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ABSTRACT
Foreground-Background Segregation has been intensively researched in the last decades as it is an important first
step in many Computer Vision tasks. Nonetheless, there are still many open questions in this area and in this
paper we focus on a special surveillance scenario where a static camera monitors a predefined region. This restrain
makes some aspects easier and good results could be achieved with Background Subtraction methods. However,
these only work pixelwise and lack the spatial component completely. We suggest an approach to add the crucial
spatial information to the segmentations with Dense Optical Flows. For this, a number of successive images are
taken from the video to compute the Trajectories of the pixels through these frames. This enables us to fuse the
information from the several images and use this for segmentation. The algorithm was evaluated on a video from
a surveillance camera and showed promising results.

Keywords
Foreground-Background Segregation, Background Subtraction, Dense Optical Flows, Video Segmentation

1 INTRODUCTION
Detecting objects of interest in an image or video is
an arduous task which has distressed the computer vi-
sion community for decades. The abundance of dif-
ferent circumstances and aims (definitions of objects
of interest) makes it impossible to create one general
solution to this problem. Hence, different special ar-
eas have developed over time like the recognition of a
few previously specified objects in an image or video
[Duraisamy and Jane, 2014], general object detection
for images [de Carvalho et al., 2010] or detection of
moving objects in a video [El Harrouss et al., 2015].

In this paper we consider the last case and want to de-
tect all moving objects in a video scene. Therefore, we
assume a video from a static camera, e.g. a surveil-
lance camera mounted in a shopping street. This makes
it easier to detect the movement of objects because the
background (buildings, streets etc.) are completely sta-
ble in their position over time. There are some at-
tempts to extend these techniques to non-static cam-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

eras by estimating the three dimensional trajectories of
the background[Sheikh et al., 2009]. However, the cre-
ation of a meaningful background model is error-prone
because small imperfections in the trajectories will ac-
cumulate over time and thwart any precise modeling.
That’s why, the trajectories themselves were only used
as cues and everything with a different trajectory than
the background was labeled as foreground.

If the video is taken with a static camera, the back-
ground can be modeled over time with statistical meth-
ods. Moving objects, which are the interesting objects
to most users, can then be detected via Background
Subtraction. This is a very popular approach since it
gives State of the Art results for one of the main use
cases of segmentation algorithms, static surveillance
cameras. Also, it is very effective and can be done in
real time[Tabkhi et al., 2015]. However, there are two
issues with this methods which have to be addressed.

The first one is the background modeling itself, which
is affected by the presence of the ubiquitous noise in
images. This noise can be reduced by applying a Gaus-
sian Filter on the image but slight variations are al-
ways present (otherwise too much information would
be lost due to the strong Gaussian smoothing) and have
to be compensated with an adequate threshold, ide-
ally one which adapts to the specific scene and cam-
era [Soeleman et al., 2012]. Furthermore, the back-
ground can change over time, e.g. a car that parks or
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light which is turned on or off. To model these occur-
rences an accurate adjustment of the learning rate of
the model is required and sometimes an event detection,
which changes the learning rate or resets the model for
special cases, can be beneficial [Radolko et al., 2015,
Toyama et al., 1999].
The second issue to be addressed is the pixelwise
thresholding and labeling in the Background Subtrac-
tion phase which incorporates no spatial component.
Images are usually quite smooth with only few distinc-
tive edges. Without a spatial model, this smoothness
cannot be represented by the method and no coherent
objects will be segmented but many small fragments.
There are a vast number of models which have been
applied on Background Subtraction results to add
spatial information. One example is Graph Cut
[Tang and Miao, 2008], which finds the best cut in a
probability map created by the Background Subtrac-
tion. Another method is the Markov Random Field
which models direct neighbourhood relations between
single pixels and therefore enforces a spatial coherency
[Wan and Wang, 2010].
In this paper, we suggest a different approach of ad-
dressing this lack of spatial information of the Back-
ground Subtraction method. We use Dense Optical
Flows to acquire spatial-temporal information about
each pixel, which allows us to track pixels through sev-
eral frames of the video. Therefore, the data from sev-
eral others frames of the video can be used to enhance
the segmentation, which results in a less noise-sensitive
algorithm. Also, the Dense Optical Flow gives us a sec-
ond cue for the foreground detection. High flows cor-
respond to moving objects in the video, which should
be detected by the Background Subtraction. Thereby,
the optical flow can verify and improve the Background
Subtraction result in two different ways.

2 APPROACH
The aim of our approach is to detect all objects of in-
terest in a video. The camera is assumed to be static
to simplify the task and consequently the areas of in-
terest are defined as all objects in motion. If immobile
objects are of interest it would be meaningless to make
a video with a static camera, a single picture would be
enough. First we will shortly introduce the Background
Subtraction method and the algorithm to estimate the
Dense Optical Flow of the video. In the next step the
data from the Dense Optical Flow is used to estimate the
position of an object in the previous and future frames
of the video. This is used to unify succesive segmen-
tations, which increases the reliability of the object de-
tection.

2.1 Background Subtraction
To get a first estimation about the moving objects in the
scene, we use the Gaussian Switch Model Background

Subtraction described in [Radolko and Gutzeit, 2015].
There are exactly two pixelwise Background models
trained over time and both use a running Gaussian esti-
mation. However, only one is completely updated with
every new frame and the other only partially for those
pixels which are classified as background.

The model which gets only partially updated usually
gives a better background estimation because fore-
ground objects are omitted in the updating process
and do not corrupt the model. However, since the
foreground-background classification is based on the
same model it works sometimes like a self-fulfilling
prophecy and cannot adapt to some special cases.
Therefore, the second model, which is completely
updated with every frame, is necessary. A comparison
between both models allows us to detect these special
cases and then switch to the appropriate model. For
more details see [Radolko and Gutzeit, 2015].

To further process these information simple
foreground-background labels are not sufficient.
Therefore, we calculate the probability of being in the
foreground for each pixel. For every color channel of
the image the Euclidean distance between the values of
the current frame and the model is taken and weighted
with the variance of the Gaussian model for that
channel and pixel. To unify these to a single probability
measure, the three values are scaled, bounded (to avoid
probabilities larger than one) and added together. This
gives us a continuous probability value, which carries
much more information than a simple binary label.

2.2 Dense Optical Flow
The dense optical flow is computed with the algorithm
described in [Farnebäck, 2003]. The first step in cre-
ating the Optical Flow between two images consists of
modeling both images as Polynomial Expansions. By
solving a system of linear Equations, a displacement
vector between these two models can be computed for
each pixel location. However, single pixels are too vul-
nerable to noise, so that no smooth or accurate solution
is attainable in this way. This issue can be resolved by
using small areas instead of single pixels. We always
use patches with the size of 15×15 pixels and radially
decreasing weights for the computation of the displace-
ment vectors in this paper.

A priori knowledge can be incorporated into the com-
putation by setting the starting values accordingly. In
this case, the algorithm only has to compute the dis-
placement vector to the a priori knowledge, which is
usually much smaller than the raw displacement be-
tween the two images. This is very beneficial because
the calculation of large displacement vectors is prone to
errors. This approach can be used in two ways to im-
prove the Optical Flows. Since we use a video and want
to compute the Dense Optical Flows for all frames, the
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Figure 1: In the top row the intensities of the optical flow are depicted for an image. On the left side for the
right-left movement and on the right for the up-down movement. In the bottom row are the orignal frame from the
video and the segmentation result.

flow from the last frame can be used as a good start-
ing approximation for the current frame. In the second
strategy a hierarchical approach is used and the Optical
Flow is calculated first on a low resolution version of
the image. The result of this calculation is then used as
a start value for versions with higher resolution.
Thereby, the Optical Flows can be computed faster and
in a more stable way over the course of a video. An
example of the results of the optical flow can be seen in
Figure 1. It can clearly be seen that optical flow better
represents the smoothness in natural images as a back-
ground subtraction method and is therefore in itself an
important second cue for the segmentation. In the next
step these extracted information are used to enhance the
segmentations derived from the Background Subtrac-
tion.

2.3 Using Optical Flows as a Spatial Com-
ponent

Background Subtraction algorithms usually give good
segmentation results but suffer from the lack of spatial
information incorporated. Therefore, false detections of
single pixels or small areas are common and prevent the
precise recognition of smooth and coherent foreground
objects. We try to mitigate this behavior by calculating
the pathway of each pixel over several frames (past and
future) and smooth the foreground probability with a
Gaussian filter over this pathway.
The pathway of each pixel can be easily derived from
the Dense Optical Flows. Here they are denoted as

DOFx
n−1,n(x,y) and DOFy

n−1,n(x,y). (1)

The Optical Flow is here computed between the
n−1-th and n-th frame of the video for the pixel

at location (x,y) in frame n− 1. DOFx denotes the
horizontal flow and accordingly DOFy the vertical
flow. Thereby, the pixel p = (x,y) in frame n− 1 has
moved to location

x̃ = x−DOFx
n−1,n(x,y) (2)

ỹ = y−DOFy
n−1,n(x,y). (3)

in frame n according to the Optical Flow. The new loca-
tion for p in the frames n−2 or n+1 can be calculated
in a similar way. With this method pathways for single
pixels can be computed over several frames. However,
since the Optical Flows are not perfectly accurate and
errors accumulate radically over longer pathways, reli-
able information can only be derived for a small num-
ber of past or future frames. In our approach, the path-
ways for 7 frames (n− 3 to n+ 3) are computed and
used to enhance the foreground probabilities of the n-
th frame. This is done by using a Gaussian filter along
the pathway centered at the n-th frame with standard
deviation of 0.75. The low standard deviation ensures
that the importance of the values along the pathway de-
creases rapidly in both directions, this corresponds to
the rapidly decreasing certainty of the correctness of the
pathway.

Furthermore, the Optical Flows are an indicator of
movement in the scene themselves and can be used
as a foreground cue. For this purpose, the location of
the pixel p in the frames n− 1 and n are taken and the
Euclidean distance dn−1,n

p is computed. The same is
done for the locations in the frames n and n+ 1. The
foreground probability wp of pixel p derived from the
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Background Subtraction is taken and enhanced in the
following way

w̃p =
2
3

wp +
1
6

min(dp
n−1,n,1)+

1
6

min(dp
n,n+1,1). (4)

The weights of the different components have deter-
mined experimentally, only condition is that they add
up to one to ensure that the alue stays in the range of
[0,1].

The third step is a slight spatial smoothing of each prob-
ability map separately in which the differences of the
value of the central pixel with that of all other pixels
in a 3×3 neighborhood are summed up, weighted and
the result is added to the probability value of the central
pixel. These three steps; the smoothing over the trajec-
tories, the adding of the Optical Flow prior and the spa-
tial smoothing; are applied successively on a batch of
segmentations derived from the Background Subtrac-
tion. For the tests in this paper a batch size of 100
frames was used.

We iterated several times over the whole batch and ap-
plied all three methods each time. This elaborate pro-
cess is useful because the changes in the segmentation
in the first step influence the smoothing over the trajec-
tories in the next steps. The quality and smoothness of
the probability maps increases gradually over the iter-
ations and with this also the trajectories provide better
information in each step and thereby improve the seg-
mentations further. As the trajectories cannot be fully
computed for the first and last three frames of the batch,
the segmentations are only computed for the frames 4
to 97 of the batch. Some trajectories cannot be com-
puted because for each trajectory we have to reach three
frames into the future and past, but for the first and last
three frames of the batch this is obviously not possible.

This process, of course, needs a termination criteria
which stops the iteration. Instead of a fixed number
of iterations, we measured the changes in the proba-
bility fields from one iteration to the next, and if these
changes where smaller than a specified threshold the
loop would break. To reduce the computational cost we
constrained this measurement to the probability map for
one frame of the batch. A summary of the whole seg-
mentation process can be seen in Algorithm 1.

3 RESULTS
To test our method we used the Town Center Video
[Benfold and Reid, 2011] which is made with a surveil-
lance camera in a shopping street. The provided ground
truth data is made for the comparison of tracking algo-
rithms and not suitable for our purpose. Hence, we cre-
ated several groundtruth picture ourselves manually to
evaluate the algorithm. The ground truth data consists
of a trimap which classifies each pixel as foreground
(white), background (black) or uncertain (gray). Two

Algorithm 1 Our Method
1: ** initial segmentations **
2: for i=1:100 do
3: f rames[i]← getimage(video)
4: U pdateBackgroundModel( f rames[i])
5: segs[i]← BackgroundSubtraction( f rames[i])
6: **get Dense Optical Flows**
7: for i=1:99 do
8: DOF [i] = getDOF( f rames[i], f rames[i+1])
9: ** get Trajectories **
10: Paths← getTra jectories(DOF)
11: ** use DOF and Paths to improve results **
12: while TerminationCriteria do
13: for i=4:97 do
14: segs[i]← spatialsmoothing(segs[i])
15: segs[i]← AddDOFPrior(segs[i],DOF [i])
16: for i=4:97 do
17: segs[i]← PathSmoothing(segs,Paths[i])

examples of this can be seen in Figure 2, where also the
results of our algorithm are depicted.

As comparison the algorithm from [Zivkovic, 2004]
and [Zivkovic and Heijden, 2006] were used on the
same data set. To have a neutral implementation of
these algorithms we used that provided by OpenCV.
The results of these two and our algorithm on the
test images from Figure 2 can be seen in Table 1.
The F1-Score and Matthews correlation coefficient
(MCC) are taken as a measure for accuracy. In both
measures our approach achieved a better result than the
other algorithms and could significantly improve the
results achieved by just using the GSM Background
Subtraction.

All in all our approach shows good first results and is
a promising novel method to add spatial information to
pixel based segmentation methods. The addition of the
optical greatly increases the robustness to camera noise
as can be seen in the examples given and also helps
with updating the background (when the background or
light conditions changed) because there is a second cue
to confirm or deny the existing model. The computation
of the optical flows is done on the GPU and therefore
very fast, nonetheless is the fusion of the data from the
different methods too costly for a real time approach, it
took us about one second per image for the computa-
tion.

4 CONCLUSIONS
We presented a new method to enhance the results
of pixel based segmentation methods like Background
Subtraction with spatial information, so that the results
better reflect the smoothness of natural images. For
this purpose we computed pixel trajectories over sev-
eral frames of the video with Dense Optical Flows and
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used this to fuse the data of several successive frames.
This decreased the vulnerability of our segmentations
to noise as the flaws in a single measurement (frame)
could be corrected by the data obtained from the other
frames. At the same time, this approach increased
the smoothness of the segmentations because the fore-
ground probabilities are smoothed over several frames
and the smoothness of the Dense Optical Flows is also
gradually transferred to the segmentation.

The usage of the trajectories derived from the Optical
Flows to adjust the foreground probabilities for the pix-
els and the spatial smoothing based the differences of
the probabilities in a 3× 3 neighborhood further im-
proved the results. In the future, we would like to de-
velop a Dense Optical Flow algorithm which is espe-
cially designed for this approach and the circumstances.
It should incorporate the knowledge about the static
camera, so that large parts of the flow can be assumed
to be zero. Also, to compute better trajectories we want
to use several frames at once and compute the best tra-
jectory over these instead of only computing the flow
between two frames at a time. We hope to increase the
robustness of the trajectories in this way and hence en-
large the benefit of our algorithm for the segmentations.
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left picture of Figure 1 [Zivkovic, 2004] [Zivkovic and Heijden, 2006] only GSM our Approach
MCC 0.8324 0.8591 0.8543 0.8789
F1-Score 0.9899 0.9890 0.9894 0.9916

right picture of Figure 1 [Zivkovic, 2004] [Zivkovic and Heijden, 2006] only GSM our Approach
MCC 0.8292 0.8598 0.7908 0.8937
F1-Score 0.9879 0.9899 0.9816 0.9930

Table 1: Evaluation of the segmentations shown in Figure 1 with two algorithms from Zivkovic for comparison.

per image pixel for the task of background subtrac-
tion. Pattern Recogn. Lett., 27(7):773–780.
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Figure 2: Shown are (top to bottom): original frame, ground truth, GSM Background Subtraction Segmentation,
our result
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ABSTRACT
Local linearity of vector fields is a property that is well researched and understood. Linear approximation can be
used to simplify algorithms or for data reduction. Whereas the concept is easy to implement in 2D and 3D, it
loses meaning on manifolds as linearity has either to be defined based on an embedding in a higher-dimensional
Cartesian space or on a map. We present an adaptive atlas-based vector field decomposition to solve the problem
on manifolds and present its application on synthetic and climate data.

Keywords
Physical Sciences and Engineering, Environmental Sciences, Vector Field Projection, Vector Field Approximation

1 INTRODUCTION

Linear flow behavior in vector fields has been studied,
because it allows an easy representation of the flow
using the Jacobian matrix, and a characterization in
few, well-understood basic linear flow patterns is possi-
ble [HSD04]. Investigations of linear vector fields exist
for R2 and R3, and have proven to be a valuable tool
for understanding flow. However, many real-world vec-
tor fields—e.g., in the geosciences (convection in the
earth mantle), in the oceanic sciences (ocean currents),
or in the atmospheric sciences (wind fields)—are tan-
gential vector fields on curved surfaces. These datasets
impose difficulties on the analysis, because tangent vec-
tors can not directly be compared and the curvature of
the surface has an influence on the vector field direction.
Thus, linear flow behavior on manifolds is not directly
describable and also not algorithmically accessible.

Usually, manifolds are only investigated at a small
scale. One example is the use of cells that subdivide the
manifold. A linear interpolation within the cell leads
by definition to a linear field. If linearity is defined
in the planar projection of each cell, the continuity
across cell boundaries is not preserved across cell
edges. This has implications, e.g., on the vector field’s
topology [AH11]. When extending the linearity across
larger areas to approximate the field in what has been
called a Affine Linear Neighborhoods [KWKH13] to
describe the field around singularities, special care

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

must be taken to avoid conflicts with the curvature of
the surface.

In this paper, we propose a characterization of linear
flow behavior on arbitrary two-dimensional manifolds
and a method that allows the computation of linear
neighborhoods on such manifolds. Based on this, we
construct an atlas of the surface together with a corre-
sponding, good linearly approximable, vector field rep-
resentation. We demonstrate the application of the ap-
proach by evaluating synthetic fields on the sphere as
well as on a real-world dataset of ocean currents.

2 RELATED WORK
The extraction and utilization of local linear vector field
approximations has been discussed by several previ-
ous works. Schneider et al. [SRWS10] used the linear
flow behavior in the vicinity of critical points to im-
prove and accelerate stream surface integration. Wiebel
et al. [WKS12] introduced glyphs to investigate the
flow behavior at critical points and to study the inter-
action between them. Later, Koch et al. [KWKH13]
introduced the Affine Linear Neighborhood (ALN). For
a particular seed point, an ALN represents all con-
nected points that can be approximated by an affine lin-
ear function while staying below a user-defined error
threshold. They utilized their ALN definition to present
a vector field approximation, as well as a compression,
that is based on segmentation [KKW+15].So far, these
methods only work on two- or three-dimensional fields
but not on curved manifolds.

Other kinds of local approximation are the vector field
moments introduced by Bujack et al. [BHSH14]. But
there is no extension to arbitrary manifolds, yet. A
different approach that lives entirely in the tangential
space is the vector field definition using radial basis
functions (e.g., Fuselier and Wright [FW09]). Here, the
focus is on a reconstruction of the field from sample
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points that are scattered on the surface. While this al-
lows to locally characterize the field using kernels, no
discussion of linear flow behavior has been done.

3 DEFINITION OF LINEARITY
Our goal is an algorithmically usable definition of lin-
earity on manifolds. The main problem is that vectors at
different points on the manifold live in different tangent
spaces and are not directly comparable. Thus, it is un-
clear how linearity can be characterized. In the follow-
ing, we formally define 2D manifolds and vector fields
on them. Then, we give two possible definitions of lin-
earity and discuss their applicability. By doing this, we
want to make the notion of “something that looks linear
on the manifold” accessible to computations.

3.1 2D Manifolds and Vector Fields
A differentiable, two-dimensional manifold M is a
topological space that is locally homeomorphic to the
two-dimensional Euclidean space. More specifically,
it is defined by an atlas, i.e., a collection of charts
(Ui ⊂M,ϕi : Ui→ B⊂ R2), such that the Ui are an
open cover of M (i.e.

⋃
i Ui = M) and all ϕi are

homeomorphisms. Furthermore, the chart transitions
ϕi ◦ϕ

−1
j need to be diffeomorphisms.

At each point p ∈ M, we can define a tangent vec-
tor as an equivalence class of differentiable curves γ :
(−ε,ε) ∈ M with γ(0) = p. Thereby, two curves γ1
and γ2 are equivalent, if and only if (ϕ ◦ γ1)

′(0) =
(ϕ ◦ γ2)

′(0) for any chart ϕ . These vectors form a two-
dimensional vector space, the tangent space TpM in p.
The representation of a tangential vector v in chart ϕ is
(ϕ ◦ v)′(0) ∈ R2.

Note, that the tangent spaces TpM and TqM are distinct
if p 6= q. The union of all tangent spaces forms the
tangent bundle T M of M.

Now, we can define vector fields as functions that map a
tangent vector to every point of M. A vector field v is a
function v : M→ T M, such that p ∈M 7→ v(p) ∈ TpM.

3.2 Polynomial Vector Fields
Many common two-dimensional manifolds are embed-
dable into R3, e.g., the sphere or the surface of me-
chanical components. Therefore, it is a natural idea
to perform all calculations in the space of the embed-
ding and to make use of polynomial vector fields in 3D
(cf. [LP06]). A polynomial vector field on the manifold
is then a 3D vector field restricted to the manifold that
is everywhere tangential to the manifold.

If we can express a 3D vector field in the form of
v(x) = A · x+ b, where x,b ∈ R3 and A ∈ R3×3 is the
Jacobian matrix, we call it a linear vector field in 3D.
Furthermore, we could consider the restriction to the
manifold to be a linear vector field. For example, if the

manifold is the unit sphere, the field given by (−y,x,0)
would be such a linear polynomial field. However, the
surface of some manifolds can not be described by a
linear equation. In this case, a field that is linear on a
geodesic on the surface may not be a linear polynomial
vector field in 3D.
In general we would like to consider a field to be lin-
ear, if it has a constant Jacobian on the surface. But,
there are two disadvantages with this approach: (1) It
is unclear, how a Jacobian on a general manifold is de-
fined. (2) If we simply use Jacobian matrices of the
three-dimensional field, it is unclear how to interpret
them and how to compare them for different positions
of a manifold.
In any case, the Jacobian matrices would need to be
transformed into a coordinate reference system that is
tangential to the surface. Still, we have one remain-
ing degree of freedom: the rotation around the normal
vector of the tangential surface. A meaningful compar-
ison of Jacobian matrices is only possible when consis-
tent alignment is achieved. Therefore, this solution us-
ing polynomial vector fields is unsatisfactory for more
complex manifolds than planes. Already on the sphere,
a globally consistent alignment might be impossible ac-
cording to the Hairy ball theorem [EG79].

3.3 Projected Vector Fields
Vectors on the manifold can not directly be compared
and thus, linear vector fields can not be easily charac-
terized within T M. However, linearity is well defined
for vector fields on Rn. We present an approach to de-
scribe linearity on 2D manifolds by using a projection
of the surface into R2 and carrying over the vector field
into this projection. For this, we assume that an atlas of
the manifold is available.
Given a chart ϕ : M ⊃U→ B⊂R2,(u1,u2) 7→ (x1,x2),
the tangent space at every point p ∈ M is character-

ized by the basis

{
∂

∂u1

∣∣∣∣
p
, ∂

∂u2

∣∣∣∣
p

}
. Consequently, the

vector field v : M → T M can be expressed as v(p) =

∑
2
i=1 ai(p) · ∂

∂ui

∣∣∣∣
p
. Here, ai are functions of the form

ai : U → R and are called the coefficients of the vectors
in the chart ϕ [Küh10]. So, for every chart we have
a specific representation of the vector field in the form
of coefficients. We can analyze these coefficients algo-
rithmically if we find a way to make them comparable
across different tangential spaces.
This can be done by moving all vectors into one
tangential space by means of a parallel transport,
i.e. [ZMT06]. In the general case, a computation of
the parallel transport is difficult and expensive, as it
requires geodesic curves to be integrated.
In this work, we chose a different approach and unify
tangential spaces by projecting them into a common
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space. Specifically, we project the basis vectors of each
tangential space into R2 using a chart. The basis vectors

∂

∂u1

∣∣∣∣
p

and ∂

∂u2

∣∣∣∣
p

are mapped onto the new basis vectors(
∂x1
∂u1

∂

∂x1
+ ∂x2

∂u1
∂

∂x2

)∣∣∣∣
ϕ(p)

and
(

∂x1
∂u2

∂

∂x1
+ ∂x2

∂u2
∂

∂x2

)∣∣∣∣
ϕ(p)

.

Thus, ∂

∂xi
corresponds to ei in R2.

Applying this transformation, we obtain a new vector

field ṽ(p̃) = ∑
2
i=1 ai(ϕ

−1(p̃)) ·
(

∂x1
∂ui

∂

∂x1
+ ∂x2

∂ui
∂

∂x2

)∣∣∣∣
p̃
.

This vector field is defined on B ⊂ R2 and maps into
R2. As the ai are defined on the manifold, we apply
the inverse chart ϕ−1 to map from B back onto the
manifold to obtain the coefficients.
A disadvantage of this approach are the distortions of
the surface that are introduced by the projection. These
lead to distortions of the vector field that contradict an
intuitive interpretation of the linearity that we observe
in the projection. Therefore, in this work, we assume
the following requirement to be fulfilled: As long as the
projection of the tangent spaces is sufficiently free of
distortions, we can consider ṽ a vector field in planar
space that is equivalent to v.

3.4 Requirements on projections
In the vicinity of a critical point in two or three-
dimensional vector fields, the flow behavior is linear,
i.e., the magnitude and orientation of the vector field
depends linearly on the distance from the critical point.
This behavior is represented by the Jacobian matrix of
the critical point. We transfer this concept to manifolds
by requiring that the magnitude and orientation of the
vector field depends linearly on the geodesic distance
from the critical point. Given a critical point on the
manifold and a chart of the vicinity of the critical point
into R2. If the chart is sufficiently distortion-free, the
projected vector field can be described by the Jacobian
at the critical point in R2. Here, absence of distortion
means, that the characteristic flow properties around
the critical point are preserved by the projection.
We postulate the following requirements:
1. A linear increase in the vector field magnitudes with

increasing distance to the origin (measured along the
surface) should be maintained in the chart (measured
with Euclidean distance).

2. Geodesic lines that touch the critical point, should
be preserved as straight lines in the chart.

3. In a rotational field, particles should rotate around
the center at the same frequency independent of
the distance to the center, i.e., the angular velocity
around the critical point should be preserved.

We designed these requirements so that the typical flow
behavior around critical points is preserved by the pro-
jection. The first requirement ensures that the typical

linear decrease in the vector field magnitudes that can
be observed when approaching a critical point, is also
present in the projection. The second requirement en-
sures that, e.g., star sources and sinks appear as such in
the projection. The third requirement ensures a correct
appearance of the rotating flow around center points.
If a chart satisfies our requirements, linear flow behav-
ior on the manifold is carried over into the projection.
Vice versa, linear flow behavior in the projected vector
field is also present on the manifold. Thus, linearity on
general manifolds becomes computationally accessible.

4 APPLICATION TO THE SPHERE
We demonstrate the application of our definition of lin-
ear flow behavior by considering the sphere. This two-
dimensional manifold has several advantages: It has a
well-known embedding into R3 and many parameteri-
zations and projections into R2 are available. Further-
more, its constant curvature allows to reliably estimate
the effects of the shape of the surface on the projections.
The main task of the application is to choose a projec-
tion that is well suited with respect to the requirements
stated in the previous section. Because of the curvature
of the sphere, it is impossible to meet all three require-
ments at the same time. For example, requirement 1
and 3 are contradictory. A corollary from the theorem
of Gauss-Bonnet is that the perimeter of a circle of ra-
dius r deviates from 2π · r depending on the curvature
of the surface. Thus, we either distort the vector mag-
nitudes or the angular velocity [EJ07, Küh10].
Therefore, it is not possible to find a projection that
meets all requirements. In the following, we state three
common projections and investigate how well they pre-
serve different flow behaviors. Finally, we introduce an
approach to deal with the distortions due to the projec-
tions by using local charts.

4.1 Projections and their Properties
There exists a large variety of projections that preserve
different properties in the final map [Sny97]. Especially
conformal and equal-area projections are contrasted.
Conformal projections locally preserve angles, respec-
tively shapes. In contrast to this, equal-area projections
try to preserve the area measures, which naturally in-
duces distortions.
In the following, we consider the parameterization of
the unit sphere in sphere coordinates (φ ,λ ) with lat-
itude φ and longitude λ . A projection is a function
(φ ,λ ) 7→ (x,y) ∈ R2 that directly maps from the pa-
rameterization into the plane. If applicable, (φ0,λ0)
denotes the origin of the projection. We assume the
vector field to be given in (φ ,λ )-coordinates. I.e., for
every position (φarb,λarb) we know the velocity and

direction in the tangential space
{

∂

∂φ
, ∂

∂λ

}∣∣∣∣
(φarb,λarb)

.
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We define the mapped tangential spaces by computing
the basis

{(
∂x
∂φ

∂

∂x +
∂y
∂φ

∂

∂y

)
,
(

∂x
∂λ

∂

∂x +
∂y
∂λ

∂

∂y

)}
for the

position (xarb,yarb). Thus, the projection vpro j of a vec-
tor v = (vφ ,vλ ) is given by

vpro j =

(
∂x
∂φ
· vφ +

∂x
∂λ
· vλ

∂y
∂φ
· vφ +

∂y
∂λ
· vλ

)
.

To study the flow behavior in projected vector fields, we
use the following three projections.

Orthographic projection – The orthographic projec-
tion is given by

x = cos(φ) · sin(λ −λ0),

y = cos(φ0) · sin(φ)− sin(φ0) · cos(φ) · cos(λ −λ0).

The corresponding basis vectors are
∂x
∂φ

= −sin(y) · sin(x− x0),

∂x
∂λ

= cos(y) · cos(x− x0),

∂y
∂φ

= cos(y0) · cos(y)

+sin(y0) · sin(y) · cos(x− x0),

∂y
∂λ

= sin(y0) · cos(y) · sin(x− x0).

It is one of the most common and easiest projections.
As shown in Figure 1(b), only the hemisphere facing the
tangential plane can be projected. Trivially, it is neither
a conformal nor an equal-area projection. Thus, shapes
are clearly distorted in the projection and the distortion
drastically increases towards the boundaries. However,
angular speeds around the map’s origin are preserved.

Mercator projection – The Mercator projection is

x = λ −λ0, y = asinh
(
tan(φ)

)
.

The basis vectors are
∂x
∂φ

= 0,

∂x
∂λ

= 1,

∂y
∂φ

=
√
(cos(y))−2,

∂y
∂λ

= 0.

It was developed by Gerhard Mercator (1512–1594).
It maps the sphere to a surrounding cylinder and
introduces an appropriated distortion along the cylinder
axis to produce a conformal mapping (cf. Figure 1(c)).
Thus, small scale geometrical shapes are well pre-
served. Unfortunately, this projection is not equal-area
and the great circles of the sphere are not mapped to
straight lines.

Kavrayskiy VII – The Kavrayskiy VII projection
was introduced by Valdimir Vladimirovich Kavrayskiy
(1884–1954). The projection is

x =
3
2
·λ ·

√
1
3
−
(φ

π

)2
, y = φ .

The basis vectors are

∂x
∂φ

=
− 3

2 · x · y

π2 ·
√

1
3 − ( y

π
)2
,

∂x
∂λ

=
3
2
·
√

1
3
− (

y
π
)2,

∂y
∂φ

= 1,

∂y
∂λ

= 0.

It was designed to provide a compromise between a
perfect equal-area and conformal projection. The ob-
tained map exhibits only small overall distortions (cf.
Figure 1(d)). Thus, the Kavrayskiy VII projection is
a good candidate for general purposes and is the last
mapping we use for our study.

(a) parameterization (b) orthographic

(c) Mercator (d) Kavrayskiy VII
Figure 1: Figure 1(a) shows the parameterized grid
of a sphere and 1(b) to 1(d) its projected counter-
parts. While the orthographic projection nicely repre-
sent the sphere’s shape, it unfortunately discards one
hemisphere. The other two projections realize a con-
formal (cf. 1(c)), and a compromise between equal-area
and conformal projection (cf. 1(d)).

4.2 Atlas-Based Decomposition
The distortion caused by a projection commonly in-
creases with the distance from the map’s origin. Thus,
linear flow behavior on a sphere, as defined in Sec-
tion 3.4, usually can not be preserved globally in a pro-
jection. This triggers the natural idea to use several
charts that only project small parts of the manifold.

By using multiple charts that locally project the vector
field into R2, we obtain an atlas-based representation
of the vector field. The construction of the atlas has to
ensure that the obtained vector field projections are al-
most distortion-free. For example, one could use every
critical point of the sphere’s vector field as the projec-
tion center for one chart to preserve the flow behavior
in its vicinity as good as possible.

Furthermore, we can generalize the approach of lo-
cal projections to non-critical points. Then, the charts
can be based on regions on the manifold with mostly
affine linear flow behavior in order to obtain a simple
and easy comprehensible representations of the vector
field. This idea corresponds to the work of Koch et
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al. [KWKH13, KKW+15], who determined regions of
mainly linear flow behavior in vector fields.

5 RESULTS
We demonstrate the influence of projections on the rep-
resentation of linear flow behavior on manifolds by con-
sidering Affine Linear Neighborhoods (ALNs). Gener-
ally, an ALN is defined as

Lxs =
{

y ∈ R3 ∣∣‖v(y)− Jxs · (y−xs)−v(xs)‖< Emax
}

.

For a seed point xs, the ALN represents the set of posi-
tions that can be approximated by the linear vector field
that is given by the Jacobian Jxs and the offset vector
v(xs), while staying below a specific approximation er-
ror Emax. In the case of vector fields on manifolds, we
consider these approximations in the local charts, as de-
scribed in Section 4.2. Thus, we can infer the extension
of the linearly describable flow on the manifold by map-
ping back all positions of the ALN in the projection.

5.1 Synthetic Vector Field
To evaluate the requirements on projections of Sec-
tion 3.4, we designed different synthetic datasets.
These fields show different types of linear flow behav-
ior. This allows us to study the impact of the projection
on all three requirements separately.

Since the orthographic projection is very common and
the effects of this projection are clearly visible, we first
limit our considerations to this projection type, before
introducing the results of the proposed atlas-based vec-
tor field decomposition (cf. Section 4.2).

Constant Tangential Vector Field – To investigate
the influence of the projection on the flow magnitudes,
we generate two constant, tangential vector fields. One
field is tangent to the circles of latitude

v(s) =
( 1

cos(λ )
0

)
(1)

and one tangential to the lines of longitudes

v(s) =
(

0
−1

)
, (2)

with s = (φ ,λ ), φ ∈ [−π,π), and λ ∈ [−π

2 ,
π

2 ]. The
factor 1

cos(λ ) compensates the non-linear magnitude
changes due to the decreasing radii of the circles of
latitude towards the poles.

The parts of the vectors that point into the viewing di-
rection of the projection will vanish and cause visible
magnitude changes. This is clearly observable in Fig-
ures 2(a) and 2(d). If all vectors are parallel to the pro-
jection plane, the vectors will not be changed due to the
projection. This is shown in Figure 2(b). Here, only the
discontinuity in the pole stands out.

(a) lat. (side) (b) lat. (top) (c) long. (side) (d) long. (top)

Figure 2: These color maps show the magnitude
changes of two constant, tangential vector fields due
to the orthographic projection (cf. Equations 1 and 2).
Figure 2(a) shows the field tangential to the circle of
latitudes with the projection center in (0,0) and 2(b)
with the projection center (0, π

2 ). Figures 2(c) and 2(d)
analogously show the field tangential to the lines of lon-
gitude. The used color map depicts vectors with a mag-
nitude of one in dark red and zero vectors in white.

Linear Vector Field – According to requirement 1
in Section 3.4, we generate two further synthetic vec-
tor fields where the vector magnitudes increase linearly
with the geodesic distance from the north pole. One
field has a center point

v(s) =
(
(π

2 −|λ |) ·
1

cos(λ )
0

)
(3)

and one has a source in the north pole of the sphere

v(s) =
(

0
−π

2 −|λ |

)
. (4)

Additionally to the factor 1
cos(λ ) , described in the pre-

vious paragraph, the factor (π

2 − |λ |) incorporates the
distance from the north pole along a fixed line of lon-
gitude. It causes a linear increase of the vector magni-
tudes with increasing distance from the pole.

Please note, requirement 3 can not be satisfied by this
field design. The radii of circles of latitude grow slower
than linear with the geodesic distance to the pole. Thus,
a linear increase in vector magnitudes also leads to an
increase in angular speed around the pole. The projec-
tions that we use here can not compensate this.

(a) xmc = (0,0) (b) xmc = (0, π

2 )

Figure 3: These LIC images show the center field de-
scribed by Equation 3. The depicted regions are ALNs
seeded in (0,0) (red), (0.8 · π,0) (green), and (0, π

2 )
(blue). For each ALN, Emax = 0.1 was used.

Figure 3 shows two Line Integral Convolution [SH95]
(LIC) images of the center point field. When the projec-
tion center is on the equator of the sphere (Figure 3(a)),
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the magnitudes of the tangential vector field approach
zero towards the boundary of the projection. Thus, the
flow behavior gets more and more non-linear towards
the boundary. This is demonstrated by the differently
seeded ALNs. When the projection center is at the
north pole (Figure 3(b)), the tangential vectors are par-
allel to the projection plane and the change in vector
magnitude is only due to the lengthening along the cir-
cles of latitude. The flow directions and angular speed
around the center point are preserved in this top-view.

Summarizing, we are only able to approximate small
regions by a linear function. One can clearly see by Fig-
ure 3(a) that the extracted ALNs get smaller and smaller
towards the projection’s domain boundary. These dis-
tortion can be minimized by using a map, where the
map center is also the ALN seed point (cf. Figure 3(b)).

(a) xmc = (0, π

2 ) (b) xmc = (0,1)

Figure 4: Analogously to Figure 3(b), the left image
shows the source field of Equation 4 with an ALN
(Emax = 0.1) seeded in (0, π

2 ). The right image shows
the same field projected with (0,1) as the map center.

Figure 4 shows LIC images of the second synthetic vec-
tor field, the source field. Analogously to Figure 3(a),
the projected vector field approaches zero towards the
boundary. Again, the non-linear magnitude change due
to the projection and the scaling of the field along the
lines of longitude have the effect that the projected field
can not be completely described by a affine linear field
in the projection. But if the critical point is located di-
rectly in the map center, all geodesic curves that touch
it are mapped to straight lines. Thus, requirement 2 is
satisfied. Figure 3(b) shows the corresponding coun-
terexample when the critical point is further away from
the map center. Here the non-linearity of the projection
causes a qualitatively different course of the streamline.

To summarize our first findings, only a region around
the map center is sufficiently distortion-free, so that re-
alistic analysis results can be obtained. Thus, we think
that it is necessary to use an approach like the proposed
atlas-based vector field decomposition for the analysis
of linear flow behavior on spheres.

