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Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural
functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from
area V6A of the monkey medial posterior parietal cortex. Two Macaca fascicularis monkeys were trained to perform an instructed-delay
reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time
intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes
classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study.
Furthermore, we detected slightly different decoding accuracies, depending on the task’s visual condition. Generalization analysis was
performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred
during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This
feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest
that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions.
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Introduction
While artificial systems have yet to match the ability of the pri-
mate hand to reach, grasp, and manipulate objects, research on
humanoid robots, inspired by the fine performance of the human

hand, has moved closer to achieving dexterous grasping and ma-
nipulation of objects (Mattar, 2013; Chinellato and del Pobil,
2016). Decoding neural population signals from motor-related
areas of the monkey, and recently from human brains, constitutes
a promising way to implement modern brain– computer inter-
faces (BCIs) able to finely control arm actions (Wessberg et al.,
2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003;
Musallam et al., 2004; Hochberg et al., 2006, 2012; Kim et al.,
2006; Santhanam et al., 2006; Schwartz et al., 2006; Fetz, 2007;
Mulliken et al., 2008; Velliste et al., 2008; Hatsopoulos and Dono-
ghue, 2009; Nicolelis and Lebedev, 2009; Scherberger, 2009; Car-
paneto et al., 2011; Shenoy et al., 2011; Townsend et al., 2011;
Collinger et al., 2013; Sandberg et al., 2014; Aflalo et al., 2015;
Milekovic et al., 2015; Schaffelhofer et al., 2015; Schwartz, 2016).

The medial subdivision of the dorsal visual stream (dorsome-
dial frontoparietal network; Galletti et al., 2003) has traditionally
been considered to be involved in controlling the transport com-
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Significance Statement

Recordings of neural activity from nonhuman primate frontal and parietal cortex have led to the development of methods of
decoding movement information to restore coordinated arm actions in paralyzed human beings. Our results show that the signals
measured from the monkey medial posterior parietal cortex are valid for correctly decoding information relevant for grasping.
Together with previous studies on decoding reach trajectories from the medial posterior parietal cortex, this highlights the medial
parietal cortex as a target site for transforming neural activity into control signals to command prostheses to allow human patients
to dexterously perform grasping actions.

The Journal of Neuroscience, April 19, 2017 • 37(16):4311– 4322 • 4311



ponent of prehension (Caminiti et al., 1996; Jeannerod, 1997;
Wise et al., 1997) and its neuronal activity has been successfully
exploited to decode reach endpoints, goals, and trajectories (Hat-
sopoulos et al., 2004; Musallam et al., 2004; Santhanam et al.,
2006; Mulliken et al., 2008; Aggarwal et al., 2009; Chinellato et al.,
2011; Aflalo et al., 2015). However, the dorsomedial stream has
also been determined recently as a candidate cortical area in-
volved in encoding grasping (Raos et al., 2004; Stark et al., 2007;
Fattori et al., 2010; Breveglieri et al., 2016). This opens new per-
spectives on the problem of neural signal decoding for hand con-
figurations. In the present work, we analyzed the decoding
potential of a parietal node of the dorsomedial stream, area V6A
(Galletti et al., 1999), for grasping actions.

Neural decoding analyses typically have two complementary
objectives: selecting potential brain areas for driving BCIs and
achieving a deeper understanding of the function of neurons in
the studied region. In this research, we wanted in particular to
ascertain whether the same neural code is used throughout a
grasping task, or whether it changes within the time course of the
action generation. We applied a generalization analysis to inves-
tigate this issue. The system was trained and tested during differ-
ent time intervals and, to the best of our knowledge, has never
been used before in related studies.

In addition, we wanted to investigate the dependence of the
decoding performance of the proposed neurodecoder on the task
condition; more precisely, when grasping is planned and exe-
cuted either in the dark or in the light. Recent papers show that in
V6A there is interplay between vision and movement, both in
reaching (Bosco et al., 2010) and in grasping (Breveglieri et al.,
2016), given that most V6A cells are modulated by both motor-
related and visual components. We wanted to see whether there
are differences in decoding performance when the visual infor-
mation is present or absent before and during grasping and, in
this case, to look for differences in the time course of the neural
codes used by V6A cells during the preparation and execution of
grasping actions in the dark and in the light.

The results of our analysis show that V6A neural signals can
be reliably used to decode grasps, and that the neural code
used by V6A cells during object vision is not maintained dur-
ing the subsequent phases of the task (i.e., grasping prepara-
tion and execution), where a different code is used. We
demonstrated that the neurodecoder performance is slightly
influenced by the presence of visual information regarding the
object to be subsequently grasped and regarding the hand–
object interaction, which gives a clear view of the role of vision
before and during grasping in V6A.

Materials and Methods
Experimental procedure. The study was performed in accordance with
the guidelines of EU Directives (EU 116-92; EU 63-2010) and Italian
national law (D.L. 116-92, D.L. 26-2014) on the use of animals in
scientific research. During training and recording sessions, particular
attention was paid to any behavioral and clinical sign of pain or
distress. We involved two male Macaca fascicularis monkeys, weigh-
ing 3.650 and 2.450 kg. A head-restraint system and a recording
chamber were surgically implanted in asepsis and under general an-
esthesia (sodium thiopental, 8 mg/kg/h, i.v.) following the procedures
reported by Galletti et al. (1995). Adequate measures were taken to
minimize pain or discomfort. A full program of postoperative anal-
gesia (ketorolac trometazyn, 1 mg/kg, i.m., immediately after surgery,
and 1.6 mg/kg, i.m., on the following days) and antibiotic care [Ri-
tardomicina (benzathine benzylpenicillin plus dihydrostreptomycin
plus streptomycin), 1–1.5 ml/10 kg every 5– 6 d] followed the
surgery.

