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Abstract

Nonlinear data assimilation can be a very challenging task. Four local search
methods are proposed for nonlinear data assimilation in this paper. The meth-
ods work as follows: At each iteration, the observation operator is linearized
around the current solution, and a gradient approximation of the three dimen-
sional variational (3D-Var) cost function is obtained. Then, samples along po-
tential steepest descent directions of the 3D-Var cost function are generated, and
the acceptance/rejection criteria for such samples are similar to those proposed
by the Tabu Search and the Simulated Annealing framework. In addition, such
samples can be drawn within certain sub-spaces so as to reduce the computa-
tional effort of computing search directions. Once a posterior mode is estimated,
matrix-free ensemble Kalman filter approaches can be implemented to estimate
posterior members. Furthermore, the convergence of the proposed methods is
theoretically proven based on the necessary assumptions and conditions. Nu-
merical experiments have been performed by using the Lorenz-96 model. The
numerical results show that the cost function values on average can be reduced
by several orders of magnitudes by using the proposed methods. Even more,
the proposed methods can converge faster to posterior modes when sub-space
approximations are employed to reduce the computational efforts among itera-
tions.
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1. Introduction

In sequential Data Assimilation (DA), the forecasts of imperfect numerical
models are calibrated to real noisy observations so as to roughly estimate the
actual state of a dynamical system ψ∗ ∈ Rn×1 [1] where the main physical and
dynamical processes are approximately modelled by5

ψ∗next =Mtcurrent→tnext (ψ∗current) ,

where n is the dimension of the model state or the model resolution. The model
M(.) is an imperfect, numerical model, and its underlying error distributions of
forecasts are approximated by normal distributions

ψ ∼ N
(
ψb, B

)
, (1)

where the background state ψb ∈ Rn×1 is the prior estimate of ψ∗ before any
observations or measurements become available, and B ∈ Rn×n is the covariance10

matrix of the background errors. In addition, the observations are also treated
as random variables with Gaussian errors

o ∼ N
(
W (ψ) , R̂

)
, (2)

where o ∈ Rm×1 are the m measurements or observations, and R̂ ∈ Rm×m is
the covariance matrix of measurement errors. Here, the observation operator
W : Rn×1 → Rm×1 maps the observations to their corresponding model spaces.15

From the Bayesian rule, it can be shown [2, 3] that the state which maximizes
the posterior probability can be obtained by

G(ψ) =
1

2
·
∥∥∥ψ −ψb∥∥∥2

B−1
+

1

2
· ‖o−W (ψ)‖2R̂−1 , (3)

which is the three-dimensional variational (3D-Var) cost function. Thus, the
state ψa ∈ Rn×1 to best-fit the given data can be estimated through the solution
of the following 3D-Var optimization problem:20

ψa = arg min
ψ
G(ψ) . (4)

Though this optimization problem is in general nonlinear, however, when the
observation operator is linear, a closed-form expression for computing ψa in
Eq. (4) is possible, especially in terms of the ensemble Kalman filtering (EnKF)
context [4, 5, 6].

In general, Netwon-like methods can be employed for numerically solving25

optimization problems of the form (4) when observation operators are nonlin-
ear. In most cases, the observation operator is linearized within some small
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neighbourhood of ψb from which a gradient approximation of Eq. (3) can be
computed so as to choose a suitable along the steepest descent direction. This
iterative process is repeated until a predefined stopping criterion is met. Un-30

fortunately, there are just a few works in this direction and even more, their
theoretical convergence are missed [7, 8].

On the ohter hand, stochastic method such as sampling via the Markov
Chain Monte Carlo (MCMC) can be used as well. However, such sampling
methods may become inefficient under the current operational settings [9, 10],35

due to the so-called curse of dimensionality [11]. For the present problem, we
believe the stochastic algorithms such as Local Search methods can be used
so as to estimate the posterior modes of error distributions. In this context,
the challenge is to find a transition function which can rapidly allow methods
to reach regions of search spaces where the values of the 3D-Var cost function40

in Eq. (3) become small. Such transition functions can be defined by using
gradient approximations to Eq. (3). Then, states can be proposed potentially
along steepest descent directions of the above defined 3D-Var cost function.

The outline of this paper is as follows. Section 2 briefly introduces the con-
cepts about data assimilation as well as local search methods, and Section 345

presents four local search methods for nonlinear data assimilation wherein tran-
sition functions are defined over descent direction approximations concerning
the 3D-Var cost function. Then, Section 4 performs some numerical experi-
ments in order to assess the accuracy of the proposed methods by using the
Lorenz 96 model and different configurations for the tests. Finally, Section 550

concludes with discussions for further research.

2. Problems and Formulations

2.1. Data Assimilation: The Ensemble Kalman Filter

In order to estimate the moments of prior error distributions such as Eq. (1),
an ensemble of model of realizations is used in terms of the ensemble Kalman55

filter (EnKF) [12]. For an ensemble size N , we have

Ψb =
[
ψb[1], ψb[2], . . . , ψb[N ]

]
∈ Rn×N , (5a)

so that

ψb ≈ ψb =
1

N
·
N∑
e=1

ψb[e] ∈ Rn×1 , (5b)

and

B ≈ Pb =
1

N
·∆Ψ ·∆ΨT ∈ Rn×n , (5c)

where ψb[e] ∈ Rn×1 is the e-th ensemble member for the e-th ensemble (with
1 ≤ e ≤ N). Here, ∆Ψ ∈ Rn×N is the matrix of perturbations, which can be60
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calculated by

∆Ψ = Ψb −ψb · 1T , (5d)

where 1 is a constant unit vector of the same dimension with all its components
being ones. In the EnKF, the main analysis step [13, 14] is performed by
virtually solving a 3D-Var optimization problem for each prior member in (5a)
[15, 2]. Thus, for a given observation o ∈ Rm×1, the posterior ensemble can be65

computed as follows [16, 6]:

Ψa = Ψb + Pa ·∆Y ∈ Rn×N , (6a)

where Pa ∈ Rn×n is a low-rank approximation of the posterior covariance matrix
in the following form:

Pa =
[[

Pb
]−1

+ WT · R̂−1 ·W
]−1

. (6b)

The innovation matrix ∆Y on the synthetic observations can be written as

∆Y = WT · R̂−1 ·
[
o · 1T + E−W ·Ψb

]
∈ Rm×N ,

where each column of matrix E ∈ Rm×N follows a multivariate standard normal70

distribution, which makes the filter statistically consistent, but sampling noise
can be induced during the assimilation step. In the operational Data Assimila-
tion (DA), high-resolution models often requires the ensemble sizes to be hun-
dreds (due to the computational effort involved in a single model propagation),
and the sampling noise can thus degrade the quality of analysis corrections on75

the prior members (5a). An immediate consequence is that the ensemble covari-
ance matrix (5c) becomes low-rank [17] and subsequently spurious correlations
can impact the quality of analysis innovations in (6a). A common strategy in
order to counteract this effect is to use a proper localization method. Such
methods can can dissipate long-distance correlations by using one of the three80

techniques (in the current literature): covariance matrix localization, spatial
domain localization, and observation localization.

