the bearings.  This work 
describes some of the validation of the simulation 
model to enable a fuzzy controller to be designed.  It 
did prove to be very challenging to gain a 
sufficiently accurate model.  Early work showed 
poor models and it took a long careful series of 
experiments to highlight the defects of the range of 
models used.  This paper illustrates the validation of 
the effects of the stiction component of the bearing 
friction.  The purpose of the experiments decsribed 
here is to detail a coherent model of a very flexible 
arm driven by a control system that was non-linear 
and show what features in the range of models that 
could be explained and those that could not. 

1.1 The Prototype 

A laser beam (figure 1) directs the arm tip’s 

Laser 

Endoskel

exoskelet

sensor

 

Figure 1 Schematic of laser guided arm 

displacement with the laser light shining through 
the hollow robotic arm impinging upon a four-
quadrant light intensity sensor mounted at the end 
of the arm. The sensor creates an error signal when 
the light spot is not at the centre of the sensor and 
guides the arm through the signal to the arm 
actuator system to move along the path.  

The two-axis robot driven by two DC servo motors 
through harmonic drives [Lewis et a l 1995] stands 
(figure 2) on a heavy stone and metal 
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pedestal/socket with a supporting trunk made of 
Duralumin.  

 

Figure 2 The flexible arm rig 

The arm, which can move ±40º around the vertical 
and horizontal axes, can be changed so the system 
could be tested with arms of different stiffness and 
length. The robot control system consists of a 
master/slave relationship, with the master as the 
laser, which gives the direction and the robot arm 
is the slave. [Lewis 1996]  Initial work  by Lewis 
used a classical Proportional plus Derivative 
controller implemented on a PC.  He produced a 
simple second order rigid model in MATLAB, 
which did not include the effects of flexibility and 
this gave poor predictions.  [Surdhar 1999] used a 
fuzzy controller implemented on a Transputer array 
to achieve a much better performance. 

1.2 Model of the Flexible robot 

The following section dealing with the flexible arm 
is based on [White 1993] and [Sudhar 1999].  
Similar techniques have been used elswhere [Tokhi 
et al 1997].  This technique was validated for 
simply supported and cantilever beams to within 
1% of experimental measurements and classical 
analysis.  Surdhar’s use of a fuzzy controller does 
not rely on a model hence the problem of obtaining 
a non-minimum phase model or a highly accurate 
model is avoided. Nevertheless, a model is required 
to synthesise a controller to verify its stability and 
performance. 

This model uses the finite difference technique 
applied to Euler-Lagrange formulation for a 
continuous shaft, which takes in account bending 
and shear moments to simulate the behaviour of a 
manipulator with a single flexible link. 

The feedback from the tip of the arm via the tip-
based sensor non-linear transfer function is 
included. The non-linear effects due to the motor 
current saturation limits are also included. 
Responses from higher vibration modes are filtered 
out in the practical implementation to prevent 
spillover. In order to simplify the model gravity 
effects are ignored. (The responses described later 

are in the horizontal plane).  The equations for the 
arm and motor use standard Lagrangian description 

It is assumed that the beam is small in diameter 
compared to its length, so that sections remain 
plane and translate but do not rotate. So effects of 
rotator inertia and of transverse shear deformation 
are neglected although they could be included. In 
figure 3 small displacements of the robot arm are 
shown. 

 

Figure 3 Deflection of the robot arm 

Let a small segment of the arm be at a distance x 
from the origin. This is displaced by y(x,t).  

Figure 4 shows the forces and moments on an 
element of length dx. The velocity v denotes the 
displacement at any section x at time t.  M and S 
are the bending moment and the shear force at 
section x.  