We performed extracellular recordings from the posterior parietal
area V6A (Galletti et al., 1999) using single-microelectrode penetra-
tions with home-made glass-coated metal microelectrodes (tip im-
pedance of 0.8 –2 M� at 1 kHz) and multiple electrode penetrations
using a five-channel multielectrode recording minimatrix (Thomas
Recording). The electrode signals were amplified (at a gain of 10,000)
and filtered (bandpass between 0.5 and 5 kHz). Action potentials in
each channel were isolated with a dual time–amplitude window dis-
criminator (DDIS-1, Bak Electronics) or with a waveform discrimi-
nator (Multi Spike Detector, Alpha Omega Engineering). Spikes were
sampled at 100 kHz and eye position was simultaneously recorded at
500 Hz with a Voss eyetracker. All neurons were assigned to area V6A
following the criteria defined by Luppino et al. (2005) and described
in detail by Gamberini et al. (2011).

Behavioral task
The monkey sat in a primate chair (Crist Instruments) with its head fixed
in front of a personal computer-controlled rotating panel containing five
different objects. The objects were presented to the animal one at a time,
in a random order. During the intertrial period, the panel was reconfig-
ured by the computer to present a new object at the next trial in the same
spatial position occupied by the previous object (22.5 cm from the ani-
mal, in the midsagittal plane). The view of the remaining four objects was
occluded. The same task has been used since we started this line of re-
search in our laboratory (Fattori et al., 2010).

The reach-to-grasp movements were performed in the light and in the
dark, in separate blocks. The reach-to-grasp task is sketched in Figure 1A
and its time course in Figure 1B. In the dark condition (Fig. 1A, top), the
animal was allowed to see the object to be grasped only for 0.5 s at the
beginning of the trial, and then the grasping action was prepared and
performed in the dark. In this way, the monkey was able to accomplish
the reach-to-grasp movement, adapting the grip to the object shape using
a memory signal based on the visual information it had received at the
beginning of each trial, well before the go signal. In the light condition
(Fig. 1A, bottom), the two white LEDs illuminated a circular area (diam-
eter, 8 cm) centered on the object to be grasped, so the monkey could see
the object during the grasping preparation, and the object and its own
hand during grasp execution and object holding.

The time sequence of the task is illustrated in Figure 1B. The trial
began when the monkey pressed the home button in complete dark-
ness. After button pressing, the animal awaited instructions in dark-
ness (FREE). It was free to look around and was not required to
perform any eye or arm movement. After 1 s, the fixation LED lit up
green and the monkey had to wait for the LED change color (to red)
without performing any eye or arm movement. After a fixation period
of 0.5–1 s, the two white lateral LEDs were turned on and the object
was illuminated for a period of 0.5 s (OBJ-VIS); the lights were then
switched off for the rest of the trial in the dark (Fig. 1A, top). For the
task in the light (Fig. 1A, bottom), the lights stayed on for the rest of
the trial (Fig. 1B, Illumination (light)]. After a delay period of 1–1.5 s,
during which the monkey was required to maintain fixation on the
LED without releasing the home button (DELAY), the LED color
changed. This was the go-signal for the monkey to release the button
and perform a reach-to-grasp movement (GRASP) toward the object,
to grasp it, and to keep hold of it till the LED switched off (after
0.8 –1.2 s). The LED switch-off cued the monkey to release the object
and to press the home button again. The press of the home button
ended the trial, allowed the monkey to be rewarded, and started an-
other trial (FREE) in which another object, randomly chosen, was
presented.

In both task conditions, the monkey was required to look at the fixation
point. If fixation was broken (5 � 5° electronic window), trials were inter-
rupted on-line and discarded. The correct performance of movements was
monitored by pulses from microswitches (monopolar microswitches,
RS Components) mounted under the home button and the object.
Button/object presses/releases were recorded with 1 ms resolution
(for a detailed description of the control system of trial execution, see
Kutz et al., 2005 ). In addition, the monkey’s arm movements were
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Figure 1. Reach-to-grasp task. A, Sequence of events in the reach-to-grasp task in the dark (top) and in the light (bottom). The animal was trained to fixate at a constant location (fixation LED)
shown as a small circle in front of the animal. It reached for and grasped an object (a ring, in this example) visible only in the OBJ-VIS epoch (dark condition) or in OBJ-VIS, DELAY, and GRASP epochs
(light condition). In the dark, the reach-to-grasp action was executed in darkness, after a delay in darkness; in the light, the action preparation and execution were in the light with full vision of the
object and of the hand interacting with the object. B, Time course of the reach-to-grasp task. The sequence of status of the home button, color of the fixation point (Fixation LED), status of the light
illuminating the object (Illumination), status of the target object (Target object, pull and off) are shown. Below the scheme, typical examples of eye traces during a single trial and time epochs are
shown. Dashed lines indicate task and behavioral markers: trial start (Home Button, push), fixation target appearance (Fixation LED, green), eye traces entering the fixation window, object
illumination on and off (Illumination on and Illumination off, respectively), go signal for reach-to-grasp execution (fixation LED, red), start (Home Button, release) and end (Target object, pull) of the
reach-to-grasp movement, go signal for return movement (Fixation LED, off), start of return movement to the Home Button (Target object, off). C, Drawing (derived from videoframes) of the five
objects and grip types used by the monkey. The object to be grasped changed from trial to trial, thus requiring different hand preshaping to facilitate grip. The orientation of the objects was chosen
so that wrist orientation was similar in all cases. The five objects were grasped with five different grips: from the left, the handle with fingers only, the stick-in-groove with an advanced precision grip
with precise index-finger/thumb opposition, the ring with the index finger only (hook grip), the plate with a primitive precision grip with fingers/thumb opposition, and the ball with the whole hand.
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continuously video-monitored by means of miniature, infrared-
illumination-sensitive videocameras.