For the comparison of different projection types, we
considered the source field (Equation 4). The projected
vector fields were segmented into regions that can be
linearly approximated without exceeding a specific ap-
proximation error. For this, we used the segmentation

(a) Orthographic (xmc = (0,0)) (b) Orthographic (xmc = (0, π

2 ))

(c) Mercator (d) Kavrayskiy VII

Figure 5: Segmentation using the algorithm of Koch et
al. [KKW+15]. The color map shows the seeding order
of the segments from white to blue. Figure 5(a) shows
127, 5(b) 20, 5(c) 6, and 5(d) 24 segments.

algorithm of Koch et al. [KKW+15]. Their method de-
composes a vector field into regions that are at least
ALN subsets. To allow the extraction of the best and
largest regions with a linear flow behavior, a heuristic
based on the field’s derivatives is used to predict the
needed ALN seed points. The ALN-computation is it-
eratively applied until all positions in the field are as-
signed to at least one ALN. If the assignment of a point
to the ALNs is not unambiguous during this iterative
process, it gets assigned to that ALN, which approxi-
mates the corresponding vector value best.

The resulting segmentations reveal which parts of the
projections can be used for a realistic representation of
the vector field, similar to the ALNs that we discussed
above. Figure 5 shows the segmentation results for
the different projection types. The orthographic pro-
jection generates the largest linearly approximable re-
gion around the critical point, when the critical point
is also the map center (Figure 5(a)). However, be-
cause of the distortions towards the projection bound-
ary, this projection also generates the most segmenta-
tion regions. When the map center is at the equator
(Figure 5(b)), a moderate number of segments is cre-
ated. The best approximations can be achieved near the
poles and the sizes of the segments slightly decrease to-
wards the map center here. The Mercator projection
(Figure 5(c)) produces the fewest segments and very
large regions around the poles that can be well linearly
approximated. This is a result from the conformality of
this projection, since the preservation of angles has a
great impact on the distortion of the vector magnitudes
here. The Kavrayskiy VII projection (Figure 5(d)) is
not conformal and leads to more and smaller segments,
i.e. a smaller part of the projection has a meaningful in-
terpretation. Still, fewer segments are created than in
the case of the orthographic projection.
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(a) Orthographic (b) Mercator

(c) Kavrayskiy VII

Figure 6: Atlas-based vector field decomposition of the
source field in the (φ ,λ )-parameter space. Each region
can be well linearly approximated and corresponds to
one chart of the atlas. Figure 6(a) shows 55, 6(b) 16,
6(c) 61 regions. The small number of regions can be
obtained due to the absence of high distortions that oc-
cur in the different projections.

In sum, the Mercator projection appears to represent the
linear vector fields best in this synthetic example. The
orthographic projection is worst, depending whether
the map center is aligned with the critical point or not.

Atlas-based Vector Field Decomposition – To
demonstrate the construction of an atlas-based vector
field decomposition, we again use the segmentation
algorithm of Koch et al. [KKW+15] and adapt it to
the sphere. For every seed point candidate, the vector
field is projected into R2 while keeping the seed point
at the map center. Thus, the heuristic of the original
algorithm can be applied to the projected field to
predict the region with the most linear flow behavior.
For the found seed point, an ALN is computed in the
projection to determine the extension of the new chart
of the desired atlas. This process is applied iteratively
until the complete field is segmented. Because the
original algorithm was designed to compute the largest
possible regions, the number of charts of the atlas
should be minimal.

On the example of the source field (Equation 4), we
compare the results for different projection types. Fig-
ure 6 shows the results. There is only a small differ-
ence between the Kavrayskiy VII projection and the or-
thographic projection. In both cases, many charts are
needed, especially near the equator. The Mercator pro-
jection results in the simplest atlas, consisting of only
16 charts. This shows again, that the conformality, i.e.,
the preservation of angles in the projection, is very ben-
eficial for the analysis of this synthetic example.

5.2 Real-World Example
To provide a real-world example, we consider the ocean
currents of the whole world in six meter depth. This
dataset consists of 8618400 grid positions.

(a) Orthographic (63555 regions)

(b) Mercator (283555 regions)

(c) Kavrayskiy VII (180978 regions)

Figure 7: Segmentation of Koch et al. [KKW+15]
(Emax = 10−4), applied to projections of the ocean cur-
rents. It shows a high number of approximated regions
and high distortions of the shapes of the continents.

When looking at the naïve segmentation of this dataset
in Figure 7, we see the same shortcomings as in the syn-
thetic fields. For example, the orthographic projection
again produces a very high number of segments, due
to the high non-linearity towards the domain boundary.
The high distortions of shapes on the sphere are also
visible in the projections (cf. Australia in Figure 7(b)).
Furthermore, from the previous section, we know that
the linear regions in these projections are non-realistic.

The results of the atlas-based vector field decomposi-
tion are very similar. That is why we only show the ex-
ample of the orthographic projection in Figure 8, Nev-
ertheless, we know that the Kavrayskiy VII already in-
troduces vector field distortions at the map center. That
is why, we do not recommend this projection for our
approach. In contrast to the first results, both, the or-
thographic, as well as the Mercator projection, provide
good results here. Since the flow is very turbulent, the
linearly approximable charts are mostly small in size
and therefore satisfy our requirements on projected lin-
ear flow behavior very well in vicinity of the corre-
sponding map centers.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Full Papers Proceedings 15 ISBN 978-80-86943-57-2



Figure 8: Atlas of the ocean currents using an ortho-
graphic projection for the vector field decomposition.
The atlas contains 204659 charts. Because of the com-
plex structures in the flow, the charts are relatively small
and therefore sufficiently distortion free.

6 CONCLUSION AND FUTURE WORK
Characterizing linearity on general 2D manifolds is a
difficult problem, because tangent vectors at different
points of the manifold can not directly be compared
against each other. We propose a local representation of
vector fields in R2 using projections. For this, we unify
the tangent spaces at different points on the manifold
by projecting them into a common space, in this case
into the R2. Our proposed requirements on the projec-
tion ensure the preservation of certain properties of the
original vector fields that are important for characteriz-
ing linear flow behavior. The projected field is accessi-
ble to known analysis methods and can be investigated
as a substitute of the original field on the manifold.

The concept is evaluated on the example of the sphere.
We compare different projection types regarding their
suitability according to the requirements. A decomposi-
tion of the vector field into multiple charts, that are each
sufficiently free of distortions and together represent the
whole vector field, is proposed and demonstrated for
both, synthetic examples of simple linear vector fields,
as well as a real world example of ocean currents.

This is only a first step to investigate linearity on 2D
manifolds. Future work can improve the way the
tangent spaces are unified, evaluate the influence of
changes in curvature on the quality of the projec-
tion, and also construct a design space of projection
techniques that allows to choose the best possible
projection for the analysis task at hand.
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ABSTRACT
We propose an efficient approach to precompute and reuse visibility information based on existing spatial data
structures by using a precomputed data structure: the line space. This data structure provides an additional skip
condition by checking whether the subnodes in a hierarchical spatial data structures need to check for intersection
with the ray. We evaluate this method on different test scenes and show that it is able to achieve a remarkable
speed-up by using this skip condition. Furthermore we describe algorithms for fast set-up and traversal in detail
and discuss important strategies for this approach.

Keywords
Visualization, Computer Graphics, Ray Tracing, Data Structures, Visibility Algorithms

1 INTRODUCTION
The basic principle of ray tracing is that every visual
effect is computed with rays that search for the near-
est primitive in a given direction from a known start-
ing point. When this intersection is found, more rays
starting from there on can be processed. With this it
is easy to calculate effects like shadows, reflexions and
refractions with only one additional ray for each effect.
With even more additional rays one can compute com-
plex visual effects such as ambient occlusion or indirect
lighting.

However, the quality of rendering comes with long ren-
dering times, where even the slightest improvement can
make a significant difference. The main limiting factor
is the time it needs to compute the nearest intersection
with the scene geometry. Therefore it is important to
use an acceleration data structure which supports the
task of finding the nearest intersection in an efficient
way. Many of the data structures used today aim to
subdivide the scene or the world space in such a way
that the scene is equally distributed over every subunit
in the data structure.

While this is already a studied field of research our ap-
proach goes beyond that. We try to precompute visi-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

bility tests on possible directional shafts additionally to
the main data structure. Those precomputations should
support the data structure by providing it with an ad-
ditional condition to decide if it is possible to skip the
main intersection computations. With this we achieve a
performance speed-up compared to the already created
acceleration data structure. Though it is a directional
precomputation, we compute every possible direction
and so enable visibility tests on the whole space with
every possible starting and end point. Through this it is
not only a speed-up for the initial coherent rays, but for
every possible ray.

Moreover we try to combine the ideas of existing spatial
data structures and extend the used traversal algorithms
to optimize the achieved speed-up. For this we build a
tree with a higher branching factor compared to the typ-
ically used data structures like the octree. In this paper
we call it the N-tree because of the arbitrarily branching
factor which can be dynamically chosen. With a higher
factor it is possible to skip more spatial groups of ele-
ments thanks to a single test with our directional data
structure.

2 RELATED WORK
In the past decades numerous data structures for ac-
celerating ray tracing have been created and improved.
Most of them aim to reduce intersection computations
with the scene geometry by using spatial subdivision of
the scene itself. An obvious way for this is to divide the
total space with a simple cartesian grid, called the uni-
form grid, where every cell, called voxel, has the same
size. For the traversal of this data structure it is possi-
ble to use known algorithms which are mostly based
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on Bresenham’s 2D line drawing algorithm [Bre65],
for example the 3D-DDA (3D Digital Differential An-
alyzer) algorithm introduced by Amanatides and Woo
[AW87]. Today the use of grids benefits from quite
efficient voxelization algorithms [ED06][ED08][SS10].
The biggest disadvantage of uniform grids is the vari-
ance between cells, so that in most cases there not only
exist cells containing many scene candidates but also
cells which are completely empty. Nevertheless it was
shown that in some cases the use of uniform grids re-
sults in a significant performance gain in ray tracing
[HKH11].

Hierarchical data structures are one kind of improve-
ment. The goal is to have a high level of hierarchy and
therefore a high resolution in those areas where there
are many scene objects. Recursive grids were shown
to work well with objects of varying density by recur-
sively subdividing those voxels of the grid containing
many scene candidates. Jevans and Wyvill [JW88] used
an adaptive subdivision method where the branching
factor of a voxel was higher the more scene candidates
it contains. Octrees have a constant branching factor
of 8 subvoxels per voxel. All subvoxels within a voxel
have the same size so the subdivision of a voxel is ex-
actly in the center point. The traversal can be done
bottom-up, as by Samet [Sam89], or top-down, as in-
troduced by Revelles, Ureña and Lastra [RUnL00]. By
using KD-trees [Hav00] one tries to achieve better dis-
tributions of scene objects to subvoxels as octrees. For
this the split of the voxel is not necessarily in the cen-
ter point but along the axis aligned plane, which seper-
ates the containing scene objects in half. Extensions
try to improve the scalability via SIMD commands
[WPS∗03][RSH05] and GPU advantages in stack based
implementations [EVG04][FS05] as well as stackless
implementations [PGSS07]. Binary space partitioning
(BSP) trees, subdividing the space along arbitrary axes,
have been used [SS92][KM07] and as shown in [TI08]
they are more efficient as KD-Trees but need longer
build times due to more complex construction algo-
rithms.

Another approach to reduce computational overhead
is to use bounding volumes around scene objects in-
stead of spatial ordering. Bounding volume hierarchies
(BVH) [KK86] apply k-DOPs, spheres or other kinds
of proxy geometry and the traversal applies typical tree
search and sorting techniques to reduce the complex-
ity. Bounding interval hierarchy (BIH), a variation of
axis-aligned bounding box trees, was used to great ex-
tent [NS04][WK06]. Advancements of these try to use
SIMD parallelism [RSH05]. One way to do this is to
use multi bounding volume hierarchies (MBVH) which
in contrast to regular BVH store an arbitrarily number
of subnodes according to the level of SIMD instructions
[EG08]. Recently there have been implementations for

the GPU using stackless MBVH [ÁSK14] and GPU ac-
celerated construction [KA13].

Other acceleration methods try to take the visibility into
account. Arvo and Kirk presented 5D volume struc-
tures, starting at a 3D object with a 2D angle [AK87].
They achieved a notable performance gain but due to
its camera dependence it needs to be rebuild regularly
whereas our data structure is independent from the cam-
era position. Visibility preprocessing for urban scenes
was used in the way of identifying blocker primitives by
Bittner et al. [BWW01] and Leyvand et al. [LSCO03].
They also use the notation ”line space” but it has a dif-
ferent meaning compared to our usage. Visibility pre-
computations have been a big topic in radiosity calcu-
lations [CW12]. In this context Drettakis and Sillion
[DS97] used line space computations to precompute
visibilities in a very similar way as we do. In their paper
a line is considered as a link between two arbitrary sur-
face elements surrounded by a shaft, covering all poten-
tial rays between both surface elements. Shaft culling
was further used to optimize radiosity calculations by
Haines and Wallace [HW94].

3 OVERVIEW
Our goal is to extend typical hierarchical acceleration
data structures by precomputated visibility tests based
on lines and shafts. With this the extended data struc-
ture performs just one additional visibility operation per
node traversal for a given ray, which is done right be-
fore the intersection tests of the ray with the subjects
within the current node. If this operation fails, the fol-
lowing intersection tests of the ray and the node sub-
jects can be skipped completely. Note that the subjects
of the node can be the objects of the scene contained
by this node as well as all its own subnodes. Like most
acceleration data structures we do not aim to work with
dynamic scenes, so the set-up of the data structure does
not need to be able to compute in real time. Our goal
is to speed up ray tracing of static scenes and therefore
only compute the data structure once initially.

3.1 N-tree as initial data structure
As the base data structure we use the N-tree, a vari-
ation of the recursive grid [JW88] with fixed branch-
ing factor, which benefits the most from our visibil-
ity data structure, due to reasons which are explained
later on. Every edge of one N-tree node is divided in N
equally long parts. We need to have our subnodes equal
in size for our visibility test, which is also explained
later. Therefore, we are not able to use arbitrary split-
ting points like in KD-Trees, where different subnodes
of one node may differ in size. Although it is possible to
store scene objects (the candidates) in every hierarchi-
cal level of the N-tree, our performance results suggest
that only leaf nodes should contain candidates. Every
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node of the N-tree is either a leaf node and contains
scene objects as candidates or consists of N ×N ×N
subnodes.

One can easily observe that the two main variables, N
and the maximum depth of the tree (for further exam-
ples d), can be arbitrarily chosen and different selec-
tions of the values can give similar results. For exam-
ple, do either N = 2,d = 6 (which resembles the typical
octree) as well as N = 8,d = 2 result in a resolution
of 64× 64× 64 entries on the deepest hierarchy level.
One observable difference lies in memory consumption
in sparsely filled trees, where a higher N results in more
memory usage due to a higher number of empty subn-
odes.

Algorithm 1 The traversal algorithm
1: procedure TRAVERSENODE(Ray r, Node n)
2: p← 0
3: if n has primitives then
4: p← nearest primitive intersecting r within n
5: else if n has subnodes then
6: while p = 0 and subnodes left do
7: s← next subnode in direction of r
8: if s is non-empty then
9: p← TRAVERSENODE(r,s)
10: end if
11: end while
12: end if
13: return p
14: end procedure

The pseudo code of the traversal algorithm for the N-
tree is shown in Algorithm 1. In principle it is divided
into two parts. At first, the exact start node has to be
found. Starting at the root node the next inner subn-
ode is chosen until the leaf node is reached. With this
the main traversal starts. Every processed node has ei-
ther candidates, which are tested for intersection with
the current ray (lines 3 and 4), or has subnodes, which
are recursively processed. All candidates within a leaf
node have to be tested, but if at least one intersection is
found, the traversal algorithm can stop. The step from
one node to the subnodes follows a top-down strategy as
proposed by Revelles et al. [RUnL00]. Like explained
above, in our case it is not possible that a node has both,
candidates and subnodes. As proposed by Amanatides
et al. [AW87], the subnodes are traversed in a grid like
manner (line 7). If a subnode neither contains candi-
dates nor subnodes, it does not need to be processed at
all and can be skipped in the traversal (lines 8-10). The
algorithm continues with the next subnode. In the fol-
lowing, those subnodes are called ”empty”. The loop
can stop if a primitive is found within a subnode (lines
6).

Figure 4a shows an exemplary traversal of the N-tree.
The ray starts at the origin O within the node starting
from S. At this point, every intersected subnode needs
to be checked although neither the geometry nor any
subnode containing the geometry is intersected by the
ray.

3.2 Visibility Information with the line
space

The line space builds upon the presented N-tree and
extends it with an additional visibility test which de-
cides whether a node can be skipped in the traversal.
Note that this additional skip condition still works if
the node has both, candidates and subnodes. Like ex-
plained above, a node contains of N×N×N subnodes.
Furthermore, each side of the nodes’ bounding volume
divides in N×N smaller sides with equal size, which
makes a total of 6×N ×N smaller sides in the vol-
ume. These smaller sides are countable and each of
these gets its own identifiable index. It is now possible
to create shafts from every possible index to every other
possible index. For each of those shafts it is decidable
whether there exists at least one subnode partially or
in total within the shaft that contains either candidates
or subnodes itself. If a shaft has only empty subnodes,
in other words the shaft does not intersect any subnode
that is non-empty, the shaft itself is called empty.

The line space for a given node contains the informa-
tion whether a shaft is empty or non-empty for every
possible shaft within this node. It can be represented as
2D array or texture where the first axis stands for every
possible start index and the second axis stands for every
possible end index of sides. So, the pixel with the coor-
dinates x and y denotes the shaft starting at the side with
the index x and ending at the side with the index y. The
value of the pixel represents whether the corresponding
shaft is empty or intersects with at least one non-empty
subnode.

In the step of deciding whether a shaft is empty, we
use subnodes instead of the discrete scene geometry for
two reasons. On the one hand, the scene geometry is
already arranged in the subnodes of the N-tree and pos-
sibly quite many primitives of the scene result in just a
few subnodes. On the other hand, the correspondence
between the shafts and all intersected subnodes can be
precomputed resulting in masking, which is further ex-
plained in the next paragraph. For these reasons it is
possible to accelerate the construction of the line space
effectively. One drawback to this is that there might be
some subnodes within a shaft that only contain prim-
itives of the scene that do not intersect with the shaft.
Therefore, it would not be necessary to mark the corre-
sponding entry in the line space. Anyway, it is marked
because of the intersection between the subnode and the
shaft. This results in possibly longer calculation times
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during traversal but especially with a big N it becomes
negligible.
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Figure 1: (a) An empty 2D scene with one exemplary
ray and the belonging shaft between the start index 1
and the end index 8 and (b) the corresponding line space
where the shaft is marked in blue.

Figure 1 demonstrates the relation between a node con-
taining subnodes and the corresponding line space in
2D. There, the bounding box of a scene is subdivided
into a 2D N-tree with N = 4 consisting of 4×N = 16
elements. The border edges are numbered from 0 to
15. Each shaft is identified by the tuple of the start in-
dex and the end index of the sides. As a result the line
space is of size 16× 16, where each index tuple repre-
sents a shaft in the scene. The blue line in the left image
is represented by index (1,8) or (8,1) respectively.

A few trivial properties help to reduce the memory ca-
pacity of the line space:

1. LS(s; e) = LS(e; s): The line space is symmetric and
the upper right triangle grants sufficient information.

2. LS(s; s) = 0: The elements of the diagonal charac-
terize degenerated shafts with zero volume and can
therefore be omitted.

3. Coplanarity (Collinearity in 2D case): Shafts be-
tween coplanar sides are also degenerated, leading
to blocks around the diagonal.

In 2D each of the 4 bounding sides contains N sub-
sides so the total number of entries in the line space
is 4N× 4N = 16N2. Using the collinearity this can be
reduced by 4N2 and afterwards divided in half due to
symmetry, resulting in a total number of entries of size
6N2. In 3D each of the 6 bounding sides of the bound-
ing box of the node contains N×N subsides and there-
fore the line space has 6N2 × 6N2 = 36N4 entries in
total. In the same way as for the 2D case this can be
reduced to a total of 15N4 entries due to coplanaraty
and symmetry. Note that this is only the size of the line
space for a single node and therefore the memory con-
sumption is quite high with a big N. In our test cases
we found that N = 10 is sufficient for most cases and
the memory consumption is appropriate. All entries for

one line space are stored in a list and accessed with an
identifier. This identifier is independent from symmetry
and results in the same entry for both of the symmetric
cases.

3.3 Set-up of the line space
Figure 2 shows the relevance of one non-empty subn-
ode (marked in red) to the line space. On the left
side for each possible start index it is shown which
shafts count as non-empty because of the marked subn-
ode. The right side shows the corresponding line space
where exactly those pixels are marked that belong to
non-empty shafts. Note that if only the marked subnode
is non-empty, the line space would always result in this
outcome. It is not relevant how many scene primitives
are contained in this subnode or how they are located.
So, the resulting line space which is presented can serve
as a mask for this subnode.
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Figure 2: (a) All shafts covering one subnode (red) in
2D and (b) the resulting line space (bit mask). Ev-
ery shaft with start index x and end index y fills the
corresponding pixel in the line space. Symmetry and
collinearity of the line space are quite obvious.

With this it is possible to precompute the masks for ev-
ery possible subnode within a node and combine them
to a mask atlas. This results in N3 masks (one for each
possible subnode) for the mask atlas, which then con-
tains N3×15N4 entries in total.

The pseudo code for the set-up algorithm for all line
spaces of every node in the N-tree is shown in Algo-
rithm 2. Our approach works in a top-down way start-
ing with the root node. A line space for a node is only
necessary, if the node itself contains subnodes. Every
line space is computed with the help of the mask at-
las. For every non-empty subnode of a node all entries
of the corresponding masks are combined and result in
the line space of the current node (lines 4-6). In the
binary case, where it only matters whether a shaft is
empty or not, this combination can be done with a sim-
ple ”or” operation for every entry of the mask with the
corresponding entry in the line space. The line spaces
of every subnode consisting of subnodes itself are then
computed recursively (lines 7-9).
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Algorithm 2 Calculation of Line Space starting in the
root node
1: procedure CALCLINESPACE(Node n)
2: LS← create LineSpace for n
3: for all subnodes s ∈ n do
4: if s is non-empty then
5: mask← mask denoted by s in n
6: ADDMASKTOLINESPACE(LS, mask)
7: if s has subnodes then
8: CALCLINESPACE(child)
9: end if
10: end if
11: end for
12: end procedure

Figure 3 presents an example for a 3D line space. As
with the previous examples, N is set to 4. It is obvious
that the line space is much more complex compared to
a 2D line space. Where in the 2D case every side is
subdivided in 4 smaller parts, making it a total of 16
subsides, in the 3D case every of the 6 bounding sides
is subdivided in 16 smaller sides and therefore making a
total of 96 possible start and end sides. Figure 3b shows
the mask for one subnode (marked in red). For every
start index from s ∈ 0..95, a one bit entry provides the
information, whether the shaft to end index e ∈ 0..95
intersects this subnode. In the shown example, we have
9 resulting shafts for the starting patch s = 37 which
can be seen in the red column of the line space.

(a) (b)

Figure 3: (a) All shafts in 3D intersecting the red sub-
node from the start index with index 37. (b) Line space
bit mask (43 subnodes with 962 LS-entries) for the red
subnode. Note that the subnode itself can be subdivided
as well and can therefore include its own line space.

3.4 Traversal of the line space
The traversal of the line space is mostly equivalent to
the traversal presented in algorithm 1. Indeed the pre-
sented algorithm is just extended by another skip condi-
tion, which can be added before the subnodes are pro-
cessed (after line 5 in algorithm 1). The skip condi-
tion checks, whether the line space entry corresponding
to the current node is marked. If this is not the case,

it means that all subnodes within the current shaft are
empty and therefore no subnode needs to be processed
with the current ray. The shaft itself is determined by
the precise start and end index within the node which
are intersected by the ray. These have to be computed
first in order to identify the shaft the current ray belongs
to.

(a) (b)

Figure 4: (a) Traversal of the N-tree. Although no subn-
ode containing geometry (red) is intersected by the ray,
the algorithm traverses every possible subnode (dark
blue) intersected by the ray. (b) traversal of the line
space. Instead of testing every subnode intersected by
the ray, it is first checked if the corresponding shaft in-
tersects any non-empty subnodes. If this is not the case
(like shown with the darker blue shafts), all subnodes
within the shaft are skipped.

Figure 4 presents an exemplary traversal using the line
space. For a given ray, we compute the intersection
with the root node to determine the initial start index
S and end index E. The x-, y-, z-coordinates of S and
E are mapped to side indices of the root node surface,
yielding the indices for the top level line space. In the
example the top level shaft contains non-empty subn-
odes. Therefore, we select the subnode covering the
ray origin O and from there on we start the traversal of
the subnodes similar to the traversal of the N-tree. If
one of these inner nodes is not subdivided, we check
the candidate list of this node (if any) for intersection
and continue with the next inner node, if no intersec-
tion is found. If the node is subdivided, we check the
next level line space first with new start and end indices.
If the shaft is not empty, we proceed with the traversal
with smaller increments. In the example all inner shafts
(in dark blue) corresponding to subnodes indicate that
there are no non-empty inner subnodes and therefore
these inner subnodes can be skipped at all.

4 RESULTS AND DISCUSSION
Our method was implemented in C++, exploiting SIMD
operations (SSE) and multi-threading on a CPU. The
results were evaluated on a PC with AMD Phenom II
X6 1090T (6 cores, 3.5GHz) and 16 GB DDR3 RAM.
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(a) BUNNY (69k triangles) (b) DRAGON (871k trian-
gles)

(c) SPHEREFLAKE (597k
spheres)

(d) DUBROVNIK SPONZA
(66k triangles)

(e) CONFERENCE ROOM
(331k triangles)

Figure 5: Test scenes used for the performance measurements. Those include individual objects with a varying
number of triangles (Bunny and Dragon), a fractal scene using spheres instead of triangles and architectural scenes
with different number of triangles (Dubrovnik sponza and Conference room). The images were rendered using 3
light sources and multiple levels of reflection.

The used ray tracer computes intersection points for pri-
mary rays and up to 10 levels of reflections, where every
primitive of the scene geometry is reflecting the ray. For
every intersection with scene geometry 3 light sources
are used for lighting and for each of those one shadow
ray is evaluated. By using reflections and shadow rays
we mostly work on more or less incoherent rays, which
are traced by our method with no difference in compar-
ison to coherent rays. All scenes were rendered with a
resolution of 512× 512 using different camera angles.
The result is the average run time.

Multiple well-known test scenes with different char-
acteristics and of different size of primitives have
been used for evaluation (shown in figure 5). We
divide those scenes in scenes showing individual
objects only (Bunny and Dragon), architectural scenes
(Dubrovnik sponza and Conference room) and a
fractal scene (sphere flake using spheres instead of
triangles). The individual objects represent the quality
of the data structure for a single object only, where
many primitives are concentrated in small space. For
this purpose the Bunny is a model with a rather low
number of primitives, whereas the Dragon consists of
a lot of primitives. The architectural scenes represent
conventional scenes, which may for example be used
in games or films. We use the sponza as a scene with
few primitives and the Conference room as scene with
quite many primitives. The sphere flake is a fractal
scene, which consists of a lot of primitives (spheres in
our example). Those primitives are not concentrated in
the center of the object, but are equally distributed.

For the N-tree and the line space we evaluate the size of
the data structure and the runtime performance within
our ray tracer. We compare those with the standard
implementations of the uniform grid and the octree to
show that the use of visibility information is an im-
provement of typical well-known spatial data struc-
tures. Furthermore we vary in the values of the two
paremeters of the N-tree and the line space, which are
the branching factor N and the maximal depth d, and
investigate the differences in size and performance.

The results of the tests are shown in table 1. We eval-
uated several parameter sets for all data structures and
only the best for each scene were considered. Note that
the value of d belongs to the maximal depth of the data
structure, which is not always needed. In scenes with a
small number of primitives it is therefore possible that
a big value of d does not provide any benefit.

The uniform grid grants good performance, especially
in rather small scenes. The memory size used is in all
test cases among the smallest. The optimal resolution
for the uniform grid in most test scenes is 1283 voxels
in total. A higher resolution results in a higher traver-
sal cost and a much higher memory consumption of the
grid structure and might therefore only be beneficial in
big scenes (like the dragon). In comparison to the uni-
form grid, the octree has a better performance in those
big scenes (dragon and conference room), but worse in
small scenes. The memory consumption depends on
the value of d, where a small value results in a smaller
memory consumption. In big scenes a big value of d
is beneficial for performance but unfavorable for the re-
quired memory size.

The N-tree has a better performance than the octree,
due to the higher branching factor, where every node
is traversed in a grid-like manner. In most cases the
N-tree performs similar to or better than the uniform
grid, especially in the architectural scenes or in scenes
with a high number of primitives. While a high value of
N grants better performance, the higher branching fac-
tor results also in a bigger memory consumption, espe-
cially in sparsely filled N-trees. If a node is subdivided,
it results in quite a lot of subnodes (N3), even if only a
few of them are actually needed. The optimal param-
eters of the N-tree in respect to the performance have
been achieved with a value of N between 6 and 10. The
optimal value of d is mostly either 3 or 4.

The line space, as an extension to the N-tree, is ben-
eficial in all cases. Mostly it achieves a performance
gain of up to 30% in comparison to the N-tree. In all
test scenes the optimal parameters were the same as for
the conventional N-tree. Obviously the additional usage
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Scene Uniform Grid Octree N-tree Line Space
parameters 1283 d→ 7 N→ 9, d→ 3 N→ 9, d→ 3

BUNNY time per frame (s) 0,111 0,137 0,123 0,101
(69k triangles) memory (MB) 78,4 55,2 82,5 106,7

parameters 2563 d→ 9 N→ 7, d→ 4 N→ 7, d→ 4
DRAGON time per frame (s) 0,327 0,332 0,297 0,253
(871k triangles) memory (MB) 441,0 438,1 823,2 929,6

parameters 1283 d→ 7 N→ 8, d→ 3 N→ 8, d→ 3
SPHEREFLAKE time per frame (s) 0,151 0,208 0,179 0,129
(597k spheres) memory (MB) 200,8 187,9 511,6 644,0

parameters 1283 d→ 10 N→ 10, d→ 3 N→ 10, d→ 3
SPONZA time per frame (s) 1,224 1,771 1,414 1,192
(66k triangles) memory (MB) 80,4 55,1 220,0 294,7

parameters 1283 d→ 10 N→ 10, d→ 3 N→ 10, d→ 3
CONFERENCE time per frame (s) 1,395 1,593 1,300 1,089
(331k triangles) memory (MB) 213,3 190,8 236,8 249,9

Table 1: Performance evaluations for the test scenes shown in figure 5. All scenes were rendered using 3 light
sources and up to 10 reflections. We have compared typical data structures (uniform grid and octree) with the
N-tree without and with the usage of the line space. Only the best parameter set in terms of traversal time for each
data structure and each scene is shown.

of the line space results in a bigger memory consump-
tion, where a high value of N is especially bad, because
of the high number of possible shafts (15N4) for ev-
ery subdivided node. Due to the fact that only non-leaf
nodes need a line space, this increment in memory size
is quite acceptable in comparison to the total required
memory size. While high values of N and d are a disad-
vantage in terms of memory consumption, they can be
beneficial for traversal performance. A big value of N
leads to long but slim shafts referring to many but small
subnodes. If the shaft is empty, it therefore allows for a
quick skip of many subnodes in just one computation.
Moreover, long and slim shafts contain small subnodes.
Even if these subnodes are intersecting the shaft only
for a small part, the amount of subnode space outside
of the shaft is just small in comparison to the length of
the shaft.

An important observation is that the traversal perfor-
mance and the memory consumption significantly de-
pend on the values of the branching factor N and the
maximal depth d. While the table shows only the best
values for every data structure, it is observable that the
results are different for the cases where the values for
all data structures lead to the same resolution. One ex-
ample for those values are a resolution of 5123 for the
uniform grid, a maximal depth of 9 for the octree and
the values N = 8 and d = 3 for the N-tree and the line
space. In those cases the size of the data strucutre and
the performance of the traversal are way better for the
N-tree in comparison to the uniform grid and the octree.

The main benefit of the N-tree comes with the usage of
the line space. For this we evaluated the performance
gain of the line space in comparison to the N-tree for
different values of N and d. The results are shown in

table 2. The evaluated test scene is the Bunny, but the
results for the other scenes are similar and indicate the
same results. In all test cases it is observable that the
usage of the line space for a small value of N (N < 5)
brings little to no benefit. The same applies to big val-
ues of N (N > 10). As explained above the reason for
the former is that the shafts are wider if N is small and
the amount of subnode space outside of the shaft is big-
ger in comparison to its length. While this is unprob-
lematic for long shafts with a big value of N, the prob-
lem there is that the shaft loses the potential of predic-
tion because of its length. One non-empty subnode is
sufficient to mark the corresponding shaft, so that the
traversal needs to check all subnodes . It is observable
that big values of d may not make any difference in
performance. The reason for this is that the geometry
is sufficiently stored in higher nodes and therefore the
maximum depth of d is not needed. Moreover, if the
values of N and d are too big (N > 10,d > 5) the data
structure is too memory consuming and therefore not
usable. The benefit of the line space as well as the op-
timal choice of the parameters are scene dependant, but
in all choices of parameters the usage of the line space
results in better performance than the corresponding N-
tree without line space.

5 CONCLUSION AND FUTURE
WORK

We have presented a novel and effective extension to
existing spatial data structures. First, the N-tree, a vari-
ation of the Octree, has been discussed. Based on this
we introduced the line space as an advancement for the
N-tree by taking directional visibility information into
account. Algorithms for the set-up and the improved
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Parameters N-tree LS ∆

N→ 5, time (s) 0,342 0,333 -2,7%
d→ 3 size (MB) 40,3 40,8 +1,1%
N→ 5, time (s) 0,137 0,123 -9,9%
d→ 4 size (MB) 57,1 60,3 +5,7%
N→ 5, time (s) 0,136 0,126 -6,9%
d→ 5 size (MB) 57,6 61,9 +7,5%
N→ 6, time (s) 0,198 0,180 -8,8%
d→ 3 size (MB) 42,7 44,2 +3,6%
N→ 6, time (s) 0,144 0,126 -12,9%
d→ 4 size (MB) 96,9 112,2 +15,7%
N→ 6, time (s) 0,145 0,126 -12,9%
d→ 5 size (MB) 96,8 112,4 +16,0%
N→ 7, time (s) 0,148 0,131 -11,6%
d→ 3 size (MB) 47,5 52,4 +10,4%
N→ 7, time (s) 0,144 0,127 -11,9%
d→ 4 size (MB) 109,5 132,8 +21,3%
N→ 8, time (s) 0,151 0,118 -21,9%
d→ 3 size (MB) 56,8 70,5 +24,0%
N→ 9, time (s) 0,123 0,101 -18,2%
d→ 3 size (MB) 82,5 106,7 +29,4%
N→ 10, time (s) 0,166 0,112 -32,9%
d→ 3 size (MB) 123,3 172,8 +40,1%

Table 2: Performance comparison between the N-tree
without and with the usage of the line space (LS) for
different parameter sets of N and d. It is shown that
higher values for these parameters result in a bigger
memory consumption but leads mostly to a smaller
traversal time with the usage of the line space. The used
scene is the Bunny as individual object, other scenes
produce similar results.

traversal were shown. By using binary information for
the possible emptiness of all shafts within one node we
conclude whether it is necessary to test the subnodes of
the current node or if we are able to skip them. This ad-
ditional skip condition results in a notable speed-up for
all shown test cases. From there on there exist multiple
paths for further study.

The binary entries in the line space are enough for es-
timating whether a ray from one point to another might
be intersected by scene geometry. With this informa-
tion it is possible to compute approximated shadows
without testing the scene geometry for intersection at
all. This might be sufficient for shadow computations
of non-primary rays. Even for primary rays the result-
ing error may become negligible with a high value of
d. This technique might even be used in rasterization
where the computation of soft shadows is a rather tough
topic.

By using a counter instead of the binary entries within
the line space the data structure can be updated during
runtime and therefore it can possibly be fast enough to
handle dynamic scenes in realtime. The counter is in-
cremented for each object intersecting a shaft. Thus, the

line space can efficiently be rebuilt by decrementing the
counter if geometry is removed and by incrementing the
counter if geometry is added.

An obvious option for faster set-up or better runtime
performance is to port the data structure and the traver-
sal to latest generation GPU architectures since many
necessary tasks could benefit from parallel computa-
tion.

In this paper we presented that the line space as direc-
tional visibility data structure is able to improve exist-
ing spatial data structures. Moreover, in future work we
try to extend the impact of directional visibility con-
ditions to current state-of-the-art data structures like
Bounding Volume Hierarchies. We think that some
kind of line space structure could even improve these
data structures resulting in a win in performance for lat-
est generation ray tracing data structures.

Another attempt would be to not only save binary or in-
teger information in the line space, but to save the list of
candidates directly in the shafts instead of saving them
in the nodes of the N-tree. This would result in sev-
eral advantages. First, the candidates within the shaft
can be sorted beforehand which would improve perfor-
mance during runtime. Moreover, the traversal itself
would work without the typical node structure based on
voxels but rather based on shafts which is more accurate
and efficient.
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ABSTRACT
In this paper, we present a novel approach to efficient real-time rendering of numerous high-resolution voxelized
objects. We present a voxel rendering algorithm based on triangle rasterization pipeline with screen space rendering
computational complexity. In order to limit the number of vertex shader invocations, voxel filtering algorithm
with fixed size voxel data buffer was developed. Voxelized objects are represented by sparse voxel octree (SVO)
structure. Using sparse texture available in modern graphics APIs, we create a 3D lookup table for voxel ids.
Voxel filtering algorithm is based on 3D sparse texture ray marching approach. Screen Space Billboard Voxel
Buffer is filled by voxels from visible voxels point cloud. Thanks to using 3D sparse textures, we are able to store
high-resolution objects in VRAM memory. Moreover, sparse texture mipmaps can be used to control object level
of detail (LOD). The geometry of a voxelized object is represented by a collection of points extracted from object
SVO. Each point is defined by position, normal vector and texture coordinates. We also show how to take advantage
of programmable geometry shaders in order to store voxel objects with extremely low memory requirements and to
perform real-time visualization. Moreover, geometry shaders are used to generate billboard quads from the point
cloud and to perform fast face culling. As a result, we obtained comparable or even better performance results
in comparison to SVO ray tracing approach. The number of rendered voxels is limited to defined Screen Space
Billboard Voxel Buffer resolution. Last but not least, thanks to graphics card adapter support, developed algorithm
can be easily integrated with any graphics engine using triangle rasterization pipeline.

Keywords
Computer graphics, voxel rendering, sparse voxel octree, sparse texture, point cloud, geometry shader, billboarding

1 INTRODUCTION

Voxel representations and rendering algorithms are one
of the most extensively studied subjects in the field of
computer graphics. For many years, voxels have been
used in the visualization and analysis of medical and
scientific data such as MRI scans [Potts04]. Nowadays,
voxels representations are widely used in many fields of
computer science, engineering and computer graphics,
with applications ranging from fluid simulation to dig-
ital sculpting tools. However, because of high memory
consumption and rendering complexity, their usage was
limited to non-real-time graphics engines.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Thanks to increased computation power of today’s
GPUs and newly developed techniques, it seems that
voxel-based representations are ready for real-time ap-
plications. Cyril Crassin was able to perform visualiza-
tion of global illumination based on sparse voxel octree
(SVO) and voxel cone tracing [Crassin11]. There are
also a few promising implementations of efficient ray
tracing of SVO [Laine10] and even object animation
and deformation in real-time [Bau11, Wil13].