Figure 4 Elementary portion of the uniform beam 

The mass of the segment is ρdx. At equilibrium the 
forces acting on the segment are: 

)( ωρ &&& xy
x
S

+=
∂
∂                (1) 

hence 
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From Euler’s theory of bending using: 
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From these we obtain 
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Equation of motion for a segment of the arm 
rewriting equation 4: 
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The equation of the forces at the tip is: 

),())(),(ym(v tLStLtLm −=+= ω&&&&   (6) 

While the equation of motion for a mass at the tip 
is derived as: 
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The model solution is subject to the following 
boundary conditions: 

The arm is fixed at the root: 
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Assuming the arm starts from rest initial conditions 
are:  
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For numerical solution using Advanced 
Continuous Simulation Language (ACSL) version 
9 the central difference finite difference 
approximations and an explicit1 method of solution 
is used [Smith 1985]: 

                                                           
1 a formula which expresses one unknown pivotal 

value directly in terms of known pivotal values 
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The arm is divided into n stations, δx, as shown in 
figure 5.   

 

Figure 5 Finite difference segments 

The boundary conditions derivative δy/δx is 
represented accurately at x=0 and x=L through the 
central-difference approximation. In order to 
represent the boundary condition derivative δy/δx 
more accurately at x=0 and x=L and to use the 
central-difference approximation, it is necessary to 
introduce ‘fictitious’ displacements. These have to 
correspond to yn-1 and yn+1, which satisfy the 
boundary conditions, at the external mesh points by 
extending the arm slightly in a negative and 
positive direction.  The length of the mesh is given 
by:  

2−
=

n
Lxδ     (11) 

L and n represent the length of the arm and number 
of stations respectively. The following boundary 
conditions are used: 

021 == yy ; 

050 =− .nM ;   0
2

1 =
+ −nn MM

 

dx
MM

x
MtL

x
y nn

n
1

503

3
−

−

−
=

∂
∂

=
∂
∂

.),(  (12) 

Using a Taylor expansion the fictitious stations are 
eliminated and the following auxiliary quantity is 
obtained: 
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Substituting and using the boundary conditions in 
equation 12, the following solution is obtained: 
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The explicit solution using the central difference 
approximation is stable for small integration times 
steps satisfying [Smith 1985]: 
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The equation above implies that small integration 
time steps are required in the computer simulation. 
This constraint is easily satisfied in the simulation 
since δx=0.265 and δt=0.0001. 

 

1.3 Motor and drive characteristics 

The following equation gives the standard motor 
equations including the arm dynamics with the 
torque referred to the output shaft. [Dorf 
1986][Kuo 1995] 
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Applying Kirchhoff’s voltage law yields: 

Eapp Kt
dt
diLRiV )(ω++=    (17) 

The torque is generated by the armature, which 
moves in a permanent magnetic field. 
Manufacturers data shows that the torque is 
linearly related to the current. 

iK T=τ      (18) 

The model of the sensor is derived from empirical 
data. The following figure 6 shows the 
experimentally obtained sensor transfer function by 
[Lewis 1996]. 
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Figure 6 Measured sensor response for different 
spot sizes 

The arm deflection is computed by the finite 
difference solution above in the following 
equation: 

21 5051 −− ∗−∗=∆ nn yy ..θ   (19) 

The sum of the rigid body deformation, given by 
the hub angle, plus the tip deflection is the total 
displacement of the tip of the arm. Therefore the 
non-linear saturating function hf  transforms the 
deflection computation. The non-linear saturating 
function is modelled and it is included in the 
model. Equation 19 is redefined in the following 
equation 20 that describes the previous relationship 
and the error quantity: 

)( θθθ ∆+−= hc fe    (20) 

The sensor maps the actual position error signal in 
X-Y space to a corresponding error voltage signal 
in the X (horizontal) and Y (vertical) plane. The X 
and Y error voltages are used to control the 
corresponding individual axes of the robot. 

Under normal operation for the maximum load 
condition the sensor does not saturate. If the output 
voltage of the sensor exceeds 10 V sensor 
saturation is achieved. This means that the function 
in equation 20 can be approximated by a linear 
function. The magnitude of the largest deflection is 
3.63 Volts and thus about 36% of the signal before 
saturation. 