Tested objects
The objects and the grip types used for grasping are illustrated in
Figure 1C.

The objects were chosen such that they could evoke reach-to-grasp
actions with different hand configurations.

The handle was 2 mm thick, 34 mm wide, and 13 mm deep. Gap
dimensions were 28 � 11 � 2 mm. It was grasped with finger prehension
by inserting all the fingers (but not the thumb) into the gap.

The stick-in-groove was a cylinder with base diameter of 10 mm and
length of 11 mm, in a slot 12 mm wide, 15 mm deep, and 30 mm long. It
was grasped with the advanced precision grip, with the pulpar surface of
the last phalanx of the index finger opposed to the pulpar surface of the
last phalanx of the thumb.

The ring had an external diameter of 17 mm and internal diameter of
12 mm. It was grasped with the hook grip, in which the index finger was
inserted into the object.

The plate was 4 mm thick, 30 mm wide, and 14 mm long. It was
grasped with the primitive precision grip, using the thumb and the distal
phalanges of the other fingers.

The ball had a diameter of 30 mm. It was grasped with whole-hand
prehension, with all the fingers wrapped around the object and with the
palm in contact with it.

Data analysis
The analyses were performed with customized scripts in Matlab (Math-
works; RRID:SCR_001622) and Python (using open-source machine-
learning toolkit scikit-learn, http://scikit-learn.org; RRID:SCR_002577).
The neural activity was analyzed by quantifying the discharge in each trial
in the following four different epochs: FREE, from button pressing to
LED illumination; OBJ-VIS, response to object presentation, from object
illumination onset to illumination offset (this epoch lasted 500 ms);
DELAY, from the end of OBJ-VIS to movement onset (epoch duration
assumed random values between 1 and 1.5 s); GRASP, from movement
onset (defined as the time of home button release) to movement end
(defined as the time of object pulling; movement period was not fixed
over trials as it depended on the action execution time of the animal:
handle, 355.1 ms; stick-in-groove, 770.2 ms; ring, 421.7 ms; plate, 581.9
ms; ball, 576.1 ms (average movement times).

We describe below the two types of analyses we performed on the data:
population response and neural decoding.

All the analyses, neural information processing, and modeling were
done off-line.

Population response. We sequentially recorded 170 cells from two an-
imals. We performed three-way ANOVA (factor 1, epoch: FREE, OBJ-
VIS, GRASP; factor 2, object/grip: five levels; factor 3, visual conditions:
light/dark; p � 0.05). In this study, we included the cells with significant
main effects of epoch and object/grip in the decoding and population
analyses. Among these cells, we considered only cells with 10 trials for
each of the five objects, in each visual condition.

Population response was calculated as averaged spike density function
(SDF; Fig. 2B). An SDF was calculated (Gaussian kernel, half-width
40 ms) for each neuron included in the analysis, and averaged across all
the trials for each tested grip. The neuron peak discharge found over all
grip types during the GRASP epoch and during the OBJ-VIS epoch was
used to normalize all SDFs for that neuron. The normalized SDFs were
then averaged to obtain population responses (Marzocchi et al., 2008).
Each condition was ranked and aligned twice in each plot, one based on
the OBJ-VIS discharge (first alignment), and the other on GRASP dis-
charge (second alignment).

Neural decoding. Feature extraction and selection are crucial and chal-
lenging processes in machine learning. The goal is to select features that
constitute a compact but informative representation of the phenomenon
to analyze the neural coding in this study. For the purpose of our analysis,
we assumed that neural information is coded as spike trains of firing
neurons belonging to the same neural network. For each neuron of the
population (79 neurons), we computed the mean firing rate (mFR; num-
ber of spikes per time units) over a selected timespan using a trial-by-trial
approach. The resulting feature vector thus consisted of the 79 mFRs of
the entire neural population. Every trial was evaluated as a sample for the
decoding algorithm. Thus, each trial, represented as a feature vector of 79
elements, was vertically concatenated with the other trials to build
the feature space. Since there were 10 trials for each of the five objects, the
feature space was made up of 50 samples. The decoder outputs were the
five objects or grip types. Fivefold cross-validation was performed by
using 40 samples (eight for each condition) for training and 10 (two for
each condition) for testing for each neuron, so to ensure that the classifier
was trained and tested on different data.