Computing performance is one of the most important
measurements of real-time computer graphics algo-
rithms. SVO ray tracing implementations showed
that in this case ray tracing approach is much faster
than triangle rasterization. Ray tracing rendering is
scalable with screen resolution with the fixed cost of
rendering, independent of the virtual scene complexity.
Unfortunately, ray tracing does not have direct support
from graphic accelerators and popular graphics APIs.

In the case of triangle rasterization pipeline, it is easy
to overfill vertex shader invocations by redundant ge-
ometry data. We developed an algorithm which solves
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that problem for voxel visualization with triangle ras-
terization pipeline. By selecting render candidates and
filling a fixed size buffer prior to rendering process, we
are able to limit voxel shader invocations to a defined
maximum number. Thanks to that we achieved com-
parable or even better rendering performance results in
comparison with SVO ray tracing approach. Moreover,
we gain the support of modern hardware graphics APIs
and rendering algorithms. Last but not least, the devel-
oped algorithm can be easily integrated with any popu-
lar game engines and used in video games.

2 RELATED WORK
There is a wide selection of literature on visualizing
voxel objects. Over the years, many methods of di-
rect and indirect voxel rendering have been developed.
However, only a few of them are actually using a polyg-
onal representation of the voxel structure in rendering
process. We will focus on papers that are most directly
related to our work.

One of the oldest and most citied method is March-
ing Cubes, presented by Lorensen and Cline in
1987 [Lorensen87]. The idea is to extract a polygonal
mesh of an isosurface from a 3D discrete scalar field.
Marching Cubes implementations are mainly used in
the field of medical visualizations and special effects
with what is usually called metasurfaces. There
are also a few improvements of the base algorithm,
like dual contouring [Ju02]. However, the marching
cubes approach does not generate satisfying results
in visualization of voxelized 3D objects with a lot of
textures, like normal maps, ambient occlusion maps
etc.

Splatting is one of the most studied methods of direct
volume rendering. It was originally introduced by
Westover [Westover89] The basic algorithm projects
each voxel to the screen and integrate it into an accu-
mulating render target. Using a painter’s algorithm,
it solved the hidden surface problem by visiting
the voxels in either back-to-front or front-to-back
order. Splatting is a perfect example of an object-
order algorithm in contrast to ray-casting, which is
an image-order algorithm. For years, the splatting
technique has been used to render volumes of various
grid structures [Westover89, Mao96, Westover91].
Martyn introduced a novel approach to realistic real-
time rendering scenes consisting of many affine IFS
fractals [Martyn10]. The implementation based on
splatting and hardware geometry instancing makes it
possible to achieve efficient visualization with small
memory requirements.

Another interesting work in the field of voxel visualiza-
tion is the particle-based approach presented by Juckel
and Beckhaus [Beckh07]. The authors developed visu-
alization of 3D scalar field by using a particle system.

They proposed a unique method for rendering complex
shapes as fuzzy or diffuse objects inside virtual environ-
ments. The algorithm converts surface geometry into
the voxel-like grid that specifies the appearance of the
shape. Using GPU implementation, they achieved ren-
dering of dynamic objects inside a voxelized surface
geometry. Particle systems were designed to handle
millions of simple objects perfectly characterize voxel
structures.

Although all of the presented methods propose interest-
ing ideas related to visualization of the voxels, only ray
tracing approach is able to render realistic 3D objects.
As we mentioned before, the SVO ray tracing approach
is the current standard of voxel visualization. Advan-
tages of this algorithm are scalability with the screen
resolution and fixed rendering cost resulting from a
constant ray count. We have developed a voxel render-
ing algorithm which offers similar advantages and uses
the triangle rasterization pipeline.

Using a newly available 3D sparse texture and highly
optimized ray marching approach, we perform filtering
of visible voxels. Then we fill screen size voxel buffer
with filtered voxels data. Finally, we render voxelized
objects with triangle based pipeline. We have managed
to achieve efficient rendering performance results with
a fixed rendering cost.

3 VISUALIZATION ALGORITHM
In this section, we describe our approach to visualize
voxelized objects with the use of geometry shaders and
deferred rendering. The features of our algorithm are as
follows:

• Efficient rendering of high-resolution voxelized ob-
jects.

• Support for both static and dynamic objects.
• Representation based on SVO.
• Minimization of memory consumption.
• GPU acceleration for geometry generation and ren-

dering.

3.1 Voxel representation
Voxels are simply a 3D generalization of pixels. Each
value on a regular grid stores information such as color,
normal vector or density. One of the most significant
disadvantages of voxels compared to polygons is the
memory consumption for high-resolution grids. One of
the possible solutions to deal with this issue is the use of
SVO. It eliminates empty spaces. Moreover, it gives the
hierarchical level of detail (LOD) information about the
source object. Fig. 1 presents example of SVO structure
visualization.

The simplest way to visualize a voxel is to render a
cube in 3D space. In such a representation, one would
need to store data for twelve indexed triangles with
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Figure 1: SVO structure created for sample object.

appropriate attributes. We could create proper data
buffers on GPU and fill them with voxelized object data.
Unfortunately, this is not an efficient solution for dy-
namic buffers. Also, we are still facing the problem
with high memory consumption. Analyzing the ren-
dering result of voxel representation with 3D cubes,
we can realize that voxel looks same when viewed
from different angles. Thus, we can visualize voxels
as quads always faced to the viewer using billboarding
approach [Behren05, Decaudin09].

Implementation based on quads instead of cubes sig-
nificantly reduces memory requirements. However, it
means that we need to use some kind of hardware ge-
ometry instancing or geometry generation method in or-
der to render our object.

3.2 Geometry generation with shaders
Modern graphics APIs like OpenGL or DirectX offer a
few ways to implement geometry generation with GPU
programmable pipeline. The most straightforward way
to implement our algorithm is to use geometry instanc-
ing functions. With this choice, we need to store our
source quad in GPU memory and create data buffers
for billboard attributes like positions and normal vec-
tors. Geometry instancing is a very efficient method
with data streaming functionality for handling dynamic
objects. However, there is no way to control which
quads will be generated and rendered on GPU. We can
solve this by using streaming data buffers and perform-
ing calculations on CPU, but this is computationally ex-
pensive solution.

An alternative solution which we have implemented is
based on the usage of programmable geometry shaders.
In this method, we do not need quad representation
data. We store our voxelized object as a collection of
points and generate billboard quads on GPU using ge-
ometry shaders. Fig. 2 presents an example of render-
ing a 3D object based on a surface approximation with
billboards.

As a result of using geometry shaders, we gain control
on quads generation stage which, for example, gives us
the possibility to execute the back-face culling algo-
rithm or control billboards shape generation indepen-
dently.

Figure 2: Visualization of low LOD object with collec-
tion of billboards.

3.3 Smooth shading realization
In the case of 3D objects based on polygonal represen-
tation, smooth shaded visualization can be achieved,
for example, by using the Blinn-Phong normal inter-
polation model [Foley90]. Unfortunately, a voxelized
surface has no information about adjacent voxels in the
rasterization pass. This problem is typically solved by
using the volume ray tracing algorithm which can be
implemented on GPU with SVO structures. In order
to achieve smooth shaded objects, we propose a new
method based on the screen space approximation of
voxel attributes data. Our smooth shading algorithm
is based on multipass deferred rendering. In G-buffer
generation pass we render voxel attributes data to float-
ing point render targets.

The direct usage of rendered voxel attributes in the
deferred composition pass with additional information
about scene lighting produces blocky, flat shaded vi-
sualizations. In order to achieve smooth shaded visu-
alization, we perform data interpolation by a filtering
data texture with the 3x3 kernel Gaussian blur shader.
Fig. 3 presents an example of voxel normal attributes
interpolation in screen space.

Figure 3: a) Object rendered without normal attribute
interpolation b) Object rendered with normal attribute
interpolation.
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3.3.1 Smooth filtering control
In order to achieve a proper smoothing for all voxelized
objects on the virtual scene, we must control the Gaus-
sian blur intensity. The objects that are closer to the ob-
server should be filtered stronger than the objects that
are far away from the observer. Actually, we need to
implement filtering control based on a similar manner
as the LOD management algorithms [Lueb02].

In the proposed algorithm, we use the Gaussian blur
with a 3x3 kernel as a voxel attribute filtering method.
The most straightforward way to achieve stronger filter-
ing is by changing the size of the blur kernel. However,
it is a major waste of GPU computing resources, espe-
cially when we implement dynamic loops in our filter-
ing shaders. We propose to use a filter shader sampler
offset in order to achieve efficient and visually accept-
able results.

The most commonly used LOD evaluation parameter
is the distance [Lueb02]. We decided to use this pa-
rameter to control the smoothing intensity. Equation 1
presents a filter intensity calculation formula.

I = max
(

0,min(
MaxI

(Dist −MinDist)2 ,MaxI)
)

(1)

where:

I = intensity of filter (sampler offset)
MaxI = maximum intensity for the closest objects
Dist = distance between object and observer
MinDist = defined minimum distance

The result of the equation must be clamped to <0,
MaxI>. Zero as a minimum value means that the object
that is far away from the observer does not need to be
filtered. The maximum intensity value must be defined
by the user depending on virtual scene construction, as
well as the minimum distance between an object and
the observer, where voxel attributes are filtered with the
maximum intensity.

3.3.2 Pixel depth based smoothing
Voxel attributes smoothing is done with screen space
shaders. We cannot calculate the distance to each object
on the virtual scene and pass it to the shader as a uni-
form value. Also, we cannot perform multiple filtering
passes in order to fit in the time requirements of real-
time graphic engines. In order to perform a distance-
based data filtering, we use depth a buffer from G-buffer
pass.

Depth buffer stores the depth of a generated pixels. In
order to perform a smoothing operation with equa-
tion 1, we need to calculate a pixel position in world
space. Using the inverse of the view projection ma-
trix, we can reconstruct the pixel position in world

space [Wright10]. By using the obtained value with a
camera position transferred to shader code as a uniform,
we are able to use the proposed equation and achieve a
proper, distance based voxel attribute smoothing.

4 SCREEN SPACE BILLBOARD
VOXEL BUFFER

In this section, we describe our approach to select voxel
render candidates from an object voxel point cloud data
in order to render the high-resolution object with a fixed
size data buffer.

In order to limit the number of voxels required for
rendering, we need to filter the voxel point cloud that
would fill the screen space data buffer. Filtering opera-
tion can be done in a wide selection of methods. Voxel
point cloud can be projected on the screen and by using
depth test, render candidates can be selected. Another
possible solution is to perform hierarchical occlusion
queries in order to find visible SVO nodes. However,
our main goal was to develop an algorithm with screen
space computation complexity which will offer compa-
rable performance results as the ray tracing. In order
to select render candidates we developed ray marching
algorithm with 3D lookup texture.

4.1 Filtering algorithm components
The smallest part of the screen is one pixel. It means
that the image covers the maximum information when
all pixels are filled by exactly one independent voxel.
However, a 3D object can be represented by much
more voxels than is needed to fill a render target. It
is the biggest disadvantage of the graphics representa-
tion with polygons. Vertex shaders can be invoked for
the data that would not fill any result image pixels or
pixel overdrawn can cause an enormous performance
hit. This problem does not occur in the context of ren-
dering with ray tracing approach. For this reason, we
decided to develop an efficient way to select object vox-
els that would fill the resulting image.

Our algorithm uses the structure which we called
Screen Space Billboard Voxel Buffer. The algorithm is
based on the three components:

• Screen Space Billboard Voxel Buffer — a fixed
size data buffer which contains voxel data used in
the rendering process. The size of the buffer cor-
responds to the render target resolution. Voxel fil-
tering algorithm selects render candidates and fills
voxel buffer data.

• Voxel point cloud — voxels data from the object’s
selected LOD. Each point stores information such
as position, normal vector, texture coordinates and
optional object id.
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• Sparse Lookup Texture — 3D texture for voxel
point cloud lookup table. With ray marching ap-
proach, we get an id of render candidate voxel. Us-
ing that id, voxel data is copied from voxel point
cloud buffer to screen space voxel buffer. Thanks to
the modern graphics APIs, we can create the texture
that is much bigger than available memory and fill
only selected pages of the texture [Wright10]. Ob-
ject LOD control is managed by using sparse texture
mipmaps to store 3D lookup table for different ob-
ject LODs.

4.2 Voxel Filtering algorithm
In this section, we describe base steps of voxel filtering
algorithm. The developed algorithm is based on the 3D
sparse lookup texture ray marching.
Using ray intersection test with 3D texture, we are able
to efficiently filter voxel cloud. However, this approach
creates two potential problems. Firstly ray marching re-
quires a lot of texture sampling operations. In order to
achieve efficient performance results, it is required to
implement a few optimization techniques like Object
Order Empty Space Skipping [RezkSal09, Vidal08].
Secondly, standard 3D texture will require a lot of
the VRAM memory. We solve this problem with the
newly developed sparse texture from modern graph-
ics APIs [Wright10]. From OpenGL 4.4 specification,
AMD sparse texture extensions developed by Graham
Sellers is available by GL_ARB_sparse texture. Addi-
tionally, OpenGL 4.5 specification added a new version
of this extension with full shader side control.

4.2.1 Algorithm preparation steps
Voxel filtering algorithm can be divided into the data
preparation and execution steps. The preparation steps
are as follows:

1. Extract voxel points clouds from the required LODs.
This step can be done in precomputation pass on vir-
tual scene initialization.

2. Create 3D lookup table for voxel point cloud and
store it in sparse texture. If we need to use LOD
management of virtual scene, we store additional
lookup tables in sparse texture mipmaps.

3. Create simplified 3D object triangle mesh based.
This mesh will be used to optimize ray marching
operation. It is important to create a polygonal mesh
that vertices positions are in range of <-1.0,1.0>.

4.2.2 Algorithm execution steps
In the application rendering loop we perform algorithm
execution steps as follows:

1. Perform visibility test of the 3D object with frustum
culling and optionally occlusion culling tests. If our
object is not visible or it is occluded by another ob-
ject, the algorithm ends here for the selected object.

2. Render all visible objects simplified mesh off-
screen. For all objects, we save normalized object
space position in first render target and the object
world space position in the second render target.
The first texture will be used to perform Object
Order Empty Space Skipping. The second will
be used to handle scenes with numerous objects.
Additional object id or LOD information will be
saved in the same textures if needed.

3. Perform ray marching for all pixels using obtained
textures as input. Using 3D sparse lookup texture,
find first intersection and store voxel data in Screen
Space Billboard Voxel Buffer. It is important to clear
the current pixel screen space buffer data from the
last frame in order to optimize rendering pass.

4. Render Screen Space Billboard Voxel Buffer using
the algorithm described in section 3.

4.2.3 Algorithm conclusion and limitation

Using the fixed size voxel buffer we limited vertex
shader invocations to the fixed number. Moreover, the
voxel filtering algorithm based on 3D sparse texture ray
marching can be implemented in a very efficient way.
Thanks to that, we can render a virtual scene with nu-
merous high-resolution 3D objects with triangle raster-
ization pipeline in real-time. It is impossible without
filtering step with today’s hardware.

The fixed size voxel buffer is a particularly efficient
method in the case of high-resolution 3D objects. If
an object is represented by more voxels that can be
stored in Screen Space Billboard Voxel Buffer, the draw
call operation can be significantly optimized by limit-
ing vertex shader invocations. For example, Stanford
Bunny object on 9 level of SVO is represented by about
2.5 million voxels. After the filtering pass, we need
only about 140 thousand voxels to render the object. It
means that even with the additional filtering pass and
fixed cost rendering operation, performance results is
noticeably better than rendering object without filtering
pass.

5 IMPLEMENTATION DETAILS

In this section, we describe important implementation
details of our algorithm. We have implemented our
method using OpenGL 4.5 API with C++14 but there
are no limitations to using any other graphics interface
or programming language. All included shader source
code listings are prepared in GLSL language. Due to
the simplicity of the billboard based voxel representa-
tion, the presented algorithm can be easily implemented
and integrated into all popular game engines. The only
requirement is the support for programmable geometry
and compute shaders.
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5.1 Screen Space Billboard Voxel Buffer
preparation implemenation

In this section, we describe Screen Space Billboard
Voxel Buffer implementation. We will focus mainly
on ray marching extensions and algorithm optimization
steps.

5.1.1 Screen size static vertex buffer
The base component of the developed Screen Space
Billboard Voxel Buffer algorithm is a static, fixed
size data buffer for voxels data. Due to that we can
create a static Vertex Buffer Object and fill it using
compute shaders. Using Shader Storage Buffer Objects
introduced in OpenGL 4.X API, we can bind the
Vertex Buffer Object and access it from the compute
shader. Therfor, both voxel point cloud input data
and output Screen Space Billboard Voxel Buffer can
be accessed on GPU. The layout of vertices data is
the same as vertex layout that we use in the voxel
visualization algorithm. The only potential difference
is additional object id information if our virtual scene
contains many independent 3D objects. In that case,
an additional material data array is necessary to handle
shading in rendering pass.

5.1.2 3D sparse texture
In our implementation, we used GL_ARB_sparse_texture
and GL_EXT_sparse_texture2 extension according to
test hardware specification. For a lookup table, R32UI
internal format texture was used to store voxels id
in the red channel. According to the texture internal
format, the sparse texture is dived to the specified
number of pages. We used 16x16x16 size pages for
lookup table texture. If some page is empty, GPU will
not allocate video memory for that page. On the shader
side, we can check if sampled data is committed or not.
If we cannot use the latest version of sparse texture
extensions, according to the driver specification,
sampling operation should return zeros.

5.1.3 Voxel filtering implementation
Voxel filtering algorithm was implemented with com-
pute shader. Using ray marching approach, we seek for
render candidates and then copy voxel data from point
cloud to screen space voxel buffer. In order to optimize
ray marching step, Object order empty space skipping
pass was implemented. Using a prepared simplified tri-
angle mesh, we render world and object space positions
to off-screen render targets. Using saved pixel object
space position, we can optimize ray marching by start-
ing marching very close to the object surface. Addition-
ally, we optimize ray marching for big, empty spaces.
Figure 4 presents render results of example scene.

Created 3D sparse texture and pre-pass rendering re-
sults are used in final voxel filtering step. Listing 1

Figure 4: Ray marching start position from object order
empty space skipping optimization pass.

presents main parts of voxel filtering compute shader
code. Ray marching and data preparation code have
been omitted. Additionally, in order to simplify listing,
some code was reduced to pseudocode or comments.

layout (rgba16f) uniform image2D
worldSpaceTex;

layout (rgba16f) uniform image2D
objectSpaceTex;

uniform usampler3D lookupTex;

struct VertexLayout {
vec3 position;
vec3 normal;
vec2 uv;

};

layout(std140, binding = 0) buffer VBO_Input
{

VertexLayout vbo_in[];
};

layout(std140, binding = 1) buffer
VBO_Output {

VertexLayout vbo_out[];
};

void main(void) {
int id = pix.x*size.y + pix.y;
vbo_out[id].uv.x = -1.0; // clear SSBVB

vec4 posStart = imageLoad(objectSpaceTex,
pix);

if(IsEmpty(depth.a)) return;

// perform ray marching fo defined sample
count

uint sample = texture(lookupTex,pos).r;
if(IsResident(sample)) {
int voxel = int(sample);
vec4 off = imageLoad(worldSpaceTex, pix);
// init SSBVB
vbo_out[id].position =

vbo_in[voxel].position;
vbo_out[id].position += off.xyz;
vbo_out[id].normal =

vbo_in[voxel].normal;
vbo_out[id].uv = vbo_in[voxel].uv;

}

Listing 1: Voxel filtering compute shader.
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5.2 Voxel rendering implementation
The major disadvantage of voxel representations is
memory consumption. Using 3D textures to store ob-
ject data is a major waste of the VRAM. For example,
efficient usage of allocated memory in the case of
Stanford Bunny surface voxelized 2563 resolution is
about 1.5%. The usage of SVO solves this problem.
The SVO is a great method of voxel data compression
based on optimizing empty and constant spaces.
Additionally, we automatically gain an object LODs
collection.

Ray tracing is the popular method of SVO rendering.
It is efficient and produce great rendering results. How-
ever, in that method, full SVO data must be stored in the
VRAM or data must be streamed from RAM to GPU
memory. In order to easily handle the virtual scenes
with many different objects based on the SVO, we used
a different approach. Listings 2 - 4 presents a voxel
rendering pipeline with geometry shaders.

layout (location = 0) in vec3 pos;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texCoords;

uniform mat4 modelView;
uniform mat3 invTModelView;

out VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexOut;

void main() {
gl_Position = vec4(pos,1.0);
vec4 viewPos = modelView*vec4(pos,1.0);
VertexOut.normal = invTModelView*normal;
VertexOut.position = viewPos.xyz;
VertexOut.texCoord = texCoords.xy;

}

Listing 2: Voxel rendering vertex shader

layout (points) in;
layout (triangle_strip, max_vertices = 4)

out;

uniform mat4 projection;
uniform mat4 modelView;
uniform vec3 size;
uniform vec3 cameraPosition;

in VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexIn[1];

out VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexOut;

void main() {

if(Backface() || EmptyScreenBuffer())
return;

vec4 center = modelView *
gl_in[0].gl_Position;

gl_Position = projection * (center + size);
VertexOut.position = VertexIn[0].position;
VertexOut.normal = VertexIn[0].normal;
VertexOut.texCoord = VertexIn[0].texCoord;
EmitVertex();
// ... same operation for the rest
EndPrimitive();

}

Listing 3: Voxel rendering geometry shader

uniform sampler2D tex;

in VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexIn;

out vec4 albedoOutput;
out vec4 posOutput;
out vec4 normOutput;

void main() {
vec3 norm = normalize(VertexIn.normal.xyz);
albedoOutput = texture(tex,

VertexIn.texCoord);
posOutput =

vec4(VertexIn.position,LinearizeDepth());
normOutput = vec4(norm, 1.0);

}

Listing 4: Voxel rendering pixel shader

5.3 Screen space attributes smoothing in-
tegration

With developed algorithm, we are able to render a
voxelized object alongside triangle objects and use
any triangle rasterization pipeline algorithm. Unfortu-
nately, a challenge appears when we need to implement
the screen space data smoothing for selected voxel
attributes. Using the deferred rendering pipeline we
store all frame normal data in the G-buffer. Smooth-
ing cannot affect triangle based objects because the
information will be lost.

We developed an integration method based on stencil
buffer. Using the stencil test we can exclude triangle-
based objects from voxel objects. The algorithm based
on stencil buffer is as follows:

1. Create and attach stencil buffer to the G-buffer.
2. Setup stencil to write defined value to stencil when

rendering triangle objects and a different value for
the voxel objects.

3. Attach stencil buffer to filtering pass frame buffer.
4. Setup stencil test to pass only fragments related to

the triangle objects.
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5. Setup stencil test to pass only voxel objects and ap-
ply filtering shader to passed fragments.

6. Use smoothed attributes in deferred composition
pass.

6 RENDERING AND PERFORMANCE
TEST RESULTS

All depicted timings were obtained on Intel Core i5
2500K CPU with NVidia GeForce GTX 660 GPU. All
algorithms were implemented using OpenGL 4.5 API
with C++14 for Windows 10 64-bit. We used Stanford
Repository models as a test object [Stanford11]. Ta-
ble 1 presents performance, memory requirements and
test results for static and dynamic streamed voxel ob-
jects. Figures 5 - 7 presents rendering results of pro-
posed voxel rendering algorithm.

Without a doubt, today’s standard and most studied
method for visualizing SVO is based on using the
ray tracing algorithm on GPU. For that reason, we
performed performance tests and compared them with
our algorithm. As a reference, we used the „Efficient
sparse voxel octrees” implementation that is available
online [Laine10]. Performance test results are pre-
sented in Table 2. The results show that our approach
offers comparable or even better performance than ray
tracing SVO visualization.

It order to test how our algorithm performs on modern
hardware designed for computer games, we performed
additional tests on PC with Intel Core i7 4790K CPU
with NVidia GeForce GTX 980 GPU. We prepared ob-
jects voxelized in 20483 resolution. Figure 8 presents
rendering results of high-resolution objects. Figure 9
presents performance test of the scene rendered with
Screen Scene Billboard Voxel Buffer.

Figure 5: Stanford Bunny, 9 octree level.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a novel approach to effi-
cient real-time rendering of numerous high-resolution
voxelized objects with the fixed size Screen Space Bill-
board Voxel Buffer. The developed method can be used

Figure 6: Stanford Dragon, 9 octree level.

Figure 7: Stanford Lucy, 10 octree level.

Figure 8: 21 test objects, 402 million voxels, 22 FPS
achieved on 720p render target with GeForce GTX 980.

to render 3D objects represented by SVO with a stan-
dard triangle-based pipeline graphics engine. Thanks to
the limitation of vertex shader invocations and the ge-
ometry shaders usage it is possible to achieve real-time
rendering of billions of voxels. We achieved compara-
ble or even better rendering performance results in com-
parison with the SVO ray tracing approach Moreover,
our method is applicable to render both static and dy-
namic objects in real-time with the full support of mod-
ern hardware graphics APIs and rendering algorithms.

Used Object Order Empty Space Skipping efficiently
optimized 3D sparse texture sampling. However, the
current implementation is highly optimized for render-
ing non-occluding objects. We need to extend our ray
marching implementation with additional ray traversal
for potentially occluded pixels.

An obvious step forward would be an implementation
of SVO traversal as a substitute for ray marching filter-
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Figure 9: Rendering results using Screen Space Billboard Voxel Buffer in 720p with Nvidia Geforce GTX 980.
Test scene contains 4096 Stanford Bunny which are represented by about 10 billion voxels (20 billion triangle in
base algorithm). We achieved about 70 FPS for the left image and about 160 FPS for the right image.

Object Octree level Static object
rendering time

Streamed object
rendering time

Voxel grid
file

Octree
file VRAM

Bunny
7 0.07 ms 0.11 ms 2.06 MiB 15.0 MiB 0.67 MiB

8 0.26 ms 0.61 ms 8.30 MiB 60.9 MiB 0.67 MiB

9 1.24 ms 3.75 ms 33.20 MiB 255 MiB 3.04 MiB

Dragon
7 0.10 ms 0.12 ms 2.81 MiB 22.2 MiB 0.92 MiB

8 0.37 ms 0.95 ms 11.3 MiB 88.8 MiB 0.92 MiB

9 1.81 ms 5.15 ms 45.3 MiB 363 MiB 4.26 MiB

Lucy
7 0.05 ms 0.11 ms 1.69 MiB 11.0 MiB 0.52 MiB

8 0.20 ms 0.40 ms 6.86 MiB 45.3 MiB 0.52 MiB

9 0.95 ms 2.73 ms 27.5 MiB 183 MiB 2.32 MiB

Table 1: Performance, memory requirements and test results for static and dynamic streamed voxel objects without
using developed Screen Space Billboard Buffer algorithm. Render target resolution was 720p.

Object Octree level Resolution Ray tracing
render time

Ray tracing
manage time

Ray tracing
FPS

SSBVB
render time

SSBVB
manage time

SSBVB
FPS

Bunny

7 720p
1080p

8.43 ms
15.16 ms

10.20 ms
17.90 ms

78
48

2.61 ms
6.80 ms

1.09 ms
2.48 ms

253
102

8 720p
1080p

8.80 ms
15.25ms

10.60 ms
18.30 ms

76
47

2.56 ms
5.92 ms

1.46 ms
3.05 ms

235
106

9 720p
1080p

9.32 ms
16.01 ms

11.25 ms
19.21 ms

72
44

2.59 ms
5.92 ms

2.34 ms
4.63 ms

192
90

Dragon

7 720p
1080p

6.44 ms
11.10 ms

8.20 ms
13.80 ms

93
60

2.88 ms
7.64 ms

1.96 ms
3.89 ms

198
83

8 720p
1080p

6.89 ms
11.68 ms

8.60 ms
14.20 ms

89
68

2.82 ms
6.52 ms

3.38 ms
6.74 ms

153
73

9 720p
1080p

7.47 ms
11.92 ms

9.22 ms
15.30 ms

84
54

2.85 ms
6.50 ms

5.78 ms
11.91 ms

112
54

Lucy

7 720p
1080p

4.51 ms
8.01 ms

6.20 ms
10.50 ms

115
72

2.59 ms
6.65 ms

1.17 ms
2.38 ms

252
107

8 720p
1080p

4.75 ms
8.30 ms

6.45 ms
10.98 ms

112
69

2.51 ms
5.67 ms

1.86 ms
3.70 ms

219
101

9 720p
1080p

5.04 ms
8.70 ms

6.71 ms
11.30 ms

109
69

2.49 ms
5.63 ms

3.11 ms
6.13 ms

170
81

Table 2: Performance test comparison between developed Screen Space Billboard Buffer algorithm and ray trac-
ing implementation [Laine10]. SVO ray tracing times are obtained from the performance tools included in the
implementation.
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ing approach. We can actually use sparse textures to
store SVO. In that case, we will need to store full SVO
in GPU memory. It will increase memory requirements
and slightly impends dynamic object handling. How-
ever, voxel filtering could be faster and more precise in
comparison with ray marching approach.
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ABSTRACT
We introduce a new Voronoi-based method to fracture objects represented by sparse voxel octrees (SVOs). Our
approach is inspired by the pattern-based methods, however, in contrast to them, it doesn’t require pattern pre-
computation. Moreover, thanks to the octree structure, the surfaces of the fractured pieces of geometry are created
efficiently and robustly. Every fracture pattern is unique and centered at the impact location. A novel islands detec-
tion technique is also provided, which is tunable to a desired level-of-detail accuracy. The fractured pieces, which
are determined as a consequence of the object’s destruction, are represented by individual SVOs, and treated and
simulated as rigid bodies. For this purpose, we also propose a new collision detection technique, which extends the
previous image-based methods to voxels. As a result, deep penetrations of colliding objects, resolved on various
levels of physics that can be specified individually for each pair of the objects, are handled in parallel with no extra
cost. In order to demonstrate our technique, a number of scenarios are presented, including a partial fracturing of
objects with fine details.

Keywords
SVO, Voronoi decomposition, pattern fracturing, rigid body physics

1 INTRODUCTION
For many years voxels have been successfully used in
lots of applications in computer graphics. From special
effects up to medical imaging, we benefit from volu-
metric information delivered by voxels. Transparent,
layered and with vague surfaces models are the main
target for this object representation. There were many
limitations that came along with voxels, such as large
memory consumption and lack of hardware support,
and some of them are still present nowadays. How-
ever, many new techniques have been developed, which
made voxels more competitive than ever. With con-
stant increase in computational power of modern graph-
ics processing units, we may be facing situation, when
methods based on voxels will gradually supersede the
ones based on triangles.

In this context, probably one of the best promising con-
cepts is Sparse Voxel Octree (SVO) [Cra11] — a hier-
archical structure that lately has made voxels popular as
a representation for solid objects in computer graphics.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Less memory consumption, various levels of detail, and
necessary access only to small subset of full voxel data
are some benefits of SVO that have led to creation of
realistic, high-resolution voxel models and large voxel
environments. In this paper, we made an attempt to take
advantage of this representation and shed a new light on
the problem of objects fracturing.

Special effects of destruction are widely present in to-
day’s computer games and movie industry. Depend-
ing on a purpose, they can be either highly realistic
but requiring lots of computational power, or fast but
giving only an approximate illusion of observed phe-
nomena. The latter approach is aimed for real-time per-
formance, where accuracy is not as important, that this
is usually the case in games. Many methods are used
in order to do that in a fast but somewhat "fake" way,
such as pre-fracturing of objects and replacing models
when collision happens. Such an approach, however,
requires preparations of lots of game assets. Recently,
pattern-based fracture methods have been proposed for
the mesh representation. They deal with this problem
by decomposing the destruction process into two parts:
the generation of a fracture pattern and then its multiple
application on number of objects. While the first part
can be done by an artist, the latter requires specialized
techniques in order to robustly cut objects, mainly due
to their geometrical complexity. Similarly, after the ob-
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ject’s destruction, the movement of fractured pieces is
simulated and it also suffers from the same reason: the
more detailed object, the harder to calculate collision.

We strongly believe, that representing objects with
sparse voxel octrees is a remedy to all these problems.
With spatial information about an object, built from
basic geometric figures like boxes, many algorithms
can be simplified. What is more, due to the SVO hi-
erarchical structure, many calculations can be avoided
and performed on different levels of details. Our main
contribution include:

• a method to dynamic fracture with Voronoi decom-
position, which can be applied locally;

• a method for detecting separated volumes in a SVO;

• an algorithm for collision detection, that adopts the
image-based approach [FBAF08] to voxels.

2 RELATED WORK
Fracture Simulation. Fracture modeling for computer
graphics greatly enhances physics simulation widely
present in modern computer games and special effects
in movies. Probably it wouldn’t be so common today
if it weren’t for work by Terzopoulos et al. [TF88] and
Norton et al. [NTB*91] which pioneered this area of
study in computer graphics. O’Brien and Hodgins fol-
lowed them and focused in their papers on simulating
brittle [OH99] and ductile fracture [OBH02]. Their ap-
proach was based on the finite element method (FEM)
used to compute internal stresses and fracture propa-
gation directions. Unfortunately, cutting a mesh and
its actualization, which is one of the most challeng-
ing issues in such approaches, are still present nowa-
days [WRK*10]. There are also methods that formu-
late the problem of fracture simulation as a quasi-static
stress analysis [ZBG15]. They have the potential to be
cheaper than a fully dynamic deformation simulation,
but tends to produce deadened motions. An example of
another interesting work can be [CYFW14], in which
low resolution objects are enriched during fracture with
extra details based on material strength field.

Although, from the "physical" viewpoint, the results of
the mentioned methods can be perceived as acceptable,
our main interest lies in solutions aimed for real-time
systems. Since the pattern-base approach, at least con-
ceptually, plays well with voxel representations and,
moreover, is efficient and robust, we decided to uti-
lize it in our SVO fracture method. A number of
methods have been proposed to generate fracture pat-
terns, such as the ones based on Voronoi diagrams
[SSF09][BCC*11][MCK13] or engaging simulations
[IO09]. In our approach, in contrast to the previous
ones, we don’t need any precalculated fracture pattern,
as it is generated on-the-fly (like in [SO14]), when col-
lision happens.

Collision Detection and Response. Collision detec-
tion itself covers broad area of investigation in com-
puter graphics. Due to colliding objects geometrical
complexity it is common to take advantage of hierar-
chical bounding structures, including bounding boxes
[GLM96] and bounding spheres [Hub95]. Fortunately,
in the case of SVO, objects are inherently represented
hierarchically, so there is no need for any additional
space searching optimizing structure.

More recently, some work on collision detection has
been focused on exploiting GPUs, taking advantage of
their inherent computational parallelism. Most of the
presented techniques return pairs of colliding primitives
delivering necessary information for objects separation.
In particular, Layer Depth Images (LDIs) proved to be
very useful for this goal [HTG04]. In this method, at
the first stage, a broad phase collision check is per-
formed, resulting in bounding boxes representing the
intersection volume of boxes’ pairs that enclose collid-
ing objects. Then, the volumes are rendered to LDIs
using GPU. Finally, iterating over LDIs along a cho-
sen viewing axis, one can calculate the collision vol-
ume by inspecting the pairs of consecutive texels. In the
original LDI method as presented by Heidelberger et al.
only collision detection but not its response was taken
into account. That was addressed later by Faure et al.
[FBAF08] by delivering the derivatives at the vertices
of the meshes of colliding objects in order to generate
forces for minimizing the volume of collision. In ad-
dition to the penalty-based method used in [FBAF08],
Allard et al. [AFC*10] proposed also the constraint-
based one including Coulomb friction.

In the context of collision detection, our method can be
viewed as an extension of that by Faure et al., and it
can also be incorporated into the method by Allard et
al. Our main contribution lies in the efficient determi-
nation of the collision area. The main advantage of our
method is that we can generate collision information in
parallel for all collided objects at accuracy specified in-
dividually for a given pair of objects. While Faure dealt
with objects represented with meshes, we utilize SVOs.
One should notice that this new problem formulation
fits very well to the LDI-based solution by Faure.

Sparse Voxel Octrees. The pursuit of efficient ex-
ploitation of voxel structures as representations of solid
objects in computer graphics lasts for years. Nowa-
days, with the aid of modern GPUs along with the new
GPU-specialized programming techniques, the benefits
of voxel model of solids become not only evident but
even more and more spectacular. Probably the best ex-
ample of this new life of voxels in computer graphics
is Crassin’s research on SVO [Cra11] — one of the no-
table results is a global illumination method based on
SVO and cone tracing [CNS*11]. Moreover, there are
also some work that focuses mainly on efficient raytrac-
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ing over SVO [LK10], which shows that ray casting us-
ing SVO can be faster than when objects are represented
with meshes. Although the majority of papers focus
on visualization of static voxel models, there were also
some approaches to animation of voxel models. Crassin
proposed to animate objects by constant voxelization to
SVO, which unfortunately requires object’s input mesh
and scales poorly. Nevertheless, the SVO animation can
be realized in other ways. An example is the method de-
veloped by Bautembach [Bau11], in which SVO is ani-
mated only during visualization, without any influence
on the structure of an input model. His approach was
then extended by Willcocks [Wil13], who presented a
method for volumetric deformation and animation of
large number of objects in the scene. What is more, oc-
trees can be built very fast using recent techniques pre-
sented in [ZGHG11][GPM11][Kar12]. If there is not
enough memory in GPU to build SVO by means of the
methods, one can use the out-of-core approaches de-
scribed by [BLD14][PK15], which utilize only a frac-
tion of memory required to store the model.

The above and inevitably incomplete set of citations
show that the computer graphics community nowadays
experiences a renaissance of voxels, which manifests in
constant development of new voxel techniques and ap-
plications. Nevertheless, to the best of our knowledge,
this paper is the first report on the application of SVO
in the tasks such as physics of rigid body collisions and
fracture simulation.

3 SVO STRUCTURE
Our SVO structure is very similar to the one used by
Crassin et al. [Cra11]. First of all, there is an octree for
nodes’ descriptors, represented as two 32 bit integers.
Each node descriptor has the information about whether
the node: is terminal (1 bit), represents empty space (1
bit), is internal (1 bit). The remaining 29 bits of the
first integer are used as a pointer to the descriptor of
the first of node’s eight children. What is more, with
each descriptor there is associated another pointer, as
a second integer, to the densely packed voxel’s data:
color and normal vector.

3.1 Voxel Types
In our SVO structure, there are three kinds of nodes:
boundary, internal and empty. Boundary nodes are the
nodes that represent the boundary of the object and they
are used in visualization. If the SVO is derived from a
mesh, then the nodes are created during voxelization
process and contains information about color and nor-
mal vector. They can be expanded further up to the
finest SVO level. One of their child nodes can be an
empty node. The empty node indicates that its volume
doesn’t intersect the object’s surface, that is the node
lies either inside or outside of the object — it is always a

terminal node. There are also internal nodes that, from
the algorithmic point of view, can be considered as a
special case of empty nodes, because an empty node is
flagged as internal when it passes the test (Sec. 3.2)
whether it is located inside of the object. As such, in-
ternal nodes represent the interior of the object. These
nodes are very important as they deliver the informa-
tion that is necessary for objects fracturing and physics
calculations.

3.2 Internal Nodes Test
After the SVO creation, the test for internal nodes is
conducted for each empty node on every SVO level,
because empty non-internal nodes are skipped during
the fracturing process and collision detection. The test
is based on ray casting. A ray is shot from the empty
node center and has the same direction as the normal
vector of the parent node. Next, the ray traverse the
SVO down to its leaves. The two outcomes of this op-
eration are possible. Either the ray doesn’t hit anything
or it encounters one of the leaves. In the first case, the
internal node test has failed. In the second case, an ad-
ditional test must be performed to determine which side
of the leaf node was hit. The test rely on the compari-
son of the ray direction and the node normal vector. If
the angle between them is smaller than 90 degrees, then
the internal node test passed and the node is assumed to
belong to the interior of the object (in other case, the
empty node lies outside the object, so the test failed).