The gradient of hf is TipK . It is the feedback 
parameter, which has been included as a 
conversion constant between the measured tip 
position (error) and its corresponding voltage, 
which is negatively fed back into the controller via 
a summing junction. In the simulation and practical 
experiments the value for TipK was kept constant at 
3.3 V/mm. 
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Initially a table function was used to represent the 
sensor but proved to be unnecessary and a simple 
gradient was then used. 

 

2.0 PARAMETERS OF THE MODEL  

Table 1 shows the motor characteristics for 
combination of the DC motor and Harmonic Drive 
gears.  Some data was obtained from the 

manufacturer* and some experimentally 
determined. [Pape & Korhonen 1995] 

The motor current saturates at 1.9 A and this is the 
rated value as opposed to peak limits. As the 
datasheets specified gear efficiency, of 60% has 
also been included in the model 

Table 2 summarises the measured structural 
parameters of the flexible aluminium arm.

Table 1 Motor Characteristics 

Meaning: Value:    Unit: 

Voltage constant (B.E.M.F), motor 20.53 Vs/rad 

Torque constant 0.26 Nm/A 

Armature resistance 3.4    Ohm 

Rated current 1.9*    A 

Effective moment of inertia 0.00012* kg m2 

Friction (viscous) of the system 0.00014* kg m2/ s 

Table 2  Structural parameters 

Parameter Description Value Unit 
(S.I) 

mEI  Measured product of Young’s 
modulus and nd2 moment of inertia 

8404 ±451 N m2 

cEI  Calculated product of Young’s 

modulus and 
nd2  moment of inertia 

8929±688 N m2 

ρ  
Mass per unit length 0.75±0.000

2 
kg/m  

m  
Mass of tip sensor 0.15±0.000

2 
kg 

L  Length of beam 1.18±0.005 m 
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The EI, the product of Young’s modulus and the 
moment of inertia of the arm, was determined 
through measurements of the unloaded and loaded 
arm deflections and by use of Euler’s beam theory. 

2.2 Dynamic parameters of the arm 

Table 3 and Table 4 summarise the measurements 
of the moments of inertia, armJ , and viscous 

friction, armµ , of the robot arm for each axis of 

rotation.  These measurements were made by [Pape 
1995]. 

 

Table 3  Dynamic parameters for rotation about the horizontal axis of rotation 

Parameter Description Value Unit (S.I) 

hJ  Moment of inertia, horizontal axis 0.22± 0.005 kg m2 

hµ  Viscous friction, horizontal axis 0.127± 0.013 kg m2/s 

 

For the unloaded case there a series of 
measurements in the horizontal plane with different 
elevations, δ °, of the arm (cf. the experimental 
arrangement [Pape 1995]) were made.  
 
 

The following Table 4 shows that there is a 
variation of up to 57.6% in the moment of inertia 
parameter and a variation of up to 43.5% in the 
viscous friction parameter for a variation in arm 
elevation of 0° to 40°. The ACSL simulation 
shown uses the parameters for 0° elevation 

 
 

 
 

Table 4  Dynamic parameters for rotation about the vertical axis of rotation 
 

Parameter Description Value Elevation Unit (S.I) 

armJ  Moment of inertia, vertical axis 0.639± 0.008 0° kg m2 

armJ  Moment of inertia, vertical axis 0.624± 0.008 9.8° kg m2 

armJ  Moment of inertia, vertical axis 0.271± 0.003 40.7° kg m2 

armµ  Viscous friction, vertical axis 0.222± 0.004 0° kg m2/s 

armµ  Viscous friction, vertical axis 0.218± 0.004 9.8° kg m2/s 

armµ  Viscous friction, vertical axis 0.125± 0.002 40.7° kg m2/s 

 

[Surdhar 1999] supposes that non-inclusion of the 
stiction and friction of the robot arm causes the 
difference between his original simulation values 
and the experimental data. Additionally the stiction 
and friction of the robot arm in this section will 
extend the present model.  We will show here that 
this is not sufficient for a satisfactory explanation.  
Stiction and friction occurs at the supporting 
bearings. The Equation 20 has to be redefined: 

inT iK ττ −=     (21) 

outτ  is a stiction torque at the gear. Furthermore it 
is a factor, whose value depends on the direction in 
which the step response works.  