With the purpose of computing more robust and precise means of
the classifier performance, we decided to computationally increase
the number of test samples. Since neurons were recorded in separate
sessions, and thus activity correlations between single neurons were
already lost, we were able to expand the number of samples by shuf-
fling the feature contributions of single neurons between trials, po-
tentially obtaining 10 79 different vectors. We choose to randomly
extend our dataset 10 times, thus performing our experiments on 400
training and 100 test samples (100 per each of the five conditions),
instead of the original 40 training and 10 test samples. This procedure
produced mean and SD of object/grip classification accuracy based on
firing rates. It is worth clarifying that artificially extending the dataset
is not expected to improve classification accuracy, since no new in-
formation is added to the system, but it enables the computation of a
more precise mean given the few initial trials available. Non-
normalized data were used for the decoding procedure.

We used a naive Bayesian classifier as a neurodecoder. Naive Bayes
methods are a set of supervised learning algorithms based on applying
Bayes’ theorem with the “naive” assumption of independence between
every pair of features. This technique has been shown to achieve perfor-
mance closer to optimal compared with other classifiers when analyzing
this kind of neural data (Scherberger et al., 2005; Townsend et al., 2011;
Lehmann and Scherberger, 2013; Schaffelhofer et al., 2015). In our
Python custom scripts we implemented the module of naive Bayes class-
ifiers proposed by scikit-learn libraries (the statistical formulation can
be found at http://scikit-learn.org/stable/modules/naive_bayes.html;
Zhang, 2004). Under the assumption of Poisson distribution of features,
we reinforced the model as suggested at the following site: github.com/
scikit-learn/scikit-learn/pull/3708/files (Ma et al., 2006). To calculate the
running time of the decoding algorithm, we used the time module em-
bedded in Python.

We performed three types of analysis, computing the following feature
vectors over different epochs and timespans: whole epoch, sliding win-
dow, and generalization analysis.

4

Figure 2. Object and grip selectivity in V6A. A, An example of a V6A neuron selective for
object and for grip type and influenced by the vision of the object and of the action. Left, Objects
and types of grips. Right, Activity is illustrated as peristimulus time histograms (PSTHs) and
raster displays of impulse activity in the light (left) and in the dark (right). Below each discharge
there is a record of horizontal (upper trace) and vertical components (lower trace) of eye move-
ments. Neural activity and eye traces are aligned (long vertical line) twice, on object illumina-
tion onset and on movement onset. Long vertical ticks in raster displays are behavioral markers,
as indicated in Figure 1B. Rectangles under the PSTH of the first object represent the duration of
epochs (G, GRASP). The cell displays selectivity for the task conditions during the times of object
presentation, delay, and the execution of grasp action. Vertical scale on histogram: 76 spikes/s;
time scale: 1 tick � 200 ms. Eye traces: 60°/division. B, Population data. Activity of 79 grip-
selective V6A neurons used for the decoding procedure expressed as averaged normalized SDFs
(thick lines) with variability bands (light lines), constructed by ranking the response of each
neuron for each individual object according to the intensity of the response elicited in the
OBJ-VIS epoch (left, activities aligned with the onset of the object illumination) and according to
the intensity of the response elicited in the GRASP epoch (right, activities aligned with the onset
of the reach-to-grasp movement) in descending order (from magenta to blue). In other words,
each condition was ranked and aligned twice in each plot, one based on the OBJ-VIS discharge
(first alignment), and the other on the GRASP discharge (second alignment). The SDFs of each
alignment were calculated on the same population of cells. Each cell of the population was
taken into account five times, once for each object/grip. Scale on abscissa, 200 ms/division
(tick); vertical scale, 80% of normalized activity.
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For the whole epoch analysis, mFR was computed over the whole OBJ-VIS,
DELAY, and GRASP epochs. Neurodecoder predictions against real class, for
each object or type of grip, are plotted as confusion matrices in Figure 3.

For the sliding window analysis, mFR was computed over a window of
300 ms, which progressively slides over the reference period with a mov-
ing step of 10 ms (similar to analysis by Carpaneto et al., 2011). As in the

previous case, training and testing sets were computed over the same
time interval. This approach (Fig. 4) was used to see how the recognition
rate changed dynamically over time.

For the generalization analysis, mFR was computed over different in-
tervals for training and testing sets: the system was trained over the whole
OBJ-VIS and GRASP epochs and over four portions of the DELAY ep-

Figure 3. Confusion matrices describing the pattern of errors made by the naive Bayes classifier in the recognition of tested objects or grip types. A–F, mFRs were calculated for different epochs
(A, B, OBJ-VIS; C, D, DELAY; E, F, GRASP) and conditions (left, DARK; right, LIGHT). The matrices summarize the results of cross-validation iterations plotted as real class (Observation) against predicted
class (Prediction). Contributions of 79 neurons from V6A area were included in the dataset for the decoding analysis. Blue color scale indicates the accuracy yield by the algorithm as reported in the
side indices. Mean recognition rates are reported together with SDs below the indices.
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och; after having trained the system for an epoch, it was tested over all the
epochs. This was done to verify whether the same code is used from
object vision to movement execution, or to discover how the code
changes during the delay epoch, before the movement, and during move-
ment execution. As the DELAY epoch varied in length from trial to trial,
we performed the generalization analysis on 25% fractions of DELAY
rather than on fixed size intervals.

In all experiments, classification performance
was assessed by the rate of correct recognitions,
and confusion matrices. These representations
helped reveal the most common error patterns of
the classifier.