4 FRACTURING SVO OBJECT
4.1 Fracture Algorithm
In this section we outline our algorithm for fracturing
SVO objects.The underlying assumption is that a SVO
object is cut into pieces with a fracture pattern repre-
sented by a space-partitioning structure that divides the
3D Euclidean space into convex regions (Sec. 4.2). As
such, the fracture pattern consists of (planar) faces de-
termining the slicing areas which are then used to par-
tition the SVO object.

The main part of the algorithm is to determine subsets
of the SVO voxels that represent the surfaces of frac-
tured pieces at the accuracy of the SVO highest level.
The voxels that constitute the subsets are the boundary
voxels (Sec. 3.1) from the SVO leaves as well as inter-
nal voxels that are intersected by a pattern face at the
SVO highest level — we call the latter voxels the HL
internal voxels. One should note, however, that internal
voxels do not have children in the SVO, so the HL inter-
nal voxels that are not children of boundary voxels are
not physically present in the original SVO. Therefore
the HL internal voxels have to be dynamically created
during the fracturing process.

In order to determine the HL internal voxels the SVO is
traversed from the root to the leaves, and at each SVO
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level the intersections of voxels with the pattern faces
are tested (Sec. 4.3). If an internal voxel is intersected
by a pattern face and the voxel is not the HL internal
voxel, then its eight child internal voxels are dynam-
ically created at the next SVO level. With regard to
the voxel-face intersection tests the two following facts
should be pointed out. First, the necessary condition for
a child voxel to be intersected with a pattern face is the
presence of the intersection of the face with the voxel’s
parent. Secondly, the parent of an internal voxel may
be an internal voxel (in this case the child voxel was
dynamically created) or a boundary voxel. Therefore
at each SVO level the voxel-face intersection tests are
performed for both interior and boundary voxels whose
parent voxels have been intersected at the previous SVO
level (Fig. 1).
Having the subsets of voxels, we regard the voxels as
the boundary voxels of the fractured pieces (Sec. 4.4)
represented by the subsets, and for each subset we build
a SVO (Sec. 4.6) on the basis of the subset’s component
voxels treated as the SVO leaves.
One should note, however, that the SVO partition pro-
cedure does not guarantee that the resulting subsets of
voxels will be connected sets. It may happen that a sub-
set can be partitioned into two groups of voxels such
that for all voxels in one group there is no adjoint voxel
in the other group. In such a case the subset represents
two (or more) disjoint fracture pieces which should be
treated as individual objects by a physics engine. Such
autonomous groups of voxels within a single subset we
call islands. In order to detect them, the additional test
(Sec. 4.5) has to be performed before the SVO creation.

4.2 Voronoi Fracture Pattern
Patterns used to fracture objects can be obtained in
many ways. Usually, it is a precomputed decomposi-
tion of space, based on Voronoi diagrams. During the
fracture process performed at run-time, the pattern is
aligned with the target object at an impact location and
properly rotated. Such an approach was recently pre-
sented by Sue et al. in [SSF09]. In their method, the
fracture pattern is applied to a mesh object using the
level set-based approach, which requires high resolu-
tion grids to get thin features and, consequently, it is
both computationally expensive and memory consump-
tive. On the other hand, the fracture pattern may be
applied directly to a mesh. However, a naive applica-
tion of this idea would be cumbersome to implement
robustly. To deal with it, Müller et al. [MCK13] imple-
ment a fracture pattern as a set of meshes, and a mesh
to fracture is initially split to convex pieces with the use
of the Volumetric Approximate Convex Decomposition
(VACD). As a result, they are capable to locally destruct
mesh objects in real-time.
In contrast to the previous methods, in our approach we
represent a fracture pattern by a finite set of 3D points

Figure 1: Voxels located on both the object’s boundary
and the Voronoi faces are expanded into child nodes on
the next SVO level. The voxels marked with blue color
lie on the boundary, while the green ones are internal,
generated on-the-fly.

which are treated as seeds of a Voronoi diagram used
to fracture a SVO object and generated dynamically at
run-time. To deliver the impression that the fracture
concentrates around the impact location, the Voronoi
seeds are generated at random on a set of spheres of
growing radii and centered at the point of impact. By
manipulating the length of the radii we can obtain a va-
riety of patterns and different sizes of fractured pieces.
Of course, there is also a possibility to locate the seeds
in a more physical way, which would make the outcome
of the fracture process even more realistic.

4.3 Voxel-Pattern Faces Intersection Test
One of the main operations of our algorithm for frac-
turing SVO objects is the voxel-pattern faces intersec-
tion test which is performed at each level of the SVO
as described in Sec. 4.1. The intersection test does not
require the determination of the faces of the Voronoi di-
agram since it is realized directly on the basis of the set
of the Voronoi seeds.

Let S = {1, . . . ,n} be the set of the indices of the seeds
{si}i∈S defining a Voronoi fracture pattern. Define a
function γ : R3→ 2S such that

γ(x) = {k ∈ S : ‖sk− x‖= min
i∈S
‖si− x‖}. (1)

Since there is the one-to-one correspondence between
the Voronoi seeds and the Voronoi cells, given a point
x ∈ R3, the function γ determines the set of the indices
of the Voronoi cells that include x. (The resulting set of
indices is not a singleton, if x lies on a face, an edge, or
a vertex of the Voronoi diagram).

Now, we can move to the voxel domain and define a
function that, given a voxel specified by the set V =
{vi}i=1,...,8 of its vertices, maps the voxel into the set of
the indices of the Voronoi cells the vertices are located
in:

f(V ) =
⋃
v∈V

γ(v). (2)

Since the voxel V is intersected by a face of the Voronoi
pattern if V has a (nonempty) intersection with at least
two Voronoi cells, it is easy to see that the intersection
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exists if the set of indices given by f(V ) is not a sin-
gleton. Of course, in a practical implementation of the
intersection test we can stop computing the set f(V ) if
its subset obtained in an intermediate step contains at
least two indices.

4.4 Fracture Boundary Set
As a result of the voxel-pattern faces intersection tests
performed while traversing the SVO, we obtain an un-
ordered set of the HL internal voxels (see Sec. 4.1).
The set together with the set of the SVO leaf bound-
ary voxels constitute the set B of voxels which are the
boundary voxels representing the surfaces of the frac-
tured pieces at the accuracy of the SVO finest level. In
order to assign these boundary voxels to the adequate
pieces we should decompose the set B into the disjoint
family of the connected subsets of voxels that represent,
first of all, the pieces induced by the Voronoi cells, and
then islands within a piece, if the piece proves to be a
disconnected set.
Nevertheless, the voxels in B that have a nonempty in-
tersection with a pattern face belongs to two or more
Voronoi cells of the pattern and, as such, they should be
"divided" between the cells. This leads us to the frac-
ture boundary set (FBS) which is constructed from B
by computing for each V ∈B the set of indices f(V ),
creating copies of V in a number equal to the cardinal-
ity of f(V ), and assigning to each copy the consecutive
index from f(V ). Since the indices from f(V ) deter-
mine the Voronoi cells that V belongs to (Sec. 4.3), the
copies of a voxel in FBS are treated as disjoint sets from
the point of view of the voxel space partitioned with the
fracture pattern. The FBS is the set on which we carry
out the operations of grouping voxels into connected
sets of fractured pieces — the algorithm described in
the next section.
Apart from an index of the Voronoi cell, each voxel
in FBS has to store attributes required for visualiza-
tion, i.e., color, position, and normal vector. The at-
tributes are determined on the basis of the attributes of
original voxels from the SVO. The voxel’s position is
computed during the SVO traversal on the basis of the
location of the voxel within the SVO. The remaining
two attributes depend on whether the original voxel is
a boundary voxel or a HL internal voxel. The copies
of a boundary voxel inherit a color and normal vector
from their original. In the case of the copies of a HL
internal voxel the color may be obtained from a volu-
metric texture or it can be generated procedurally. In
turn, their normal vectors are determined on the basis
of the normals of the Voronoi faces that intersect the
HL internal voxel. If the HL internal voxel does not lie
on an edge or a vertex of the intersecting Voronoi face,
the normal for the copy of the voxel in FBS is just equal
to the face normal pointing outside the Voronoi cell as-
sociated to the copy; otherwise the normal is computed

by averaging the normals of all faces that intersect the
HL internal voxel.

4.5 FBS connected-component detection
Since FBS is just an unordered set of boundary voxels,
we have to group the voxels into the connected sub-
sets of the individual fractured pieces, i.e., the pieces
induced by the Voronoi cells and eventually the is-
lands within a piece, if the piece is a disconnected set
(Sec. 4.1). However, before the actual voxel grouping
takes place, in the initial step, FBS is sorted by the
voxel positions represented by Morton codes [Kar12]
(Fig. 2). Thanks to that, the voxels can be addressed by
one-dimensional index, which is essential for the island
detection algorithm as well as later, for constructing the
SVOs (Sec. 4.6).
Now, we obtain the FBS voxels grouped with regard to
the fracture pattern cells, just by carrying out the stable
sorting by the f(V ) indices, which were assigned to the
voxels during the FBS construction (as described in the
previous section). As a result, the groups are placed one
after another in linear memory, and the voxels within
each group are ordered by Morton code. We call the
groups of voxels Voronoi cell pieces (VCPs). In the
next step each of the VCP groups has to be checked
for connectivity, that is the island detection test is per-
formed.

4.5.1 Island detection algorithm
We assume that a voxel is connected with another voxel
from its nearest neighborhood if the voxels share a face,
an edge or a vertex, so we assume 26-connectivity. Our
solution to the island detection problem is based on the
well-known conception of connected-component label-
ing (CCL — see e.g. [SB10]). The CCL underling idea
is to label the elements of an input set with consecutive
numbers, and then, to maximize iteratively the labels
in the range of the elements’ adjacent neighbors. This
way, for each connected subset, the maximum label in
the subset propagates between the subset’s elements. At
the end of the procedure the connected subsets are dis-
tinguished from one another by a maximum label that
is associated to each element of a connected subset.
Although there are a number of efficient CCL algo-
rithms, both sequential and parallel ones, to our best
knowledge, all of them assume and operate on the in-
put data organized in a regular structure such as a 2D
uniform grid of pixels or a 3D uniform grid of vox-
els. Therefore the necessary neighborhood informa-
tion for each basic structure element is easily accessi-
ble. Unfortunately, this is not the case for SVO and,
as a consequence, for FBS, since the voxel neighbor-
hood information does not follow from the ordering of
elements inherent for these structures. Of course, one
could augment the structures in the additional informa-
tion by storing the pointers to neighbors of each voxel,
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Figure 2: Fractured object represented by a quadtree.
Node positions are described with Morton codes and
new objects’ ids are assigned.

but this would require a lot of additional memory space
and extra processing during the SVO constructions. In-
stead, we decided to base our island detection algorithm
on the direct application of the CCL underling concep-
tion realized in the form of a parallel implementation
on GPU in CUDA.

In the initial step of the algorithm the voxels in FBS are
labeled with consecutive numbers. Then, for each voxel
within each VCP group one thread is launched. Every
thread loops over the VCP voxels existing in the 26-
neighborhood of the relevant central voxel, taking the
maximum of the label values of the central voxel and
the neighboring voxels and relabeling with the maxi-
mum the voxels of the lower label value. Since, at the
same time, other "neighboring" threads may try to re-
label the voxels, the relabeling is done using an atomic
operation (atomicMax in CUDA). The central voxel’s
neighbors are determined on the basis of their Morton
codes by means of the binary search on voxels from
the same VCP group, and their memory addresses are
cached in thread local memory. Each thread continues
until there is no change in the labels of the voxels pro-
cessed by the thread.

Then, for each VCP group in which relabeling took
place, the threads are launched again, and the algorithm
continues this way until there is no VCP group to rela-
bel.

Finally, in the FBS voxels, the f(V ) indices are substi-
tuted with the labels, and FBS itself is stably sorted by
the labels to obtain the required partition on the groups
of the connected voxel subsets, which preserves the or-
der of the Morton codes within each group.

4.5.2 Optimizations

The original 26-neighborhood each thread is supposed
to operate on can be reduced by half. Let V be the
voxel space induced by the cubic lattice that coincides
with VCP; thus VCP ⊂ V. Let Nk(V ) be a k-element
subset of the 26-neighborhood N26(V ) ⊂ V of a voxel
V ∈ V. Assuming that the threads operate on the sub-
sets Nk(V )∩VCP, V ∈ VCP, it is easy to see that the
sufficient condition for the correct propagation of labels
by the threads within a connected component is that for

all voxels V,V ′ ∈ V such that V ′ ∈ N26(V )\Nk(V ), the
voxel V belongs to Nk(V ′). If Nk(V ) satisfies this con-
dition, then this guarantees that if label(V )< label(V ′)
for some voxel V ′ ∈ N26(V ) ∩VCP, then there is a
thread to propagate label(V ′) to V . A little thought
shows that for k = 13, N13(V ) can be composed with
9 voxels of coordinates (x+ a,y+ b,z− 1) and 4 vox-
els of coordinates (x + a,y + 1,z), (x− 1,y,z), where
a,b ∈ {−1,0,1}, and (x,y,z) are coordinates of the
voxel V . Moreover, one can easily check that k = 13
is the minimum number of voxels for Nk(V ) to obey the
above condition.

There are also other possible optimizations that we use
in the island detection algorithm. First, there are de-
pendency chains between voxels in the same neighbor-
hood, which results in equivalence trees [SB10], that
can be flatten in each iteration. Secondly, there is no
need to re-launch threads which have propagated the
VCP maximum labels to their neighborhoods. Since we
label the FBS voxels, we know the maximum value of
the labels within each VCP group, so we exclude such
"maximum" threads from further operations. Thirdly,
each voxel V stores the information about its existing
neighbors (i.e., the voxels from N13(V )∩VCP) in or-
der to reduce the costly binary search being done by a
thread only to these neighbors. The information is ob-
tained during the first execution of the thread and coded
in one integer by setting appropriate bits. Lastly, some
speed/precision trade can be made, as the island detec-
tion can be performed on other SVO level than the finest
one. In order to do so, one have to construct an ap-
proximation of FBS composed of the ancestor voxels
of the FBS voxels at a given SVO level. The appropri-
ate ancestors can be easily determined on the basis of
the Morton codes of the FBS voxels. Then the island
detection test can be carried out on that approximated
FBS set, and the result propagated down to the voxels
from the original FBS.

4.6 SVO Building
Having FBS partitioned on the connected voxel subsets
distinguished by labels (Sec. 4.5.1), for each subset a
SVO has to be built. As mentioned in Sec. 2, there are a
number of fast methods for building a SVO, but we are
interested on those that utilize Morton code. A SVO
can be build in depth-first order [Kar12] by creating all
levels in one kernel call. In turn, the breadth-first order
is obtained iteratively [ZGHG11], and this approach is
most suitable for our purposes. Moreover, the original
algorithm can be easily extended to build many SVOs
simultaneously (voxels from different SVOs are distin-
guished by the piece labels). Our implementation re-
mains almost the same as in [ZGHG11], with two ex-
ceptions. First, the parallel prefix scan primitive is re-
placed with its segmented version [HB10]. Secondly,
the sorting primitive operation has to be changed into
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the stable sorting primitive and performed two times:
first by Morton codes and second by the piece label.

4.7 Local Fracture
Apart from fracturing the whole object, there is also a
possibility to perform this operation locally. In order to
do that, one can attribute to every Voronoi seed an extra
object identifier. Then, on the last level of applying the
fracture pattern, voxels are assigned to piece objects on
the basis of these identifiers instead of the seed indices
(see Sec. 4.4). The assignment of the same identifier to
many seeds allows large parts of the fractured object to
remain intact and to properly create surfaces for pieces.
However, the voxels intersected by Voronoi faces must
still be detected, and on the last SVO level the inter-
section test must be altered. The modification concerns
internal voxels intersected by a Voronoi face that is in-
duced by seeds with the same identifier — these voxels
should not be considered in the output result. Other-
wise, some extra surfaces would be generated inside a
part of the SVO that is supposed to stay intact.

5 SVO COLLISION AND RESPONSE
In this section we address the problem of the rigid body
simulation of objects represented by SVOs. Lots of
techniques have been proposed over the years to simu-
late physics behavior of objects in virtual environments.
The methods have been mainly designed for meshes,
but often tended to use other forms of representation
and structures to model physical shapes and properties.
For example, one may utilize particles located on the
object’s surface to detect collision and generate repul-
sion forces. However, the surface-based methods are
characterized by short range of reactions and may not
easily recover from deep penetrations. Another ex-
ample are the distance-based methods. They rely on
a spatial map that encodes the signed distance from a
given point in 3D space to the object surface. Although
they better handle deep intersections, the calculation of
the distance map can be computationally expensive and
memory consumptive.

The approach we chose to adapt to voxel domain is
based on the volume minimization method [FBAF08].
In order to resolve collision, the technique models the
intersection of colliding objects, and then computes
the size of the intersection volume and the repulsion
forces—the latter derived from the volume gradients.
No precomputation is required and the efficiency of the
surface-based methods is combined with the robustness
of the distance-based ones.

5.1 Collision
In [FBAF08] to model the intersection of colliding ob-
jects the Layer Depth Images (LDIs) were used along
with GPU to benefit from parallelism. Our approach is

slightly different. First, the voxelization of objects into
LDI is no longer necessary, since our objects are build
with voxels. Secondly, in place of images of different
resolutions, we take advantage of the SVO hierarchy
and utilize it in the collision test.

5.1.1 Intersection of SVOs
In order to detect collision, we start with a broad-phase
check in which the intersections of SVOs’ roots of the
objects are tested. Then, the potentially colliding ob-
jects are paired and their SVOs traversed simultane-
ously. When traversing down, pairs of voxels (a voxel
from one SVO and a voxel from the other SVO) on a
given level of the SVOs are examined for an intersec-
tion (performed between two AABBs in the local space
of one of the SVOs), until the desired level of detail is
reached. The process is very efficient, since the inter-
section test is continued only for the pairs of those child
voxels whose parents intersect each other. Moreover,
the pairs of internal voxels are omitted, since our goal
is to follow the boundary voxels so as to enclose the
intersection of the chosen levels, and calculate the size
of the volume of the set and gradients of this volume.
In turn, we use this information in order to generate the
collision response forces (see 5.2).

5.1.2 Collision Points
The next step is the approximation of the surface of
the SVOs’ intersection. For this purpose we generate
a set of collision points when the desired SVO level
is reached during the traversal of the trees. The colli-
sion points correspond to the intersections between the
pairs of voxels from the colliding SVO objects. For a
boundary-internal voxel intersection, the position of the
collision point is determined as the center of the inter-
section volume between the pair of the voxels. In turn,
for a boundary-boundary voxel intersection two colli-
sion points are generated; each is positioned on the face
of one of the voxels from the pair by translating the cen-
ter of the intersection volume along the normal vector
of the voxel.

Moreover, with each collision point the normal vector
of the surface of the SVOs’ intersection is associated,
which is just the normal vector of the corresponding
boundary voxel.

Finally, we perform discretization of the collision
points by averaging their positions and normal vectors
within the cells of the cubic lattice coincident with
the voxels on the chosen SVO level. The operation is
straightforward as the collision points data is kept in
the local space of one of the SVOs.

5.1.3 Intersection Volume and Gradients
Having the collision points, we can calculate the size of
the intersection volume of the colliding objects. In or-
der to do that, we integrate the intersection volume by
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(a) (b) (c) (d)
Figure 3: (a) Two colliding objects. (b) The SVO structure drawn on the top of the blue object. (c) The intersection
area modeled with voxels. (d) The dots represent averaged collision points and volume gradients.

iterating over the collision points located in the columns
of the cubic lattice used for discretization. We examine
pairs of subsequent collision points. Our goal is to find
the pairs of the collision points such that their normal
vectors’ coordinates in the axis we iterate on have oppo-
site signs, and the same requirement is fulfilled for the
normal vector of the first collision point and the search
direction. If this condition is satisfied, the pair of colli-
sion points represent the local entry and exit of the in-
tersection volume surface, so the difference between the
positions of such collision points (in the axis we iterate
on), when multiplied by the voxel face area, is a par-
tial volume of the intersection. Therefore, to obtain the
entire volume of the intersection we sum these partial
volumes. Moreover, we compute the volume gradients
as the collision points’ normal vectors multiplied by the
voxel face area [FBAF08].

5.2 Response Forces
To resolve collision, the colliding objects have to be
separated. For this purpose we utilize the penalty-based
method as in [FBAF08]. It results in the generation of
two forces for each collision point. First, there is a re-
pulsion force, which can be formulated as:

frep =−kVintgi (3)

where k is an arbitrary positive constant, Vint – the size
of the intersection volume, and gi – the volume gradi-
ent at the i-th collision point. The second force is the
friction, expressed by the equation:

ffrc = µvta (4)

where µ is an arbitrary positive constant, vt – the rela-
tive tangential velocity, and a – the voxel face area.

6 RESULTS
In this section, we discuss the performance and quality
of the presented solution. All depicted timings were ob-
tained on Intel Core i7 960 CPU with Nvidia GeForce
GTX Titan Black GPU. All algorithms were imple-
mented using CUDA framework to fully exploit the par-
allelism delivered by GPU.

6.1 Varying Physics Level
Our collision detection method, due to the hierarchical
structure of SVO, supports varying physics levels at no
extra cost. As a result, one can easily balance between
precision of performed calculations and performance.
However, the object’s volume is changing with physics
level. The higher SVO level, the more accurate object’s
description. In order to obtain the volume of an object,
its boundary voxels must be sorted along one axis and
the pairs of the entry and exit voxels must be found. As
a consequence, small objects at lower SVO levels may
not have volume at all and collision forces would not
have affect on them.

Moreover, the chosen physics level doesn’t have to
be the same for all collided objects’ pairs. It can be
adapted to the current situation or, for example, based
on objects distance to the camera. When something
happens far away from the observer, it doesn’t have to
be presented precisely, as the observer couldn’t see all
the details anyway. In addition, sorting collision points
and forces calculations can be performed in parallel for
pairs on different physics level.

6.2 Fracture Performance
Table 1 presents timings of consecutive fracture stages
on chosen test scenes. Studying the results, one can
observe that increasing SVO level with the same num-
ber of Voronoi seeds, multiplies the fracture time by
a factor of 3–4 with reference to the fracture time on
the previous SVO level. This is directly connected with
the number of voxels on the current SVO level, which
changes in a similar manner. Moreover, the impact lo-
cation and the fracture pattern itself also has great in-
fluence on fracture time. The more fragmented objects,
the more surfaces to create, and the more voxels to pro-
cess.

6.3 Physics Performance
The physics part of our solution was tested using a num-
ber of various scenarios. First, the simplest scene is
presented in fig. 4. The Bunny was fractured and new
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Scene SVO Voronoi FBS Voxels Islands SVOs Internal Total
level nodes extraction sorting detection building nodes detection

Bunny 8 90 2.5 ms 1.1 ms 2.7 ms 4.1 ms 2.5 ms 12.9 ms
(Fig. 4) 9 90 6.4 ms 2.5 ms 9.2 ms 5.9 ms 6.7 ms 30.7 ms

10 90 21.0 ms 10.4 ms 40.1 ms 13.8 ms 25.5 ms 110.8 ms
Columns
(Fig. 5) 10 70 17.5 ms 9.5 ms 38.8 ms 11.8 ms 22.2 ms 99.8 ms

Buddha
(Fig. 6) 10 40 5.1 ms 3.4 ms 12.9 ms 6.3 ms 17.6 ms 45.3 ms

Dragons 15 2.1 ms 1.7 ms 6.8 ms 4.5 ms 7.0 ms 22.1 ms
(Fig. 7) 9 35 2.5 ms 2.1 ms 7.3 ms 4.9 ms 7.7 ms 24.5 ms

50 2.7 ms 2.2 ms 8.5 ms 5.4 ms 8.8 ms 27.6 ms
Table 1: Fracture timings on different scenes. For the Columns and Buddha timings are an average of all fractures.
In the Dragons scene, every dragon has an independent result, as different fracture parameters where used.

Figure 4: Fracturing the Stanford Bunny with the 8th physics level. Physics time was 4–9 ms per time step.

Figure 5: Fracturing three columns with physics calculated on the 7th SVO level. Physics time was 4–8 ms per
time step.

Figure 6: Local fracture of the Happy Buddha figure with the 9th physics level. Physics time was 5–7 ms per time
step.

Figure 7: Three dragons dropped and fractured on collision points’ locations. The objects had a different number
of Voronoi seeds used during fracturing: 15, 35, 50. Physics was set to the 8th level and calculation time varied
from 3 to 11 ms per time step.
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pieces were scattered over the box’s surface. The op-
eration was rather energetic and rich with objects from
a wide range of volumes. The physics time was 4–9
ms obtained on the 8th physics level. Even though, the
lower physics level (7th) was used in Columns scene
(fig. 5), the average time was similar to the previous
one, and varied from 4 to 8 ms. It was the result
of a larger number of collision points detected during
the collision test. The opposite situation happened in
Happy Buddha scene (fig. 6), where the 9th physics
level produced better performance (5–7 ms) for local
fracture. The last scene (fig. 7) presents three drag-
ons dropped and fractured on collision points locations.
The objects were cut into rather big pieces. However,
due to their complexity, the average physics time var-
ied from 3 to 11 ms. The time step for all simulations
was set to 0.01 s, as we use the penalty-based response
method with the implicit Euler method as an integrator.

7 CONCLUSION
We have presented a novel method for fracturing
objects represented with sparse voxel octrees. Our
method applies a fracture pattern to the object in the
impact location, and cut the object into pieces, which
are then also represented with SVOs. No precom-
putation of the pattern is required, as it is generated
on-the-fly. After fracturing, new rigid objects are
simulated. Thanks to our collision detection and
response method, which is an extension of Faure’s
image-based approach [FBAF08], we can efficiently
calculate physics in parallel on different levels of
details with no extra cost.
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ABSTRACT 
In this paper, a new framework for scene understanding using multi-modal high-ordered context-model is introduced. 
Spatial and semantical interactions are considered as sources of context which are incorporated in the model using a 
single object-scene relevance measure that quantifies high-order object relations. This score is used to minimize 
semantical inconsistencies among objects in dense graph representation of the scene category during the object 
recognition process. New context model is later incorporated in a Conditional Random Fields (CRF) framework to 
combine contextual cues with appearance descriptors in order to increase object localization and class prediction 
accuracy. A novel context-based non-central hypergeometric unary potential is defined to maximize the semantical 
coherence in the scene. Further refinement is performed using context-based pairwise and high-order potentials which 
use alpha-expansion and graph-cut to find optimal configuration. Comparison between the purposed approach and 
state-of-art algorithms shows effectiveness of this approach in annotation and interpretation of scenes.  

Keywords 
Context-based scene recognition, supervised classification, generative model, representative feature 

1. INTRODUCTION 
Scene understanding has been studied for decades in areas 
such as content annotation, object and event recognition 
and media retrieval engines. The main objective is to 
provide more precise and accurate description of the scene 
in order to better respond to user queries. Media search 
engines currently use manually entered tags in metadata to 
recognize the content of images. Automated annotation 
frameworks are preferred methods for high volume 
contents. They utilize audio visual features to localize and 
classify candidate objects in an image which assigns class 
labels to components of a scene [1].  
In a top-down approach, a global feature is extracted and 
used to classify the image as high-level categories such as 
(indoor/outdoor). Later, more specialized object detectors 
in that category are applied for detail analysis of the 
image. Torralba et al. [2, 3] presents a coarse scene-level 
global feature called ‘gist’ and use it to classify a scene as 
indoor or outdoor. This approach also allows checking for 
presence of an object types without running an object 
detector.  
In a bottom up approach, individual objects detectors are 
applied to the extracted features from homogenous 

regions of the image to identify a matching object class. 
Key disadvantages of these paradigms are high 
dimensionality of the required detectors and region 
analysis in isolation. Previous work shows that 
performance of recognition systems could be significantly 
improved when scene-level knowledge known as 
“context” is exploited [4, 5, 6, 7, 8]. By definition, any 
information that can be used in accurate semantical 
recognition of scene elements and its underlying concepts 
is called context [9]. Contextual models can capture 
semantical properties, relationships and interactions 
among image components which can be used to infer 
higher level meaning of a scene.  
Object detectors face many challenges due to poor image 
quality or overall image content complexity in cluttered 
images. Incorporating contextual information is used to 
disambiguate, refine and improve the recognition results. 
Additionally, context cueing can reduce dimensionality of 
required object detectors. Traditionally, contexts are 
constructed using semantical and spatial relations of 
objects in a scene [8]. More recent applications use 
additional types of contextual information provided by 
acquisition system such as sensory context (GPS) and 3D 
geometric scene context (orientations, support surface, 
horizon line) [9]. 
Semantic context is among most studied types of contexts 
which models object relationships such as co-occurrence 
statistics in an image. Spatial context captures inter-
objects scale or location relationships based on various 
taxonomies such as horizontal or vertical relative 
positions [10].  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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The previous work on context-based detectors is mostly 
limited to studying the objects in pairwise relations with 
less attention to higher order relations and structure of 
scene layouts. An image of real life scene configuration 
can be rather complex where multiple types of contexts 
should be considered to explain high-ordered 
relationships.  
In this paper, a novel multi-source high-order contextual 
scene recognition framework is introduced to represent 
realistic scene configurations. This framework measures 
contextual consistency among the composing elements of 
an image using a measurement called “object-to-scene 
relevance score” which measures contribution of an 
object type to overall semantical meaning of the scene for 
a given context. The object relevance score is used in 
modeling underlying scene representation based on high-
ordered relationships in the form of undirected graph.  
In summary contributions of this work is as follows: 

- Definition of a context-based conditional random 
field designed to incorporate multiple source of 
context in high-order relationship. 

- Definition of object-scene relevance score that 
encodes layout, relations and interactions of an 
object to conform to scene consistent context.  

- Use of a novel unary potential based on non-
central hypergeometric distribution to predict the 
object labels in a context-based generative 
process.  

- We define a high-order potential to encode high-
order contextual relationship of the objects.  

The rest of this paper is organized as follows. Section II is 
an overview of the related work. In Section III we present 
our framework in detail. Section IV presents our 
experimental results. Section V is concluding remarks.   

2. RELATED WORK 
Contextual scene understanding frameworks have been 
studied in many of the previous work [11, 12]. Wolf and 
Bileschi [13] introduced “semantic layers” which are 
constructed by extracting and combining various features 
such as color, texture, geometric feature maps and 
saliency maps at pixel location during the learning stage. 
Each semantic layer represents an object category indicate 
the presence of a particular object in the image at a 
semantic layer.  
Galleguillos et al. [14] explored pairwise interactions 
between pixels, regions and objects to extract and learn 
three source of context semantic, boundary support and 
contextual neighborhood.  
Torralba et al. [3] introduced a simple framework for 
modeling the relationship between context and object 
properties. Scale context was used to provide a strong cue 
for scale selection in the detection of high-level structures 
as objects. Contextual features were obtained from a set of 
training images and object properties were based on the 
correlation between the statistics of low-level features 
across the entire scene.  
Choi et al.[15] used tree-structure graphical model to 
encode hierarchical dependencies among object categories 
and scenes. They used contextual score to quantify 
pairwise information such as position and scale 
relationship.  
Jones and Shao [16] studied pairwise contextual 
interactions of events and scene elements in a clustering 
application. They demonstrated performance 
improvement over state-of-the-art clustering methods.  
High-order relationships are examined in [17, 18, 19] on 
single source of context such as co-occurrence. The 
shortcoming of these methods is when discriminative 
contextual cues may appear in other contextual modalities 
such as scale or spatial context as is illustrated in Figure 1.  
On the other side of spectrum, generative models such as 
[20] are widely used to model multi-context relations. The 
limitation of these frameworks and generally the 
generative process is the independence assumption on 

 
a) Semantic consistency 

Left: sofa outdoor (score=0.13),  
Right: sofa in living room (score= 0.75) 

 
b) Scale inconsistency 

Left: extremely large chair (0.12) 
Right: normal scaled elements (0.61) 

 
c) Spatial Inconsistency 

Left: car flying in the sky (0.29) 
Right: car on the road (0.72) 

Figure 1. These images show sample scenes and 
their contextual relevance scores obtained using 
higher-order relationship. Images on the right 

show objects consistent with scene context. Images 
on the left demonstrate contextual inconsistency 

(higher scores signifies more consistency). 
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observed data to make the inference tractable which is 
very restrictive.  
Previous work shows success of context-based methods in 
improving performance of object localization and 
recognition. We extend previous work to exploit high-
order multimodal contextual relationships instead of pair-
wise approach. We propose a high-order context 
framework that learns appearance, structure and 
semantical consistency of the scene and infers its 
parameters based on multi-modal context sources for 
domain object types. Objects co-occurrence statistics is 
defined in high-order to capture scene level semantics. For 
example objects in {car, motorcycle, road, sky} tend to 
appear in outdoor street images and {car, truck, rubber 
duck, Mickey Mouse} represents set of children toys.  
Spatial and scale contexts are sources of layout topology.  
Location and scale information is obtained from bounding 
box information in training dataset and transformed into 
the set of contextual spatial attributes during learning 
process. Bounding box information is acquired from the 
image annotations provided in Sun3971 dataset. This 
dataset provides a better alternative to Google Sets or web 
documents used in some related works [21].   
Context model represents a scene with fully connected 
graph consisting objects at each node. These nodes are 
connected with undirected edges. Each edge is assigned 
with contextual relevance measurement that quantifies the 
relations between two objects given the dominated 
context in that clique.  As shown in Figure 1, contextual 
relevance is defined to maximize semantical consistencies 
including scale and location in a scene. Contextual 
inconsistencies may not manifest in pairwise relations 
where in ternary relation a clear violation is evident. The 
object-scene score is scalable and extendible to other 
datasets since it not dependent on visual primitives. 
Contextually related objects form semantically coherent 
cliques in our graph representation and are labeled 
according. 
Conditional random fields (CRF) [22], a discriminative 
framework is used to incorporate contextual cues along 
with appearance features in a single model. This allows to 
model intrinsic and extrinsic structure of an image for 
better understanding of its underlying concepts [23]. 
Given observed variable 𝑋, CRFs model the conditional 
distribution of 𝑌 given 𝑋 to encode complex dependencies 
of 𝑌 on 𝑋. In this paper definition of CRF is extended by 
conditioning on visual features and context which is 
called Context-based CRF (CBCRF). CBCRF combines 
appearance descriptors, contextual relations and layout 
structure of the objects likely to be present in that scene 
category. 
Our experiments show that contextual relations of high-
order can improve object detection, scene classification 
and can be used in many other applications such as 
detection of out-of-context or black-boxed object.  

                                                           
1 http://vision.princeton.edu/projects/2010/SUN/ 

3. MODEL AND ALGORITHMS 
A conditional random field (CRF) model [22] is used to 
learn the conditional distribution over the set of class 
labels given an image. The following is formalization of 
the model: 
With K being total objects in our dataset, let’s consider a 
random field 𝑌  defined over set of 
variables {𝑦1,⋯ ,𝑦𝐾} to represent labels of all objects. 
Domain of each variable 𝑦𝑖 is ℒ = {𝑙1,⋯ , 𝑙𝐾} which is set 
of all possible labels. Let 𝑋 = {𝑥1, … , 𝑥𝐷} be the set of 
images in our dataset, 𝑅𝑖 = {𝑟1,⋯ , 𝑟𝑛} be set of visual 
words of ith image, 𝐶𝑖 = {𝑐1,⋯ , 𝑐𝐾} be image sub-region 
category labels representing objects, and  𝑆𝑖 = {𝑠1,⋯ , 𝑠𝐾} 
be set of contexts under which independent measurement 
of semantic relevance calculated for detected objects in ith 
image. Each image is composition of arbitrary number of 
object instances in the same scene category.  
  

 
a) Fully Connected CRF 

  

b) Context-based CRF 
Figure 2. Graphical representation of the CRF model 

(top) and context-based CRF model (below) 
The use of a conditional random field allows us to 
incorporate appearance based descriptors, layout, and 
location cues in a single unified model. Our context-based 
CRF approach aims to find optimal configuration 
𝑌 = {𝑦1,𝑦2, … ,𝑦𝑛} which is characterized by Gibbs 
distribution 𝑃(𝑌|𝑅):  

𝑃(𝑌|𝑅,𝜃) = 𝑃(𝑌| 𝑅, 𝑆,𝜃) 𝑃(𝑆|𝑅,𝜃)  

where 𝜃 is model parameters, 𝑆 is context and 
𝐸(𝑌|𝑆,𝑅,𝜃) is the probability of the labeling 
configuration 𝑌 given visual words conditioned on the 
context the conditional random field defined as: 

𝑃(𝑌| 𝑅, 𝑆,𝜃) =
1

𝑍(𝑌, 𝑆) exp�−𝐸(𝑌|𝑅, 𝑆)� (1) 

where 𝑍 is normalization partition function.  
Our model is fully connected CRF with unary, pairwise 
and high-order potentials with following Gibbs Energy: 

𝐸(𝑌| 𝑅, 𝑆) = �𝜓𝑢(𝑦𝑛)
𝑛∈𝛮

+ � 𝜓𝑝�𝑦𝑖 ,𝑦𝑗� + �𝜓ℎ(𝑦𝑖)
𝑖∈𝛨(𝑖,𝑗)∈𝛲

 
(2) 

𝑦1  𝑦2  𝑦𝐾  

𝑟1 𝑟2 𝑟𝑛  

𝑠1 𝑠2 𝑠𝑚  

𝑦1  𝑦2  𝑦𝐾  

𝑟1 𝑟2 𝑟𝑛  

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Full Papers Proceedings 49 ISBN 978-80-86943-57-2



 
 

where 𝛮,𝛲,𝛨  are number of candidate objects in the 
image, number of pairwise and high-order cliques 
respectively.  

Scene Relevance Score 
Context-based conditional random field model builds on 
the “Scene Relevance Score” (SRS) which is calculated 
using high-ordered interaction of the objects in each scene 
category.  
The high-order pure independence rule [24] is used to 
define spatial context probabilities. Let 
𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} be set of object types in our dataset, 
then 𝐴𝐾 represents the set of possible combinations of 
object types with 𝐾 object present and 𝑛 − 𝐾 not present. 
For example considering set of 𝐶 = {𝑐1, … , 𝑐4} with four 
object classes, the set of object configurations with only 
two objects present could be expressed as 𝐴2 =
{0011, 0101, 0110, 1010, 1100}.   
Scene relevance-score is defined as posterior probability 
which is log likelihood of spatial, scale and semantic 
contexts: 

𝜏1…𝑛 = 𝑙𝑙𝑙� ��𝑃𝐿1…𝑛
𝑣 |𝑎�

(−1)𝑛−𝑘�𝑃𝑋1…𝑛|a�
(−1)𝑛−𝑘

𝑎∈𝐴𝐾

𝑛

𝑘=0

 (3) 

where 𝑃𝐿1…𝑛
𝑣 |𝑎 is spatial context and is defined as posterior 

probability of vertical location of an object in respect to 
others in a high-order relation. 𝐿1…𝑛

𝑣   is high order relative 
vertical location configuration defined as joint probability 
distribution of 𝐿1, 𝐿2, … , 𝐿𝑛.  𝐿𝑖 ∈ {𝑎𝑎𝑙𝑎𝑎, 𝑎𝑎𝑙𝑙𝑙, 𝑎𝑎𝑎𝑛} 
and is determined be comparing centroids of each object’s 
bounding box. For example expected relative location of 
“Sky” is “above” the object “Grass”. 
𝑃𝑋1…𝑛|a is high-ordered scale context and is defined as joint 
probability distribution of 𝑋1,𝑋2, … ,𝑋n where  𝑋i is the 
expected relative scale relation obtained by transforming 
the image plane into 3D coordinates for relatives scale 
measurements based on labeled training sets.  
Information obtained from relative horizontal location 
does not offer discriminative information and is not 
modeled.  
The semantical relationship is implicitly encoded in scene 
relevance score in Equation (3) which shows strong 
semantical correlation for positive values and negative 
correlation for negative values of 𝜏1…𝑛 and zero for no 
relation.   
Normalizing 𝜏 transforms the value to zero and one range 
which more suitable to our context model. The following 
function transforms the 𝜏  to normalized form: 

𝜏1…𝑛������ =  
1

1 + 𝑎𝑥𝑒 (−𝜏1…𝑛) 

The normalized value of 𝜏1…𝑛������ is interpreted as follows: 

�
0.5 < 𝜏̅ ≤ 1
𝜏̅ = 0.5

0 ≤ 𝜏̅ < 0.5
 

semantical related 
no relation 
negative relation 

(4) 

Strength of relationship increases with the value of 𝜏̅ from 
0 (impossible) up to 1 (strongly coupled). 