In the covariance localization method, the structure of ensemble covariances
(5c) can be achieved by componentwise multiplications with a so-called local-
ization matrix whose structure typically mitigates long-distance correlations85

among model components (grid components in space). Another possible choice
is to estimate sparse precision covariance matrices whose structure can rely on
the conditional independence among different model components with regard
to their physical distances. With the above conditions, the ensemble Kalman
filter, based on a modified Cholesky decomposition, is proposed [5], namely, the90

EnKF-MC. In the EnKF-MC, the analysis step can be summarized as follows
[4]:

Ψa = Ψb + Â ·∆Y, (7a)
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with

Â =
[
B̃−1 + WT · R̂−1 ·W

]−1
∈ Rn×n , (7b)

which is a well-conditioned estimate of the posterior covariance matrix by means
of the modified Cholesky decomposition [18]:95

B̃−1 = LT ·D · L ∈ Rn×n , (7c)

The matrix L ∈ Rn×n is sparse and its structure is lower triangular with ele-
ments:

{L}ij =


−ςij , for j ∈ Z(i, ϑ),

1 , for i = j,

0 , otherwise,

where the parameters ςij are obtained by fitting the following linear models:

ψ[i] −
∑

j∈Z(i,ϑ)

ψ[j] · ςij + γi ∈ RN×1 = 0 .

Here,γi ∈ Rn×1 is normally distributed, and ψ[i] ∈ RN×1 corresponds to the
i-th transposed row of the ensemble (5a). In addition, D ∈ Rn×n is a diagonal100

matrix given by

{D}ii = v̂ar

ψ[i] −
∑

j∈Z(i,ϑ)

ψ[j] · ςij

−1 , for 1 ≤ i ≤ n ,

where v̂ar stands for the empirical variance. Z(i, ϑ) is a set storing the prede-
cessor indices of model component i for a given radius of influence ϑ, subject to
some ordering of model components. An example in a two-dimensional domain
is shown in Fig. 1.105

(a) For component 6 in this model, the
blue region forms its local neighborhood
(a box) when ϑ = 1.

(b) For the same component 6, the blue
region is considered as its predecessors
when ϑ = 1.

Figure 1: Local grid components and local grid predecessors for component 6 in the grid when
ϑ = 1. Model variables are ordered by means of a column-major format.

In the current literature, methods have been proposed in order to avoid the
direct computation of (7b) by exploiting the special structure of (7c). This
is usually achieved via Sherman Morrison based formulas [2] and/or rank-one
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updates over Cholesky factors [19, 20] without matrix inversion and computation
of posterior members. Once the analysis ensemble is obtained, the analysis110

members are propagated until new observations are available, and then a new
background ensemble is obtained. This process is repeated until all observations
within the assimilation window are assimilated.

For technical details about the domain and observation localization methods,
further discussions about these topics can be found in [21, 22].115

In the case when the observation operator is non-linear, EnKF formulations
can struggle to obtain adequate estimates of the posterior moments (and error
distributions). In such cases, stochastic sampling methods becomes preferable
over ensemble based methods. For instance, MCMC methods [23, 24, 25] are
commonly used to sample complex probability density functions in low dimen-120

sional spaces. However, in the context of DA, the required number of samples
for successfully approaching posterior moments increases exponentially [26] with
respect to the number of parameters under consideration.

Some recent efforts have focused on some accelerating MCMC methods for
non-Gaussian data assimilation, for instance, either by modifying proposal func-125

tions [27] or ether by using Verlet integrators [28, 29]. Thus, there is a need to
carry out further research so as to apply such methods under current operational
DA scenarios.

2.2. Local Search Methods

In order to cope with nonlinear obseration operation for assimilation, Local130

Search (LS) methods can be investigated in this DA context. Recent studies
have successfully applied such LS methods for solving inverse problems [30, 31],
which are a general class of DA problems. In general, most LS methods attempt
to explore the search space Γ (space of feasible solutions) by using a so-called
transition function F : Γ × Υ → Γ, which enable to calculate the state x′ ∈ Γ135

from another x ∈ Γ by

x′ = F (x, θ) .

Here, θ ∈ Υ is a set of additional parameters defined in the space Υ (i.e., R).
Furthermore, x is known as the current state, while x′ is commonly referred to
as the proposed state. For example, the transition function for ψ ∈ Rn×1 and
δψ ∈ Rn×1140

ψ′ = F (ψ, δψ) = ψ + δψ, for δψ ∼ N (0, I) , (8)

can be naively chosen to solving an optimization problem in the form of (4).
In this case, both the search space and the parameter space are the same:
Rn×1. The acceptance/rejection criterion of proposed states vary from method
to method. For instance, in the Tabu Search (TS) method [32, 33], new states
ψ′ are preferred over current ones ψ as long as [34] the following condition is145

met:

G
(
ψ′
)
≤ G (ψ) . (9)
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Briefly speaking, a general TS framework for solving the 3D-Var optimization
problem by using the transition function (8) can be summarized as the Algo-
rithm 1.

Algorithm 1 Tabu Search method for solving 3D-Var optimization problems.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
.

Ensure: A posterior mode approximation ψ
a

of Eq. (4).
1: for u = 0→ U do
2: Draw δψ(u) ∼ N (0, I)

3: Compute z(u) = F
(
ψ(u), δψ(u)

)
via Eq. (8).

4: if G
(
z(u)

)
≤ G (ψ) then

5: ψ(u+1) ← z(u)

6: else
7: ψ(u+1) ← ψ(u)

8: Set ψ
a ← ψ(u).

Some TS implementations make use of so-called tabu lists [32] in order to150

circumvent cycles during optimization steps. In the context of DA, a tabu list
may not be practical, given huge search-space dimensions (i.e., vector state sizes
range in the order of millions). Simulated annealing (SA) inspired approaches
are another related family of well-known LS methods [35, 36, 37]. In these
methods, the acceptance/rejection criterion (18) is replaced by a probabilistic155

one via the Boltzmann probability distribution:

δ
(
ψ′, ψ

)
= min

(
1, exp

(
−

[
G
(
ψ′
)
− G (ψ)

T

]))
, (10)

where the T parameter is the temperature which varies as iterations. A higher
value of T lead to a higher acceptance rate so that proposed states with large
cost function values may be accepted as current solutions. But it may leads to
slow convergence and even runs the risk of getting trapped in non-stationary160

points, which can be avoided through some modifications of relevant accep-
tance/rejection rules (i.e., by having a near one cooling factor). The process
is repeated until a stopping criterion is met. For instance, a minimum tem-
perature Tmin can be imposed as a lower bound (an user-defined parameter).
During the iterations, the temperature is updated based on a cooling schedule165

via a cooling factor 0 < ρ < 1, typically ρ ∈ [0.8, 0.95]. A general framework
of SA for solving the optimization problem (4) by using the transition function
(8) can be summarized as the Algorithm 2.
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Algorithm 2 Simulated annealing method for optimizing 3D-Var problems.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
, initial temperature Tini,

cooler factor ρ, lowest temperature Tmin .
Ensure: A posterior mode approximation ψ

a
of Eq. (4).