Results
Area V6A is known to contain grasp-related
neurons (Fattori et al., 2004, 2009, 2010,
2012, 2017; Breveglieri et al., 2016). These
cells are modulated by the different grip
types required to grasp different objects
and/or by the vision of the objects to be
grasped. An example of one of these cells is
shown in Figure 2A. This cell fires when the
monkey sees the object to be grasped and
when the monkey plans and performs the
reach-to-grasp action. These discharges are
also different if the grasping was planned
and executed in different visual conditions,
the discharge being stronger in the light than
in the dark (compare left with right col-
umns). The visual discharge to object pre-
sentation (OBJ-VIS epoch) is tuned to the
different objects, being strong for the ball
and the plate, and maximal for the handle.
Moreover, the motor-related discharges
(GRASP epoch, G) are tuned to grasps
occurring with different grips, from a
maximum for grasping the handle to an
almost null response for grasping the
stick-in-groove.

Of 170 V6A neurons recorded from two
monkeys, 79 cells (47 from Case 1; 32 from
Case 2) satisfied all the inclusion criteria (see
Materials and Methods). The population
discharge of the 79 grasp-related cells
(three-way ANOVA, p � 0.05; see Materials
and Methods) used for the decoding analy-
sis is shown in Figure 2B, where the activity
of each neuron for each of the five tested
objects was ranked in descending order to
obtain the population response for the best
(object or grip), the second best, and so on,
up to the fifth, worst, grip. Each condition
was ranked and aligned twice in each plot,
one based on the OBJ-VIS discharge (first
alignment), and the other on GRASP dis-
charge (second alignment) for each individ-
ual background condition. The plot shows a
clear distinction among the activations dur-
ing the vision of the object, the preparation
and the execution of reach-to-grasp actions.
Moreover, Figure 2B shows that the V6A
neural population starts discriminating be-
tween different objects/grips as soon as the
object becomes visible to the animal (OBJ-

VIS). The discrimination power of the population remains constant
when the monkey is preparing the action (DELAY), and has a second
peak when the action is executed (GRASP), as the huge difference
between best (red line) and worst (blue line) responses shows. This
trend is common to population activity in the dark and in the
light.

Figure 4. Sliding window analysis. Time course of the decoding accuracy (recognition rates) in the dark (A) and in the light (B)
based on the firing rates extracted during the period starting 500 ms before the light onset, through 1 s after the movement onset.
Due to the variable duration of the delay (1–1.5 s), double alignment result plots are shown. The first alignment coincides with the
object illumination onset, the second one with the movement onset. Firing rates were calculated for a 300 ms sliding window,
moving forward with a 10 ms step. Each dot on the graphs was plotted at the beginning of each 300 ms window. The mean line
(black) was calculated as the arithmetic mean between recognition rates of individual objects (colored lines). For each object,
variability bands are shown, representing SDs based on fivefold cross-validation.
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Decoding results
The neural activity of 79 grasp-related V6A neurons was analyzed
off-line in three main epochs: OBJ-VIS, DELAY, and GRASP, cor-
responding to the period of visual stimulation provided by the ob-
ject, the planning phase of the subsequent reach-to-grasp action, and
the execution phase, respectively. It is worth remembering that, in
the dark condition, the animal was in darkness during DELAY and
GRASP (except for the fixation LED), whereas in the light condition
the animal prepared and executed the grasping action in the light,
thus with the availability of visual information on the object and its
hand/arm approaching and interacting with the object. The results,
obtained from two cases, were similar for individual animals. Thus,
the results of the two cases are presented jointly.

Although we performed decoding off-line, having in mind a
future possible application of this methodology in a real-time
loop, we calculated the running time of the decoding algorithm.
Since in this setting only the prediction phase is relevant, we
parsed the time required to run that phase only, given the already
trained classifier. We found that the running time was extremely
short, with a mean required time of 0.26 ms (SD, 0.04 ms), cal-
culated on 100 iterations.

Object recognition within the object presentation epoch
The decoding results of the time span in which the object was
illuminated in both visual conditions (OBJ-VIS epoch) are pre-
sented in Figure 3A,B. Using a naive Bayes classifier as neurode-
coder (see Materials and Methods), we found a high correlation
between the actual conditions and the decoded conditions, as
illustrated in the confusion matrices. The mean accuracy, ob-
tained using leave-p-out cross-validation testing on 20% of trials,
was lower in the decoding in dark than in light conditions: in the
dark, the mean accuracy was 81.6%, whereas in the light it was
91.8%. However, the decoding performance in the dark is highly
variant (SD, 12%), whereas in the light the variance is almost null
(SD, 0.8%). The apparently odd difference in performance in
OBJ-VIS, where the visual conditions are identical, and the high
variance in the dark can be explained by the presence of other
factors influencing the discharge during OBJ-VIS. We suggest
that the attention level of the monkeys is higher in the dark than
in the light (where the monkeys know that the visual information
of the object will be available until the end of the trial), and this
can add noise to the system, causing a decrease and a higher
variance in decoding performance.

Considering each animal separately, the performance slightly
decreases in the light as well as in the dark, although in both
individual cases the level remained well above chance (Table 1).

Decoding the neural information within the planning epoch
The decoding accuracy during the delay before the movement
was very high, both in the dark (97.2 � 2.9%; Fig. 3C) and in the
light (100 � 0.0%; Fig. 3D). Considering each animal separately,
the performance was consistent (Table 1). In both dark and light
conditions, there is a clear and strong improvement of the recog-
nition from object vision (Fig. 3A,B) to action planning (Fig.
3C,D): the explanation for this increase might be related to action

preparation required when the movement execution is ap-
proaching. Alternatively, a different neural code, likely more re-
lated to grip type, may be used during the delay and this can
improve the recognition rate. This aspect will be investigated later
in the paper, using generalization analysis. However, a complex
interplay between action planning and visual information pro-
cessing is suggested by these results.