Unary potential 
The model appearance, affinity and shape are modeled 
using unary potential 𝜓𝑢. Unary potential is the most 
important potential and is sensitive to mislabeling as a 
result of initialization. By incorporating context the 
classification of objects is influenced by dominant context 
and hence initially misclassified labels can be refined. 
Unary potential is defined as:  

𝜓𝑢(𝑦𝑛) = 𝑒(𝑌|𝑅, 𝑆) (5) 

where 𝑆𝑖 = {𝑠1,⋯ , 𝑠𝑚} is all possible context graphs and 
the term 𝑒(𝑌|𝑅, 𝑆) is probability that object ith would be  
assigned label y given the relevance score of the object.   
Wallenius Latent Dirichlet Allocation (WLDA) [28] is a 
generative process for object localization. An image is 
partitioned into related groups of visual words which 
represent candidate objects and assigns best annotation 
label to the image category. In this process each label is 
associated with image feature data as response variable 
which is influenced by contextual constraints as bias 
weight parameter in Wallenius distribution.  
The generative process of annotating a candidate object 
with its class label response variables is as follows: 

- Draw topic proportions from Dirichlet 
prior 𝜃~𝐷𝐷𝑟(𝛼). 

- For each visual word 𝑅𝑛,𝑛 ∈ {1, 2, … ,𝑁}: 
- Draw topic assignment  𝑧𝑛|𝜃~𝑀𝑀𝑙𝑀(𝜃) 
- Draw region visual word  𝑟𝑛|𝑧𝑛~𝑀𝑀𝑙𝑀(𝛽𝑟) 

- For each object class label  
- draw a Wallenius 𝑐𝑖  conditioned on contextual 

constraints given by  𝑒(𝑌|𝑍, 𝑆)~𝑊𝑎𝑙𝑙(𝑌,𝑍, 𝑆) 
where 𝑌 is response variable, 𝑍 is a set of topics 
equivalent to candidate objects, and 𝑆 is context.   
The objective is to obtain probability of most semantically 
consistent labeling configuration Y given topic 
distribution: 

𝑒(𝑌|𝑍, 𝑆) = 𝛬(𝑌,𝑍)𝐼(𝑌,𝑍, 𝑆) 

𝛬(𝑌,𝑍) = ��
𝑦𝑖
𝑧𝑖�

𝑘

𝑖=1

 

𝐼(𝑌,𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑖

∑ 𝑠𝑖𝑀
𝑖=1 �

𝑦𝑖

𝑑𝑀
𝑀

𝑖=1

1

0
 

(6) 

Computing integral in Equation (6) is intractable because 
of the fractional exponent and must be approximated. 
First we simplify the formula for binary variables 
(Λ(𝑌,𝑍) = 1) as follows: 

𝐼(𝑌,𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑗
𝑠 � 𝑑𝑀

𝑀

𝑗=1

1

0
 (7) 

where 𝑠 = ∑ 𝑠𝑖𝑀
𝑖=1 .  

Integrand in Equation (8) can be transformed to an easier 
to solve polynomial using variable substitution described 
in Equation (8).  
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The polynomial of Equation (8) can be easily solved by 
scaling the context values to integer and reducing them by 
dividing to the greatest denominator.  

t = u𝑠 
𝑑𝑀 = 𝑠. u𝑠−1𝑑𝑀 

𝑒(𝑌|𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑗
𝑠 � 𝑑𝑀

𝑀

𝑗=1

1

0
 

= � ��1 − (u𝑠)
𝑠𝑗
𝑠 � . 𝑠. u𝑠−1𝑑𝑀

𝑀

𝑗=1

1

0
 

= 𝑠.� u𝑠−1.�(1 − 𝑀𝑠𝑗)𝑑𝑀
𝑀

𝑗=1

1

0
 

(8) 

Pairwise potential 
The pairwise term 𝜓𝑝�𝑦𝑖 ,𝑦𝑗� reinforces contextual 
compatibility between label assignments of the 
neighboring object. It predicates on the assumptions that 
objects (or pixels) adjacent to each other are more likely 
to have the same label or be semantically related. 
Probability of label assignment follows the given context. 
This potential takes the form of Potts model to penalize 
semantically incompatible labels: 

𝜓𝑝�𝑦𝑖 , 𝑦𝑗� = �
0      

 λ𝑝𝑎𝑥𝑒 �−�𝑙𝑖 − 𝑙𝑗�
2�   

𝐷𝑖 𝑦𝑖 = 𝑦𝑗  
𝑙𝑀ℎ𝑎𝑟𝑙𝑠𝐷𝑎 (9) 

where 𝑙𝑛 = 𝑒(𝑦𝑛|𝑆) and λ𝑝 is parameter whose value is 
learned from training data. This potential has shrinkage 
bias which means it only enforces label consistency in 
adjacent objects.  

High-ordered potential 
The high-order potential 𝜓ℎ(𝑦𝑖) is defined to maximize 
contextual consistency and compatibility of the label 
assignment in neighborhood of an object. To achieve this, 
objects in an image are grouped in semantically 
compatible and consistent cliques [19]. A penalty is 
applied to non-relevant ones to disassociate them from 
clique. Consistency of the clique is measured using the 
variance of unary feature response evaluated on all objects 
in that clique as follows: 

𝜗𝐶 = 𝑎𝑥𝑒 �−
‖∑ (𝐼𝑐 − 𝜇)2𝑐∈𝐶 ‖

|𝐶𝐿| � 

Where 𝐶𝐿 is the clique, |𝐶𝐿| is cardinality of that clique, 
𝐼𝑐 = 𝑒(𝑦𝑛|𝐶) and 𝜇 = ∑ 𝑒(𝑦𝑛|𝐶) |𝐶𝐿| ⁄𝑛∈𝐶 . Given the CRF 
model in Equation (2), high-order potential is defined as 
following:  

𝜓ℎ(𝑦𝑖) = � 𝑁𝜆ℎ𝜗𝐶
1
𝑄     

  𝜆ℎ𝜗𝐶      
 

𝐷𝑖 𝑁 ≤ 𝑄 
 
𝑙𝑀ℎ𝑎𝑟𝑙𝐷𝑠𝑎 

(10) 

where 𝑁 is number of elements in the clique 𝑦𝑖 with label 
assignment that are inconsistent with dominant label in 
that clique and λh is model parameter which is obtained 
during the training. Consistency of this potential is 
controlled by threshold parameter 𝑄 which defines a cut-
off point where from that point stronger penalty is 
imposed on very semantically consistent cliques.   With 
the objective of finding the most probable labeling 
configuration that maximizes the conditional probability 
of Equation (1), alpha-expansion graph-cut optimization 
algorithm [25] is applied to get the optimal configuration 
𝑦∗ = [𝑦1∗,𝑦2∗, … ,𝑦𝑛∗]𝑇.  

𝑦∗ = 𝑎𝑟𝑙𝑚𝑎𝑥 𝑃(𝑦|𝑅) = 𝑎𝑟𝑙𝑚𝐷𝑛 𝐸(𝑦) (11) 
where 𝑦𝑛∗ is unit basis vector that represents the result of 
object localization for nth object in the image.  
Contextual relevance is used during the optimization to 
eliminate false positives and keep correct detections.  

4. EXPERIMENTS 
Dataset  
Object recognition algorithm was evaluated on subset of 
SUN397 datasets with 2152 images randomly selected as 
training set and 2010 images selected as test set from 62 
object categories. The metadata of labeled images were 
used to extract images of objects according to their 
bounding box information. In pre-processing phase, 
images were scaled to meet a minimum dimensional 
constraint.  

Training 
Image feature space was represented as Bag-of-Features 
(BoF)[26]. Each code-word in the dictionary is a visual 

 
a) Original image      b) Encoded image visual words histogram for the image shown in (a) 

Figure 3- Encoding of a sample image in corresponding visual word frequencies.  
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appearance feature which was constructed based on 
“Speeded Up Robust Features” (SURF) [27] algorithm. 
SURF feature points were obtained from 64x64 blocks for 
image objects and transformed into descriptors. Top 
𝑚 strongest SURF descriptors were selected and 
normalized across entire training set. The value of 𝑚  is 
calibrated empirically. Selected descriptors were then 
quantized into vocabulary sizes of 𝑉 visual words using 
K-means clustering algorithm. Figure 3-(b) illustrates BoF 
representation of an image in (Figure 3-(a)) encoded as 
histograms of visual words (𝑉 =1000) which is used to 
train our model.  
There are two sources of parameters in this study. The 
first one is the LDA parameter set which is learned the 
way is described in [28]. The second set of parameters is 
the CRF parameter set {𝜆𝑝, 𝜆ℎ}. These parameters were 
all learned from the training set using the same method 
introduced in [19].  

Evaluation Methods 
For evaluation of context-based CRF framework, 
multiclass support vector machine (SVM) [29] 
classification method was used as baseline and compared 
to the state-of-the-art tree-based contextual model [15] 
using code provided at their site.  

Metrics  
Normalized mutual information (NMI) [30] is a metric 
used to evaluate performance of clustering and to measure 
how well objects in test images are assigned to object 
categories. NMI is a number between 0 and 1 and with 1 
being perfect object label assignment and is calculated as 
follows: 

𝑁𝑀𝐼 =
∑ �𝑥ℎ,𝑙� 𝑙𝑙𝑙 �

|𝑋|. �𝑥ℎ,𝑙�
|𝑥ℎ|. 𝑐𝑙

�ℎ,𝑙

��∑ |𝑥ℎ| 𝑙𝑙𝑙 �
�𝑥ℎ,𝑙�
|𝑋| �ℎ �∑ 𝑙𝑙𝑙 � 𝑐𝑙|𝑋|�𝑙

 (12) 

where X is set of images, 𝑥ℎ is set of images in class h, 
𝑥ℎ,𝑙 is number of images that are member of both classes h 
and l and  𝑐𝑙 is images labeled as class l.     
Figure 4 illustrates object detection NMI that was applied 
to the models in these experiments. The results show 
context-based CRF model performs better in various topic 
sizes of K. These experiments also demonstrate that larger 
number of the topics have little impact on the object 
detection performance but has serious computational cost 
and performance degradation as the number of topics 
increases. When a scene contains less than K objects, the 
absent object categories will have very few or no 
members such that the impact will be small enough to be 
neglected. The optimum value of K is determined 
empirically and set to 150.  
To evaluate performances of our framework for 
localization and presence F1-Measure was used which is a 
balanced score between precision and recall (F1) as 
follows: 

𝐹1 =
2 × 𝑃𝑟𝑎𝑐𝑎𝑠𝐷𝑙𝑛 × 𝑅𝑎𝑐𝑎𝑙𝑙
𝑃𝑟𝑎𝑐𝑎𝑠𝐷𝑙𝑛 + 𝑅𝑎𝑐𝑎𝑙𝑙

 (13) 

Classification performance was evaluated using objects 
labels in Ground-truth.  
Figure 5 shows how this mettric was used in finding 
optimum parameter values for pairwise and high-order 
potentials.  

 
Model Parameters 
Parameters that have influence on the distribution of 
topics in potentials were also investigated. There are two 
main parameters that require calibration, pairwise (λ𝑝) 
and high-order parameter (λℎ).  
The tuning result on SUN397 is given in the top chart of 
Figure 5. Parameters λ𝑝 and λℎ varied independently from 
0 to 1 with interval 0.1 to pick the optimum value. As is 
illustrated in Figure 5, the performance improves as the 
value of the parameters increases. Slightly sharper gain in 
high-order potential than pair-wise demonstrates 
effectiveness of this potential.  

Result of Empirical Study 
To build the framework, a graph was constructed for each 
scene type to maximize contextual consistency. First scale 
and location context scores were calculated for all object 
pairs (𝜏𝚤𝚤���) in that image using Equation (4). Pairwise 
relations with 𝜏𝚤𝚤��� > 0.5 were added to the graph and 
others were ignored. Next, high-order context for all 
cliques combinations (i.e. 𝜏1..𝑘�����) were computed and the 
clique with highest average score was selected as 
dominance context. The context model was fitted using 
Gaussian distribution for each context type which later 
was used in building CRF model to predict correct label 
assignment for candidate objects.  
Table 2 shows the comparisons between baseline detector, 
SVM, tree-based context and our framework. From the 
table, we see our framework produces the best 
performance in both object localization and presence. 

 
Figure 4 Object detection performance using NMI 

metric (1.0 is most accurate) 
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As shown in Table 1, the localization improvement over 
baseline detector algorithm is about 37.2% and the 
improvement over the state-of-the-art context model (tree 
context) is 7.5%. For the presence, the corresponding 
improvements are 37.6%, 14% respectively.  

 
Performances of proposed framework for object detection 
is illustrated in Figure 6 which shows improvement over 
the tree-context model for most object categories. 
Table 2 shows some examples of results in which context 
constraints are strictly enforced to facilitate the 
contextually consistent detections.  
Results shown illustrates that context-based CRF has 
improved compare to performance of the SVM and CRF 
in classification of the objects.  

5. CONCLUSIONS 
In this paper, we presented a discriminative model that 
combined the power of a generative model as unary 
potential and used an object-scene relevance score to 
encode pair-wise and high-order semantic contexts. We 
showed how to encode the high-order relationship among 
objects and build a robust models to enforce location, 

scale and semantical constrains. We compared our 
framework with other context-based model which 
employed similar sources of contexts in pairwise 
relations.  

Our results demonstrated that our framework 
outperformed the current state-of-the-art context-based 
object localization methods. Our generative process 
implemented a true context-based approach where the 
context was directly applied to classification problem as 
unary potential. We showed an inference method to solve 

the intractability problem of the WLDA to a solution that 
could be solved at polynomial time. We then applied our 
framework to distinguish the contextual consistency of the 
candidate objects using various contextual cues.  
During our experiments we observed two main 
weaknesses. First, building a meaningful contextual 
relevance score requires presence of large number of 
objects in a scene category with ternary or more 
interactions. This is limiting factor that restricts choice of 
training dataset. Second drawback is relatively high 
computation requirement of this method, which is a side 
effect of WLDA generative process.   

Metric Localization Presence 

SVM 50.2 57.7 

Tree-Based 64.1 69.6 

Context-based 
CRF 68.9 79.4 

Table 1. Object localization and presence 
performance comparison 

 

Figure 6. Object detection performance of CBCRF 
method compare to tree context method using 

SUN397 dataset. 
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SVM Tree Context 

Context-
based 
CRF 

Bed 0.53 0.64 0.71 

Bicycle 0.59 0.72 0.78 

Cabinet 0.44 0.53 0.54 

Car 0.58 0.80 0.88 

Keyboard 0.52 0.64 0.72 

Monitor 0.46 0.63 0.66 

Street sign 0.52 0.68 0.72 

Table 0.37 0.49 0.50 

Table 2- Object detection performance comparison 

 
Figure 5. Parameter selection for pairwise and 

high-order potentials. 
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Our results demonstrated that use of context-based high-
ordered potentials has outperformance advantages over 
the base-line and the state-of-the-art context based object 
detectors.  
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(a) Original image  (b) Ground Truth   (c) Baseline Detector   (d) CBCRF 

Figure 7- Sample object detection result. Green bounding boxes are correctly classified labels.  
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ABSTRACT
Sparse coding techniques have given good results in different domains especially in feature quantization and
image representation. However, the major weakness of those techniques is their inability to represent the
similarity between features. This limitation is due to the separate representation of features. Although the
Laplacian sparse coding doesn’t focus on the spatial similarity in the image space, it preserves the locality of the
features only in the data space. Due to this, the similarity between two local features belong to the similarity of
their spatial neighborhood in the image. To overcome this flaw, we propose the integration of similarity based on
Kullback-Leibler and wavelet decomposition in the domain of an image. This technique may surmount those
limitations by taking into account each element of an image and its neighbors in similarity calculation.
Classifications rates given by our approach show a clear improvement compared to those cited in this article.

Keywords
Sparse coding, features quantization, image representation, Laplace sparse coding, Kullback-Leibler , wavelet
decomposition.

1. INTRODUCTION
Computer vision applications have experienced a
great revolution with the integration of sparse coding
techniques. Unfortunately, those techniques have not
be able to model the locality and the similarity among
the instances to be encoded owing to the
overcomplete codebook and the independent coding
process. Several approaches have been proposed to
overcome this limitation. In [Gao10a], Gao proposed
a method called Laplacian Sparse Coding which
exploits the dependence among local features.
Specifically, he suggested using histogram
intersection based K-NN method to build a Laplacian
matrix, which will characterize the similarity of local
features. Furthermore, Laplacian matrix will be
incorporated into the function of sparse coding to
maintain the consistence in sparse representation of
those features. In [Gao10b], Gao improved the
technique of Kernel Sparse Representation. It is
essentially the sparse coding technique in a high
dimensional feature space mapped by implicit
mapping function. In 2013, he proposed the
Hypergraph Laplacian Sparse Coding techniques
[Gao13]. In this case, he extracts the similarity
between the instances within the same hyperedge
simultaneously and also composes their sparse codes
similar to each other.

In this paper, we propose an amelioration of the
Laplacian sparse coding technique by changing the
manner of similarity computation. In our case, the
calculation of similarity in the image domain is based
on the divergence of Kullback-Leibler and wavelet
decomposition. This idea comes from its capacity to
take into account neighbors’ similarity.
This paper is composed of four sections. In section1,
we introduce the Laplacian sparse coding technique.
Section 2 describes the kernel sparse representation.
We explain our approach in section3 and in the last
one, we evaluate our approach.

2. Laplacian sparse coding
Sparse coding technique was proposed in order to
reduce the problem of hard quantization. It solves the
problem by proposing a sparse linear combination of
basis vectors for each image feature. Sparse coding
looks for a linear reconstruction of a signal

, ( )dx x IR using the bases in the

codebook 1 2( , ,..., ), ( )d k
kU u u u U IR   .

The matrix of the sparse codes is

1 2( , ,..., )nV v v v where 1K
iv IR  and ikv is the

weight of the vector ix in the basis vector ku , the

optimization problem of sparse coding can be
reformulated as follows:
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2

0 ,
1

min min iFU V
i

v subject to x UV or X UV v   

2

1,
min 1; 1,...,i jFU V

i

X UV v subject to u j K    

 is the tradeoff parameter used to balance the
sparsity and the reconstruction error.
Because of the independent encoding feature
resulting from an overcomplete or sufficient
codebook. Asuming that 1 2( , ,..., )nX x x x the

vector of features, W is the matrix of similarity

having ijW the measuring of similarity of the pair

( , )i jx x . D the matrix of degree defined by

1

n

ij
j

Dii W


 is a diagonal matrix.

The Laplacian Sparse Coding, proposed in [Gao10a],
takes into account the similarity between images both
in features and image domains. The expression of
Laplacian Sparse Coding is as follows:

1

22

,..., 1

min
2

n

i i i i j ij
v v i i ijF

x Uv v v v W


      (1)

This expression is defined by
2

1

min ( )T
i

V i iF

X UV v tr VLV     (2)

Taking into account the Laplacian definition
L D W  [Lux07].
Since the codebook U is not optimal , the expression

can be rewritten as follows :
2

, 1

min ( )T
i

U V i iF

X UV v tr VLV     (3)

3. KERNEL SPARSE CODING
To ameliorate the technique of features representation
using sparse coding, Gao proposed another approach
called Kernel Sparse Representation. He noticed that
kernel trick can pick up the nonlinear similarity of
features. Kernel Sparse Representation is basically
the sparse coding approach in a high dimensional
feature space mapped by implicit mapping function
[Gao10a] [Gao10b].
With the same consideration of sparse coding, we
assume that there exists a feature mapping

function : , ( )d kIR IR d k   with

1 2 1 2

( ),

( , ,..., ) ( ( ), ( ),..., ( ))k k

x x

U u u u U u u u



     
.

According to this formulation, the expression of
Kernel Sparse Coding is written as follow:

1,
min ( )
U v

x U v U v    (4)

Gao used Gaussian kernel due to its excellent
performance in many works [Chen10] [Don04].

4. PROPOSED APPROACH
4.1. General context of multiresolution wavelet

decomposition

Multiresolution wavelet decomposition analyses an
image in time and frequency domains together. For
lower frequency, it offers poor time resolution and
better frequency resolution. Whereas, for higher
frequency, it offers poor frequency resolution and
better time resolution.
A multiresolution analysis is a family of nested sub

spaces 2 ( )L IR noted ( )j j ZV  which have the

following properties:

 

,

1

2

: ,

, 0 ,

( )

j j
n j n n

n Z

j j j
j Z

j
j Z

Vj a a IR

V V V

V L IR








  
   
  

  

 



(5)

Hypothesis (5) means that ( )j j ZV  is a space

generated by the family ,( )j n n Z . Its definition

depends on the chosen topology for the functional
space. We can define it more strictly as the adhesion
of the finite space of linear combinations of

functions ,j n . Thus the approximation of a signal

f on the space jV is:

,
j

n j n
n

Aj a  (6)

Coefficients j
na are calculated by performing a scalar

product signal with the

family features ,j n :

,,j
n j na f   (7)

To write the difference between two consecutive

spaces jV and 1jV  , the space 1jW  is generated by a

function ,j n :

, :j j
j n j n n

n Z

W d d IR


  
  
  
 (8)

The functions ,j n have values on the space jW that

is complementary to jV in 1jV  . We have the same

translational properties, expansion on ,j n than

on ,j n . The set of functions ,j n is called space

details. Thus, the detail of the signal f in the space

jW is calculated as follows:

,
j

j n j n
n

D d  (9)

And the coefficients of details j
nd are calculated by

the following formula:
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,,j
n j nd f   (10)

The signal of which is assumed to be represented on a

basis of jV . Apply wavelet transform to the k IN

scale returns to representing the signal to a base
adapted to the direct sum:

1 1...k k k jV W W W     (11)

The series of spaces jV being fitted and following

any function 2 ( )f L IR of size n , can be

decomposed into the basis of wavelets and scaling
functions:

2 2

, ,
1 1 1

j j
n n

j
j i

j k k i kk
k i k

f a d with j m
  

     (12)

If we perform an analysis to the last level, f

becomes:

2 1...n nf A D D D     (13)

4.2. Multiresolution Laplacian sparse coding

Gao in [Gao10a] [Gao10b] [Gao13] tried to preserve
similarity by adding the Laplacian capacity to sparse
coding technique. Furthermore, he ameliorated his
technique by adding the hypergraph technique to the
Laplacian sparse coding where the similarity among
the instances is defined by a hypergraph. In this case,
this technique captures the similarity among the
instances within the same hyperedge simultaneously,
and also makes their sparse codes similar to each
other as shown in (4).
Despite these contributions, the modeling technique
based on sparse coding remained unable to cover all
similarities between features. This Laplacian sparse
coding approach analyses images spatially and does
not focus on the details of each object. We can
therefore say that the analysis is done in a superficial
way. For this, we propose the multiresolution
Laplacian sparse coding to deepen these analyses.
Based on multiresolution Laplacian sparse coding,
the modeling of images takes into account the
modification of the neighbors of each object of an
image. This idea came from the modeling capacity
based on the divergence of Kullback-Lebleir and
wavelet decomposition.

4.3. Wavelet and Kullback-Leibler divergence

Wavelet transform of an image I is the analysis of the

image by a family of functions , ,j k j k
 . It consists

of a dilated and translated  function called mother

wavelet. Because of the localization properties in
space and frequency of the mother wavelet, the

wavelet coefficient , ,( ) ,j k j kw I I  provides

information about the content of the image I around
point k and in a frequency band near the scale j . If

the image is relatively smooth, then the wavelet
transform concentrates most of the spatio-frequency
information of the image into a few large amplitude
coefficients [Pir08].
As a first approximation, these coefficients are
uncorrelated which leads to processing by
thresholding and denosing the wavelet coefficients
which is very effective in image compression. But in
reality, the wavelet coefficients scales are correlated
at different scale. For example the presence of a
discontinuity along a curve is translated into a point
of this curve 0k by large coefficients at all

scales
0,, ( ) j kj w I .

Dependency models between different coefficients
have been proposed to improve the description of
spatial structures [Gor05] [Hub81]. In particular there
is a dependency between a wavelet coefficient

,( ) j kw I and its closest neighbor’s ladder 1,( ( ) )j kw I  .

Banerjee et al. showed that coefficient vectors
statistics wavelet shape (equation 14) is used to
characterize the spatial structures of a very different
kind [Ban05].

, , 1, , 1 , 1( ) ( ( ) , ( ) , ( ) , ( ) )
x yj k j k j k j k j kw I w I w I w I w I   (14)

To do this, it simply adjusts a Gaussian mixture
model for each phenomenon to describe the joint
probability of these vectors. In this case, it is unclear
what types of structures will be present in the
submissions, it cannot therefore set a model.
However, it is hoped that the distribution of these
vectors will be representative of spatial structures
present in the image. Consequently, it is important to
define a measurement taking into account the joint

probability neighborhoods vectors wavelet ,( ) j kw I .

Given the variability of spatial structures that can be
encountered in the residual, the choice of a
parameterization would be difficult to justify. We
propose to introduce similarity metrics without valid
parameterization of the distribution of
neighborhoods: the metrics derived from the
information theory such as residual entropy
neighborhoods, mutual information or the Kullback-
Leibler divergence between distribution
neighborhoods of wavelet coefficients of the two
images.

Suppose a neighborhood ,( ) j kw I containing

d coefficients. Distribution of all neighborhoods of

the image
I

is denoted by ( )w Ip and

checks ( ) ( ): ( ) 1
d

w I w I

IR

p IR IR et p x dx  .

The differential entropy of Shannon ( )w Ip is defined

by:
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( ) ( ) ( )( ) ( ) log ( )
d

w I w I w I

IR

H p p x p x dx   (15)

It measures the amount of information contained in
this distribution. The Kullback-Leibler is a measure
of similarity between the distributions 1( )wp I and

2( )wp I .

1 2

1
1

2

( ( ) || ( ))

( )( )
( )( ) log

( )( )d

KL w w

w
w

wIR

D p I p I

p I x
p I x dx

p I x




(16)

Based on equations (15) and (16), the Kullback-
Leibler distance is expressed as a difference of
entropies:

1 2

1 2 1

( ( ) || ( ))

( ( ), ( )) ( ( ))

KL w w

x w w w

D p I p I

H p I p I H p I




(17)

Knowing that the cross-entropy is defined as follows
[Pir08]:

1 2

1 2

( ( ), ( ))

( )( ) log ( )( )

d

x w w

w w

IR

H p I p I

p I x p I x dx



 (18)

The use of these measurements on the distributions of
the intensity of pixels of an image gives good results
in the field of segmentation and image realignment
[Ban05] [Fuk90] [Koz87]. A Kullback distance in
wavelet space was also proposed for the indexing
problem in [Col05] [Leo05]. Specifically, in these
two articles, the authors parameterize the distribution
of the wavelet coefficients for each scale j by a

generalized Gaussian and sum the Kullback distances
obtained at each scale for the similarity between the
two images.
We propose to study similar measures to determine
the similarity between two images, but with two
major differences. First, the wavelet coefficients at
different scales are not independent. Now summing
the Kullback distances at each scale corresponds to
the supposed independence. We therefore consider
the accompanying entropy coefficients, in particular
those of the previously described neighborhoods. On
the other hand, we do not parameterize distributions
game. We suggest measuring the similarity between
images 1I and I2 as follows [Pir08]:

1 2( 1, 2) ( ( ) || ( ))
j jj KL w w

j

S I I D p I p I (19)

 1( )
jwp I is the non-parametric distribution of the

coefficients of neighborhoods wavelet image 1I

to scale j [Pir08].

 0j  is normalization weight according to

attach redundancy wavelet system used [Pir08].

Based on the expression of the sparse coding and
equation (2), we introduce the formula of
multiresolution sparse coding:

1

2

,..., 1

2

min

2

n

i i i
v v i iF

i j ij
ij

x Uv v

v v S





  

  

 


(20)

Based on the same equation (2), matrix W adopted
by Gao in [Gao13] is filled by the coefficients of
similarity of Kullback-Leibler S.
Using equation (19) in implementation, Sylvain

Boltz in [Bol06] proposed an estimator of the
Kullback-Leibler as follows:

( , ) log
1

(log ( )) (log ( ))

KNN
R

KL

T

k kT T

N
D T R

N

d R d T   











 

 

 

(21)

T and R  are a set of data.
T R

N and N  are the number

of samples. ( )k s is a radius equal to the distance to

the thk nearest neighbor of s excluding s itself.

This estimation is based on k nearest neighbors K-
NN.
This estimator of the Kullback-Leibler distance can
be computed relatively quickly whatever the size of
samples. It is more robust to the choice of the number

of k nearest neighbors.
Using the definition of Laplacian as in Gao in
[Gao13]. We get the same equation (3).

5. EXPERIMANTS RESULTS
5.1. UIUC-Sport Dataset

This dataset consist of 8 classes [Li07]. Each class
contains a set of images described in the following
table:

Type Rowing Badminton Polo Bocce
Number 250 200 182 137

Snowboarding Croquet Sailing Climbing

190 236 190 194

Table 1. Description of UIUC-Sport Dataset

5.2. Corel 10 Dataset

Corel 10 dataset is composed of 10 classes [Lu09].
Each class contains 100 images. The ten classes are
skiing, beach, buildings, tigers, owls, elephants,
flowers, horses, mountains, and food.
5.3. Results

To compare our results with those of Gao in [Gao13],

we have chosen the same basis and the same number

of selected images. The following tables resume all

results.
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Table 2. Classification rate based on of UIUC-
Sport Dataset

Table 2 evaluate classification rates obtained with
different methods. Results of comparison have shown
that our approach performs better results than the
LScSPM [Gao13] approach in the context of

classification applied to UIUC sport dataset.

Method Classification
rate

Spatial Mismatch Kernel [Lu09] 90.0
Spatial Markov Model [Lu09] 77.9
ScSPM [Yang09] 86.6±1.01
LLC [Wang10] 87.93±1.04
LScSPM [Gao13] 88.76±0.76
LScSPM+CM [Gao13] 91.86±0.89
Our approach 92.91

Table 3. Classification rate based on of Corel 10
Dataset

In table 3, we compared our technique to six other
techniques in case of classification application.
Results illustrated in the same table showed that
multiresolution Laplacian sparse coding is the best
technique of image representation for classification
application.

6. CONCLUSION
In this paper, we suggested an improved method of
image representation based on Laplacian sparse
coding and the divergence of Kullback Leibler and
wavelet decomposition. This measure of similarity is
calculated between images which combine the
concepts of information theory and wavelet
transform. The principle of this approach is to sum
the Kullback distances of each scale distributrion
called neighborhood vectors of wavelet coefficients.
The neighborhood coefficients, containing not only
spatial locations but also relative scales, capture the
spatial dependencies and inter-scale coefficients

which can detect finer spatial structures. The
Kullback distance on these vectors is estimated in a
non-parametric manner despite their higher
dimension, thanks to entropy estimators of nearest
neighbors.
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ABSTRACT
Motions are important features for robot vision as we live in a dynamic world. Detecting moving objects is crucial
for mobile robots and computer vision systems. This paper investigates an architecture for the segmentation of
moving objects from image sequences. Objects are represented as groups of SIFT feature points. Instead of
tracking the feature points over a sequence of frames, the movements of feature points between two successive
frames are used. The segmentation of motions of each pair of frames is based on the expectation-maximization
algorithm. The segmentation algorithm is iteratively applied over all frames of the sequence and the results are
combined using Bayesian update.

Keywords
Motion segmentation, EM algorithm, Bayesian update, SIFT feature, trajectory clustering

1 INTRODUCTION
Moving object detection is an important issue in the
field of computer vision and one of the basic tasks
of video processing. It differs from the class-specific
object detection [Yan0, Fer03] and static object de-
tection [Fel10, Pap98], which focus on building mod-
els of objects or background. Moving object detec-
tion is based on the assumption that foreground ob-
jects are usually accompanied by unique motion pat-
terns [Hua07]. Techniques of moving object detection
are widely used in different areas, such as video surveil-
lance systems [Jos12], robot navigation [Jun04, Cal07],
unmanned aerial vehicles [Rod12], and so on. In gen-
eral, they consist of three main steps: motion detection,
motion segmentation and object classification.

The motion detection can be achieved by tracking fea-
ture points [Wan13], or estimating the optical flow be-
tween frames to recover the motion of each image pixel
[Cal07]. Motion segmentation aims at dividing the
points (or pixels) into a set of groups according to their
motion coherence [?, Vid04, Rod12, Jos12, Zha16].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The segmention results are groups of features points,
or regions of images, which are processed by an object
classification algorithm.

The approach proposed in this paper aims at segment-
ing moving objects in image sequences (videos). There
are four steps in our approach: feature extraction,
motion detection, motion segmentation, and combining
segmentations of multiple frames, where the third
and fourth steps are the key issues of the approach.
Feature extraction and motion detection are realized by
technique of scale-invariant feature transform [Low99].
The feature points are segmented into different groups
based on their movements between pairs of image
frames, using an adapted EM algorithm. The segmen-
tations of multiple frame pairs are combined using
Baysian update. The resulting groups of feature points
are either moving objects in the scene or background
regions. These groups of feature points can be pro-
cessed by a classification algorithm. We evaluated our
work in two ways: the accuracy of the segmentation
and the computational efficiency.

A brief review of some related work will be given in the
next section. The general architecture of the proposed
model and the details of the segmentation algorithm of
our approach are described in Section 4 . Experiments
that we used to evaluate our approach are presented in
Section 5. Section 6 concludes the paper.
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2 RELATED WORK
Detecting and tracking moving objects is a challenging
issue in the field of computer vision and a very impor-
tant step in video processing. Numerous approaches of
video-based object detection and tracking are proposed
for different domains of use. Approaches for detect-
ing similarities are widely used for moving object de-
tection, which is related to techniques such as: optical
flow, feature tracking, data clustering and segmentation
[See13]. In this paper, we focus on the motion segmen-
tation techniques.

Wang and Andelson used optical flow for motion
estimation and k-means clustering for segmenting
[Wan94]. Shi and Malik [Shi98] construct a weighted
spatio-temporal graph on an image sequence and use
normal cuts for motion segmentation.

Jung and Sukhatme [Jun04] proposed a moving objects
detection system for mobile robots. They subtract the
background by estimating the motion model of the cam-
era. Pan and Ngo proposed to combine optical flow es-
timation with the EM algorithm [Pan05] for the purpose
of image stabilization.

Vidal and Hartley proposed a motion segmentation al-
gorithm for trajectory clustering by using generalized
principal component analysis (GPCA) to cluster pro-
jected data [Vid04]. Jung and Sukhatme [Jun04] pro-
posed a moving object detection system for mobile
robots, where a probabilistic model accompanied with
an adaptive particle filter and an EM algorithm is used
for detecting the moving foreground objects. Elhamifar
and Vidal use the sparse representation to cluster trajec-
tories from multiple linear or affine subspaces [Elh09].

3 PRELIMINARIES
The approach proposed in this paper makes use
of scale-invariant feature transform (SIFT), affine
transformation, expectation-maximization (EM) and
Bayesian update. In the section, a brief review of the
techniques used in our paper is provided.

3.1 Scale-Invariant Feature Transform
SIFT is an algorithm to detect and describe local fea-
tures in images, which was proposed by [Low99]. It
is proved to be an efficient and robust way of detecting
points of interests, which is useful in object detection
and recognition. The SIFT feature are invariant to im-
age scaling and rotation, and robust to large amounts
of pixel noise [Low04]. Because of the scale-invariant
properties and the high level feature expression, SIFT
features are easy track in video sequences. Moreover,
object recognition based on SIFT feature performs well
[Low04].

3.2 Affine Transformation
The motions of objects in 3D space are projected to 2D
images by camera in daily life videos. In a very short
period, the changes of objects due to the 3D motions
will be small and can be ignored. Thus the points be-
longing to one object can be assumed have the same 2D
motions in frames. In that case, an affine transformation
model is able to describe the movement of an object. If
a point is detected at position x in one frame and at po-
sition x′ in the next frame, then Equation 1 is assumed
to hold for all points belonging to the same object.

x′ = Ax+b; (1)

where A =

(
a11 a12
a21 a22

)
, b =

(
b1
b2

)
.

3.3 Expectation-Maximization algorithm
The EM algorithm [Dem77] is an effective and popu-
lar technique for estimating parameters of a distribution
from given data set.

Given the observed data x associated with a set of un-
observed latent data or missing values Z, and a vec-
tor of unknown parameters θ , the maximum likelihood
estimate (MLE) of the unknown parameters is deter-
mined by maximizing the expected value of the like-
lihood function L(θ ;x,Z) = P(x,Z | θ).
Two steps are iteratively applied to find the MLE of the
marginal likelihood until convergence,

E-step Given the parameters θ and the data x we can
determine the probability distribution of the hidden
variables Z.

M-step Find a maximum likelihood estimate of the pa-
rameters.

θ = argmaxθ
′ L(θ ′;x)

where: L(θ ;x) = P(x | θ) = ∑
Z

P(x,Z | θ) (2)

In the application, we make use an adapted version to
find hidden variables and parameters θ . Instead of the
probability distribution P(x,Z | θ) we determine:

z = argmax
Z

P(x,Z | θ) (3)

in the expectation step. In the maximization step we
determine:

θ = argmax
θ
′

L(θ ′;x,z) (4)

4 METHOD
We proposed a new approach for the segmentation of
moving objects from video sequences. Fig.1 gives the
architecture of our approach.
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Figure 1: Architecture of our approach for video segmentation

We detect the SIFT feature points of each frame in the
video sequence. The feature points of two successive
frames are matched using the algorithm suggested by
Lowe [Low04]. The movements of the matched feature
points between two frames are subsequently obtained.

The movement of a point over multiple frames can be
represented as a trajectory, which is a vector consisting
of the positions of the point in multiple frames. Trajec-
tories can be generated for “continuity” feature points,
which means they appear in all frames of the sequence
[Sun09, Wan13]. However, for many points, the “con-
tinuity” doesn’t hold because of occlusion or 3D rota-
tion of objects. Thus many feature points are excluded
when requiring full trajectories over a sequence, which
reduces the segmentation quality and increase the diffi-
culty of recognition in the next step.

We investigate an segmentation algorithm making use
feature points of both “continuity” and “discontinuity”.
An EM based segmentation algorithm is iteratively ap-
plied to segment feature points for each pair of succes-
sive frames. The segmentations are iteratively refined
frame by frame using Bayesian update.