1: T ← Tini
2: u← 0
3: while T > Tmin do
4: Draw δψ(u) ∼ N (0, I)

5: Compute z(u) = F
(
ψ(u), δψ(u)

)
via Eq. (8).

6: Draw γ ∼ U [0, 1]. . U stands for Uniform distribution.

7: if γ < δ
(
z(u), ψ(u)

)
then

8: ψ(u+1) ← z(u)

9: else
10: ψ(u+1) ← ψ(u)

11: T ← ρ · T
12: u← u+ 1

13: Set ψ
a ← ψ(u).

There are many other effective LS methods proposed in the current literature
[38, 39, 40], which we do not discuss here due to the limitation of space. A170

comprehensive survey of those methods can be found in [41, 42, 43].

2.3. Gradient Based Optimization Techniques and Convergence Properties

In nonlinear numerical optimization [44, 45], optimization problems of the
form (4) are commonly solved by iterative schemes such as

ψ(u+1) = ψ(u) + δψ(u) , (11)

wherein δψ(u) is a search direction, often along the steepest descent direction175

[46, 47, 48, 49]

δψ(u) = −Z1 · ∇G
(
ψ(u)

)
, (12a)

where Z1 ∈ R is a constant which makes the computation (11) (physically)
consistent. This is usually achieved by the Newton’s step [50, 51, 52]

∇2G
(
ψ(u)

)
· δψ(u) = −∇G

(
ψ(u)

)
, (12b)

or a quasi-Newton based method [53, 54, 55],

P(u) · δψ(u) = −∇G
(
ψ(u)

)
, (12c)
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where P(u) ∈ Rn×n is a positive definite matrix. A concise survey of Newton180

based methods can be found in [56].
Another relevant family of methods proposed in the current literature are the

reduced-space approximations [57, 58, 59]. In this framework, search directions

δψ(u) are constrained to the space spanned by a pre-defined set of basis vectors
Φ(u) ∈ Rn×K , and thus iterations commonly take the form:185

ψ(u+1) = ψ(u) + Φ(u) · µ , (12d)

where the weights µ ∈ RK×1 can be computed by solving the optimization
problem

µ∗ = arg min
µ
G
(
ψ(u) + Φ(u) · µ

)
. (13)

It is worth pointing out that step sizes in (12) can be too large, their optimal
length can be approximated by using line search methods [60, 61, 62], which can
ensure global convergence of iterative processes to stationary points defined by190

first order optimality conditions. This holds as long as some assumptions over
functions, gradients, and (potentially) Hessians are preserved [63]. In such line
search methods, the following assumptions are commonly used:

A The function f(ψ) has a lower bound on Ω0 = {ψ ∈ Rn×1, f(ψ) ≤
f(ψ0)}, where ψ0 ∈ Rn×1 is available.195

B The gradient ∇f(ψ) is assumed to be Lipschitz continuous on an open
convex set B, containing Ω0,

‖∇G(ψ)−∇G(z)‖ ≤ L · ‖ψ − z‖ , for ψ, z ∈ B, and L > 0.

All the above conditions, together with the iterative form

ψ(u+1) = ψ(u) + α · δψ(u) , (14)

can ensure global convergence [64], as long as α is chosen approximately as a
minimizer200

α∗ = arg min
α≥0
G
(
ψ(u) + α · δψ(u)

)
. (15)

In principle, this optimization problem (15) can be partially solved by well-
known rules for choosing step sizes in the context of line search [49].

We believe that it is advantageous to combine stochastic methods and gradi-
ent approximations of (3), which enables the solution of the 3D-Var optimization
problem (4) successfully. The convergence of such methods can be proved via205

common assumptions in the context of gradient-based optimization methods.
In the next section, we will explore some of these ideas.

9



3. Proposed Methods

Following the formulations in the previous section, we now propose four LS
methods for solving the 3D-Var optimization problem (4). In all cases, the210

initial seed ψ(0) of our iterative methods is the background ensemble mean ψ
b

(5b). Let u the u-th iteration, for 1 ≤ u ≤ U , where U is the maximum number
of iterations. The main rationale behind our approach is somehow to obtain at
least one mode of the posterior error distribution.

3.1. Tabu Search Single Gradient Approximation215

At iteration u, the Tabu Search Single Gradient Approximation (TS-SGA)
in essence proceeds as follows. The observation operator is first linearized about
the current solution ψ(u):

W (ψ) ≈ G (ψ) =W
(
ψ(u)

)
+ Wψ(u) ·

[
ψ −ψ(u)

]
, (16a)

where its Jacobian matrix Wψ(u) of W(ψ) is given by

Wψ(u) =
∂

∂ψ
{W(ψ)} |ψ=ψ(u) ∈ Rm×n .

Then, the objective or cost function (3) can be approximated by a quadratic220

form:

Ĝ(ψ) =
1

2
·
∥∥∥ψ −ψb∥∥∥2

B̃−1
+

1

2
· ‖o− G (ψ)‖2R̂−1 , (16b)

with its gradient

∇Ĝ(ψ) = B̃−1 ·
[
ψ −ψb

]
−WT

ψ(u) · R̂−1 ·
[
d−Wψ(u) ·ψ

]
∈ Rn×1 , (16c)

where d = o −W
(
ψ
b
)
∈ Rm×1 is the innovation state on the observation o.

From (16c), the transition function

z(u) = K
(
ψ(u), ∇Ĝ

(
ψ(u)

)
, α
)
, with α ∼ U [0, 1] , (17a)

is thus defined over samples, along the steepest descent direction of (16b):225

K
(
ψ(u), ∇Ĝ

(
ψ(u)

)
, α
)

= ψ(u) − α · ∇Ĝ
(
ψ(u)

)
. (17b)

Here, the uniform distribution U [0, 1] is drawn on [0, 1]. Hence, the accep-
tance/rejection rule, which is similar to that of the Tabu Search method, can
be realized by

ψ(u+1) =

{
ψ(u), for G

(
ψ(u)

)
< G

(
z(u)

)
,

z(u), otherwise.
(18)
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The overall iterative process is then repeated for a fixed number of iterations, or
until some predefined stopping criterion is met. Finally, the detailed TS-SGA230

can be summarized as the Algorithm 3.

Algorithm 3 The Tabu Search Single Gradient Approximation (TS-SGA) for
Non-Gaussian Data Assimilation.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
, and the maximum number

of iterations U .
Ensure: A posterior mode approximation ψ

a
of Eq. (4).

1: for u = 0→ U do
2: Linearize W(ψ) about ψ(u) according to Eq. (16a).

3: Compute the gradient Ĝ
(
ψ(u)

)
via Eq. (16c).

4: Set α ∼ U [0, 1].
5: Propose the state z(u) by means of Eq. (17a).

6: Set ψ(u+1) as stated in Eq. (18).
7: if stopping criterion is satisfied then
8: break
9: Set ψ

a ← ψ(u).