Decoding the neural information within the grasping
execution epoch
As shown in the confusion matrices in Figure 3E,F, the decoding
accuracy during movement execution was extremely high in both
visual conditions. Even if the mean performance was similar in
the dark and in the light (98.4 � 2.1% in the dark vs 100 � 0.0%
in the light), there were small differences in the performance
between the two visual conditions. In the dark, all grips were
almost always identified, and only a few errors were observed. In
the light, the performance was maximal for each grip, suggesting
that visual information about the hand– object interaction adds
significant information to the neural code, which slightly im-
proved the discrimination power of the grip-type decoding algo-
rithm. Considering each animal separately, the results were well
above chance level and the importance of visual information for
decoding results was even more evident (Table 1).

Time course of the decoding performance
Although confusion matrices are very informative about the de-
coding performance, they do not provide any insight on the tem-
poral dimension. To fill this gap, we estimated the time course of
the classifier performance by computing firing rates in time in-
tervals around light and movement onset. Figure 4A,B shows the
classification performance in the dark and in the light, respec-
tively, when the feature was extracted from a time window of 300
ms, which progressively slides over the trial timespan from 500
ms before illumination onset to 1 s after the movement onset,
with a moving step of 10 ms. We used a double alignment because
of the variability in the delay duration.

In the dark and in the light, the time course of the recognition
rates was slightly different. In the dark (Fig. 4A), there was a quick
increase of the decoding performance, up to 80% occurring after
the illumination onset related to the object’s vision. Approxi-
mately 600 ms after the illumination onset (which corresponds to
100 ms after the switch-off of the object illumination), the recog-
nition rate decreased to �75%, and this performance remained
constant in the subsequent delay and slightly increased at the end
of the delay. In the light (Fig. 4B), the accuracy was higher than in
the dark during object observation, whereas in the delay it was
similar to the dark condition. However, the increase of the rec-
ognition rate was more pronounced during the last part of the
delay (Fig. 4B, curve in the right before the second alignment).
During grasp execution, the recognition rate was particularly
high, especially in the light, and remained high till the end of
grasp execution. To summarize, we found a ramp-up trend of the
decoding performance in both conditions. After object illumina-
tion, the accuracy increased with time as movement-onset ap-

Table 1. Performance, expressed as mean accuracy � SD, of the classifier in the two cases (together and separated)

OBJ-VIS DELAY GRASP

Dark Light Dark Light Dark Light

Cases 1 � 2 81.6 � 12% 91.8 � 0.8% 97.2 � 2.9% 100 � 0.0% 98.4 � 2.1% 100 � 0.0%
Case 1 67.6 � 10.2% 78.6 � 10.4% 81.6 � 11% 98.8 � 0.9% 91.4 � 2.7% 98 � 0.4%
Case 2 74.4 � 12.7% 68.6 � 10.5% 86.8 � 3.7% 93.6 � 5% 84.6 � 4.3% 96.2 � 3.7%
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proached, reaching maximum values at the end of the delay
period, particularly in the light. We can reliably say that the ac-
curacy reaches the maximum value when the hand is approach-
ing the object, better if the animal is able to see the action.

Generalization analysis
To evaluate whether the neural code used during object observa-
tion was retained or changed during the subsequent delay before
the grasping onset, we performed a generalization analysis by
training classifiers either in OBJ-VIS or in GRASP, and we ap-
plied both codes on portions of the DELAY epoch. Figure 5 shows
the results of this analysis in the dark (Fig. 5A,C) and in the light
(Fig. 5B,D). The performance of the decoding algorithm trained
using the neural activity during OBJ-VIS is indicated in blue (Fig.
5A,B). The performance using GRASP activity is shown in red
(Fig. 5A,B). The performance using DELAY portions is shown in
grayscale (Fig. 5C,D). In the dark, the code learned during OBJ-
VIS and generalized during DELAY gave much lower accuracy
(Fig. 5A, blue line). The accuracy subsequently dropped to much
lower values (�40%) during movement execution. This suggests

that the neural code used during object observation quickly
became weaker as soon as the animal began to prepare the
movement. In the light, the accuracy obtained by training the
algorithm using the OBJ-VIS epoch and tested on the DELAY
fractions (Fig. 5B, blue line) was almost as high as during the
vision of the object, so the same code was maintained during the
DELAY in the light. This is likely because the visual information
regarding the object was still available in the delay of the light
condition. Again, as seen for the dark, the decoding performance
dropped to �40% during grasp execution.