Clockwise (RHS) stiction torque is 2.778 N m 
while the anticlockwise torque (LHS) is 0.926 N 
m. LHS denotes movements leftward about the 
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vertical motor axis looking out towards the arm 
and clockwise (RHS) denotes the opposite 
direction. 

The measured stiction torque outτ  occurs at the 
gear, but to implement it in the program the stiction 
torque inτ at the motor is needed. Therefore the 
equation 22 transforms the stiction torque at the 
gear in the stiction torque at the motor.  

Ninout *ττ =     (22) 

N
in

out

ω
ω =     (23) 

An if-loop in the program provides that the arm can 
only move if the motor torque is greater than the 
stiction torque. 

2.4 Control 

The error is defined as:  

θθ −= ce     (24) 

The control input under proportional control is: 

eKu p ⋅=     (25) 

In practice a proportional plus derivative classical 
controller was used by Lewis and a Fuzzy PD 
controller used by Surdhar. Experiments using 
classical controllers applied to the tip feedback 
system (TFS) showed that PD control gave the best 
tracking and transient performance.  The 
controllers were initially tuned by Zeiglers’ method 
[Korhonen 1995 & Lewis 1995] with manual final 
tuning to achieve the best settling time compatible 
with the least overshoot. 

The Fuzzy Controller is described in [Surdhar et al 
2003].  The fuzzy algorithm was initially 
implemented in parallel on a single T800 
transputer, but later on several T805 Transputers.  
Transputers were used because it was intended that 
this arrangement would be part of a much larger 
system operating on a parallel computer using a 
Transputer array at British Nuclear Fuels Plc. 

The fuzzy architecture comprised 10 fuzzy sets for 
the antecedants (5 for error and 5 for derivative) 
and 5 output singletons. The aggregation of fired 
outputs was carried out by taking the sum of the 
fired elements and weighted average 
defuzzification was used to produce the crisp 
output.   The principle reason for using a fuzzy 
controller is so that precise knowledge of the 
system is not required.  In this case we are trying to 
predict how good the control is for a very complex 
structure.  As will be seen later a good model of 
this structure was not simple to achieve. 

The ASCL listing is completely described & listed 
in [Surdhar 1999].  It incorporates the fuzzy 
controller or classical PD controller; the flexible 
arm and motor current limits as well as the 
representation of friction and sensor characteristics. 
 
2.5 Simulation  
 
Both the Matlab and ACSL simulations can be run 
on any PC.  The Matlab model took about 30 
minutes to create and execute by an experienced 
user.  The ACSL model took substantially longer to 
write since it uses terminal section Fortran 
statements to implement a search routine.  Matlab 
is considerably easier to use and the more 
sophisticated model could have been cerated in 
Simulink.  ACSL is line edited  and compiled in 
the version used.  Error correction is therefore 
more difficult than Matlab, which is interactive.  
ACSL allows more complex simulation to be 
executed but does not contain, in this version, any 
standard functions for this problem where 
simulation of partial differential equations was 
being executed.  Matlab/Simulink is easier to use 
for novice users but ACSL is more robust and 
suitable for experienced programmers who have 
analogue computer knowledge. 
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3.0 MODEL VALIDATION 
 
The following section describes a method to 
validate the simulation and shows the results of 
that ASCL simulation using step responses.  
One method to validate the simulation results is the 
use of the correlation coefficient. [Neelamkavil 
1981]  These measures help to quantify the degree 
of relationship between two variables or their 
tendency to vary independently rather than 
together.  There are two sets of data ix  and iy . 
Both sets have n data. x and y are the average of 
the two sets of data. So the following Equation 26 
calculates the correlation coefficient. 