4.1 SIFT based motion detection
We detect the SIFT key points in each frame of the
video sequence using the approach proposed by Lowe
[Low04]. The movements of SIFT features can be iden-
tified by matching the corresponding features of two
frames using the nearest-neighbours approach. The
similarities of two features points are evaluated by com-
puting the Euclidean distance between the feature vec-
tors. A SIFT feature vector D1 is matched to a SIFT
feature D2 only if the distance satisfy the following two
conditions:

• The distance is smaller than some threshold.

• The distance is not greater than the distance of D1 to
all other descriptors.

RANSAC [Fis81] is used to refine the matching by fil-
tering out the incorrect matches due to the imprecision
of the SIFT model.

The movement vector of a matched point can be ob-
tained by computing the displacement of the coordi-
nates of matched the features, which denotes the po-
sition change of the same point in two different images.
A motion flow field is determined by computing the
movement vectors for all matched points. A motion
field is generated between each pair of neighbouring
frames.

4.2 Parametric Motion Model
An affine model of 6 parameters is used for representing
the parametric motion model of an object. The affine
model is estimated iteratively for movements between a
pair of neighboring frames. Given the movement of any
3 points of the object, (A,b) can be computed. How-
ever, in our approach, the segments of moving points
could contain outliers because the segmentation is not
perfect. Moreover, the observed movements of points
can contain noise. Given a set of pairs of feature points
G, the parameters of affine model for one object can be
estimated by solving the optimization problem:

(A,b) = argmin(A,b) ∑(x,x′)∈G ||ε||l2
where ε = x′−Ax−b

(5)

In some situations, the number of points belonging to
an object is less than 3. For example, for a small rolling
ball, SIFT can only detect 1 or 2 feature points on the
ball. In this case, we assume the affine transformation
degenerates to translation for one point, and a combina-
tion of translation and scaling for 2 points. The matrix
A is reformulated as Equation 6.

A =



(
1 0
0 1

)
, for group of 1 point(

a11 0
0 a22

)
, for group of 2 points(

a11 a12

a21 a22

)
, for group of 3 or more points

(6)
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4.3 EM-based Motion Segmentation
Given the points and their movements between two
frames, an EM-based segmentation algorithm is used to
segment the motion field into groups of points each rep-
resenting an object. Algorithm 1 gives the main steps
of the EM based segmentation algorithm.

Algorithm 1 EM-based motion segmentation algorithm

if start frame then
Initialize the points in one group

else
Initialize the segmentation by reliabilities

end if
repeat

repeat
Using EM algorithm to estimate the best param-
eters of affine motion model, and the assign-
ment of points

until convergence
if the group with the largest errors given the affine
parameters exceeds the threshold then

Split the group with the largest errors;
Increase the number of objects by 1;

end if
until no group can be find to split, or a maximum
number of iterarions reached

In this algorithm, there are 3 components to be noticed:

Estimating affine parameters
Given a partition of points, the affine parameters of
each group can be estimated by Equation 5 as dis-
cussed in Section 4.2.

Re-partitioning of points
Re-partitioning of points by reassigning the points
to the groups, when the affine models are known.
Suppose there are K groups, the division of points is
regarded as an optimization problem:

min ∑
k∈[1,...,K]

Ek (7)

where Ek = ∑(x,x′)∈Gk
||ε||l2 , and ε = x′−Ax−b

Splitting
There are two aspects to be considered:

1. How to determine the group to be split?
Given a partition of points, each group has an
average error Ek =

1
Nk

Ek with respect to its mo-
tion model (A,b)k. We choose the group with the
largest average error to split.

2. How to split the selected group?
We split the group with largest Ek using a bi-
secting K-means algorithm [?]. Once the group

is split, a new partition of points and the corre-
sponding motion models are computed. If the
largest error of the new partition decreases, the
current partition is updated by using the new par-
tition and models. Otherwise, it means the opti-
mal partition is found and no groups can be split,
i.e. the iteration comes to an end.

4.4 Segmentation of trajectories
The EM-based segmentation algorithm in Section
4.3 deals with the temporal movements between two
frames. It is extended to a video sequences using
Bayesian update.

Given a image sequence of T +1 frames f0, f1, ... fT , a
segmentation is determined for each pair of successive
frames ( fi−1, fi). For each pair of frames, we estimated
the probability p(e|i,k) of the evidence e given the as-
signment of feature point i to a group k. Here the evi-
dence is the error of the motion vector of a feature point
with respect to the affine transformation of each group.
We assume that the probability p(e|i,k) is a decreasing
function of the relative error of point i with respect to
group k given K different groups. Equation 8 formal-
izes the computation of p(e|i,k).

p(e|i,k) = 1−
εi,k +

δ

K

∑
K
j=1 εi, j +δ

(8)

where δ = 0.1, which is used for preventing dividing
by zero.

Assuming that the evidence Et = (e1, ...et) over t (0 <
t < T ) pairs of frames in the sequence is independent,
we may use Bayesian update to determine the proba-
bility that point i belongs to group k given all evidence
Et :

P(i,k|Et) =
P(Et |i,k)

P(Et)
P(i,k) (9)

where P(i,k) = 1
K and

P(Et |i,k) = P(e1, ...et |i,k)
= P(Et−1|i,k) · p(et |i,k)

(10)

P(Et) =
K

∑
k=1

P(Et |i,k) (11)

5 EXPERIMENTS AND RESULTS
In this section, we will compare the segmentation
results using our approach with some control ap-
proaches. Since our approach aims at dealing with
long term motions, trajectory clustering algorithms
of motion segmentation such as SSC [Elh09], GPCA
[Vid04] and LSA [Yan0] are used for comparison. The
segmentation is evaluated on video sequences from
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Figure 2: Images from videos used in experiment

three data bases: the robocup 2014 video 1, CNnet
2014 [Wan14] and the Hopkins155 motion database2.
There are videos of some indoor objects, moving
pedestrian, moving cars, and robot soccer. Fig.2 shows
some instance of the videos. Videos from Hopkins155
have a frame rate of 15 fps, while frame rate of videos
from the other two data base are about 24 to 30 fps.
Sequences of 30 frames are used in the experiments.

We will evaluate the approaches in the following ways:

• Evaluate the performance of segmentation algorithm
on the data of motion trajectories.

• Evaluate the segmentation results w.r.t. all detected
features.

• Evaluate the computing times.

Comparing with the other methods, our approach has
the 3 unique characteristics:

• Our method includes the function of detecting fea-
ture points and their motions, while the comparison
approaches are pure clustering algorithms for de-
tected motion trajectories.

• Our method can deal with missing points in some
frames, which doesn’t hold for most of the compari-
son approaches because they require that the motion
trajectories (the input data) are of the same length.

• Our method can determine the number of groups,
while the other methods need the number of groups
as an input.

Due to the differences of our method and the compar-
ison methods, we designed two experiments to evalu-
ate them. First, we will compare the performance of
our motion segmentation algorithm on the full trajecto-
ries of the feature points provided by the data set Hop-
kins155, which will be discussed in Section 5.1. In this
experiment, we don’t detect feature points and their mo-
tions.

In the second experiment, we will evaluate our method
using the original videos. The feature points and their
motions are detected first. The segmentation quality

1 htt ps : //www.youtube.com/watch?v = dhooV gC0eY
2 htt p : //www.vision. jhu.edu/data/hopkins155/

over all detected SIFT features are evaluated, which
will be discussed in Section 5.2.
All experiments are run on Matlab 2014a, with a com-
puter of Intel Core i5 at 3.1GHz and 4GB of RAM.

5.1 Motion segmentation over trajectories
The experiment in this section runs on the Hopkins155
dataset. The codes for compared methods are from the
site of hopkins155.
The Hopkins155 dataset contains 155 videos of 29 or
30 frames, each containing 2 or 3 moving objects. Each
object is represented by a group of feature points. There
are 266 to 398 feature points provided for each video,
as well as the ground truth segmentation of the fea-
ture points. In these videos, the background is re-
garded as one object. Points from the background in-
dicate the movement of the camera. The trajectory data
X ∈ R2F×N is provided for each video, where F is the
number of frames, N is the number of feature points.
Each row of X is a trajectory of one feature point.
The videos are divided into 3 categories, the category
named “checkerboard” contains several objects covered
with a uniform checker board surface, which make 3D
rotations and translations. The “traffic” sequences con-
tain moving vehicles in outdoor traffic scenes. The
remaining sequences named “articulated” contain mo-
tions constrained by joints, head and face motions, peo-
ple walking, etc. Over half of the videos are taken using
a moving camera.
Our segmentation method, named adapted EM seg-
mentation using Bayesian update for motion sequences
(AEM-b), is applied to the trajectories for segmenting
the given feature points. The results are measured by
the percentage of points that are clustered correctly,
compared with the ground-truth clustering provided by
the Hopkins155 dataset.
Table 1 shows the accuracy of segmentation results for
sequences of different categories and number of mo-
tions. Each motion indicates an moving object (the
background is also regarded as an object moving with
the camera). The result of RANSAC for the same se-
quence can vary in each operation because of the statis-
tical nature of RANSAC. We take the average results by
running the algorithm 1,000 times for each sequence,
and the threshold is set to 0.005.
In additional, we analysis the segmentation results of
the category of ’checkerboard’ videos, where the move-
ments of camera varies in different situations. Our
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method performs 7% to 15% worse than SSC in this
category. Table 2 shows the segmentation accuracy of
different kind of videos according to the movements of
camera. It is obviously that our method can achieve
99.8% in segmentation for the videos with a static cam-
era. Our method is not good at deal with the videos
taken by a rotating camera. More specifically, when we
look into the details of the segmentation results of this
category, our method performs very bad (under 70%)
for the videos where the displacements of camera (both
rotating and translating) is too large compare with the
displacement of object itself.

Table 3 shows the accuracy of identifying the correct
number of objects for our method.

The SSC outperforms all methods in general, while our
method ranks 2nd out of 5 methods on average. We can
draw the following conclusion from the results:

• AEM-b performs well for the traffic videos, where
the major motions are 2d translations.

• AEM-b is able to find the number of objects auto-
matically, with a high accuracy of 96.2%.

• AEM-b is not good at dealing with the ’checker-
board’ videos, especially when the camera is rotat-
ing.

• AEM-b doesn’t consider the relative position of fea-
ture points. Points apart from each other but with
similar movements could be mis-clustered.

5.2 Motion Segmentation over detected
points

In this section, we will apply the SIFT motion detection
discussed in Section 4 directly to the original videos
from CNet and robocup 2014. The SIFT features and
their movements are generated frame by frame. For our
method, we will apply the process of Figure 1, which
will make use of the feature points existed in any two
successive frames. Because the comparison approaches
can only deal with trajectories of the same length for
different lengths, we will detect the SIFT feature points
existed in all frames, which will be result in a matrix
of trajectories having the format of the data from Hop-
kins155 dataset.

The number of feature points in the trajectories ma-
trix will decrease as the length of sequence increases.
For each video, we test the methods using sequences
of different lengths, which varies from 2 frames to 30
frames. Figure 3 shows the average number of feature
points for different sequence lengths, with respect to
different lengths of sequences. The blue line indicates
all detected feature points, the red line is the number
of feature points utilized by our method, and the green

LSA RANSAC GPCA SSC AEM-b

Checkerboard:78 sequences
93.91 92.01 79.11 98.4 91.5

Traffic:31 sequences
98.6 92.14 73.2 99.4 99.0
Articulated: 11 sequences

96.9 90.45 72.5 98.9 92.0
All: 120 sequences

95.4 91.9 77.0 98.8 93.5
(a) sequences with 2 motions

LSA RANSAC GPCA SSC AEM-b

Checkerboard:26 sequences
68.1 72.23 80.4 97.4 83.9

Traffic:7 sequences
80.2 88.28 53.1 99.2 98.9

Articulated: 2 sequences
83.2 76.98 78.9 98.9 84.4

All: 35 sequences
71.3 75.7 74.9 97.9 87.0

(b) sequences with 3 motions

LSA RANSAC GPCA SSC AEM-b

All:155 sequences
90.0 88.2 76.5 98.5 92.1

(c) all sequences

Table 1: Accuracy (%) of motion segmentation for dif-
ferent settings

LSA RANSAC GPCA SSC AEM-b

Static camera: 20 sequences

92.2 92.2 89.4 99.6 99.8

Translating camera: 20 sequences

79.9 81.8 76.9 99.1 96.5

Rotating camera: 24 sequences

71.0 76.4 62.7 98.0 80.1

Rotating and translating camera: 40 sequences

94.2 93.4 83.2 97.5 90.4

Table 2: Segmentation of checkerboard videos accord-
ing to the movement of camera

Sequences
of

Checker-
board

Traffic Articulated

2 motions 92.8 96.6 81.2

3 motions 86.7 98.4 83.6

all 89.9

Table 3: Accuracy (%) of estimating the number of ob-
jects
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line shows the number of points utilized in the trajec-
tories. It is clearly that our method can make use of
more points in each pair of frames. The number of uti-
lized feature points remains stable with growing length
of sequences in our method, while it decreases sharply
for trajectories.
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Figure 3: Number of feature points used in different
methods

Figure 4a shows the segmentation accuracy of all meth-
ods with respect to all trajectories of the specified se-
quence lengths. Figure 4b shows the segmentation ac-
curacy with respect to all feature points. Because the
comparison methods are all using the trajectories as in-
puts, their segmentation accuracies w.r.t. all feature
points decrease when sequences getting longer. From
the Figure 4a and 4b, we can draw the following con-
clusions:

• For the original videos, our method provides a solu-
tion including the feature detection, motion estima-
tion and segmentation, which can make use of more
feature points. The other methods require a separate
step of building trajectories, which will lead to a loss
of feature points.

• Our method can achieve higher accuracy of segmen-
tation in the videos from CNet and robocup 2014,
where the movement of feature points are not as ac-
curate as them from the Hopkins155 dataset. For
the latter one, the movements of features points are
detected by a special tracker.

• Our method can always make use of the most fea-
ture points even the length of sequence increases.
Thus the accuracy of segmentation compared to all
detected points are relatively stable compare to the
other methods. More feature points will profit the
next step of object recognition.
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(b) Accuracy of segmentation w.r.t. all feature points

Figure 4: Accuracy curves w.r.t. lengths of sequences,
compare to (a) the utilized points (b) all feature points.

5.3 Computing time
Table 4 and 5 give the average computing time for se-
quences with a length of 30 frames for different dataset.
Although RANSAC and GPCA have the lowest compu-
tation times, their segmentation accuracy is also lower.
Moreover, the performance of RANSAC is not stable as
mentioned in Section 5.1. Our method has an average
computation time of 0.3s, which is smaller than LSA
and SSC.

LSA RANSAC GPCA SSC AEM-b

Number of
points

330

Hopkins155 4.32s 0.09s 0.14s 3.8s 0.31s

Table 4: Computing time (seconds per 30 frames) of
segmentation stage of Hopkins155 dataset

For experiment two, we only consider the computation
time of the segmentation stage, which means the com-
puting time of feature detecting and motion estimation
is not taken into consideration.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Full Papers Proceedings 67 ISBN 978-80-86943-57-2



LSA RANSAC GPCA SSC AEM-b

Number of
points

78 78 78 78 235

CNnet 0.94s 0.01s 0.04s 0.68s 0.19s
RobotCup 0.91s 0.01s 0.04s 0.66s 0.20s

Table 5: Computing time (seconds per 30 frames) of
segmentation stage of CNet and robocup2014 videos

LSA RANSAC GPCA SSC AEM-b

Hopkins155 13.0 0.27 0.42 11.4 0.9
CNnet 12.1 0.19 0.51 8.72 0.8

RobotCup 11.7 0.19 0.51 8.46 0.9

all 12.2 0.2 0.5 9.5 0.9

Table 6: Computing time (ms per point per 30 frames)
of segmentation stage

In Figure 3 we can see that the average number of
points utilized in trajectory clustering for a 30 frame se-
quences is about 80, while it is about 240 in our method.
That means our methods will process three times more
points compared to the other methods in this experi-
ment. Nevertheless, our method is faster than SSC and
LSA. Table 6 shows the averge computation time per
feature point. Taking the difference in the number of
feature points in to account, our method is ten times
faster than SSC, fourteen times faster than LSA, three
times slower that RANSAC, and two times slower than
GPCA.

6 CONCLUSION
We proposed an approach for segmenting video frames
into groups of feature points based on their motions.
In the proposed method, SIFT feature points and
their movements are detected using Lowe’s algorithm
[Low04], an adapted EM algorithm is applied with a
recursive division strategy for segmenting the feature
points according to their motions. The segmentation
is iteratively applied for each pair of frames in the
sequence, and combined with Bayesian update to
generate segmentation results over all frames. The
characteristics of our method are as follows

• Because our method processes pairs of frames iter-
atively, it can deal with arbitrary length of video se-
quence.

• The EM algorithm with a division strategy can de-
termine the number of moving objects in the frames.

• Bayesian update combines the results of a sequence
of frames.

• Our method can handle the problem of missing
points in any frames, because it does not track
feature points over sequence of frames. We only
consider the feature points in neighbouring frames
in each step of the segmentation.

Results shows that our method performs well in tra-
jectory segmentation, and has a average accuracy of
92.1% in general. It is especially successful for videos
of translation. However, it performs not well the dis-
placement of objects is small compared to the displace-
ment caused by the moving camera. Our approach does
not require that all trajectories of feature points have
the same length, which means that it can deal with the
data with missing points. This property makes our ap-
proach more flexible than other approaches. Exper-
iments also show that the computational cost of our
method is reasonable. On the one hand, it performs
better than the methods which are faster. On the other
hand, it is ten times faster than the methods perform
better (actually only the SSC) in the segmentation stage
giving the trajectories of feature points (provided by
Hopkins155 dataset). In general, our method proposes
an efficient way to deal with motion segmentation of
video sequences in a dynamic environment.

The first drawback of our method is that it can not deal
very well when the movement of camera is significant
compare with the movements of the objects. Secondly,
our method does not consider the position relationships
of points, so some points being far away from an ob-
ject but having similar movements will be misclassified,
which is not a big problem for SSC. Thirdly, the perfor-
mance of our method drops too much when the number
of moving objects increases, compare to the best one
(SSC).

In the future, we will do more experiments to evalu-
ate the robustness of our methods in varying condi-
tions. The motion model should be made more ro-
bust for camera movements. Exploring whether differ-
ent types of feature points influence the segmentation is
also worth investigating. Last but no least, we will in-
vestigate its applicability in real time for mobile robots.
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ABSTRACT
Procedural noises based on power spectrum definition and random phases have been widely used for procedural
texturing, but using a noise process with random phases limits the types of possible patterns to Gaussian patterns
(i.e. irregular textures with no structural features). Local Random Phase (LRP) Noise has introduced control
over structural features in a noise model by fixing the frequencies and phase information of desired features, but
this approach requires storing these frequencies. Space distortion and randomization must also be used to avoid
repetitions and periodicity. In this paper, we present a noise model based on non-uniform random distributions of
multiple Gaussian functions for synthesizing semi-structured textures. We extend the LRP noise model by using a
spot noise based on a controlled distribution of kernels (spots), as an alternative formulation to local noises aligned
on a regular grid. Spots are created as a combination of Gaussian functions to match either a specific power
spectrum or a user-defined texture element. Our noise model improves the control over local structural features
while keeping the benefits of LRP noise.

Keywords
Procedural texturing, Image synthesis, procedural noise

1 INTRODUCTION
Random signals have been widely used for procedu-
ral texturing since the marble pattern of Perlin [Per85].
Noise-based procedural textures inherit many proper-
ties of procedural noises, the most compelling ones be-
ing :
• No repetition is visible;

• The pattern produced is continuous over its evalua-
tion space;

• It can be computed during rendering on a per-pixel
basis;

• One texture model can produce various patterns by
tuning parameters

These advantages have led to a growing study of noise
applications in procedural texturing. A large variety
of patterns can be produced by a noise-based process
by defining a given power spectrum (Gabor noise
[LLDD09], Multiple Kernel noise [GDG12b]) but
shaping a pattern by directly tuning the spectrum of a
noise remains a difficult task, because the correlation
between a target pattern and the corresponding power

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

spectrum cannot be straightforwardly deduced. A more
artist-friendly approach consists in computing the noise
parameters from a pattern sample [GLLD12].

Most of the recent "noise by example" methods con-
sider a given image as an input and aim at generating
a noise reproducing its power spectral density (PSD),
computed by spectral analysis. Visual variety in the
results is introduced by keeping the phase information
random. However, it is well known that structure can be
found in the phase information of the spectral analysis
[OL81].

The recently introduced LRP Noise [GSV∗14] tackles
the problem of structural features preservation by fix-
ing both phases and magnitudes in some areas of the
frequency spectrum approximating the structural com-
ponent of the input example. This approach has two
drawbacks. Firstly, it requires to store the phase infor-
mation of the relevant parts of the spectrum. Secondly,
as only a limited number of fixed frequencies are used,
periodicity of the structural components must be broken
by using turbulence [Per85] and random shifts.

In this paper, we present an alternative formulation of
the LRP noise based on a locally defined and control-
lable spot noise representation. We focus on struc-
tural features that can be defined by a repetitive struc-
tured kernel function (i.e. fabric textures with specific
stitches aspects and random small variations). Such
kernels can be created by an arrangement of the base
components of the features (i.e. the threads within a
stitch). This formulation retains the advantages of the
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LRP noise : Both stochastic details and structural fea-
tures can be generated in real-time on a per pixel basis.
Simple structures can be reproduced through an auto-
matic process. The benefit provided by our representa-
tion is two-fold :

• The sum of cosines modeling the structural compo-
nent of the LRP Noise formulation is replaced by a
sum of few Gaussian kernels. This compact repre-
sentation reduces computation cost for local struc-
tures and yields a noise process with similar perfor-
mance but with enhanced control over the final vi-
sual appearance.

• The distribution of the structural features of the in-
put can be edited and is part of the definition of
the model. This extends the range of possible pat-
terns that can be produced, from very regular to
completely stochastic ones, but still featuring struc-
tural components. Repetitions and periodicity are
avoided for semi-regular patterns since the distribu-
tion of local noises is still based on a random pro-
cess.

The control over both distribution and kernel aspect in
the noise model allows for interactive edition of pat-
terns.

A comparison of local noise formulations is presented
in fig.1.We present the possibilities offered by our new
formulation through several examples of patterns as
shown in fig.3.

2 RELATED WORKS
2.1 Procedural patterns synthesis
To create procedural patterns, several approaches can
be used depending on the desired degree of "random-
ness". For structured and semi-structured procedural
patterns, patch-based approach can help artists expand-
ing a pattern sample with characteristic structural fea-
tures. In such approach, a procedural pattern is evalu-
ated by tiling the surface with patches (small textures)
[CSHD03, EF01, VSLD13]. Patches are randomly ar-
ranged to break repetitions, but results may lack of de-
tails variety : the same tiles / patches (i.e. rigorously
identical contents) are repeated over and over again
even for irregular textures .

Semi-structured pattern can also be synthesized as a
distribution of objects in texture space [GD10]. To cre-
ate a procedural pattern with this approach, a procedu-
ral distribution function is required to create an infinite
set of random position. Point jittering is often used as
distribution function for its simplicity and evaluation
speed [Gla04]. But it does not take in account spatial
dependencies (distance threshold between objects) so
distributed objects may overlap. Direct Stochastic tiling

[LD05] can produce some distance dependencies, to
create for example an infinite set of Poisson-disks. But
it still requires some tiles to be precomputed and stored.
For their assemblage creation, [GDG12a] proposed an
improvement of point jittering to take in account some
spatial dependencies : the squared lattice is replaced
by polygonal cells that forms a rectilinear tesselation
of the plane. Similarly to jittering, each cell contains a
different instance of an object with a random position
computed on-the-fly. Fully procedural semi-structured
pattern can be produced using both procedural objects
definition and procedural distribution function, but very
few techniques propose to extract such objects directly
from an input sample. Irregular and near-regular pat-
terns can also be generated with Markov Random Fields
[CJ83]. [VGR16] specifically consider Markov-Gibbs
Random Fields to create stochastic, irregular and near-
regular textures. This approach can reproduce patterns
with complex structural details from an example with
great accuracy. But the texture generation processes as-
sociated with such models are highly iterative and fo-
cus on statistical reproduction over generation speed. It
makes them unpractical to use in a rendering pipeline
for high resolution textures generation on-the-fly.

To create procedural pattern with greater randomness,
procedural noise functions are often preferred over spa-
tial description methods (more details in section 2.2).
But as modeling a power spectrum is no trivial exercise,
several noises "by example" use a self-configuration
process to approximate a specified power spectrum,
within the noise spectral capabilities. [LVLD10] de-
scribe a process to reproduce isotropic patterns by de-
composing a Power Spectral Density (PSD) into several
frequency bands to compute the weights of a multi-
resolution wavelet noise. [GDG12b] extract several
kernel configurations from an arbitrary PSD by decom-
posing a spectral domain into sub-regions of specific
magnitude range. As an extention of the Gabor noise,
[GLLD12] also describe a method to reproduce an arbi-
trary PSD in several band-limited Gaussian spectrums.
Each spectrum corresponds to a band limited Gabor
noise. These noises are nonetheless limited to Gaussian
patterns : as they are completely characterized by their
power spectrum, only micro-structural features are pro-
duced. Local Random Phase noise [GSV∗14] is of par-
ticular interest as it introduces structure preservation in
its noise formulation while allowing the "by example"
approach.

2.2 Procedural noises
Procedural noises have been widely used as a model-
ing tool for texture synthesis after the Perlin noise first
appeared in [Per85]. A procedural noise implies no dis-
crete data samples, a very low storage requirement (i.e.
a simple evaluation function), no periodicity nor rep-
etitions. Two families of procedural noises are gener-
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ally considered (see survey [LLC∗10]) : lattice gradient
noises and sparse convolution noises. Lattice gradient
noises are based on the interpolation of randomly ori-
ented gradient ([EMP∗02]) dispatched on a regular grid.
Sparse convolution noises are based on the convolution
of a spatial filter function (kernels) with a random dis-
tribution of impulses (points).

Random distribution processes result in a white noise
in the frequency domain, so the control of sparse con-
volution noises can be achieved by spectral definition
of the kernel function. A sparse convolution noise can
be constructed around a specific evaluation functions
such as Gabor-[LLDD09], Gaussian-[Lew89], or Sync-
[GDG12b] kernels. The latter use multiple configura-
tions of the kernel to optimize spectral coverage. A
more spatial-oriented formulation of a sparse convolu-
tion noise was proposed by [vW91, dLvL97] with the
Spot Noise. It is based on an arbitrary spatial kernels.
Some micro-structural features can be produced by us-
ing structured kernel. But the quantity of the structural
features produced remains limited by the random distri-
bution process.

Local Random Phase noise [GSV∗14] states that struc-
tural features are contained in both the magnitude and
the phase spectrum of specific frequencies. To pro-
duce structures within a noisy pattern, LRP noise model
propose to fix their corresponding frequencies. While
it achieves to produce structures accurately, this noise
model suffer from several drawbacks : 1) frequencies of
structures selected for reproduction need to be stored;
2) Local cosine-based noises need a great number of
cosines to cover the spectrum.

We extend the LRP noise formulation to produce a
more compact representation of local structures by re-
lying on a spot noise formulation. Our local spot noises
use a sum of quadratic Gaussian functions to create
structured or unstructured kernels, so a wide range of
possible spot aspects can be produced. Locally defined
structural features are further enhanced by the introduc-
tion of a constrained random distribution.

3 NOISE MODEL
We now present our alternative formulation of the LRP
noise model based on spot noise. As a reminder, the
original formulation of the LRP noise is the following

n(x) =
I

∑
i=1

w
(
||x− xi||

∆

) J

∑
j=1

Ai, j cos(2π fi, j · x+ρi, j)

(1)
It is a mix of J× I local cosine-based noises with ran-
dom phases and windowed over a regular lattice (xi is
the position over the spatial lattice corresponding to a
spectral stratum i) : randomness is obtained by the ran-
dom phases while the spectrum is controlled by the fre-
quencies sampling of each noise. We now propose an

alternative formulation based on a fully procedural spot
noise to limit the number of cosines. We also present a
new procedural distribution function to control the lo-
cality of the noise produced. The extended range of
patterns that can be produced using this distribution is
presented in fig. 3.

3.1 Procedural Multiple-Gaussian spot
noise

Sparse convolution noise [Lew89] is originally based
on the random distribution of impulses convolved with
an isotropic Gaussian kernel. Such kernels, created as
the multiplication of a sample texture by a Gaussian en-
velope, only produce isotropic Gaussian patterns due
to the fixed Gaussian envelope of the kernel used. To
improve spectral control, Gabor kernel [LLDD09] can
be used as it unifies spectral and spatial characteris-
tics. But spatial control is reduced at the same time. It
can produce only Gaussian textures, which is an exces-
sively narrow subset of procedural patterns. Spot noise
[dLvL97] can produce a wider range of patterns, in-
cluding non-gaussian patterns containing structural fea-
tures, by using an arbitrary spatial kernel instead.
We aim at spatial characteristics that cannot be pro-
duced by the sole power spectrum definition. [vW91]
noted that structural characteristics present in the ker-
nel itself, such as (an)isotropy or a structural feature,
result in similar characteristics within the texture pro-
duced by the spot noise. In other words, when the ker-
nel contains some structure, this structure is transferred
to the texture. A formulation of spot noise is given by
[dLvL97] as :

ns(p) =
J

∑
j

w j(p j)ks ((p−p j)Rs(p j)Ss(p j)) (2)

Where p j is an impulse position, and ks is the kernel
function of the spot s. Orientation Rs and scale Ss are
related to underlying data fields. Impulse positions p j
are uniformly distributed using a Poisson process and
the weights w j are equiprobably drawn in [−1,1].
For our kernel formulation, we use a sum of ellipsoidal
N-dimensional Gaussian functions with arbitrary scale
and orientation. Gaussian functions (and kernels by ex-
tension) are commonly used in noise literature to cre-
ate Gaussian noise patterns. It has also been used for
modeling surfaces and volumes [JBL∗06]. In computer
vision, Gaussian kernels can be used as a reconstruc-
tion primitive after a Gabor-wavelet decomposition of
an image [WM03]. For spot noise modeling, a wide
range of kernels can be produced by combining a few
simple Gaussian functions. Some examples of kernels
are presented in figure 2. Our kernel k is defined for a
dimension N as:

k(p) = ∑
Vi

gVi gV (p) = Ae
−1

2
pT V−1p

(3)
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Figure 1: Examples of noises generated by sparse con-
volution, with their respective kernel and impulse dis-
tribution. Unlike Gaussian (a) and Gabor (b) noise, spot
noise (c) can also produced semi-regular structural fea-
tures using a single arbitrary spatial kernels.

Here A is the Gaussian magnitude, and V is a (N+1)×
(N+1) matrix, such that V−1 = (M R S)−T (M R S)−1

and |V| is the matrix determinant. M,R and S respec-
tively correspond to shift, rotation and scaling matri-
ces. The isocountour of the kernel is given by pT V−1p,
which describes an implicit surface given that V is a
semi-positive matrix (p is a point in dimension N + 1
with last component set to 1). We show in figure 1.c
an example where using a simple grid-kernel composed
of four ellipsoidal Gaussian can effectively produce a
texture with semi-regular structural features. With the
sparse convolution process, the evaluation window is
considered to be induced by the kernel formulation (i.e.
each Gaussian function falls below a threshold before
the maximum evaluation distance of a kernel). Consid-

Figure 2: Spot noise with various kernel aspects, com-
posed of several elliptic Gaussian function. Each ori-
ented Gaussian within a kernel generates an oriented
component within the results. The center tile shows
their random distribution of impulses. Performances
are around 85 fps for the 2-Gaussians spots (top row)
and 65 fps for the 3-Gaussians spots (bottom row).

ering this and equation 2, the new formulation of our
complete noise model becomes :

n(p) =
I

∑
i=0

wini(p) (4)

Where ni is a local noise composed of random impulses
of the kernel i. Here wi is an energy normalization fac-
tor computed for each noise. Our noise model is a com-
position of several spot noises. Each spot noise can be
used to model a specific set of features of a pattern.

Texture generated by this formulation produces local
structural features (see the "grid-shaped" micro-pattern
in figure 1(c)) while keeping the randomness introduced
by the Poisson distribution of impulses. To further
widen the range of possible patterns generated by this
formulation, we propose to extend the previous spot
noise by introducing a non-uniform random distribution
of impulses.

Let p = (X ,1), a point of coordinates X in a specified
dimension, we propose a new formulation :

ns(p) = ∑
j

δ (ξ (p j)< d(p j)) |w j(p j)|K j(p) (5)

with K j(p) = ks ((p−p j)Rs(p j)Ss(p j)). d is a scalar
field and represents a probability. δ denotes the Kro-
necker delta and || the absolute value. ξ is a random
variable selected independently of w j. d allows us
to control the density of impulses in given regions.
Because we use an absolute value, high density regions
imply noise values close to 1 whereas low density
values result in values close to 0.
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Figure 3: Examples of pattern produced with our distri-
bution, from irregular (top row) to regular patterns. For
each example, the top images of the the left column are
the kernel (left) and the periodic density (right) profiles
used, the bottom left image shows the resulting impulse
distribution. The image of the right column shows the
noise result.

The global appearance of the produced texture is di-
rectly correlated to the shape of d : the energy of
the pattern is concentrated around higher density ar-
eas within the density field. It introduces a new level
of control over the various appearance of the generated
texture and can be used to introduce global structure
at a large scale. To model structural regularity, we de-
fine d as a periodic density field tiling the evaluation
space (i.e. fig. 3,6,7), or as a global density field (i.e.
fig. 8). For convenience, periodic density fields used
in this paper are represented by the density for a single
period and referred as density or distribution profiles.
The profiles are created using simple shapes functions

to allow interactive authoring and fast evaluation. Fig-
ure 3 demonstrates the range of appearance produced
by this control over the distribution of impulses using
different periodic density profiles. Our formulation en-
compasses previous noise formulations and is thus able
to produce various patterns, from irregular patterns (by
using a random distribution, cf. figure 3 top) , to near-
regular patterns(cf. figure 3, bottom).

Note that in spite of regularity in global appearance, this
texture preserves randomness : impulses are still gener-
ated using a random distribution process: only the den-
sity of impulses varies spatially. We experienced that
the shape of density profiles allows an easy and intu-
itive control of texture structure : structural alignments
result in small irregular gaps or aligned variations in the
pattern. Such insights can be used to visually estimate
the elements positioning margin within an area and to
recreate the density profile accordingly. The user can
also edit kernels in real-time, getting an instant texture
feedback while creating or modifying the pattern.

4 BY EXAMPLE PROCEDURAL TEX-
TURING

As shown in section 3, our spot noise model is well
suited to manage some types of structural features.
We have further shown that the structure can be
represented either by the kernel itself or by the distri-
bution of impulses (using non-uniform distributions).
However analyzing the input texture to obtain both the
distribution and the shape of the kernel is a difficult
and challenging task: both are strongly linked and they
can only hardly be decoupled. A solution consists in
fixing one of the two. In this paper we propose to use a
similar approach as for LRP noise: we extract complex
kernels from examples that are then distributed over a
regular grid.

First, we briefly present a summary of the LRP Noise
by example approach introduced to process some types
of structured textures.

Summary of by-example LRP Noise

By-example LRP Noise is based on a spectrum segmen-
tation to extract the magnitudes and phases of structural
features : the input spectrum is stratified according to
energy levels, and then subdivided in sub-strata to com-
pute local noises.

A stratum R corresponding to the highest energy area in
the power spectrum is considered as defining the struc-
ture of the pattern. This region is seen as the frequen-
cies ”containing the structure” and is chosen by a tun-
able parameter r ∈ [0;1] such that the proportion of to-
tal energy contained within R is r. The most important
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structural features are preserved by fixing the phases
and amplitudes over the corresponding frequencies. At
the extremities, the resulting texture varies from a fully
procedural (r = 0) to a copy of the original sample
(r = 1). In practice and for weakly structured random
textures, authors report a value of r ≈ 20% as an ef-
ficient value for preserving both the structural features
and the randomness of the pattern. Final noise (texture)
computation is done by summing the noises approxi-
mating all energy strata :

n = nR +∑
S

nS (6)

Two types of noises are thus considered : noises nS
relying completely on power spectrum and purely ran-
dom phases (they keep storage requirements minimal),
while the noise nR has fixed phases and amplitudes.

One drawback is that a high amount of cosine waves
are needed to accurately represent nR, thus generating
an important computational overhead. Gilet et al.
[GSV∗14] deal with this issue by trading continuity for
computational efficiency. Basically, the structure im-
age (the inverse Fourier transform of nR) is iteratively
decomposed into a regular grid of blocks. A block-wise
FFT of this structure image is computed and a fixed
amount of highest-amplitude frequencies are selected
and stored for each block. nR is finally evaluated by
block in the spatial domain and re-assembled during
rendering using the windowing function. We refer the
reader to [GSV∗14] for more details about LRP Noise
by example.

4.1 Reproducing structure with Locally
Controlled Spot Noise

First we have to separate the input texture into the struc-
tural part and the Gaussian random part. To this end, we
propose to use the same technique as for the LRP Noise
method, i.e. to consider a structure image constructed
as the inverse Fourier transform of the highest energy
region of the spectrum. The goal of our method is to
compute a collection of I local kernels, each encoding
a part of the structure. We achieve this by subdividing
the structure image following a regular grid of arbitrary
resolution and computing a Gaussian-based representa-
tion for each of the resulting blocks.

This ends up in computing a compact elliptical
Gaussian-based representation of a given image, which
is a difficult process when images are complex. By
using a standard ellipse fitting algorithm, such as
the method proposed in [AWF95], the pixels of the
input image are approximated by J ellipses, which
are then expressed as elliptical Gaussian functions of

Figure 4: Noise by example : an input sample (left
image) is subdivided into smaller samples. Each sub
samples is decomposed in Gaussian functions (around
20 for this example), giving for each sub-samble a spe-
cific spot (center). Resulting pattern (right) is obtained
by random distribution of the spots. Performances are
about 10 fps.

corresponding radius. As illustrated in figure 4, these
functions are the basis of our local spot noise kernel.
The efficiency of ellipse fitting is strongly depending
on the complexity of the image and is able to work
only on simple features such as presented in figures
4 and 5. A deeper analysis and segmentation of the
image could further lead to an increase of the quality of
the approximation and could in future work allow the
reproduction of more complex structural features.

The number J of Gaussian functions is constant for
all blocks of the image and impact the accuracy of
the approximation of each structural feature and the
performance of the spot-noise during rendering. The
rendering speed is linearly dependant on the number
of Gaussian functions composing each kernel. This
trade-off between accuracy and performance is a
parameter of our model and chosen by the user. In
practice, all results in this paper are computed with J
between 4 and 8, and up to 20 for very complex spots.

4.2 Combining structure and noise
During rendering, the impulses are distributed using jit-
tering (random displacement of points defined on the
integer lattice). The resolution of the lattice corre-
sponds to the resolution used during the subdivision
process of the structure image. Each impulse is as-
sociated with a kernel, that can be chosen as the ker-
nel approximating the block (in the structure image)
corresponding to the integer lattice of the impulse or
randomly chosen to increase randomness. By using
the kernel approximating the corresponding structure
block, low frequency structural features can be repre-
sented by the combination of kernel across the output,
at the cost of the randomness.
The Gaussian random part of the input texture is then
added by a cosine-based kernel noise as in the standard
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LRP Noise method or as a random distribution of sim-
ple kernels defined as in figure 1.