In the dark, the time course of the accuracy obtained by train-
ing the algorithm with the GRASP neural activity (Fig. 5A, red
curve) and tested in the DELAY demonstrated that the neural
code used during action execution was partially present also dur-
ing the last fraction of the delay, but dropped abruptly immedi-
ately before it. So, the same code seems not applicable during
object observation (OBJ-VIS) and during the first parts of the
DELAY. In the light (Fig. 5B, red line), on the other hand, the
code obtained by decoding from GRASP dropped gradually dur-

Figure 5. Generalization analysis. A–D, Generalization of codes derived from different epochs for dark (A, C) and light (B, D) conditions. The neurodecoder trained with the firing rates
extracted from one epoch was used to decode all epochs. The trend of mean recognition rates together with the SD bars through different epochs are plotted as colored lines. In A and B,
blue line shows classifier trained on OBJ-VIS, red line shows classifier trained on GRASP; in C, D, grayscale shows classifier trained on fractions of the DELAY epoch. The DELAY epoch was
split in portions due to variable time duration between the trials: D1, 0 –25% of the DELAY epoch; D2, 25–50%; D3, 50 –75%; D4, 75–100%. The accuracy obtained from the activity of
each time interval is shown under each plot.
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ing the DELAY: a decreasing trend of accuracy is apparent
throughout the DELAY.

When analyzing the accuracy of the classifier trained in the
different fractions of the DELAY (Fig. 5C,D, gray lines), code
similarities are highlighted. In the dark, a noticeable difference
between the first part of the delay (lighter gray) and the subse-
quent fractions (darker grays) is evident: the late codes share
similarities, whereas the initial code is quite different. This high-
lights that, after object disappearance, there is a gradual transfor-
mation of the code from object observation to motor execution.
On the other hand, in the light, the code, presumably related to
visual information, was maintained longer, probably thanks to
the availability of visual information. Overall, in the light, code
differences were minimized, conceivably because information
collected was more similar through portions of the DELAY.

To summarize, different codes were present from object ob-
servation to movement execution, but their relative influence on
the overall neural activity varied over time. In both visual condi-
tions there was a switch between the codes during the last parts of
the delay. Moreover, this analysis shows that the neural popula-
tion during the DELAY epoch switched its preferential coding
feature, and this likely suggested that a transformation from vi-
sual information into motor representation was performed at
that time and encoded by these neurons. In this study, in the five
task conditions, each of the different objects was grasped with
a clearly distinct grip. Therefore, selectivity for object and for
grip type is necessarily strongly correlated and cannot be distin-
guished in our task. So, the change of coding observed in the
generalization analysis does not necessarily imply a change of
representation, i.e., from a code representing objects to one rep-
resenting grip type. However, a possible explanation is that the
decoded discharge from V6A reflects the visuo-to-motor trans-
formations occurring in the DELAY period in which the visual
information regarding the object (visual/object coding) is trans-
formed into motor commands (motor/grip coding).

Discussion
The above experimental results show that the posterior parietal
area V6A of the dorsomedial visual stream represents a reliable
site for decoding information for grasping in the presence and in
the absence of visual information regarding object and hand–
object interaction available when the action is prepared and exe-
cuted. This opens new perspectives and possibilities about the
source of grasp-related signals that may be used to implement
BCIs.

In our experiment, each tested object was grasped with a
clearly distinct grip. In these conditions, selectivity for object
shape and for grip type cannot be distinguished, unlike other
studies (Schaffelhofer and Scherberger, 2016) where more ob-
jects and a larger variability of grip types were tested. Although an
inherent decoding ambiguity cannot be avoided in our study,
good decoding results have been achieved from a restricted num-
ber of grasp-related neurons from V6A, in accordance with what
was found in ventral premotor cortex by Carpaneto and col-
leagues (Carpaneto et al., 2011), and the posterior parietal cortex
(PPC) itself, for decoding reach trajectories (Aflalo et al., 2015).
In addition, the number of trials, 10 in our case, is low for decod-
ing; despite this, we still obtained an extremely high classification
accuracy.

We found high recognition rates in different time epochs: the
visual presentation of the object (OBJ-VIS), the delay before the
movement (DELAY), and the period of reach-to-grasp execution
(GRASP). In addition, the different visual conditions used show

that combining visual and motor information could slightly
modulate the power of the classification.

A very good recognition rate was obtained during the vision of
the object well before grasping execution. This could indicate the
presence in V6A of covert motor commands for the upcoming
grasp, because animals were overtrained to grasp the objects used
in this task. However, we are more inclined to suggest that the
encoding occurring during the vision of the object reflects object
recognition for action, as already shown for V6A in a work where
visual responses to objects with different shapes evoking different
grips were demonstrated to reflect object affordance (Breveglieri
et al., 2015). The slightly higher accuracy obtained during move-
ment execution in the light compared with movement execution
in the dark is suggestive of a weak effect of the vision of hand–
object interaction in V6A.

The delay period between object presentation and grasp exe-
cution proved to be a good source of decoding in V6A (Fig.
3C,D). Generalization analysis showed that in the first part of the
delay, spanning some hundreds of milliseconds after the end of
object illumination, well beyond transient visual responses
(Thorpe et al., 1996; Schmolesky et al., 1998), the decoding was
mostly effective if performed through an OBJ-VIS epoch-derived
code, likely representing a visual/object code (Fig. 5). This epoch
is followed by an intermediate visuomotor transformation stage,
in which the brain likely converts the visual information into
motor commands. Here we illustrated that decoding from V6A is
still possible, but with a lower accuracy. Then, in the third part of
the delay, we can obtain a higher decoding accuracy than the two
first intervals. In this last phase, the decoding is most successful
when using a GRASP-derived code, possibly representing a mo-
tor/grip code. This last period, close to motor execution, but well
in advance with respect to possible afferent feedback signals
(known to be present in V6A; Breveglieri et al., 2002; Fattori et al.,
2005, 2017), could reflect an efferent command or an action plan
where planned grasp coding information is present. These results
from the performance of the neurodecoder parallel those found
simply by analyzing mean frequencies of discharge in this same
area: in V6A there is an encoding of the visual attributes of objects
at the beginning of the DELAY period that switches to a grip-type
encoding during the DELAY period, when the prehension action
is planned, and later during movement execution (Fattori et al.,
2012, their Fig. 8). For the purpose of decoding, at first glance, the
coexistence of different coding schemes can be seen as a disad-
vantage, due to the lack of a clear distinction between used codes
and the resulting increase in the data complexity. Potentially,
however, properly trained multiple decoders can efficiently re-
cover visual and motor attributes from the same dataset. Con-
ceivably with the aid of a postprocessing algorithm, the decoder
results can be integrated together to obtain more accuracy and/or
additional data for a visuomotor-guided robotic prosthetic arm.