3.2. Tabu Search Multiple Gradient Approximation

With the gradient approximation (16c), we can generate a set of K random
positive definite matrices:

{Π1, Π2, . . . , ΠK} , (19)

where Πk ∈ Rn×n (for 1 ≤ k ≤ K) are used for generating a set of random235

directions:

φ(u,k) = −Πk · ∇Ĝ
(
ψ(u)

)
∈ Rn×1 . (20)

We can restrict the optimization problem (4) to the space spanned by such
vectors:

ψ = ψ(u) + Φ(u) · µ (21)

where µ ∈ RK×1 is a vector in redundant coordinates to be computed later. In
addition, Φ(u) is given by240

Φ(u) =
[
φ(u,1), φ(u,2), . . . , φ(u,K)

]
∈ Rn×K . (22)

11



Substituting (21) into (16b), we have

Ĝ
[
ψ(u) + Φ(u) · µ

]
= Q (µ) =

1

2
·
∥∥∥δψ(u) + Φ(u) · µ

∥∥∥2
B̃−1

+
1

2
·
∥∥∥δy(u) −Wψ(u) ·Φ(u) · µ

∥∥∥2
R̂−1

, (23)

where δψ(u) = ψ(u) − ψb ∈ Rn×1, and δy(u) = o −W
(
ψ(u)

)
∈ Rm×1. Now

the gradient of (23) becomes

∇Q(µ) =
[
Φ(u)

]T
· B̃−1 ·

[
δψ(u) + Φ(u) · µ

]
−

[
W(u)

]T
· R̂−1

[
δy(u) −W(u) · µ

]
∈ RK×1 ,

where we have used W(u) = Wψ(u) ·Φ(u) ∈ Rm×K by setting this gradient to
zero. As a result, the optimal weights can be computed by245

µ∗ = −
[[

Φ(u)
]T
· B̃−1 ·Φ(u) +

[
W(u)

]T
· R̂−1 ·W(u)

]−1
·
[[

Φ(u)
]T
· B̃−1 · δψ(u) −

[
W(u)

]T
· R̂−1 · δy(u)

]
, (24)

over which our transition function

z(u) = K̂
(
ψ(u), Φ(u), µ∗, α

)
, with α ∈ U [0, 1] , (25)

can be expressed as

K̂
(
ψ(u), Φ(u), µ∗, α

)
= ψ(u) + α ·

[
Φ(u) · µ∗

]
. (26)

Here, the acceptance/rejection criteria is the same as (18). Again, the overall
process is repeated until some predefined stopping criterion is met, often when a
fixed number of maximum iterations is exceeded. In summary, the Tabu Search250

Multiple Gradient Approximations (TS-MGA) is detailed in the Algorithm 4.

3.3. Simulated Annealing Single Gradient Approximation and Simulated An-
nealing Multiple Gradient Approximations

The strict condition (18) can be difficult to satisfy, but it can be relaxed
by using the well-known Metropolis Hastings criterion. Similar to TS-SGA,255

we can formulate a method such that, once a new state z(u) is proposed, the
acceptance/rejection criterion relies on the Boltzmann probability distribution:

δ
(
z(u), ψ(u)

)
= min

{
1, exp

−
G (z(u))− G

(
ψ(u)

)
T (u)

} , (27)
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Algorithm 4 The Tabu Search Multiple Gradient Approximations (TS-MGA)
for Non-Gaussian Data Assimilation.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
, the maximum number of

iterations U .
Ensure: A posterior mode approximation ψ

a
of Eq. (4).

1: for u = 0→ U do
2: Linearize W(ψ) about ψ(u) according to (16a).

3: Compute the gradient Ĝ
(
ψ(u)

)
via (16c).

4: Compute the set of random matrices Eq. (19).

5: Set Φ(u) as stated in (22).
6: Calculate the optimal weights µ∗ via Eq. (24).
7: Set α ∼ U [0, 1].
8: Propose the state z(u) by means of Eq. (25).

9: Set ψ(u+1) as stated in Eq. (18).
10: if stopping criterion is satisfied then
11: break
12: Set ψ

a ← ψ(u).

where T (u) ∈ R is the temperature at iteration u. Consequently, the current
solution is updated as follows:

ψ(u+1) =

z(u), with probability δ
(
z(u), ψ(u))

)
,

ψ(u), with probability 1− δ
(
z(u), ψ(u))

)
.

(28)

That is to say, the solutions with high-cost function values can be more likely to260

be accepted as long as T (u) is sufficiently large. For low temperature values, the
acceptance/rejection criterion behaves similarly to that of TS based methods.

During iterations, the temperature T (u) is decreased by a so-called cooling
factor ρ via a cooling schedule:

T (u) = ρ · T (u−1) ,

where ρ is typically in the range of [0.8, 0.95]. The Algorithm 5 details the Sim-265

ulated Annealing Single Gradient Approximations (SA-SGA) steps. Obviously,
in this context, a reduced-space approximation is also possible by construct-
ing a set of surrogate basis vectors (22). The main idea is that the solution
can be constrained to such sub-spaces whose dimensions can be much less than
those of actual search spaces; once a solution is found, it is projected back onto270

the actual space of feasible solutions. This strategy can be employed so as to
reduce the computational complexity of the SA-SGA formulation during itera-
tions. We can now call this initiative the Simulated Annealing Multiple Gradient
Approximations (SA-MGA), and its steps are summarized in the Algorithm 6.
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Algorithm 5 The Simulated Annealing Single Gradient Approximation (SA-
SGA) for Non-Gaussian Data Assimilation.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
, initial temperature Tini,

cooler factor ρ, and the lowest temperature Tmin .
Ensure: A posterior mode approximation ψ

a
of Eq. (4).

1: T (0) ← Tini
2: u← 0
3: while T (u) > Tmin do
4: Linearize W(ψ) about ψ(u) according to Eq. (16a).

5: Compute the gradient Ĝ
(
ψ(u)

)
via Eq. (16c).

6: Set α ∼ U [0, 1].
7: Propose the state z(u) by means of Eq. (17a).

8: Set ψ(u+1) as stated in Eq. (28).
9: if stopping criterion is satisfied then

10: break
11: u← u+ 1
12: T (u) ← ρ · T (u−1)

13: Set ψ
a ← ψ(u).

Algorithm 6 The Simulated Annealing Multiple Gradient Approximations
(SA-MGA) for Non-Gaussian Data Assimilation.

Require: Initial solution ψ(0), typically ψ(0) ← ψ
b
, initial temperature Tini,

cooler factor ρ, and the lowest temperature Tmin .
Ensure: A posterior mode approximation ψ

a
of Eq. (4).

1: T (0) ← Tini
2: u← 0
3: while T (u) > Tmin do
4: Linearize W(ψ) about ψ(u) according to Eq. (16a).

5: Compute the gradient Ĝ
(
ψ(u)

)
via Eq. (16c).

6: Compute the set of random matrices Eq. (19).