∑ ∑
∑

−−

−−
=

22 )()(

))((
.

yxxx

yyxx
correl

ii

ii  (26) 

 

 

[Neelamkavil 1981] explains that the variable ix  
and iy  are positively correlated if correl.>0 and 
here if ix  increase (decrease), iy  also tends to 
increase (decrease). When correl.<0, ix  and iy  are 

negatively correlated and if in this case one 
variable increases (decreases), the other variable is 
likely to decrease (increase). The variables ix  and 

iy  are perfectly correlated if correl.=1, they are 
uncorrelated when correl.=0.  

For the the Matlab simulation of Lewis (figure 7) 
the simulation matched the prototype only 23% for 
the proportional control and 34% for the PD-
control step response. Thus that simulation was not 
very useful. 
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Figure 7 Lewis’s simulated vs experimental results

 

Table 5  Correlation coefficient for clockwise rotation without stiction torque 

Clockwise rotation 

time range/mass 0 kg 0.7 kg 1.15 kg 1.6 kg 

0 s to 0.98 s 0.9432 0.8612 0.8251 0.7804 

 

Table 6  Correlation coefficient for anti-clockwise 
rotation without stiction torque 

Anticlockwise rotation 

time range/mass 0.7 kg 1.15 kg 1.6 kg 

0 s to 1 s 0.8832 0.8915 0.8880 

 

Tables 5 and 6 show the correlation coefficient for 
each direction without the stiction torque.  For the 
clockwise movements with no payload and for the 
time range from 0 s to 0.98 s the correlation 

coefficient is 94 %. This is quite high. But the 
correlation coefficient decreases with more 
payload, because the simulation data sets do not 
change significantly as the reader can see from 
figure 8. For the anticlockwise movements the 
correlation coefficient is higher than for the 
clockwise movements. 

 The most significant observation is that clockwise 
the response is larger than the simulation and also  

does not come to the desired value but leaves a 
steady state error.  This is not the same for the anti-
clockwise response.  
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Figure 8  Measured values cf simulation without 
stiction 

Table 7  Correlation coefficient of clockwise 
rotation with stiction torque 

Clockwise motion with stiction torque 

time 
range/mass 

0 kg 0.7 kg 1.15 kg 1.6 kg 

0 s to 0.98 s 0.9233 0.8453 0.8166 0.5457 

 

Tables 7 & 8 show the correlation coefficient of the 
simulation with included stiction torque. By adding 
the simulation with the stiction torque the 
correlation coefficients for the anti-clockwise 
direction increase only slightly for a 1.6 kg payload 
and in the time range from 0 s to 1 s.  It is 
interesting that for 1.6 kg payload and the time 
range from 0 s to 0.98 s the correlation coefficient 
for the clockwise response drops from 78% to 
54.6%. 

Figure 9 shows the simulated step response with 
the included stiction torque for the clockwise 
movement. ‘simu, mass=*, represent the simulation 
step response with the respective payloads and 
‘LHS’ is an abbreviation for prototype. As the 
figure shows there are no differences between the 
simulated step responses despite different 
payloads. The same figure shows the anticlockwise 
step responses.  