5 RESULTS
We implemented our noise as a GPU fragment shader
using OpenGL. Random numbers were generated by
a linear congruential PRNG initialised by a Morton
coded seed similarly to [LLDD09]. Performances are
strongly dependant on the impulses density and kernels
complexity. All results in this paper are rendered be-
tween 10 and 165 fps in a 1200× 1200 window on a
GeForce 980.
Figures 4 and 5 shows examples of structure repro-
duction obtained from an input example. As can be
seen, the simple shape of the input structural feature
is accurately reproduced by our automatic process. As
stated earlier, our method relies on automatic segmen-
tation and computation of Gaussian representation of
an input pattern. Using a straightforward ellipse fitting
technique provides results for simple patterns but auto-
matic analysis of a complex pattern remains a difficult
challenge. We however believe that this is a first step
toward fully automatic by-example procedural textur-
ing of complex patterns using locally controlled spot
noises.

Figure 5: A simple example of pattern modeling ob-
tained from the input example (left). The shape of
the structural pattern is computed by ellipse fitting and
expressed as a sum of Gaussian functions (middle) to
produce the final structure (right). Performances are
around 165 fps.

Several patterns can still be represented using an user
provided kernel. Figure 6 shows several examples of
pattern reproduction through a given periodic distribu-
tion and an adequate user-defined kernel.

Unlike recently introduced noise methods, our tech-
nique focus on the edition of pattern in the spatial do-
main. Indeed, interactive modeling in the spatial do-
main is easier than the direct edition of a power spec-
trum. Figure 7 illustrates our edition pipeline and shows
how the kernel and distribution can be edited to impact
the global structure of the target pattern with instant
feedback for the user. Figure 8 illustrates the control
capabilities of our noise model over multiple structures
distribution within a single pattern. Figure 9 illustrates

Figure 6: Examples of a near-regular features reproduc-
tion by a single spot noise. The kernel profile (left col-
umn,top left profile) is provided as a user-guided Gaus-
sian decomposition of a texture element (i.e. a mesh of
fabric). The distribution profile (left column, top right
profile) is either directly authored or provided as a small
texture. The top right tiles show the original pattern
from which the sample to reproduce as a kernel were
extracted. Performances are around 60 fps for the top
pattern and 40 fps for the bottom pattern.

an application of a pattern on a 3D object with a sim-
ple bump mapping. This figure uses the top row con-
figuration of the figure 6 to compute a noise used as a
height field. Normals used for the bump mapping were
computed by finite differences over 3 evaluations of the
noise in a fragment shader.

6 CONCLUSION
We have introduced a new noise model based on locally
controlled spot noises to reproduce from near-regular to
irregular pattern features. Near-regular features are pro-
duced by combination of structured kernel and a con-
trolled random distribution process. As it extends the
Local Phase Noise model, it can still reproduce irregu-
lar patterns with structural features.

Our noise function contrasts with most recent research
papers concerning noise models because our focus is
not to match a given power spectrum, but rather to fo-
cus on spatial structure control : sculpting interactively
a pattern shape in spatial domain is an easier creation
process than editing a given power spectrum. Noise is
hard to control, and generally ill suited for the model-
ing of structured procedural textures. We believe that
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Figure 7: An example of edition process. Giving an input spot and distribution (top left), the user can interactively
modify each Gaussian function of the spot and the distribution profile to change the appearance of the result.
Performances are around 45 fps.

Figure 8: An example of mixed kernels for structures
repartition within a single noise pattern. A global den-
sity field (bottom left), generated by a secondary spot
noise, is used to control the distribution of spots : for
an impulse distributed, the corresponding spot (top left
profile or middle left profile) is selected according to a
random density test. Performances are around 55 fps.

our locally controlled spot noise could provide a first
hint to address the difficult problem of modeling struc-
tured patterns. In particular, one important extension
for future work would be the exploration of an auto-
matic example-based method. Such a method would
use as input a photograph of surface details and then
attempt to derive a corresponding set of kernels and im-
pulse density distributions.
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ABSTRACT
Global variational methods for estimating optical flow are among the best performing methods due to the sub-
pixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be
estimated even in low and untextured areas of the image. The estimation of such displacements are induced by
the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with
a very good performance for edge-preserving. However this norm suffers from several issues, among these is the
isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas
near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect
for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to
steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is
done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the
conventional L1 norm.

Keywords
Optical flow, Variational methods, TV −L1, Structure tensor.

1 INTRODUCTION
Optical flow is an important cue in image processing
applications. It can be defined as the estimation of im-
age point displacements over time [1], [2]. Such images
are taken for the same scene at successive moments in
time. Methods for finding optical flow can be classified
in many ways. An early classification can be found in
the work of Barron et al. [3], which classified optical
flow algorithms into four main groups. One of these
groups relies on the computation of optical flow using
the calculus of variations and is thus denoted as ‘Vari-
ational methods’. Variational methods for estimating
optical flow belong to the highest-accuracy methods.
These methods find the optical flow displacement field
by minimising an energy function mainly comprising
data and smoothness terms:

E = αEdata +Esmooth (1)

where α controls the weight between the two terms.
The data term Edata is based on the brightness con-
stancy assumption, where it is assumed that illumina-
tion between images does not change over time:

I2(x+u, t +1) = I1(x, t)

where u = (u,v) is the displacement for each pixel in
the x and y directions respectively, x = (x,y) is the pixel
coordinates, and t ∈ [0,T ] is the time reference. This

term is linearised using the ‘Taylor Expansion’ to ob-
tain what is known as the ‘optical flow constraint’ [4]:

Ixu+ Iyv+ It = 0 (2)

where subscripts denote partial derivatives. The bright-
ness constancy assumption does not always hold, as it
gets violated when illumination changes between the
two images, for example due to shadows and shading.
The smoothness (or regularity term) on the other hand
is based on the spatial constancy assumption, where it
is assumed that the neighbouring pixels in the first im-
age are still neighbours in the second image. Hence
diverse displacements are penalised. This assumption
also does not always hold as it gets violated in some ar-
eas such as motion boundaries, where pixels in the first
image are no longer neighbours in the second image
due to motion or occlusion. One example of an opti-
cal flow energy function can be found in the early work
of Horn-Schunck [1], where they proposed to minimise
the following energy function:

E =
∫

Ω

( Edata︷ ︸︸ ︷
α(Ixu+ Iyv+ It)2+

Esmooth︷ ︸︸ ︷
|∇u,∇v|2

)
dxdy (3)

where Ω is a 2D image domain and ∇u = (ux,uy) and
∇v = (vx,vy). The solution is found using the Euler-
Lagrange equations, which results in a couple of si-
multaneous equations. The displacements then can be
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easily found by solving the resulting system of equa-
tions. In that algorithm a quadratic norm is used in
the smoothness term. The quadratic norm penalises the
flow field severely in all directions, hence it produces
blurry motion edges due to this penalisation.

The displacement field is piecewise in nature, hence a
good choice for a smoothness term is a piecewise func-
tion that characterises the piecewise nature of such a
displacement field. The total variation L1 is an exam-
ple of such functions. Indeed this piecewise function
can characterise the flow field efficiently. However, this
norm suffers from two main issues. First, it is not con-
tinuously differentiable. This issue was addressed by
Chambolle [5]. Later Zach et al. [6] used this solu-
tion to propose an optical flow estimation algorithm in a
primal-dual formulation. Primal-dual algorithms, in ad-
dition to their accuracy and good edge-preserving qual-
ities (due to the use of the L1 norm in the smoothness
term), can be easily parallelised using modern graphics
hardware [7], [8], [9].

The second issue is that the L1 norm is isotropic, hence
the fill-in effect [10] reduces along motion boundaries.
In this paper we propose to improve L1 by the use of
eigenvectors of the local structure tensor. We derive
the formulation for this in the primal-dual settings. The
eigenvectors of the structure tensor were used by Zim-
mer et al. [11] to improve the fill-in effect using robust
functions which approximate the behaviour of the L1

norm as a smoothness term. In the current work we ap-
ply it directly to the total variation L1 norm, which is
non-trivial due to the non-continuous differentiability
of the L1 norm. Additionally we use a data term in-
spired by the delayed linearisation data term proposed
by Brox et al. [2].

This paper is organised as follows, Section-2 examines
some related work. Section-3 includes a brief intro-
duction for the notion of ‘Structure tensor’. Section-4
introduces the method. Section-5 discusses the imple-
mentation and results. Section-6 concludes this paper
and proposes several enhancements to be investigated
in the future.

2 RELATED WORK
Since the marquee work of Horn-Schunck [1], a lot of
research has been dedicated to improve the estimation
of global optical flow algorithms. Both the data and
the smoothness terms have undergone a lot of improve-
ments. The Horn-Schunck method belongs to what is
known as the ‘Global methods’. Lucas-Kanade [12]
proposed to calculate optical flow by assuming that the
displacement field is constant in a small local neigh-
bourhood, hence this type of method was called ‘Lo-
cal methods’. Bruhn et al. [4] proposed to combine the
global and local methods by integrating neighbouring
pixels in the data term using a Gaussian filter kernel, in

what is known as the Combined Local-Global (CLG)
method. Brox et al. [2] proposed to delay linearisation
of the data term of the optical flow equation. This en-
abled the computation of high accuracy displacement
fields. Additionally to improve robustness several al-
gorithms extended the data term to include image gra-
dients, thus improving the robustness to illumination
changes [2], [13], [11]. Wedel et al. [8] proposed to
improve the robustness to illumination changes by in-
troducing a structure-texture decomposition step before
the minimisation.

In the smoothness term, Horn-Schunck [1] used a
quadratic function as a regularisation term. The
quadratic function penalises the flow field severely
regardless of the flow magnitude, thus introducing
blurriness across motion boundaries. To remedy
this, several methods used robust functions in the
smoothness term such as the Lorentzian function [14],
the charbonneir [4] and the robust L1 approximation
function [4]. The total variation L1 norm was also
used as a smoothness term. The problem with the
L1 norm is that it is not continuously differentiable.
Chambolle [5] proposed a numerical scheme to solve
the TV − L1 minimisation and applied it to image
denoising and zooming. Zach el al. [6] used this
scheme under primal-dual formulation minimisation
to estimate optical flow. Drulea et al. [9] used this
scheme to find the optical flow field and used a CLG
data term. In addition to that [9] used a diffusion
tensor [15] to improve the fill-in effect in low and
untextured areas. However a drawback of using a
diffusion tensor is that it produces over-segmentation,
this is because this diffusion tensor is a function of
image gradients. To improve the fill-in effect, Sun et
al. [16] and later Zimmer et al. [11] analysed the image
structure tensor to obtain eigenvectors, and used these
eigenvectors to improve the fill-in effect. Hence the
direction of penalisation is adapted to the direction of
the local image structure, while the magnitude of this
penalisation depends on the flow field magnitude.

Despite the recent advances in estimating optical
flow fields using methods that are not variational, the
variational methods are still needed. Probabilistic
methods for example, despite their popularity, lack
the sub-pixel accuracy of the variational methods.
Hence variational methods are generally used as a
final stage to refine the estimation of the displacement
field [17], [18], [19], [20].

3 STRUCTURE TENSOR AND STEER-
ING IMAGE DERIVATIVES

The structure tensor of a 2D image is a 2× 2 matrix
that contains information about the structure orientation
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in a certain neighbourhood in that image. The initial
structure tensor J0 can be expressed as follows [21]:

J0 = ∇I∇IT =

[
I2
x IxIy

IxIy I2
y

]

where I is a 2D image, ∇I is the image gradients
(Ix, Iy)

T in the x, and y directions. The structure ten-
sor J is obtained by integrating information in a cer-
tain neighbourhood. This is done by convolving the
initial structure tensor J0 with a Gaussian filter kernel
Gρ , where ρ is the standard deviation. The structure
tensor is expressed as follows:

J = Gρ ∗ J0 (4)

where ‘∗’ denotes convolution. This structure ten-
sor can be analysed and two orthonormal eigenvectors
with corresponding eigenvalues are obtained. The first
eigenvector can be formulated as (cosφ ,sinφ) and the
second as (−sinφ ,cosφ) [22]. The eigensystem ob-
tained can be used to give information about the local
image structures. The eigensystem can be written in the
following form:

Je = λe

where e are the set of eigenvectors (e1, e2...en), and λ

are the corresponding eigenvalues (λ1, λ2,... λn), and n
is the size of the square matrix J.

The first eigenvector corresponds to the largest
eigenvalue points across the dominant structure in
the neighbourhood, while the second eigenvector
corresponds to the smaller eigenvalue points along that
structure. Figure-1 depicts two eignevectors obtained
by analysing the structure tensor at a certain location.
The first eigenvector is depicted here in green, while
the second eigenvector is depicted in red. This image is
obtained from the Middlebury dataset [23].

Figure 1: Eigenvectors directions of a structure tensor.
The green line corresponds to the first eigenvector

pointing across area with high gradient, while the red
line corresponds to the second eigenvector pointing

along area with high gradient.

The eigenvectors can be used to obtain what is known as
the ‘Steered image derivatives’, where image gradients

are steered from the conventional x and y direction to
directions ‘orthogonal to’, and ‘aligned with’ the local
image structures [22], [24]. This can be written in the
following form:

Io = cosφ .Ix + sinφ .Iy (5)
Ia =−sinφ .Ix + cosφ .Iy (6)

where φ is the angle of the first eigenvector and it is
obtained via the structure tensor matrix.

4 STEERED–L1 OPTICAL FLOW
It is desired in this paper to use the robust L1 norm
known for its edge preserving performance in the com-
putation of an optical flow field. To this end it is re-
quired to minimise the following equation:

E =
∫

Ω

(
αEdata(I1, I2,u)+ |∇u|

)
dxdy (7)

where Edata(I1, I2,u) will be introduced later. The
minimisation of this equation is non-trivial since the
smoothness term used (the L1 norm) is not continu-
ously differentiable. Hence, following the primal-dual
formulation [6], an auxiliary variable ū is introduced
and the energy function takes the following form1:

E =
∫

Ω

(
αEdata(I1, I2,u)+

1
2θ

(u− ū)2 + |∇u|
)

(8)

where θ is a small constant. This equation is split into a
dual and a primal equation, the dual equation is written
as follows:

Edual =
∫

Ω

( 1
2θ

(u− ū)2 + |∇u|
)

(9)

and the primal equation is written as:

Eprimal =
∫

Ω

(
αEdata(I1, I2,u)+

1
2θ

(u− ū)2
)

(10)

The minimisation of this system of equations is per-
formed in primal-dual steps. In the following subsec-
tions we discuss the primal and the dual steps in detail.

4.1 The Dual Step
The aim of the dual step is to minimise u while keeping
ū fixed. We propose to steer the derivatives of the dis-
placement fields according to the local structure. Hence
Equation-9 is written as follows:

Edual =
∫

Ω

(
|eT∇u|+ 1

2θ
(u− ū)2+

|eT∇v|+ 1
2θ

(v− v̄)2
) (11)

1 Starting from this point, the notation ‘dxdy’ is omitted for
brevity.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Full Papers Proceedings 83 ISBN 978-80-86943-57-2



where:

eT =

[
cosφ sinφ

−sinφ cosφ

]
are the eigenvectors of the structure tensor, and ∇u,∇v
are expressed here as (ux,uy)

T and (vx,vy)
T. In this way

the directions of the smoothness term is adapted to the
direction of the local image structure, while the mag-
nitude of the penalisation is adapted to the flow field
itself [11].

To solve the minimisation, Euler-Lagrange equations
are obtained [9]. The first equation obtained is the fol-
lowing:

−div
(
eT.

∇u
|∇u|

)
+

1
θ
(u− ū) = 0 (12)

which can be re-written as follows:

u = θ .div(eT.pu)+ ū (13)

where pu =
∇u
|∇u| , it follows that:

pu.|∇u|−∇u = 0, |pu| ≤ 1 (14)

Substituting Equation-13 in Equation-14, the following
equation is obtained:

pu.
∣∣∣∇(div(eT.pu)+ ū/θ

)∣∣∣−∇
(
div(eT.pu)+ ū/θ

)
= 0.

Adding pu to both sides of the above equation yields the
following fixed-point iteration to find pu:

pk+1
u =

pk
u + τ.∇

(
div(eT.pk

u)+ ū/θ

)
1+ τ.

∣∣∣∇(div(eT.pk
u)+ ū/θ

)∣∣∣ (15)

where k is the iteration count, and τ is the step size. In
the same way pv can be obtained, and it is calculated
using the following fixed-point iteration:

pk+1
v =

pk
v + τ.∇

(
div(eT.pk

v)+ v̄/θ

)
1+ τ.

∣∣∣∇(div(eT.pk
v)+ v̄/θ

)∣∣∣ . (16)

The terms eT.pk
u, and eT.pk

v can be replaced by the al-
ternative notations psu and psv, where:

psu = eT.[p1u, p2u]
T (17)

psv = eT.[p1v, p2v]
T (18)

Hence, Equation-15 and Equation-16 can be written in
the following way:

pk+1
u =

pk
u + τ.∇

(
div psu + ū/θ

)
1+ τ.

∣∣∣∇(div psu + ū/θ
)∣∣∣ . (19)

pk+1
v =

pk
v + τ.∇

(
div psv + v̄/θ

)
1+ τ.

∣∣∣∇(div psv + v̄/θ
)∣∣∣ . (20)

4.2 The Primal Step
The aim of the primal step is to minimise ū while keep-
ing u fixed. Starting from a non-linearised data term,
we propose to minimise the following data term:

EPrimal =
∫

Ω

(
α|I2(x+u)− I1(x)|2+

γ|∇I2(x+u)−∇I1(x)|2 +
1

2θ
(u− ū)2

)
(21)

where α here is the weight of the data term, and γ is
the weight of the image gradient term which is added
here to improve the robustness to illumination changes.
This robustness can be further improved using the ro-
bust function Ψ(s2) =

√
s2 + ε2, where ε is a small con-

stant.

EPrimal =
∫

Ω

(
α Ψ

(
|I2(x+u)− I1(x)|2

)
+

γ Ψ
(
|∇I2(x+u)−∇I1(x)|2

)
+

1
2θ

(u− ū)2
)
. (22)

The second image I2(x+u) can be written in the fol-
lowing form using the Taylor Expansion:

I2(x+u) = I2(x+u0)+(u−u0)∇I2(x+u0) (23)

where u0 = (u0,v0) is the initial displacement of the
flow field. Similarly image gradients can be linearised,
and the image gradients term can be rewritten as fol-
lows:

I2x(x+u) = I2x(x+u0)+(u−u0)∇I2x(x+u0). (24)

I2y(x+u) = I2y(x+u0)+(u−u0)∇I2y(x+u0). (25)

Plugging all these terms together yield the following
equation:

Eprimal =
∫

Ω

α Ψ

(∣∣It0 +(u−u0)∇I2
∣∣2)+

γ Ψ
(∣∣(Itx +(u−u0)∇I2x

)
,
(
Ity +(u−u0)∇I2y

)∣∣2))+
1

2θ
(u− ū)2

(26)

where the notation (x+u0) was omitted from
∇I2,∇I2x,∇I2y for brevity. The solution requires the
minimisation of E(ū). Hence Equation-26 is written as
follows:

Eprimal =
∫

Ω

α Ψ

(∣∣It0 +(ū−u0)∇I2
∣∣2)+

γ Ψ
(∣∣(Itx +(ū−u0)∇I2x

)
,
(
Ity +(ū−u0)∇I2y

)∣∣2))+
1

2θ
(u− v̄)2

(27)

with the following abbreviation used:

It0 = I2(x+u0)− I1(x)

Itx =
∂

∂x
I2(x+u0)−

∂

∂x
I1(x) (28)

Ity =
∂

∂y
I2(x+u0)−

∂

∂y
I1(x)

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Full Papers Proceedings 84 ISBN 978-80-86943-57-2



The minimisation of Equation-27 can be easily per-
formed by setting the derivatives of the equation with
respect to ū, v̄ equal to zero. This leads to the following
set of equations: [

α Ψ
′
1.I

2
2x + γ Ψ

′
2(I

2
2xx + I2

2yx)+
1
θ

]
ū

+
[
α Ψ

′
1.I2xI2y + γ Ψ

′
2.I2xy(I2xx + I2yy)

]
v̄

=−
[
α Ψ

′
1rt0I2x + γ Ψ

′
2rtx0I2xx + γ Ψ

′
2rty0I2xy

]
+

u
θ
.

(29)

Similarly derivation with respect to v̄ yields the follow-
ing equation: [

α Ψ
′
1.I2xI2y + γ Ψ

′
2I2yx(I2xx + I2yx)

]
ū

+
[
α Ψ

′
1.I

2
2y + γ Ψ

′
2.(I

2
2xy + I2

2yy)
]
v̄

=−
[
α Ψ

′
1rt0I2y + γ Ψ

′
2rtx0I2xy + γ Ψ

′
2rty0I2yy

]
+

v
θ

(30)

where Ψ
′

is the derivative of Ψ. Ψ1 and Ψ2 are defined
as follows:

Ψ1 = Ψ

(∣∣It0 +(ū−u0)∇I2
∣∣2)

Ψ2 = Ψ
(∣∣(Itx +(ū−u0)∇I2x

)
,
(
Ity +(ū−u0)∇I2y

)∣∣2)
The values of rt0, rtx0, rty0 are given as follows:

rt0 = It0−u0I2x− v0I2y (31)
rtx0 = Itx−u0I2xx− v0I2xy

rty0 = Ity−u0I2xy− v0I2yy

4.3 Colour Image Realisation
The algorithm discussed so far can work on grey-scale
images. Colour images offer richer photometric infor-
mation compared to gray-scale images [25], [26]. It is
possible to extend this algorithm to work with colour
images. In RGB images, which is an additive colour
model, colour is encoded in three channels (Red, Green
and Blue). In order to be able to extend the work in
our algorithm to colour images, the primal step is ex-
tended to incorporate the three colour channels. Hence
Equation-29 and Equation-30 are written in the follow-
ing form: [

α (Ψc
1)
′
.(Ic

2x)
2 + γ (Ψc

2)
′
((Ic

2xx)
2 +(Ic

2yx)
2)+

1
θ

]
ūc

+
[
α (Ψc

1)
′
.Ic

2xIc
2y + γ (Ψc

2)
′
.Ic

2xy(I
c
2xx + Ic

2yy)
]
v̄c

=−
[
α (Ψc

1)
′
rc
t0Ic

2x + γ (Ψc
2)
′
rc
tx0Ic

2xx + γ (Ψc
2)
′
rc
ty0Ic

2xy
]
+
( u

θ

)c

(32)

[
α (Ψc

1)
′
.Ic

2xIc
2y + γ (Ψc

2)
′
Ic
2yx(I

c
2xx + Ic

2yx)
]
ūc

+
[
α (Ψc

1)
′
.(Ic

2y)
2 + γ (Ψc

2)
′
.((Ic

2xy)
2 +(Ic

2yy)
2)
]
v̄c

=−
[
α (Ψc

1)
′
rc
t0Ic

2y + γ (Ψc
2)
′
rc
tx0Ic

2xy + γ (Ψc
2)
′
rc
ty0Ic

2yy
]
+
( v

θ

)c

(33)

where c ∈ {c1,c2,c3} are the three colour channels in
the RGB colour model. The values of u and ū are repli-
cated at each iteration to cope with the three colour
channels, and thus to obtain uc and ūc. Additionally
the values of uc and ūc are averaged before starting the
dual step (see Algorithm-1).

4.4 Extended Intermediate filtering
Median filtering is used in optical flow algorithms to
improve the computation of the displacement fields.
The use of median filtering was found especially to be
useful in the algorithms following the primal-dual for-
mulation [8]. A Median filter is applied in each warp
to the estimated flow field u,v to remove outliers. Me-
dian filters work by replacing the value of a certain pixel
with the median pixel value in a certain neighbourhood.
One can say that the use of median filters in this case
encourages smoother solution (i.e. without outliers) in
the estimated flow field. In this context we propose to
extend the intermediate filtering by adding another fil-
tering step. In the intermediate filtering stage we opt
to use a bi-lateral filter [27] in addition to the median
filter. Bi-lateral filters are known to have a good edge
preserving performance. Unlike the Gaussian filter, the
bi-lateral filter changes weight according to spatial dis-
tance and the colour (or intensity) difference.

I f (xi) =
1
K ∑

x∈Ωn

g(xi− x)s(I(xi)− I(x)).I(x) (34)

where I is the original image, I f is the filtered version
of the image, K is a normalising term, Ωn is the neigh-
bourhood region, g(xi−x) is the kernel determining the
weight based on spatial distance (which can be Gaus-
sian), and s(I(xi)− I(x)) is the kernel determining the
weight based on colour difference.

The intermediate filtering proposed here is a two stage
filtering that includes both the median and bi-lateral fil-
ters (see Algorithm-1). We call the new intermediate
filtering ‘Extended Intermediate Filtering’ (EIF). Ap-
plying this filtering in each warp was found to improve
the accuracy of the optical flow computation.

5 EXPERIMENTS
5.1 Implementation
The algorithm is written in MATLAB. Since this al-
gorithm is variational, it can only detect small dis-
placements. Hence the minimisation is performed in
a Coarse-to-Fine (C2F) framework. To this end, the
image sequence is downscaled several times to obtain
a pyramid of images. The optical flow is first found
in the coarsest version of the image sequence, the esti-
mated flow is then propagated to the next finer layer and
used as an initialisation for the solution in that layer. At
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each layer, the second image is warped towards the first
image using the flow estimated in the previous pyramid
layer. A fine resolution pyramid is chosen for the min-
imisation [2] with 80 layers and downscaling ratio2 of
0.95. Image and flow field resize is performed via bi-
cubic interpolation. Image gradients are obtained via
the kernel [−1, 9, −45, 0, 45, −9, 1]/(60) [4]. The
divergence and derivative for the variable p are approx-
imated using the three point kernel [−1, 0, 1]. At each
layer the second image and its derivatives are warped
six times. At each layer the structure tensor is com-
puted, with image derivatives computed using a 5× 5
optimised derivative filter D [22]:

D = (0.0234,0.2415,0.4700,0.2415,0.0234)T∗
(0.0838,0.3323,0,−0.3323,−0.0838) (35)

After calculating the structure tensor, eigen-
decomposition is performed to find the two eigenvec-
tors. To obtain (div psu) and (div psv) the following
filter kernels are used [29]:

hx =
1

32

 3 0 −3
10 0 −10
3 0 −3

 (36)

hy =
1

32

−3 10 −3
0 0 0
3 10 3

 (37)

The minimisation of the aforementioned formulation
is done in primal-dual and C2F frameworks [6]. The
parameters of the algorithm were set to the follow-
ing values (α = 1/4700,γ = 1,τ = 1/10,θ = 1/10,
ε = 0.001). The minimisation pseudo-code is depicted
in Algorithm-1.

5.2 Results
Several datasets are available to use for assessment of
optical flow methods [23], [30]. In this section we use
some of these datasets to assess the work of our algo-
rithm. We highlight the improvement that the steered-
L1 norm introduces over the use of the L1 norm.

5.2.1 Middlebury Dataset
The Middlebury dataset has been used in assessing
the performance of optical flow algorithms for many
years [23]. It contains synthetic and non-synthetic im-
age sequences, and it includes some image sequences
with known ground truth which can be used for train-
ing. To examine the performance differences that the
steered-L1 has made to the accuracy of optical flow esti-
mation, optical flow displacement field is computed for
the eight sequences that have a known ground truth, and

2 In general the number of layers in the pyramid can be chosen
such that the discrete derivative filter kernel can be applied at
the coarsest layer [28]. However 80 layers was enough to give
good results in our experiments.

Algorithm 1: Implementation Algorithm of steered-L1 norm.
Input: Images I1& I2,
number of pyramid layers L = 80, current layer l
Create pyramid of images with L layer, and a downscale ratio
of 0.95;
initialization;
l=1;
initialise (ul ,vl) to (0,0) ;
while l ≤ L do

Up-scale size of (ul−1,vl−1) to (ul ,vl);
Find eigenvectors of the structure tensor of I1;
while No. of Warps ≤ 6 do

Warp I2l , I2x, I2y towards I1l , I1x, I1y;
while No. of iterations ≤ 20 do

Replicate the terms and update the auxiliary
variable ūc, v̄c by solving the simultaneous
equations (Equatin-32, 33) ;
Average ūc, v̄c to yield ū, v̄;
Update ul using Equation-13, and similarly
update vl ;
Calculate psu, psv via (Equation-17, 18);
Update pu, pv (Equation-19, 20);

Apply median filter to ul ,vl ;
Apply bi-later filter to ul ,vl ;

Output: (Displacement field (u,v))

the Average End-Point Error (AEPE) [23] is computed
for these sequences. Table-1 depicts the difference in
AEPE using the two norms. Table-1 shows clearly im-
proved results obtained via using the steered-L1 norm
as the smoothness term.

Our method currently has an average rank of (57.5) on
the AEPE Middlebury benchmark ranking table, and an
average rank of (57.8) on the Average Angular Error
AAE table. Figure-2 depicts a segment of the AEPE
ranking table3.

To further asses the performance of the proposed al-
gorithm, we compare the results of this method with
other methods sharing similar principals in the Middle-
bury ranking table. The first method to compare with
is the improved TV −L1 algorithm [8]. This algorithm
follows a similar minimisation framework in a primal-
dual formulation. However, it differs in the data term
where a structure-texture decomposition is used to im-
prove the robustness to illumination changes. In addi-
tion to that, there is a difference in the smoothness term
where we steer it in accordance with the local struc-
ture. The second algorithm is the Large Displacement
Optical Flow LDOF [28]. The third method to com-
pare with is the CLG-TV [9], where the authors use a
combined local-global data term (CLG). Additionally,
the authors in this paper use an anisotropic diffusion
filter to improve the fill-in effect. Table-2 illustrates the

3 http://vision.middlebury.edu/flow/eval/
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RubberWhale Dimetrodon Urban2 Urban3 Venus Grove2 Grove3 Hydrangea Average
L1 0.09 0.15 0.55 0.49 0.32 0.18 0.57 0.17 0.32

Steered-L1 0.08 0.14 0.53 0.46 0.31 0.17 0.57 0.16 0.30

Table 1: AEPE for colour images of the Middlebury dataset depicting the difference between the total variation L1

and the steered-L1 smoothness terms.

Figure 2: A segment of the Middleburry ranking table for end-point error. The proposed method is denoted as
‘Steered-L1’.

Average rank Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
LDOF 80.5 0.12(74) 0.23(84) 0.43(60) 0.45(98) 1.01(86) 1.10(86) 0.12(27) 0.94(86)

CLG-TV 69.5 0.11(54) 0.32(84) 0.55(77) 0.25(78) 0.92(71) 0.47(42) 0.17(81) 0.74(65)
Improved TV −L1 63.8 0.09(30) 0.20(28) 0.53(73) 0.21(67) 0.90(67) 1.51(101) 0.18(88) 0.73(62)

Steered-L1 57.5 0.09(30) 0.14(1) 0.28(24) 0.18(50) 0.89(64) 1.71(106) 0.26(112) 1.06(90)

Table 2: AEPE comparison for four algorithms including the algorithm proposed in this paper.
Numbers in brackets indicate the ranking of the specific image sequence results, for example the results of the

‘Mequon’ sequence of our algorithm is ranked first. Numbers in blue indicate the highest rank.

AEPE for those methods at the time of writing this pa-
per, the AEPE values are copied directly from the rank-
ing table. Numbers between brackets indicate the rank-
ing position for the particular image sequence.
It can be noticed that our algorithm performs better
on non-synthetic image sequences. This can be seen
clearly by comparing the AEPE and rank of individual
non-synthetic image sequences like ‘Mequon’ (ranked
1st.) and ‘Army’ (ranked 30th.) in comparison with
‘Urban’(ranked 106th.) and ‘Yosemite’(ranked 112th.).
The estimated optical flow can be qualitatively assessed
by visualising the displacement field. The colour code
used in this paper is depicted in Figure-3 [23], where
the direction of displacements is coded by the hue, and
the magnitude of the displacements is coded by the sat-
uration. Figure-4 depicts several examples for colour-
coded results of the estimated optical flow field along-
side their colour-coded ground truth for comparison.

5.2.2 MPI-Sintel Dataset
MPI-Sintel [30] is another dataset used to test opti-
cal flow methods. It is a synthetic image sequence
taken from an animated 3D short film, it contains com-
plex motion with varied textures. Images used in this

Figure 3: Colour code used to visualise the optical
flow displacement fields.

dataset are rendered in three ‘passes’. The first pass
is ‘albedo’ which is the simplest rendering and does not
contain illumination effect and has a piecewise constant
colour. Hence, the data (brightness) constancy assump-
tions holds across the whole image. The second pass
is the ‘clean’ pass which includes illumination effects
(e.g. shading, specular reflections). The final pass is
the one that matches the ‘final’ version of the film. This
pass includes more complex effects and adds motion
blur, atmospheric effect, colour correction, etc. This
dataset is more challenging due to the inclusion of large
motion and occlusion.

It was reported in [30] that methods with high-ranking
on the Middlebury dataset have more difficulty estimat-
ing optical flow on this dataset. For example on the
Middlebury ranking table the method ‘Improved-TV-
L1’ has an average rank of 63.8, which is much higher
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Figure 4: Results of Steered-L1 optical flow. Image sequences from top to bottom ‘RubberWhale’, ‘Urban3’,
‘Grove3’. Left column: First frame of the image sequence taken from the Middlebury dataset. Middle Column:

Colour-coded ground truth. Right column: Colour-coded results.

than the ranking for LDOF [28] which has an average
rank of 80.5. However, the same methods have an op-
posite order in the MPI-Sintel table, where LDOF is
ranked higher than the Improved-TV-L1. In this sub-
section we try to examine the effect of different levels
of rendering on the estimation of optical flow using the
proposed method in this paper. To this end the algo-
rithm is applied to several image sequences at the clean
and the final passes. The results of the estimation are
compared both qualitatively and quantitatively. Table-
3 illustrates the results of applying the algorithm for
several examples from the training dataset of the MPI-
Sintel benchmark.

Image clip clean final
alley_1 0.18 0.19
ambush_5 1.72 2.78
bamboo_1 0.23 0.23
Average 0.71 1.07

Table 3: AEPE for selected frames from MPI-Sintel
dataset.

The AEPE results of our method now on the MPI-Sintel
is 10.864 for the clean pass and 12.277 for the final
pass. The relatively high AEPE in the case of this
benchmark rate can be attributed to the complex motion
and the effects included in this sequence, such as shad-

ing, specular reflection, motion blur, etc. The ‘stair-
casing’ effect, which is induced by the use of the L1

norm, also contributes to the error rate. To deal with
these issues and to improve the performance of this al-
gorithm several suggestions are discussed in Section-6.

6 CONCLUSION AND FUTURE
WORK

In this paper we have introduced a modified total
variation L1 norm to estimate optical flow denoted as
‘Steered-L1’, which can be used to enhance the fill-in
effect and hence the estimation accuracy in algorithms
following the primal-dual formulation. In the proposed
algorithm, the eigenvectors of the structure tensor
are used to steer the displacement field derivatives
into two components, one orthogonal and the other
parallel to the local structure. This improves the fill-in
performance of the total variation L1 optical flow which
reduces the error rate and improves the accuracy of
estimation. It was shown experimentally that the util-
isation of this steered norm improves the performance
of the optical flow estimation and decreases the error
in computation. Additionally, a high accuracy data
term is used in the spirit of the delayed linearisation
data constancy term proposed by Brox et al. [2]. This
data term is augmented with image gradient to improve
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Figure 5: Results on selected frames of MPI-Sintel. [30] Displacement field computed between the first frame
(frame_0001) and the second (frame_0002). Top to bottom rows: alley_1, ambush_5, bamboo_1.

Left column to right: First frame (frame_0001), ground truth, clean, final.

the robustness to illumination changes. Moreover an
‘Extended Intermediate Filtering’ EIF is proposed to
enhance the displacement field estimation.

Despite the improved performance that this algorithm
provides, it still suffers from a high AEPE in some sce-
narios. Further improvements are being investigated to
render a more accurate optical flow estimation. In the
next step of this research, other colour spaces are to
be investigated such as the HSV (hue, saturation and
value) colour space. The different channels of the HSV
offer a more robust photometric performance [11]. This
is expected to help deal with the illumination effects
such as shadows and shading, and improve the perfor-
mance especially in test benchmarks that include many
such effects (e.g. MPI-Sintel).

The total variation L1 is a piecewise constant function,
hence it encourages a piecewise smooth solution for
the displacement field. This produces artificial bound-
aries in the estimated optical flow field, a phenomena
denoted as the ‘stair-casing effect’ [31]. In relatively
smooth areas the performance of the quadratic norm
is superior to the L1 norm. To address this issue we
are going to investigate the proposed method using the
‘Huber-L1’ norm [31]. The Huber-L1 norm behaves
as the L1 norm in areas with high gradients (i.e. mo-
tion boundaries), and behaves as a quadratic L2 norm in
the areas with lower gradients, hence offering enhanced
performance [31], [32]. It will be interesting to inves-
tigate the performance of steering the Huber-L1 norm
using the structure tensor as was done with the L1 in
this paper.

Algorithms following the primal-dual formulation are
generally used if speed of implementation is needed.
These algorithms enable easy parallelisation on graph-
ical hardware [9], [6], [7]. The current algorithm was
implemented in MATLAB and the speed of implemen-
tation was not of concern. For example the time needed
to estimate the optical flow displacement field for a
colour image sequence of size 380×420 is around 457
seconds. A C/C++ and parallel implementation of this
algorithm is going to be investigated in the future.
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ABSTRACT
Since 1950, conventional cytology uses glass slides for microscopic analysis of cervical cells, in order to perform
Pap Test. Such method yields low-quality images and overlapping cells, which both hampers their analysis and
classification. Several countries use a modern method for the realization of Pap test called ThinPrep because it
offers high- quality images and overcomes the problem of overlapping cells. ThinPrep facilitated the development
of advanced image processing techniques for segmentation and classification of cervical cells. However, this
method is not used by most of the developing countries of the world due to its relative high cost. This paper
presents an algorithm for segmenting digital images obtained from conventional cytology method on glass slides.
The technique uses Watershed Transform and K-Means Clustering in order to find cell markers or seeds. Nonlinear
regression is applied as a way to refine the markers and to allow again the Watershed Transform utilization. We
apply the technique in 10 glass slides of pap smears with a total of 67 cells. Our proposed technique has a promising
performance in terms of accuracy of about 85%.

Keywords
Pap test, Image analysis, Watershed, K-means

1 INTRODUCTION
Cervical cancer remains the second leading cancer af-
fecting women in developing countries [Glo01a]. The
Pap Test, also known as oncological cytology or exfo-
liative cytology, has been used for the collection of hu-
man papillomavirus in the battle (i.e. prevention and
diagnosis) against cervical cancer since 1950.

The Pap Test is a method developed by the physician
George Papanicolaou for identifying neoplastic malig-
nant or pre-malignant cells that precede the develop-
ment of cancer [Mor01a]. This technique was origi-
nally developed to prevent cervical cancer. The cells
are harvested in the region of the external orifice and
endocervical canal, placed in a transparent glass slide,
stained and taken for examination under the micro-
scope.

Trained personnel can distinguish normal cells from
malignant cells, such as those with indications of pre-
cancerous lesions [Nai01a]. However, the conventional
Pap test technique has its limitations.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

One of its limitations is the occurrence of false nega-
tives (FN), i.e. when abnormal cells present in the test
remain undetected. Aspects such as the manual spread-
ing of cells leading to cell fragmentation on the glass
slides is one of the reasons why false negatives occur in
the Pap test. This normally occurs after obtaining cervi-
cal cells, where the physician must transfer cells using
the spatula against the surface of the glass slides. The
remaining cell assembly is disposed on the lamina, pos-
sibly leading to overlapped cells. If an abnormal cell is
hidden under a healthy one, the pathologist would have
difficulty locating them. Fig. 1 shows the appearance
of a layer of cells collected by this method [Bud01a].