7: Set Φ(u) as stated in Eq. (22).
8: Calculate the optimal weights µ∗ via Eq. (24).
9: Set α ∼ U [0, 1].

10: Propose the state z(u) by means of Eq. (25).

11: Set ψ(u+1) as stated in Eq. (28).
12: if stopping criterion is satisfied then
13: break
14: u← u+ 1
15: T (u) ← ρ · T (u−1)

16: Set ψ
a ← ψ(u).
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3.4. Building the Posterior Ensemble275

Once the optimization process is completed, the obtained solution ψ(u)

serves as the analysis mean about which the posterior members are built by
means of the Posterior Ensemble Kalman Filter (P-EnKF) equations [20]. Now
the e-th posterior member is estimated as follows:

ψa(e) = ψ
a

+ δψa(e) , for 1 ≤ e ≤ N ,

where δψa(e) ∈ Rn×1 follows the distribution280

δψa(e) ∼ N
(

0,
[
L̂T · D̂−1 · L̂

]−1)
. (29)

The estimate of the posterior precision covariance matrix can be done via a
modified Cholesky decomposition

L̂T · D̂−1 · L̂ = B̃−1 + WT
ψ

a · R̂−1 ·Wψ
a ∈ Rn×n .

By using the formulation [19], the matrix inversion in (29) is not actually needed.
Once all prior members are updated, the analysis ensemble is propagated in time
until new observations become available:285

ψ
b[e]
` =Mt`−1→t`

(
ψ
a[e]
`−1

)
, for 1 ≤ e ≤M ,

for all 1 ≤ ` ≤ M where M is the number of observations inside the current
assimilation window.

3.5. Convergence Analysis of Proposed Methods

In order to prove the convergence of the TS-MGA, we now consider the
assumptions (A), (B), and the condition290

∇G
(
ψ(u)

)T
· φ(u,k) < 0, for 1 ≤ k ≤ K . (30)

With the above assumptions, global convergence for the TS-MGA method can
be ensured by the next theorem with the necessary conditions.

Theorem 1. If (A), (B), and (30) hold, the TS-MGA with random line search

generates an infinite sequence
{
ψ(u)

}∞
u=0

, then

lim
u→∞

−∇G
(
ψ(u)

)T
·Φ(u) · µ∗∥∥∥Φ(u) · µ∗
∥∥∥


2

= 0 (31)

holds.295
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Proof. From Taylor series, the acceptance condition (9), and the Mean Value
Theorem, we know

G
(
ψ(u) + α∗ ·Φ(u) · µ∗

)
= G

(
ψ(u)

)
+ α∗ ·

∫ 1

0

∇G
(
ψ(u) + α∗ · t ·Φ(u) · µ∗

)T
· Φ(u) · µ∗ · dt ,

where α∗ is given by (15). Then, we also have

G
(
ψ(u)

)
− G

(
ψ(u+1)

)
≥ −α∗ ·

∫ 1

0

∇G
(
ψ(u) + α∗ · t ·Φ(u) · µ∗

)T
· Φ(u) · µ∗ · dt

for any ψ(u+1) on the direction ψ(u) + α ·Φ(u) · µ∗ (with ρ ∈ [0, 1]). Thus, we
get300

G
(
ψ(u)

)
− G

(
ψ(u+1)

)
≥ G

(
ψ(u)

)
− G

(
ψ(u) + α∗ ·Φ(u) · µ∗

)
,

so that

G
(
ψ(u)

)
− G

(
ψ(u+1)

)
≥ −α∗ · ∇G

(
ψ(u)

)T
·Φ(u) · µ∗

− α∗ ·
∫ 1

0

[
∇G

(
ψ(u) + α∗ · t ·Φ(u) · µ∗

)
−∇G

(
ψ(u)

)]T
· Φ(u) · µ∗ · dt .
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Using the Cauchy Schwarz inequality, we have

G
(
ψ(u)

)
− G

(
ψ(u+1)

)
≥ −α∗ · ∇G

(
ψ(u)

)T
·Φ(u) · µ∗

− α∗ ·
∫ 1

0

∥∥∥∇G (ψ(u) + α∗ · t ·Φ(u) · µ∗
)
−∇G

(
ψ(u)

)∥∥∥
·
∥∥∥Φ(u) · µ∗

∥∥∥ · dt
≥ −α∗ · ∇G

(
ψ(u)

)T
·Φ(u) · µ∗

− α∗ ·
∫ 1

0

L ·
∥∥∥α∗ · t ·Φ(u) · µ∗

∥∥∥ · ∥∥∥Φ(u) · µ∗
∥∥∥ · dt

= −α∗ · ∇G
(
ψ(u)

)T
·Φ(u) · µ∗

− α∗ · L ·
∥∥∥Φ(u) · µ∗

∥∥∥ · ∫ 1

0

∥∥∥t · α∗ ·Φ(u) · µ∗
∥∥∥ · dt

= −α∗ · ∇G
(
ψ(u)

)T
·Φ(u) · µ∗ − 1

2
· α∗2 · L ·

∥∥∥Φ(u) · µ∗
∥∥∥2 ,

to ensure decrease of (3), we choose alpha as

α∗ = −
∇G

(
ψ(u)

)T
·Φ(u) · µ∗

L ·
∥∥∥Φ(u) · µ∗

∥∥∥2 ,

leading to

G
(
ψ(u)

)
− G

(
ψ(u+1)

)
≥

[
∇G

(
ψ(u)

)T
·Φ(u) · µ∗

]2
L ·
∥∥∥Φ(u) · µ∗

∥∥∥2

− 1

2
·

[
−∇G

(
ψ(u)

)T
·Φ(u) · µ∗

]2
L ·
∥∥∥Φ(u) · µ∗

∥∥∥2
=

1

2 · L
·

−∇G
(
ψ(u)

)T
·Φ(u) · µ∗∥∥∥Φ(u) · µ∗
∥∥∥


2

.

By (A) and (30), it is straightforward to show that
{
G
(
ψ(u)

)}∞
u=0

is a monoton-305

ically decreasing number sequence with a bound below. Therefore,
{
G
(
ψ(u)

)}∞
u=0

has a limit, and consequently (31) holds.
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It is worth pointing out that the TS-SGA is a particular case of the TS-MGA

when the search direction is −∇G
(
ψ(u)

)
. Thus, the descent condition

−∇G
(
ψ(u)

)T
· ∇G

(
ψ(u)

)
= −

∥∥∥∇G (ψ(u)
)∥∥∥2 < 0 (32)

is always satisfied. Simiarly, the next Theorem states the necessary conditions310

for guaranteeing the convergence of the TS-SGA.

Theorem 2. If (A), (B), and (32) hold, the TS-SGA with random line search

generates an infinite sequence
{
ψ(u)

}∞
u=0

, then

lim
u→∞

−∇G
(
ψ(u)

)T
· ∇G

(
ψ(u)

)
∥∥∥∇G (ψ(u)

)∥∥∥

2

= 0 (33)

holds.