One experimental feature not reproduced by the 
model is the fundamental oscillations that appear at 
high tip loads.  This is due to the aliasing filter 
being set too low to filter out the lowered vibration 
frequencies at higher loads.  Incidentally this does 
not occur with the fuzzy controller. 
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Figure 9  Effects of  stiction torque compared to 
measured values 

Table 8  Correlation coefficient of anticlockwise 
rotation with stiction torque 

Anticlockwise motion with stiction torque 

time 
range/mass 

0.7 kg 1.15 kg 1.6 kg 

0 s to 1 s 0.8896 0.8945 0.8927 

 

The correlation coefficient between the simulation 
and the prototype with fuzzy-control and 0 kg load 
for the anticlockwise direction is 0.9926. This is 
very good.  Even with added loads it did not fall 
below 90%.  As the reader can see in figure 10 
there is only a time displacement between the both 
graphs.  For the experimental values no significant 
difference occurrs in the two directions.  There is 
still a small steady state error due to this not being 
heavily penalised in the fuzzy structure. 

Tables 8 to Table 11 show the results of the peak 
percent overshoot, rise and settling time for the 
prototype for different payloads and the simulation 
with and without stiction torque. There are no 
significant differences between the characteristics 
of the simulation step responses with different 
payload as the reader can see in figures 8 & 9.  
Therefore only one rise and settling time and peak 
percent overshoot for the simulation with and 
without stiction torque in each direction is shown. 

As the simulation result without stiction torque 
shows that the rise time is almost the same like it is 
for the left handside direction for 0.7 kg payload, 
but the rise time for the RHS movement is two 
times faster than the simulation. The settling times 
of the RHS response with 1.6 kg and LHS 
responses with 1.15kg and 1.6 kg are greater than 
0.9 s , because they are more oscillatory. 
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The settling time for the RHS step response with 
stiction torque is almost two times greater than the 
LHS response and the response without stiction 
torque. 

The peak percentage overshoot of the RHS step 
response for 0.7 kg payload is five times greater 
than the simulation and 20 times greater than the 
LHS step response. Besides the peak percent 
overshoot increase from 39% to 85% for the RHS 
step response and from 3.% to 20% for the LHS 
response with the increase of the payload from 0 kg 
to 1.6 kg. 

 

 

 

 

 

 

 

 

Table 9  Characteristics of the prototype step 
response for clockwise rotation 

Clockwise 
/load 

0 kg 0.7 kg 1.15 kg 1.6 kg 

rT /s 0.03 0.03 s 0.045 0.03 

sT /s 0.3 0.29 s 0.33 >0.9 

Overshoot 
% 

38.5 67.7 94.7 84.9 

Table 10 Characteristics of the prototype step 
response for anticlockwise rotation 

Anticlockwise/
mass 

0.7 kg 1.15 kg 1.6 kg 

rT /s 0.0623 0.0396 0.056 

sT /s 0.2751 >0.9 >0.9 

Overshoot in % 3.38 25.4 20.35 

Table 11  Characteristics of the simulation step responses for each direction 

Simulation Without 
torque 

Clockwise 
torque 

Anticlockwise 
torque 

rT /s 0.0682 0.0709 0.075 

sT /s 0.23672 0.5 0.375 

Overshoot in % 12.7 12.64 10.0 

 

The step response are shown typically for a 
payload of 0.7 kg because the simulation responses 
show no large differences with different payloads.  
To determine the source of these errors in 
overshoot and steady-state error a number of 
simulations were performed with a range of 
parameters using values which represent a wider 
range than was reasonably possible from the 
measured values.  Effects of varying motor torque 
constant, viscous friction and different inertias on 
the system reponse were simulated.  Of these only 
the inertia could yield overshoots as large as the 
measured response but would have to be damped 
by unusually large friction values.  None can 
explain the steady state error. 

3 2 Fuzzy Response  

Table 12 shows the rise and settling time for the 
prototype and simulation for the right handside 
direction with fuzzy-control. Figure 10 gives the 
appropriate response. The shapes of the graphs 
look quite close. The simulation does not reach the 
100% value of the prototype step response. Also 
there is a small time displacement between the two 
graphs. 