This anticipated decoding ability seems to be typical of the
parietal cortex (Andersen et al., 2010), where the reaching goals
and trajectories were decoded 190 ms after target presentation
(Aflalo et al., 2015), thus comparable to V6A for grasping decod-
ing (Fig. 4A). Precocious decoding from the PPC would allow
signals to be sent to to the computer interfaces well before the
movement needs to be initiated. Together with the short time
required to run the classifier algorithm (a few tenths of a milli-
second for the prediction phase, in our work), this fits well with a
real-time decoding implementation.
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Off-line decoding from single cells in dorsomedial
frontoparietal areas: perspectives on BCIs
In this study, as in some others in the dorsolateral visual stream
(Townsend et al., 2011; Carpaneto et al., 2011), the neural decoding
with a high accuracy for grasping was performed off-line from single
cells, thus confirming that this kind of signal is adequate to be ex-
ploited for successful decoding. In addition, this work adds a novel
area in the panorama of the brain areas useful for BCIs. So far, all the
studies aimed at decoding grasps used signals from the primary mo-
tor cortex (Carmena et al., 2003; Hochberg et al., 2006, 2012; Kim et
al., 2006; Ben Hamed et al., 2007; Velliste et al., 2008; Vargas-Irwin et
al., 2010) or the dorsolateral frontoparietal network, specifically the
lateral premotor area F5 (Carpaneto et al., 2011, 2012; Townsend et
al., 2011; Schaffelhofer et al., 2015) and the lateral posterior parietal
area, AIP (anterior intraparietal area; Townsend et al., 2011; Klaes et
al., 2015; Schaffelhofer et al., 2015).

In area AIP, the best performance was achieved during the
reach-to-grasp task in the Cue epoch (Schaffelhofer et al., 2015).
Conversely, in V6A, the best performance occurs in the GRASP
epoch. This feature is similar to area F5, where the best perfor-
mance was obtained during grasping execution (Carpaneto et al.,
2011; Schaffelhofer et al., 2015), especially in the light. These
results suggest that, although areas V6A and AIP are both
grasp-related parietal areas that share many functional prop-
erties (Breveglieri et al., 2016), the AIP seems to be more
involved during the vision of the object and V6A during move-
ment execution.

Recently, Andersen’s laboratory decoded visual and motor
aspects of complex hand shaping from human area AIP (Klaes et
al., 2015). Decoding of grasp information from monkey AIP is
well supported (Townsend et al., 2011; Schaffelhofer et al., 2015),
and these very recent data on human AIP suggest a good func-
tional affinity between monkeys and human PPCs. The present
data on decoding of objects and grasps from this other parietal
site promises a future for decoding grasps from the human dor-
somedial parietal cortex.

Indeed, so far, decoding neural signals from dorsomedial ar-
eas has been done in the context of reconstructing hand position
in space (Hatsopoulos et al., 2004), or of finger flexion/extension
movements (Aggarwal et al., 2009) and reach trajectories (Mus-
allam et al., 2004; Mulliken et al., 2008; Hwang and Andersen,
2013; Aflalo et al., 2015). This is the first work in which an area of
the dorsomedial visual stream is used successfully to decode
grasps. It encourages researchers to look at other dorsomedial
stream areas involved in grasping, such as the dorsal premotor
area (Raos et al., 2004; Stark et al., 2007), as possible targets of
decoding for prehensile actions.

Future directions
Since the first demonstrations of monkey medial PPC as a site
encoding intentions for reaches (Snyder et al., 1997), attention
has been given to this region as a site useful for translating basic
research on monkey neural recordings into applications useful
for BCIs (Musallam et al., 2004; Mulliken et al., 2008). Recent
evidence shows that nonhuman primate and human PPCs share
a similar sensorimotor function (Aflalo et al., 2015; Klaes et al.,
2015). In fact, by recording from the PPC of tetraplegic subjects,
Andersen and coworkers showed that neural signals from human
medial PPC may be used for BCIs to guide reaching movements
to appropriate goals with appropriate trajectories (Aflalo et al.,
2015) and from the lateral PPC to control hand shaping (Klaes et
al., 2015). The present results indicate that the monkey medial
PPC hosts neural signals that could be used to implement BCIs to

guide prehensile actions to grasp objects of different shapes with
different grips. Future studies might obtain similar advantages by
applying the decoding algorithms to neural signals from the human
medial PPC to control signals in assistive devices for impaired pa-
tients (tetraplegics or subjects affected by neurodegenerative diseases
that impair hand functions). This might be useful in recovering full
control of a hand.
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