Proof. The out of proving this Theorem can be done in a similar way to that of315

proving Theorem 1. It is enough to note that the search direction Φ(u) · µ∗ is

now replaced by −∇G
(
ψ(u)

)
and making use of (32). Then, the results in the

theorem follow.

Now we can state the the convergence of SA-SGA and SA-MGA in the
following two corollaries 1 and 2, respectively. It should be noted that, as T (u)

320

goes to 0, the acceptance/rejection rule of SA methods is similar to that of TS
algorithms.

Corollary 1. If (A), (B), and (32) are true, as T (u) → 0, the SA-SGA with

random line search generates an infinite sequence
{
ψ(u)

}∞
u=0

, then

lim
u→∞

−∇G
(
ψ(u)

)T
· ∇G

(
ψ(u)

)
∥∥∥∇G (ψ(u)

)∥∥∥

2

= 0

holds.325

Corollary 2. If (A), (B), and (30) are true, as T (u) → 0, the TS-MGA with

random line search generates an infinite sequence
{
ψ(u)

}∞
u=0

, then

lim
u→∞

−∇G
(
ψ(u)

)T
·Φ(u) · µ∗∥∥∥Φ(u) · µ∗
∥∥∥


2

= 0

holds.
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We now are ready to perform some numerical experiments to show that the
proposed approaches can indeed work well.330

4. Numerical Experiments and Results

We now test and validate our proposed methods by using seven different
statistical models. By using Bayes’ rule, we know that the posterior error dis-
tribution reads:

P (ψ|o) ∝ exp (−G(ψ)) , (34)

where G(ψ) is given in (3). We consider the nonlinear observation operator [65]:335

W (ψ) ≡ {W (ψ)}j =
{ψ}j

2
·

[
1 +

( | {ψ}j |
2

)γ−1]
, (35)

where j corresponds to the j-th observed component, for 1 ≤ j ≤ m. The values
of γ vary in 1 ≤ γ ≤ 7 from which seven different statistical models in (34) are
obtained, some of these models can be seen in figure (2). Thus, for each value
of γ, a different optimization problem of the form:

ψa = arg max
ψ
P (ψ|o) ,

is derived. The experimental settings are as follows:340

• We make use the Lorenz 96 model as our surrogate numerical model [66]
from which samples from prior error distributions are obtained. This
model is defined over a set of nonlinear ordinary differential equations:

dxj
dt

=


(x2 − xn−1) · xn − x1 + F for i = 1,

(xi+1 − xi−2) · xi−1 − xi + F for 2 ≤ i ≤ n− 1,

(x1 − xn−2) · xn−1 − xn + F for i = n,

(36)

where xi is the i-th model component (for 1 ≤ i ≤ n). Each model
component corresponds to a particle which fluctuates in the atmosphere345

and exhibits some properties such as advection and internal dissipation
[67]. Besides, the Lorenz 96 model exhibits chaotic behavior when the
external force F is set to eight, which makes the model attractive for
testing emerging data assimilation schemes.

• No model errors are considered during the experiments.350

• The number of model components n is set as n = 40.

• The propagation of an initial perturbed state is carried out over a long
time period so as to be consistent with the model (36). As a result, the
actual initial solution ψ∗0 is obtained. Similar operations are applied for
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building the initial background state as well as the initial background355

ensemble.

• For the background ensemble, we create a pool of 105 members in the
experiments. Random members are sampled from such pool to obtain
initial background ensembles.

• We consider two observational grids, in the first case, the number of ob-360

served components p is set to 70%, while in the last one is set to 90%.
Note that, m = p · n.
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-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(d) γ = 5.
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(e) γ = 6.
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(f) γ = 7.

Figure 2: Two dimensional projections of likelihood functions (data error distributions) for
different values of γ. Seven different statistical models are tried during the experiments.
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• The assimilation window consists of M = 20 observations that are evenly
spaced. Observations are available every 17 hours. They are synthetically
built by using the probability distribution:365

o` ∼ N
(
W (ψ∗` ) , R̂

)
, for 1 ≤ ` ≤M , (37)

where the covariance matrix R̂ of the data-errors is diagonal with diagonal
elements being σ2 = 0.012. This essentially mimics the realistic behaviour
of observations when collected via sensors.

Now the parameter settings are as follows:

• The ensemble size N = 20.370

• For the Tabu Search (TS) based methods, the number of maximum iter-
ations varies in U ∈ {100, 200, 300}.

• For the Simulated Annealing (SA) based methods, the cooling factor ρ is
set to be in ρ ∈ {0.85, 0.90, 0.95}.

• The sub-space approximations of TS and SA use spaces of sizes K ∈375

{10, 20, 30, 40}.

• We consider the L2-norm of errors in order to estimate the actual error at
the different assimilation steps `, for 1 ≤ ` ≤M ,

λ` =
∥∥∥ψ∗` −ψa`∥∥∥

2
=

√
[ψ∗` −ψ

a
` ]
T · [ψ∗` −ψ

a
` ] , (38)

where ψ∗` and ψa` are the reference solutions and the solutions from the
analysis, respectively.380

• On average, the errors over a given assimilation window are measured by
using the Root-Mean-Square-Error (RMSE):

λ =

√√√√ 1

M
·
M∑
`=1

λ2` . (39)

• For each parameter setting of γ and p, 10 independent runs are performed
for each method so as to assess the averaged accuracy of the proposed
methods by means of the metrics (38) and (39).385

For a complete assimilation window, the averages of error norms are shown
in Figs 3 and 4 for the TS-SGA and the SA-SGA formulations, respectively. For
the TS-SGA, a different number of iterations U are attempted, while different
cooling factors ρ are also used for the SA-SGA implementation. It can be seen
clearly that, in both cases, the error norms decrease as the ensemble moves390

forward in the assimilation window as expected. As more data or information
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is assimilated into the actual imperfect model, the uncertainties will be largely
reduced during assimilation steps.

On the other hand, for a large number of observed components, highly non-
linear observation operators can be less sensitive to overfitting during assimi-395

lation stages. In all cases, the behavior of both methods is similar, regardless
of their parameter configurations. This may be mainly attributed to the fact
that the sampling procedure is performed along a gradient approximation of
the 3D-Var cost function. Therefore, high-quality states can be obtained from
such set of directions. In addition, the parameter configurations (U or ρ where400

appropriate) do not influence much on the quality of solutions; this feature is
attractive since those parameters can be hard to tune in practice. For exam-
ple, the cooling factor ρ in SA based methods and the number of iterations U
in TS inspired formulations can be considered as hyper-parameters, thus any
insensitivity to such parameters can be desirable.405

As we briefly mentioned before, the computational efforts of SGA formula-
tions can be decreased by using sub-space approximations during optimization
steps. The results for the TS-MGA and the SA-MGA, respectively, can be seen
in Figs 4 and 6 where p = 70% of model components are observed from the
model state. Again, for all configurations and parameter settings, the proposed410

methods can reduce initial background errors as observations are gradually used
and assimilated. Furthermore, reduced-space approximations in some cases can
provide results similar to those of full-space approximations. For K = 10, it can
be seen clearly that the performance of MGA based methods can degrade for
highly nonlinear observation operators (i.e., γ = 7), though this is a reasonable415

accuracy considering the trade-off between the computational effort of comput-
ing steps in such sub-spaces. However, in terms of RMSE values, for different
values of γ, all methods behave similarly as can be seen in the Tables 1 and 2 for
p = 70%, and in the Tables 3 and 4 for p = 90%. The results are reported after
removing the spin-off period (the first 6 assimilation steps) to better understand420

the behavior of filters once observations have been injected into the numerical
model. Note that, such assimilation steps can be performed within a reasonable
computational time, for instance, posterior states computations are bounded by
seconds as can be seen in the Tables 5 and 6 for different values of γ.