As we can see in Fig. 1, the cellular material is spread
over the entire area, resulting from the friction of the
wooden spatula on the laminated surface. To overcome
the problem of overlapping cells of the cervix, a more
efficient technology called ThinPrep was developed.

ThinPrep is a technology that mechanically separates
the cervical cells by centrifugation, providing visibility
of the cells and avoiding overlapping of cells [Loz01a].
In order to use the ThinPrep technology, it is neces-
sary to change the conventional collection of glass by
another collection called LCB [Ans01a]. Despite the
advantages of the ThinPrep technology, it is not used
by most countries due to its prohibitive costs and the
lack of infrastructure needed for its implementation
[Ama01a].
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Figure 1: Glass slide of conventional Pap test

Much of recent research on image segmentation and
image classification is founded on the analysis of im-
ages captured by the ThinPrep method, which consid-
erably facilitates the task of pre-processing.

The goal of this paper is to segment images of cervical
cells of low quality, obtained from conventional cytol-
ogy. We apply clustering techniques and Watershed. A
proposed solution is presented to improve the quality
of segmentation. The proposed method combines K-
means and Watershed in order to identify cervical cells,
and it uses nonlinear regression for preprocessing of the
histogram.

This paper is organized as follows: Section 2 presents
a brief review of early work. The approach adopted is
presented in Section 3. Section 4 shows initial results
and discussions. Finally, in Section 5, we present the
main conclusions and future work.

2 RELATED WORK
A nucleus and cytoplasm contour detector (NCC De-
tector) is presented by Pai et al. to automatically detect
the cytoplasm and nucleus contours of a cell in a cer-
vical smear image [Pai01a]. This detector has two dif-
ferent phases, according to the object to be segmented.
In the cytoplasm detector, ATD method (a thresholding
method) is used in order to draw the cytoplasm contour.
The nucleus detector phase is composed of three stages:
gradient calculation, the maximal gray-level-gradient-
difference (MGLGD) method (proposed to sever the
nucleus from the cytoplasm) and the contour connec-
tion. The experiments were accomplished with 50 cer-
vical smear gray-level images, of 128x128 pixels. The
results show that the NCC Detector is superior to two
existing methods, the gradient vector flow-active con-
tour model [ChaV01a] and the edge enhancement nu-
cleus and cytoplasm contour detector.

Yung-Fu et al. proposed a method based on five steps
well defined: image acquisition and categorization,
image editing and processing, morphometry (contour
segmentation of cell nucleus and cytoplasm, measure-
ment and analysis), Support Vector Machine (SVM)

classification and assessment of diagnostic perfor-
mance[Yun01a]. The main goal is classifying four
different types of cells and to discriminate dysplastic
from normal cells. Besides, two experiments were
conducted to verify the classification performance and
results showed that average accuracies about 97%.
The authors used a set of performance metrics and
presented a good number of tables that shows the
classification and diagnostic performance.

A method for automatic cervical cancer cell segmen-
tation and classification was proposed by Chankong et
al. [Cha01a]. His method provides a cell segmenta-
tion that separates nucleus, cytoplasm and background.
The approach uses Fuzzy C-means (FCM) clustering
technique and the results achieved a segmentation ac-
curacy around 95%, according to the chosen classifier.
The experiments have not included full-glass slides seg-
mentation, i.e., the authors work with selected regions.
The segmentation and classification performances were
compared with C-means clustering and Watershed tech-
niques. The comparison analysis showed that the pro-
posed approach results in good performance and is bet-
ter than the cited work.

Ushizima et al. [Ush01a] developed algorithms for
quantitative analysis and pattern recognition from 2D
cervical cells images. They proposed a pre-processing
step, based on adaptive histogram equalization and
mean shift technique, in order to make homogeneous
the image regions and have an image with good
contrast. The overall cytoplasm segmentation is
accomplished using Watershed Transform. Before
that, it is implemented some tasks in order to find the
Watershed seeds, including clustering and hole filing.
The authors provide a set of automated tools capable
of detecting multiple cells obtained from ThinPrep
Pap Test, including ROI (region of interest) selection,
noise minimization and cell classification. A difficulty
of the proposed method consists on the cytoplasm
segmentation, according to the paper, generating a low
accuracy.

In essence, our work differs from previous work by the
one or more of the following features:

• Low-quality images: The set of images adopted in
this work, as mentioned before, were obtained di-
rectly from relatively low-resolution cameras and
standard microscopes, which is the reality of many
developing countries; this contrast with much of the
work which uses ThinPrep as the basis for the seg-
mentation procedure;

• Conventional testing: The procedure employed is
the conventional testing which uses manipulation of
cells on a glass slide. The challenge with this pro-
cess is the resulting undesired elements in the glass
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slide, such as cell fragments, which may negatively
interfere with the segmentation process;

• Watershed transform: We used the Watershed trans-
form, which is arguably a satisfactory method for
finding non-uniform contours such as the ones from
cells. Clearly, there are various methods that can be
used to segment images, or even a combination of
methods. Ongoing work is experimenting with such
variations; Whereas there has been a relative large
number of work employing the Watershed, we are
not aware of other projects dealing with cytologi-
cal segmentation that uses Watershed twice or in a
chained fashion, whereby the output of the first is
the input to the second (Section 3);

• Nonlinear regression: Nonlinear regression, despite
its relative simplicity and low computational over-
heads, proved to be an effective method for clear-
ing the background image, and thus providing a
much easier path for the ensuing segmentation pro-
cess. Most work applies Otsu [Liu01a] in this stage,
which we applied in an earlier stage of this work.
However, the results obtained with the nonlinear re-
gression filter were far superior, and therefore it was
the method of our choice for this work.

Furthermore, it is not the focus of this work (for now)
to experiment with classification of cells; our short term
goals are to increase and maximize the accuracy of the
method by exploring new variants to the proposed ap-
proach.

3 PROPOSED APPROACH

In this section we describe the approach employed to
improve the quality of segmentation in low-quality im-
ages. It consists of 11 steps, which are illustrated in Fig.
2 and described through the remainder of this section.

To facilitate the discussion, these steps are grouped in
three major classes, i.e. 1) Acquisition and categoriza-
tion, 2) Image processing and 3) Cell Segmentation.

Acquisition and Categorization

The nucleous and cell morphology was used to calcu-
late the ground truth in each image. The ratio of the cell
area NCr is given by:

NCr =
Na

Na +Nc
(1)

where Na is the nucleus area and Nc is the cytoplasm
area.

Image Preprocessing
Considering that images were of poor resolution, with
non-homogeneous contrast and brightness, it was nec-
essary to perform filtering on the image. Three filters
were applied:

• Bilateral filtering: We applied the following non-
linear bilateral filter to preserve image energy and
the image contours while simultaneously reducing
noise:

I f (x) =
1

Wp
∑

xiεΩ

I(xi) fr(||I(xi)− I(x)||)gs(||xi− x||)

(2)

where: I f is the filtered image; I is the original input
image to be filtered; x are the coordinates of the cur-
rent pixel being filtered; Ω is the window centered
in x; fr is the range kernel for smoothing differences
in intensities; gs is the spatial kernel for smoothing
differences in coordinates. The range parameter σr
was set to 9. The spatial parameter σd was set to 75.

• Median filtering: The median filter was applied with
a kernel 3x3, in order to remove noise while preserv-
ing the edges and other details;

• Unweighted average: All images show a significant
background representing the glass slide. The cyto-
plasm scattered across the glass slide and the unde-
sired background in Fig. 3 would hinder the identi-
fication of tonal groups by the clustering algorithm,
if not removed.

Therefore, we decided to apply a nonlinear moving
average filter in order to remove the background of
the image (i.e. glass slide). We applied the equation
MA = Pm + Pm−1 +.. .+ Pm(n−1))/ N where Pm is
the average amount N and the number of samples
[YaL01a].

This nonlinear filter smoothens the histogram creat-
ing a harmonic function and enabling the determi-
nation of the maximum peaks. Consequently, the
background image is removed as illustrated in Fig.
4. Thus, it was possible to automatically establish
the threshold of each one of the glass slides image.
Fig. 5 illustrates the image histogram before we ap-
plied the unweighted average filter, and Fig. 6 the
histogram after the filtering.

Clearly, the peak on the right side of the graph
mainly belongs to a set of data pertaining to the bot-
tom of the glass slide. These pixels were then re-
moved before starting the image processing step.
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Figure 2: Activity Diagram of the Segmentation Process

Figure 3: Low-quality image of cervical cells in glass
slide

Figure 4: Isolating the cells from the glass slide

Figure 5: Original histogram (pixel frequency vs gray-
level value)

Figure 6: Histogram modified by the unweighted mov-
ing average filter
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Figure 7: The image after clustering

Image Processing

After preprocessing the images, the K-Means cluster-
ing algorithm is applied in order to create distinct gray-
scale groups [Har01a]. The goal of using K-Means is
exclusively to find distinct gray-scale levels of seed pix-
els for the segmentation using the Watershed algorithm
[Beu01a]. The number of groups selected was seven, as
this number had shown the best segmentation results in
a number of experiments varying the number of groups.
Fig. 7 shows the results observed after image cluster-
ing.

Figure 8: Pixels seed

After clustering, the cytoplasm still does not show well
since it is illustrated within four different shades of
gray (i.e. groups of gray levels). Note that the back-
ground is one among the four groups. Note also that this
technique also detects other elements such as cell frag-
ments, resulting from the mechanical handling of the
samples on the glass slide. On the other hand, the nuclei
has successfully been isolated in the image, i.e. within
the darkest areas. Thus, a search algorithm was used to
determine the two most prominent (darkest) groups, as
such groups are the ones that capture the cell nuclei.

The pixels at the coordinates output by the clustering
process were then dilated with a scale factor 3 to facil-
itate their identification as seed pixels, and thereby the
most significant nuclei. These pixels were used in the
following step in the Watershed algorithm, to help de-
termination of the masks and the unknown area of the
image. Fig. 8 shows some of the resulting pixels seeds.

Cell Segmentation
Cell segmentation was carried out in two steps, each
consisting of one application of the Watershed. This
process ensured the proper segmentation o the cyto-
plasm:

• Watershed 1: The goal of this first Watershed step
was to identify the nuclei boundaries. The seed pix-
els were the ones found earlier by the clustering pro-
cess. A good way to understand the Watershed is
by comparing its operation to that of a flooding of
a water basin. In the Watershed method, an image
is segmented by constructing the catchment basins,
or lakes, of the image. The image is flooded start-
ing from the seeds, where each seed correspond to a
lake, until the whole image has been flooded. A dam
is built between lakes that meet with others lakes. At
the end of flooding process, we obtain one region for
each catchment basin of the image [Beu01a].

• Watershed 2: In a second step, subsequently, we
reapplied the Watershed algorithm. However, this
time using as the new seed pixels the nuclei detected
above. In this case the goal is to find the cytoplasm
boundaries.

The K-Means Clustering algorithm was able to find the
seed pixels that were subsequently used by the first im-
plementation of the Watershed Transform (Watershed
1, as cited above

4 RESULTS
In this section we show a comparison analysis of the
results obtained by manual segmentation carried out by
the domain expert (i.e. pathologist) against the seg-
mentation obtained by the automatic segmentation ap-
proach. In essence, the area of the cytoplasm and the
nucleous found by the pathologist were compared to the
respective areas found by the automatic segmentation.
This procedure was repeated throughout 10 glass slides.

The details of this analysis are shown in Table 1, where
Acp is the average area of cytoplasm identified by the
pathologist (manual segmentation); Anp is the average
area of nuclei identified by the pathologist (manual seg-
mentation); Acs is the average area of cytoplasm identi-
fied by the segmentation algorithm (automatic segmen-
tation), and Ans is the average area of nuclei identified
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Glass # Cytoplasm Nuclei
Slide Cells Acp Anp Acs Ans error error Accuracy

# ( % ) (%) (%)
1 6 10551.63 558.88 11110.51 730.51 5.03 23.50 81.53
2 5 63934 5285.99 58798.46 5536.57 8.73 4.53 95.79
3 14 16823.85 1041.67 17328.23 1431.19 2.91 27.22 75.69
4 1 1237.81 76.74 1348.14 137.5 8.18 44.19 63.99
5 7 18061.66 1118.41 18676.37 1568.69 11.71 19.52 68.67
6 5 19299.47 1195.15 20024.51 1706.19 6.12 24.08 82.04
7 6 4485.46 459.83 4448.96 699.65 0.81 34.28 66.54
8 8 6157.05 784.5 4788.19 748.96 22.23 0.74 78.51
9 6 29883.9 868.93 29816.27 742.56 0.23 14.54 76.15
10 9 6262.5 1086.11 6834.34 1184.5 8.37 8.31 74.09

Results 67 176697.33 12476.21 273174 14486.32 7.43 20.09 85.00
Table 1: Accuracy of the segmentation (Acp and Anp, manual segmentations; Acs and Ans, automatic segmenta-
tions)

by the segmentation algorithm (automatic segmenta-
tion). For example, in glass slide 7 six cells were iden-
tified; the total area of cytoplasm and the total area of
nuclei are shown for both manual and computational
procedures; the percentage cytoplasm error is 0.81, and
the corresponding percentage nuclei error is 34.28; the
accuracy for this slide is 66.5%. Considering all glass
slides, the total accuracy was 85 %.

Figure 9: Final segmentation (glass slide 3)

As shown in Table 1, the segmentation accuracy was
85%. The method segmented 60% of the cells marked
by the pathologist. On the other hand, it was able to
segment 20% of the cells that were not identified by the
pathologist.

Fig. 9 illustrates the final segmentation of the cytolog-
ical low-quality image (glass slide 3) using nonlinear
regression, K-Means clustering and Watershed Trans-
form. As we can see, the algorithm segmented 15 cyto-
plasms and 28 nuclei, which were scattered throughout
the image. 30% of the nuclei identified through auto-
matic, image-processing segmentation, were not easily
identifiable by pathologists because of the poor quality
of the images.

5 CONCLUSION
This work is intended to improve the availability of cur-
rent image processing technologies in countries and ar-
eas that are not able to afford modern collection meth-
ods such as Thin Prep.
The use of glass slide for conventional Pap test cytolo-
gies is quite common in developing countries, due to
their low costs and easy implementation. However, the
analysis of generated samples by image processing al-
gorithms is a challenge: many of the images collected
on glass slide are not exploited on account of their low
quality and visibility. Without a method that is con-
ceived to address such concerns, pathologists are not
able to perform diagnostics using these images. This
leads to extra losses, since the samples cannot be pro-
cessed and have to be simply eliminated.
We performed image segmentation using images
of poor quality, by means of nonlinear regression,
K- means clustering and Watershed transform. We
conducted experiments with 10 glass slides containing
67 cells previously measured by the pathologists. In
addition, we achieved cell nuclei segmentation, which
were not labeled by the pathologist by low visibility.
The segmentation accuracy was 85%. Considering that
such images are currently discarded by the patholo-
gist because of their low quality, this may already be
deemed an acceptable result. However, in future work,
we intend to carry out further experiments using com-
plementary techniques to improve the accuracy as well
as the overall citoplama’s segmentation.
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ABSTRACT

The molecular knowledge about complex biochemical reaction networks in biotechnology is crucial and has received a lot
of attention lately. As a consequence, multiple visualization programs have been already developed to illustrate the anatomy
of a cell. However, since a real cell performs millions of reactions every second to sustain live, it is necessary to move
from anatomical to physiological illustrations to communicate knowledge about the behavior of a cell more accurately. In
this publication we propose a reaction system including a collision detection algorithm, which is able to work at the level of
single atoms, to enable simulation of molecular interactions. To visually explain molecular activities during the simulation
process, a real-time glow effect in combination with a clipping object have been implemented. Since intracellular processes
are performed with a set of chemical transformations, a hierarchical structure is used to illustrate the impact of one reaction on
the entire simulation. The CellPathway system integrates acceleration techniques to render large datasets containing millions
of atoms in real-time, while the reaction system is processed directly on the GPU to enable simulation with more than 1000
molecules. Furthermore, a graphical user interface has been implemented to allow the user to control parameters during
simulation interactively.

Keywords: Molecular simulation, visualization system, collision detection, particle-based data, large data

1 INTRODUCTION

The usage of illustrative tools is an established ap-
proach to communicate knowledge of complex bio-
chemical processes in cells to a broad audience. In
the beginning, illustration artists had to create time con-
suming handmade animations combined with sophisti-
cated visualization techniques to tell a structured story.
The next step was to use software tools to create images
showing complex molecular structures. While at the
beginning, render processes took hours or days to com-
plete, with increasing processing power it was possible
to explore large scenes containing millions of atoms in
real-time. However, millions of chemical reactions are
performed every second in real cells to allow intercel-
lular communication and to sustain living organisms.
To communicate knowledge about complex intracellu-
lar processes which keep the cell alive, it is necessary
to move from anatomical to physiological illustrations.
Therefore, the next logical step is to use molecular re-
action systems to simulate large scale reaction networks
which are describing the physiology of a cell.

While this area has received a lot of attention lately,
many tools to simulate and visualize molecules and re-
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actions inside of a cell have been proposed in the last
few years. Lately, particle-based simulators got more
popular to imitate a realistic behavior of the molecules.
Their general approach is to postpone most of the calcu-
lations and operations from the central processing unit
to the graphics card through a GPU first approach by,
for example, enabling GPU-to-GPU data flow. This
is possible due to the modern, freely programmable
GPUs. General-purpose GPU programming acceler-
ates the performance of those systems immensely. That
enables the simulation and visualization of large-scale
scenes containing billions of atoms on an average com-
puter. However, most of those approaches do not take
global collision detection into account. This improves
performance but leads to visible artifacts during the an-
imation.

My goal is to extend a modern particle-based illus-
tration tool with a basic molecular simulator and a col-
lision detection system. Additionally, a visualization
system to improve the user’s awareness of biochemical
processes and to display reaction networks inside of a
specified area is implemented. Besides, the user should
be able to interact with the system to optimize the learn-
ing effect. To implement those goals, more calculations
per frame have to be executed, which has a significant
impact on the performance. Especially the collision de-
tection needs multiple processing steps. For load bal-
ancing, the simulation is only executed in a specific part
of the scene, whereby the user can determine the size
and the position of this area. Therefore, the program’s
requirements can be scaled down manually by the user
to enable the simulation also on weaker computers.
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The system is based on the technique proposed by
Le Muzic et al. [MAPV15]. While almost every aspect
of the core visualization techniques are inherited,
a simpler reaction system has been implemented.
The quantitative simulation itself is calculated by the
COPASI [HSG+06] API and the reaction system is
working with an omniscient intelligence while using
passive agents for dynamic simulation given by Kubera
et al. [KMP10]. To enable a fast and easy change
of the simulation system, the user is provided with a
simple UI, whose implementation is inspired by the
publication of Daniel Gehrer [D14].

Current techniques in mesoscale visualization of bio-
chemical processes are including collision detection
only partially or they are ignoring it at all for the sake
of performance. Tools like ZigCell3D [CKMK13] or
MegaMol [GKMRE14] are great for visualization but
because the molecular participants do not collide and
therefor don’t interact with each other beside during a
reaction, they are not able to showcase realistic anima-
tion of molecular crowding. Furthermore, visible arti-
facts occur. The main contribution of this work is to
implement a three dimensional collision detection sys-
tem which is able to detect the intersections of two or
more objects at the level of single atoms. Additionally,
an illustration technique using two adjustable cone-cut-
objects in combination with a real-time glow effect is
implemented to make complex processes visible even
in dense scenes but without losing the impression of
depth. Further, a hierarchical structure is used to illus-
trate intracellular process, by showing the impact one
reaction has on the entire simulation. Since this project
is based on the work proposed by Le Muzic et al., it also
uses the Unity3D [WSUnity] engine. Unity is a cross-
platform game engine which is also available for free
in a limited, but still functional, scope. The provided
user interface is also implemented in Unity. Simulated
molecules can be downloaded from the public PDB
database [WSPdb] and afterwards imported through the
user interface.

2 RELATED WORK
We structure the prior work review in two parts. Firstly,
we refer to agent-based simulation systems using a
game-based environment. In the second part we re-
late with research techniques that employ with Monte
Carlo-based simulation systems.

2.1 Agent-based Simulations in Game-
like Environments

Using game-like environments to reduces the software
development work-load is getting more and more pop-
ular among the visualization community [MAPV15].
A recent work on visualizing the anatomy of a cell in
a multiscale approach has been proposed by Muzic et

al. [MAPV15]. cellView has been implemented in
the Unity3D [WSUnity] game engine and uses macro-
molecular datasets, which are modeled with the cell-
PACK [JAAGS15] tool. cellPACK is publicly available
and enables the generation of large biomolecular struc-
tures. By using advanced GPU programming and accel-
eration techniques, such as hierarchical Z-buffer occlu-
sion culling and a twofold level-of-detail approach, it is
possible to render scenes containing billions of atoms.
But since no molecular dynamics are supported, cel-
lView can not be used to illustrate the physiology of a
cell.

A tool to visualize agent-based simulations has been
proposed by de Heras Ciechomski et al. [CKMK13].
An accurate simulation system is implemented in an
interactive and game-like 3D environment to illustrate
complex chemical processes at various zoom levels.
Cellular reactions are modeled with a GUI and are
represented as an SBGN [WSSbgn] network diagram.
However, the rendering module does not use GPU pro-
gramming and therefore, no real-time processing of
large scenes is possible.

To enable real-time rendering of billions of
molecules, the necessary calculations have to be done
in parallel using advanced GPU programming. Such
visual explanation tools have been proposed by Le
Muzic et al. [MPSV14] and with CellUnity[D14]. A
particle-based simulation system is used in combina-
tion with passive agents and an omniscient intelligence
to simulated biochemical reactions in a story telling
manner. Nevertheless, only a limited collision de-
tection system has been implemented and the tool
is not publicly available. Another simulation system
using this approach is CellUnity [D14] It has been
implemented in Unity3D and uses its physics engine
to apply a fully collision detection during simulation.
However, since the project is implemented entirely on
the CPU, only small scenes containing a few hundred
molecules can be used for simulation.

2.2 Monte Carlo based Simulation Sys-
tems

By using specialized Monte Carlo algorithms, MCell
[SB01] is a popular tool to simulate chemical reac-
tions in multiple compartments. The visualization tool
CellBlender [WSCB], which is an addon for the open-
source 3D computer graphics software Blender [WSB],
enables a simple and fast way to model and edit the
molecule designs of a simulation. Although, the sim-
ulation settings can be changed directly in Blender, no
interactive storytelling approach can be used to present
the outcomes.

Illustrative timelapse is a cross-platform simulation
tool with the focus on multi-scale temporal illustrative
visualization techniques. MCell is used to model and
simulate biochemical processes while the visualization
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part is implemented in Unity3D using the technique
proposed by Le Muzic et al. [MPSV14] A combina-
tion of interactive temporal zooming and visual abstrac-
tion is used to communicate reaction processes in a sto-
rytelling manner. However, no collision detection has
been implemented.

3 SIMULATION
In this section we describe the reaction system and
the simulation algorithm, as well as implemented tech-
niques for load balancing.

3.1 Global Simulation
Our molecular reaction system is based on the tech-
nique proposed by Le Muzic et al. [MPSV14]. While
the individual molecules who are participating in the
simulation process are implemented as passive agents,
an omniscient intelligence (OI) is used to control
molecular interactions. Passive agents are unable to
start reactions autonomously, instead they can only
receive reaction orders from an OI, which is tightly
coupled with the quantitative simulation [MPSV14].
The system uses the COPASI API [HSG+06] as
simulation engine, which is responsible to initiate
new reactions in regular time intervals, whereby the
interval length is specified by the user. Since each
reaction has to be processed separately on the GPU, the
number of created reactions per frame is limited to 20
to increase the performance. For each initiated reaction
the reaction system searches for appropriate reactants,
which are not already included in an open reaction.
While the first reactant is picked randomly, the other
molecules of the specific reaction are selected by their
distance to the first molecule. Only the molecules
closest to the first reactant are assigned to the reaction.
Additionally, every reaction type can be linked to
protein by the user. Thus, the reactants need to enter a
random protein to perform the specific reaction.

To create the impression of chaotic behavior, the
molecular movement during a reaction is created by
interpolating direct motion with Brownian motion.
This prevents linear pathways and enables the sim-
ulation of molecular trajectories more realistically.
The molecule’s position, rotation and the calculated
movement vector are passed to the collision detection
algorithm, to find a collision with a protein. Since
proteins are much larger than the reactants, a collision
has no influence on their movement. On the other hand,
the movement vector of a reactant is shortened in case
of a collision. If a reactant needs to enter a specific
protein to perform a reaction, collision between the
protein and the reactant is ignored.

Reactions are processed when all included molecules
are colliding. When a reaction is executed, the reac-
tants are deleted and the created products are placed at
the location of the reaction. To minimize the number of

molecules stored in a compute buffer, the buffer posi-
tions of deleted molecules are saved. This way, when-
ever a product is created, deleted molecules can be over-
written.

For load balancing, not all molecules are included in
the reaction system. Instead, the simulation area is re-
duced to a spherical compartment, which is placed by
the user at the location of an arbitrary protein. Only
reactants inside of the compartment are included in
the simulation process, while the others are moved by
Brownian motion.

3.2 Compartment Simulation
Since the reaction system and the collision detection al-
gorithm are processed in real time, three techniques are
used inside of the simulation compartment to reduce
the number of overall calculations during simulation.
By using spatial subdivision, counting sort and the fast
fixed-radius nearest neighbor algorithm, the spatial po-
sition of individual objects can be included during the
processing of molecular interactions.

Spatial subdivision is an approach where objects in a
three dimensional space are ordered by their position.
The space is partitioned in a uniform grid, such that a
cell is at least as large as the largest object [Nygu07].
The objects are sorted with their corresponding cell ID
by using the counting sort algorithm. Additionally, an
array called Bin-Counter is used to keep track of the
number of objects inside of every single cell. The Bin-
Counter in combination with the list of ordered objects
allows to identify all objects contained in a specific cell
by the cell index.

Fast fixed-radius nearest neighbors is an algorithm to
find all objects inside of a sphere with a radius R. When
the sphere is centered at the position of a specific object
and the radius corresponds to the length of the move-
ment vector, the algorithm can be used to find all rele-
vant objects during collision detection. Since the time
complexity of a brute force attempt to find all neigh-
bors of all objects is O = (n2), the spatial partitioning
method is applied first. To minimize the number of cells
who are overlapping with the sphere without having too
many objects per cell, an additional requirement is es-
tablished, which states that the minimum cell size dur-
ing spacial partitioning has to be at least as large as the
radius R. This way, only objects in neighboring cells
have to be searched, which reduces the average com-
plexity to O(n ∗ log(n)) [WSNT]. Those objects can
easily be found by combining the spatially sorted ob-
jects and the Bin-Counter values.

4 VISUALIZATION
While the technique to represent molecules in a
level-of-detail manner proposed by Le Muzic et
al.[MPSV14] is inherited, three additional visualiza-
tion techniques, called real-time glow, cone clipping
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and reaction tree, are implemented to communicate
knowledge of complex biochemical processes in cells.
Since the reactions are distributed throughout the com-
partment and can occur simultaneously, it is difficult for
the user to realize when and where a reaction is com-
pleted. Therefore, every created product and proteins
included in a completed reaction are highlighted with
a real-time glow effect for approximately one second.
The glowing objects are copied in a separate texture
with a compute shader and blurred by using a two-step
operation called a separable convolution [Fer04]. This
way, the two-dimensional convolution kernel is divided
into two separate one-dimensional convolutions, one in
each axis, which greatly reduces the computation costs
[Fer04]. To increase the brightness of the glow effect,
a non-uniform convolution kernel is used.

When illustrating dense scenes with millions of
atoms placed near each other, reaction processes are
easily covered by larger protein structures. With the
cone clipping method, the user is able to remove dis-
turbing protein structures, which are located between
the camera and the center of the simulation compart-
ment, to get a better view of the ongoing reactions and
molecular interactions during simulation. To allow the
user to change the amount of clipped objects, the cone
angle can be set interactively to a value between 1 and
89 degrees.
While increasing the visibility of simulation partici-
pants is the main goal of this visualization technique,
the three dimensional spatial depth impression should
be retained. Additionally, a semi-transparent area is
used to create a continuous transition between the
clipped area inside of the cone and the shown objects
outside of it. Thus, a second cone is implemented
and placed at the same position as the clipping cone,
whereby the angle of the second cone is twice as large
as the angle of the clipping cone. Objects located
between the inner and outer cone are represented
partially transparent. To create a continuous transition
between the clipped area and the opaque objects, the
amount of transparency for a specific object depends on
the location. While molecules located next to opaque
objects are rendered with less transparency, the value
increases when located closer to the clipping cone.

In this project, a hierarchical structure is used to il-
lustrate biological networks created by complex inter-
actions between different molecules and proteins in a
particular time span. Starting with only one reaction, a
dynamic tree structure is build by illustrating the path of
the reaction products with lines. When those molecules
are included in another reaction, a node at the location
of the reaction is included in the structure, while the
outgoing branches are connected with the new prod-
ucts. Therefore, the tree structure is growing over time,
showing the influence of the starting reaction on the
whole simulation. The tree structure is created during

1: Input: di f f , rm and sumRadii.
2: Output: The new vector length or −1.
3: float dist = length(di f f )
4: float cd = dot(normalize(rm),di f f )
5: if cd <= 0 then
6: return −1
7: float f = dist ∗dist− cd ∗ cd
8: float sumRadiiSquared = sumRadii∗ sumRadii
9: if f >= sumRadiiSquared then
10: return −1
11: float t = sumRadiiSquared− f
12: float newMovementLength = cd− sqrt(t)
13: return newMovementLength

Algorithm 1: Collision Detection

post-rendering by using a geometry shader. This en-
ables to visualize dynamic lines for reactants and prod-
ucts of ongoing reaction and the static structure created
by already processed reactions.

5 IMPLEMENTATION
In this section, we are going to discuss implementation
details about the used data structure and the collision
detection algorithm.

5.1 Data Structure
Data objects are stored in a two-parted data structure to
enable efficient data access and to minimize the needed
amount of storage. Passive data contains all informa-
tion needed to render molecules and is uploaded to the
GPU when a scene is loaded and when the reactants are
placed. Structural details of the molecular types, such
as the atom count, the position of single atoms and the
color are stored as passive data, as well as the position
and rotation of every single molecule. Active data on
the other hand stores the following structural informa-
tion needed for the simulation process:

• Reactant: Is created for every reactant participating
the simulation process and contains a reference to
the passive data, a specific reaction, the movement
vector and the cell id of the compartment.

• Reaction: Is created for every initiated reaction and
contains a reference to all reactants, the calculated
reaction position, which products are created and if
the reaction is part of the reaction tree.

• Collision: A reference to the colliding objects and
their movement vectors.

• Reaction Tree-Line: The start and end point and the
molecular color.
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Figure 1: Snapshots from the processed reaction H +
H → H2 +H2O. (a) The two reactants approach each
other. (b) The objects are colliding and the reaction is
processed. (c) The reactants have been removed and the
products are placed.

5.2 Collision Detection
Our algorithm is structured in a two-phase approach:
a broad phase followed by a narrow phase [Nygu07].
During the broad phase, collision between molecules is
determined by using minimal bounding spheres. Those
tests are fast and cheap to calculate. However, since
approximated bounding volumes are too imprecise for
more complex shapes, errors occur in the collision tests.
Therefore, potentially colliding molecules must be fur-
ther processed in the narrow phase. By testing collision
between two objects precisely, the single atoms of both
objects have to be tested against each other. Since both
phases are comparing spherical objects the same test al-
gorithm, shown in Algorithm 1, can be used.

The algorithm calculates if two objects will collide
during the next movement step and shortens the move-
ment vector when necessary, so that both objects come
to rest just at the point of contact. As input, the relative
movement vector rm = movement1−movement2, the
spatial distance diff and the sum of the radii sumRadii
are used. The radius refers to the minimum bounding
sphere in the broad phase and to the atom radii during
the narrow phase. The closest distance cd between the
objects during the movement is calculated in line 4. For
cd <= 0, the objects are not moving towards each other
and no collision can occur. When the squared length
of the closest distance vector is larger than the square
of the summed radii compared in line 9, the objects
are not colliding during their movement. At last, the
Pythagorean theorem is used to shorten the movement
vector in line 12 and the results are returned. After the
narrow phase, the shortest calculated movement length
of all pair-wise atom tests is used for the next movement
step.

6 RESULTS
In this section we present results of the proposed algo-
rithm regarding the quality of the created images and
the performance of the simulation system. The simu-
lation system is tested with a dataset created with the
cellPACK [JAAGS15] modeling tool, showing a hu-
man blood serum surrounding HIV virus. Additionally,
50000 reactants of five different molecular types have

Figure 2: Snapshots from a reaction tree structure while
simulating four different reaction types with approxi-
mately 350 reactants.

been placed throughout the scene. By using a compart-
ment radius of 300 nm, about 350 reactants have been
included in the reaction system, processing four reac-
tion types.

Figure 1 shows snapshots from the reaction process
of the type H +H→ H2 +H2O. In Figure 1(a) the two
reactants of type A, which are included in the reaction,
are moving to the calculated reaction location. The col-
lision of the molecules is shown in Figure 1(b). Since
reactions are triggered by contact, the reaction system
removes both reactants and creates the products B and
C. Figure 1(c) shows the placement of the newly created
products. To avoid overlapping molecules, the collision
detection algorithm is used to find free areas around the
reaction location.

A screenshot from the reaction tree visualization
technique where the reactants are processed by four
reaction types is shown in Figure 2. After initiating the
starting reaction it took approximately 20 seconds of
the simulation time until the tree structure has reached
the illustrated size. It can be seen that created products
are included in further reactions, which are initiated
afterwards. By using the color of a molecular type
for single lines it is possible for the user to determine
which reaction has been processed at a specific location
and which products have been included.

An example of the real-time glow effect is given in
Figure 3. The camera is positioned in such a way that
the entire compartment is shown. By highlighting the
created products, the user is able to determine when and
where a reaction is processed during the simulation. In
Figure 3(b), a close-up of individual glowing molecules
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Figure 3: Snapshots from the processed reaction A+
A→ B+C. (a) The two reactants approach each other.
(b) The objects are colliding and the reaction is pro-
cessed. (c) The reactants have been removed and the
products are placed.

is shown. By comparing the glow radius in Figure 3(a)
and (b), it can be seen that the size of the glowing effect
depends on the distance of the camera to the specific ob-
ject. When the camera is close to the highlighted prod-
uct, the size of the glow effect around the molecule is
reduced to avoid superposition of molecular structures.

A screenshot of the cone clipping effect with a
15◦ angle is given in Figure 4. For the simplified
transparency effect, the color of a translucent object is
combined with the color of concealed opaque objects
or the background color, but not with other transparent
objects. Although, excluding translucent objects during
the alpha blending process increases the rendering
performance, artifacts are created when molecules
are located at the edge of the scene. An example
of those artifacts is shown in the top right corner of
Figure 4. When no opaque objects are located behind
a transparent protein, the object color is mixed with
the background color black. This leads to a wrong
perception of depth, because transparent objects which
are located closer to the clipping cone are shown darker
than the objects behind it, which are positioned further
away.

Figure 4: Snapshots from a reaction tree structure while
simulating four different reaction types with approxi-
mately 350 reactants.

Performance Analysis
Since the implemented visualization techniques require
a processing time of approximately 1ms, only the per-
formance of the simulation system is discussed in this
section. The performance of two simulations, con-
taining 322 and 1138 reactants, has been measured on
an Intel Core i7-3930 CPU 3.20 GHz coupled with a
GeForce GTX Titan X graphics card using the Unity3D
profiler. The results of both tests are shown in Table
1. While reactions are generated and executed when
needed, only the movement step is processed per frame.
Therefore, the average processing time during approx-
imately 130 frames was measured in both tests to give
a more realistic representation of the overall process-
ing time. This time interval of about 130 frames corre-
sponds with the adjusted reaction cycle of the COPASI
API, in which new reactions are initiated. Since the
reaction system stores the list of new reactions given
by COPASI and processes them over time by initiat-
ing only 20 reactions per frame, the processing time of
the reaction generation step fluctuates between 0ms and
approximately 160ms. While the processing time of the
movement step was consistent in both tests, the reaction
execution step fluctuated as well. During the first test
the performance to execute completed reactions was in
a range between 0ms and 2ms. Since more reactions
have to be executed over time with an increased num-
ber of reactants participating in the simulation system,
the processing time of the reaction execution step in-
creased and fluctuated between 0ms and 15ms during
the second test. Those immense fluctuations of the pro-
cessing time during reaction generation and execution
lead to non-stable frame rates and possible stuttering
during the simulation.

Simulation Steps Test 1 [ms] Test 2 [ms]
Reaction Generation 3 12

Movement 13 33
Reaction Execution 1 7

Table 1: Average performance results of the single
steps of the reaction system during approximately 130
frames. The first test included 322 reactants and was
executed at 45 frames per second, while the second
test contained 1138 reactants and was performed at 18
frames per second.

7 CONCLUSION AND FUTURE
WORK

We have introduced a tool to simulate and visualize bio-
chemical reactions and biological networks in a large
and complex multiscale structural model. Due to the
collision detection algorithm, which is able to work at
the level of single atoms, the implemented reaction sys-
tem is able to simulate molecular interactions. For load
balancing, advanced GPU programming was used for
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data manipulation as well as optimization algorithms to
minimize the number of calculations per frame and to
enable simulation with more than 1000 reactants partic-
ipating in the reaction process. Due to the size and com-
plexity of cells and their inner life, containing billions
of atoms, it is necessary to visually communicate the
proceedings during the simulation to the user. There-
fore, three visualization techniques have been imple-
mented. A real-time glow effect in combination with
a conical clipping object are used to point out interest-
ing areas where reactions occur. The third implemented
visualization technique, a hierarchical structure called
reaction tree, is used to illustrate a biological network,
by illustrating the impact of one reaction on the entire
reaction system.

Although this reaction system is able simulate more
realistic molecular behavior it also encloses some lim-
itations: Firstly, the explanatory visualization of bio-
chemical processes is limited by the overall amount of
ongoing reactions during the simulation. Currently, it is
not possible that the user can follow a specific molecule
during the reaction process. Therefore, a combination
of a leaded camera and a slow motion technique could
be implemented to improve the way how the processing
of individual reactions are communicated to the user.
Furthermore, this approach would allow the user to fol-
low a specific molecule through out the scene and to
illustrate the molecule’s reaction pathway. The sec-
ond limitation refers to the simplicity of the reaction
process. In CellPathway, an arbitrary protein can be
assigned to single reactions. Thus, the reaction posi-
tion is moved to the location of the specific protein,
whereby the molecular type of the protein is not taken
into account. Furthermore, proteins are not synthesized
or broken apart during the reaction process. In further
versions, a more advanced reaction system could be im-
plemented to simulate changes of the cell structure. Fi-
nally, the simplicity of the visualization tree makes it
difficult for the user to analyze the created structure.
Therefore, additional information like the direction of
a molecule’s path could be visualized by arrows or a
color transition of individual lines.

SUPPLEMENTARY MATERIAL
A video showing the basic functionality of the
project can be found at https://youtu.be/
dKFYqH1RNW0. The source code of CellPathway
is publicly available at https://github.com/
UnityDevTeam/CellPathway.
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