 

Table 12 Characteristics of the step response with 
fuzzy control for RHS 

Fuzzy-control Prototype Simulation 

rT /s 0.032 0.055 
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sT /s 0.076 0.1 

 

 

4.0 DISCUSSION 

The correlation coefficient can be used to refute a 
simulation. Therefore the Matlab simulation is not 
a valid simulation of the behaviour of the flexible 
manipulator. For the ACSL simulation the 
correlation coefficients show that it is a useful 
simulation. The lowest coefficient without the 
additive stiction torque is 78% and the highest is 
94%.  

This makes it clear that the values of the data sets 
of the simulation and the prototype correlate very 
well at zero load. But if the reader compares the 
graphs they will be disappointed by the differences 
they can see. Through the added stiction torque in 
the program the correlation coefficients decrease 
for the RHS direction and rise only slightly for the 
LHS direction. The stiction torque was added to 
improve the performance of the simulation. The 
observed experimental response tests show a 
distinct difference between the step responses for 
the different directions and payloads in the 
overshoot. The peak percentage overshoot of the 
simulation with stiction torque decreases slightly 
and there are only small differences in the 
simulation between the peak percentage overshoot 
for the two directions.  It is clear that the 
correlations for the second part of each response 
are poor because the measured responses are more 
oscillatory than the simulation.  This would imply 
that the robot is more flexible than measured from 
static values.  They also imply that this disparity is 
different in the two directions. 

At the beginning of movement the motor torque is 
always so great that it can overcome the stiction 
torque. After this research it can be said that the 
stiction torque does not dominate the performance 
of the system. 

Other effects that can cause different step 
responses for different payloads and different 
directions are the coulomb friction which is caused 
by the gearing and gear backlash. Both of them can 
be prevalent for practical systems but they are not 
modelled in this simulation as the harmonic drive 

exhibited no detectable backlash.  The friction in 
the system was very close to the measured values. 

After all these considerations and much effort 
expended on static calibration, there are only two 
aspects of the model that could cause such 
asymmetry.  One is the stepper motor drive system 
for the laser.  This was tested separately and did 
not exhibit such a tendency.  The other possibility 
was the bolted joint connecting the arm tube 
section to the frame.  If the small clearance in the 
bolt holes is considered and the direction of 
tightening is clockwise then a clockwise step input 
to the arm would tend to cause the bolts to slip but 
an anticlockwise step would tend to tighten the 
bolts.  This movement only has to be of the order 
of 0.17 mm, which is comparable to the clearance 
in the holes. 

The root stiffness of the arm is a significant factor 
in producing the oscillations seen in the records.  
Measurements of this effect are continuing. 

 

5.0 CONCLUSION 

The work of the simulation with Matlab shows 
how difficult the modelling of this project is, 
because this simulation is not good enough to 
represent the prototype. 

This paper demonstrates the use of an ACSL 
program to simulate the prototype, modelling the 
continuous arm by means of finite difference terms. 
The correlation coefficient shows that the 
simulation is realistic but it is not recommended if 
it is used with different payloads and PD classical 
control.  

The implementation of stiction torque to the 
simulation does not represent the phenomenon that 
the overshoot change depends on the direction and 
on the payload at the tip of the arm. 

The use of this simulation to find a solution for the 
control problem for flexible robot arms using the 
fuzzy controller of Sudhar shows good results, 
because the correlation coefficient of the 
simulation with a fuzzy controller is 99% for 0 kg 
payload. 
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LIST OF SYMBOLS 

Roman 

e error 

EI Young’s modulus times second moment of 
area 

i current 

J  Polar moment of inertia 

Ke constant 

Kp Proportional gain 

KT Torque constant 

L Length of arm or inductance 

M Moment 

N Gear ratio 

R Armature resistance 

S Shear force 

t Time 

 

 

 

Tr Rise time 

Ts Settling time 

v Velocity 

Vapp Voltage applied to armature 

x Distance along arm 

y Displacement of arm 

Greek 

δ elevation of the arm 

µ Friction coefficient 

θ Hub rotation 

ρ Mass per unit length 

τ Torque 

ω angular velocity

 