In figures 7 and 8, we report some results of a single assimilation step for the425

TS-MGA and the SA-MGA, respectively. We consider the initial assimilation
step since no information from the actual system dynamics (36) has been in-
jected into the numerical forecast. The results are shown in the logarithm scale
for the cost function values and the optimization step. As can be seen, in both
cases, as the sub-spaces dimensions are increased, the methods can converge430

faster to posterior modes of the error distribution. This is more evident for TS
based methods, for SA inspired algorithms equivalent results can be obtained
in a similar number of iterations but, it is evident that the more degrees of
freedom (sub-spaces dimensions) the faster their convergence. Note that, some
fluctuations in cost function values among iterations can be observed for the435

SA-MGA, this can be possible owing to the acceptance/rejection rule of such
method wherein solutions with large cost function values can be considered over
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short time periods to avoid getting trap in local minimizers. Besides, the ac-
ceptance/rejection rule of SA methods can exploit sub-spaces dimensions by
providing more accurate results as those are increased.440

p = 70% p = 90%

γ
=

1
γ

=
3

γ
=

5
γ

=
7

Figure 3: Averages (dashed lines) and standard deviations (shaded regions) of error norms for
the TS-SGA implementation, different values of parameters U , and p = 70% of components
observed from the model state.
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p = 70% p = 90%

γ
=

1
γ

=
3

γ
=

5
γ

=
7

Figure 4: Averages (dashed lines) and standard deviations (shaded regions) of error norms for
the SA-SGA implementation, different values of parameters ρ, and p = 70% of components
observed from the model state.
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U = 100 U = 200 U = 300
γ

=
1

γ
=

2
γ

=
3

γ
=

5
γ

=
7

Figure 5: Averages and standard deviations of error norms for the SA-MGA implementation,
different values of parameter U , different sub-space sizes K, and p = 70% of components
observed from the model state.

25



ρ = 0.85 ρ = 0.90 ρ = 0.95
γ

=
1

γ
=

2
γ

=
3

γ
=

5
γ

=
7

Figure 6: Averages and standard deviations of error norms for the SA-MGA implementation,
different values of parameter ρ, different sub-space sizes K, and p = 70% of components
observed from the model state.
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

1

100

10 0.088

0.092

0.85

10 0.089

0.095

20 0.087 20 0.077
30 0.080 30 0.070
40 0.090 40 0.091

200

10 0.097

0.90

10 0.099
20 0.078 20 0.081
30 0.065 30 0.073
40 0.068 40 0.072

300

10 0.085

0.95

10 0.087
20 0.088 20 0.071
30 0.090 30 0.074
40 0.152 40 0.097

2

100

10 0.080

0.048

0.85

10 0.046

0.062

20 0.056 20 0.046
30 0.055 30 0.042
40 0.044 40 0.049

200

10 0.043

0.90

10 0.055
20 0.061 20 0.049
30 0.041 30 0.050
40 0.065 40 0.061

300

10 0.047

0.95

10 0.050
20 0.049 20 0.050
30 0.049 30 0.045
40 0.046 40 0.040

3

100

10 0.041

0.031

0.85

10 0.030

0.045

20 0.032 20 0.034
30 0.042 30 0.040
40 0.041 40 0.035

200

10 0.026

0.90

10 0.031
20 0.035 20 0.039
30 0.026 30 0.028
40 0.028 40 0.043

300

10 0.032

0.95

10 0.039
20 0.034 20 0.030
30 0.031 30 0.029
40 0.028 40 0.036

Table 1: Averages of Root-Mean-Square-Errors (RMSE) across an assimilation window with
20 observations for 10 repetitions. The non-linear term γ ranges in γ ∈ {1, 2, 3}, likewise
p = 70% .
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

5

100

10 0.028

0.023

0.85

10 0.023

0.031

20 0.022 20 0.020
30 0.024 30 0.016
40 0.024 40 0.024

200

10 0.029

0.90

10 0.019
20 0.015 20 0.021
30 0.020 30 0.015
40 0.020 40 0.019

300

10 0.017

0.95

10 0.015
20 0.019 20 0.012
30 0.018 30 0.026
40 0.020 40 0.017

6

100

10 0.027

0.020

0.85

10 0.027

0.021

20 0.028 20 0.019
30 0.023 30 0.016
40 0.021 40 0.021

200

10 0.022

0.90

10 0.027
20 0.015 20 0.018
30 0.018 30 0.018
40 0.017 40 0.020

300

10 0.019

0.95

10 0.016
20 0.018 20 0.017
30 0.015 30 0.021
40 0.012 40 0.022

7

100

10 0.063

0.020

0.85

10 0.060

0.019

20 0.020 20 0.013
30 0.024 30 0.017
40 0.023 40 0.017

200

10 0.078

0.90

10 0.027
20 0.016 20 0.015
30 0.016 30 0.014
40 0.018 40 0.016

300

10 0.026

0.95

10 0.016
20 0.015 20 0.014
30 0.012 30 0.016
40 0.014 40 0.016

Table 2: Averages of Root-Mean-Square-Errors (RMSE) across an assimilation window with
20 observations for 10 repetitions. The non-linear term γ ranges in γ ∈ {5, 6, 7}, likewise
p = 70%.
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

1

100

10 0.106

0.076

0.85

10 0.086

0.064

20 0.099 20 0.084
30 0.083 30 0.090
40 0.081 40 0.078

200

10 0.084

0.90

10 0.090
20 0.088 20 0.070
30 0.093 30 0.103
40 0.099 40 0.073

300

10 0.089

0.95

10 0.074
20 0.065 20 0.070
30 0.079 30 0.074
40 0.083 40 0.079

2

100

10 0.052

0.053

0.85

10 0.041

0.043

20 0.060 20 0.042
30 0.043 30 0.039
40 0.039 40 0.039

200

10 0.048

0.90

10 0.043
20 0.037 20 0.039
30 0.051 30 0.037
40 0.039 40 0.034

300

10 0.037

0.95

10 0.035
20 0.041 20 0.038
30 0.035 30 0.042
40 0.051 40 0.036

3

100

10 0.039

0.027

0.85

10 0.020

0.017

20 0.022 20 0.021
30 0.028 30 0.026
40 0.027 40 0.024

200

10 0.026

0.90

10 0.018
20 0.019 20 0.018
30 0.018 30 0.021
40 0.020 40 0.019

300

10 0.019

0.95

10 0.021
20 0.020 20 0.015
30 0.017 30 0.014
40 0.020 40 0.018

Table 3: Averages of Root-Mean-Square-Errors (RMSE) across an assimilation window with
20 observations for 10 repetitions. The non-linear term γ ranges in γ ∈ {1, 2, 3}, likewise
p = 90% .
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

5

100

10 0.219

0.013

0.85

10 0.162

0.011

20 0.034 20 0.014
30 0.016 30 0.014
40 0.014 40 0.013

200

10 0.139

0.90

10 0.266
20 0.018 20 0.021
30 0.009 30 0.007
40 0.010 40 0.011

300

10 0.166

0.95

10 0.247
20 0.011 20 0.010
30 0.011 30 0.008
40 0.011 40 0.010

6

100

10 0.370

0.013

0.85

10 0.382

0.010

20 0.047 20 0.046
30 0.013 30 0.011
40 0.014 40 0.009

200

10 0.349

0.90

10 0.323
20 0.031 20 0.019
30 0.011 30 0.010
40 0.010 40 0.008

300

10 0.583

0.95

10 0.270
20 0.022 20 0.033
30 0.012 30 0.007
40 0.010 40 0.009

7

100

10 0.639

0.011

0.85

10 0.477

0.008

20 0.167 20 0.167
30 0.014 30 0.012
40 0.012 40 0.008

200

10 0.942

0.90

10 0.375
20 0.135 20 0.056
30 0.008 30 0.009
40 0.011 40 0.006

300

10 0.495

0.95

10 0.413
20 0.070 20 0.153
30 0.011 30 0.007
40 0.009 40 0.009

Table 4: Averages of Root-Mean-Square-Errors (RMSE) across an assimilation window with
20 observations for 10 repetitions. The non-linear term γ ranges in γ ∈ {5, 6, 7}, likewise
p = 90%.
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

1

100

10 0.112

0.092

0.85

10 0.081

0.103

20 0.091 20 0.099
30 0.082 30 0.110
40 0.091 40 0.112

200

10 0.084

0.90

10 0.066
20 0.101 20 0.082
30 0.101 30 0.087
40 0.095 40 0.086

300

10 0.076

0.95

10 0.086
20 0.076 20 0.086
30 0.091 30 0.086
40 0.095 40 0.092

2

100

10 0.053

0.047

0.85

10 0.049

0.064

20 0.063 20 0.046
30 0.052 30 0.046
40 0.044 40 0.051

200

10 0.047

0.90

10 0.057
20 0.041 20 0.045
30 0.044 30 0.055
40 0.038 40 0.065

300

10 0.047

0.95

10 0.050
20 0.055 20 0.045
30 0.045 30 0.039
40 0.053 40 0.047

3

100

10 0.032

0.030

0.85

10 0.036

0.036

20 0.031 20 0.028
30 0.027 30 0.034
40 0.034 40 0.032

200

10 0.032

0.90

10 0.034
20 0.026 20 0.022
30 0.023 30 0.027
40 0.023 40 0.025

300

10 0.027

0.95

10 0.039
20 0.025 20 0.029
30 0.032 30 0.024
40 0.025 40 0.032

Table 5: Average of elapsed times, in seconds, for the compared methods in a single assimi-
lation step, the number of repetition reads 10. The non-linear term γ ranges in γ ∈ {1, 2, 3},
likewise p = 70%.
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Tabu Search Based Methods Simulated Annealing Based Methods
γ U K TS-MGA TS-SGA ρ K SA-MGA SA-SGA

5

100

10 0.035

0.015

0.85

10 0.037

0.018

20 0.038 20 0.049
30 0.085 30 0.075
40 0.168 40 0.095

200

10 0.058

0.90

10 0.038
20 0.123 20 0.054
30 0.176 30 0.077
40 0.476 40 0.105

300

10 0.059

0.95

10 0.044
20 0.111 20 0.080
30 0.154 30 0.084
40 0.426 40 0.109

6

100

10 0.018

0.014

0.85

10 0.036

0.017

20 0.024 20 0.054
30 0.063 30 0.074
40 0.125 40 0.099

200

10 0.030

0.90

10 0.036
20 0.030 20 0.060
30 0.068 30 0.078
40 0.179 40 0.102

300

10 0.041

0.95

10 0.045
20 0.040 20 0.070
30 0.105 30 0.085
40 0.254 40 0.111

7

100

10 0.004

0.014

0.85

10 0.042

0.017

20 0.008 20 0.065
30 0.017 30 0.091
40 0.102 40 0.112

200

10 0.012

0.90

10 0.044
20 0.011 20 0.067
30 0.031 30 0.083
40 0.012 40 0.113

300

10 0.035

0.95

10 0.048
20 0.015 20 0.087
30 0.052 30 0.098
40 0.126 40 0.129

Table 6: Average of elapsed times, in seconds, for the compared methods in a single assimi-
lation step, the number of repetition reads 10. The non-linear term γ ranges in γ ∈ {5, 6, 7},
likewise p = 70%.
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Figure 7: Logarithm of cost function values among iterations for a single assimilation step
of the TS-MGA. Notice, as the sub-spaces dimensions are increased, the method converges
faster to posterior modes of the error distribution. The number of observed components reads
p = 70% and the number of iterations U = 300.
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Figure 8: Logarithm of cost function values among iterations for a single assimilation step of
the SA-MGA method. Notice, as the sub-spaces dimensions are increased, the method con-
verges faster to posterior modes of the error distribution (minimum values of cost functions).
The number of observed components reads p = 70% while the cooling factor is set to ρ = .95.

5. Conclusions

Four local search methods have been proposed for the solving nonlinear
data assimilation problems. The proposed methods use background states as
initial seeds (solutions) of our iterative methods during assimilation steps, while
observation operators are linearized about current solutions during iterations.445

The well-known rules in the Tabu Search and the Simulated Annealing contexts
are used to update iteration formulas. Solutions are proposed, together with
steepest descent approximations, for the 3D-Var cost function to reduce the
number of rejected states. Sub-spaces approximations are then constructed
and used in this context so as to reduce the computational effort of matrix450
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multiplications in full-search spaces. The global convergence of all the methods
has also been theoretically proven, based on the necessary conditions and related
theorems.

Experimental tests have been performed by using the standard Lorenz-96
model as our surrogate model while seven statistical models are tried to assess455

the accuracy and the performance of the proposed formulations. The results
show that the proposed methods can reduce the prior errors by several orders
of magnitudes. Even more, convergence to posterior modes can be accelerated
by using sub-space approximations.

Further studies will focus on the more detailed validation of these methods460

using more sophisticated numerical models so as to identify if strong nonlinearity
may affect the performance of the proposed approaches. In addition, it would
also be useful to analyze the actual rate of convergence for different methods
and to investigate how such rates of convergence may depend on the actual
parameters. Furthermore, tests and validations can be carried out by using465

real-world data in various applications.
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