

Detecting Vulnerabilities in Smart Contract within

Blockchain: A Review and Comparative Analysis of

Key Approaches

Yoganand Kissoon

School of Digital Technologies,

Middlesex University Mauritius

Uniciti, Flic-en-Flac, Mauritius

YK299@live.mdx.ac.uk

Girish Bekaroo

School of Digital Technologies,

Middlesex University Mauritius,

Uniciti, Flic-en-Flac, Mauritius

g.bekaroo@mdx.ac.mu

Abstract— Blockchain technology was created with security

in mind. However, in recent years, there has been various

confirmed cases of breach, worth billions of dollars loss in

Blockchain associated to smart contracts. In order to address

this growing concern, it is crucial to investigate detection and

mitigation of vulnerabilities in smart contract, and this paper

critically reviews and analyses key approaches for detecting

vulnerabilities in smart contract within Blockchain. In order to

achieve the purpose of this paper, five key approaches, notably

the application of OWASP Top 10, SCSVS, vulnerability

detection tools, fuzz testing and the AI-driven approaches are

critically reviewed and compared. As part of the comparison

performed, a penetration testing quality model was applied to

study six quality metrics, notably extensibility, maintainability,

domain coverage, usability, availability and reliability. Results

revealed limitations of the studied vulnerability detection

approaches and findings are expected to help in decision making

especially when selecting approaches to be used during security

analysis and pen-testing.

Keywords— Blockchain, Smart Contracts, Vulnerability

Detection, Penetration Testing Methodologies, Security Analysis.

I. INTRODUCTION

During the previous decade, there has been rapid growth
in usage of smart technologies and applications within
domains such as smart healthcare and smart farming, among
others [1]. Nevertheless, the use of smart technologies and
applications has been hampered by security and privacy
concerns due to the use of the publicly accessible network,
notably, the Internet, for the transfer of data. Even though
various security solutions and standards were developed for
strengthening security of smart technologies and applications,
these can potentially increase communication overheads and
have limitations in terms of scalability, robustness and
traceability, among others [1]. In order to address such issues,
Blockchain technology can be a potential solution as this
technology has also grown in prominence during recent years
[2].

Blockchain is a record-keeping technology that has been
designed with security as a key objective, such that it is
practically impossible to hack the system or forge the data
stored on it. In the same context, smart contracts are programs
that are stored on a Blockchain and are executed automatically
when some predetermined conditions are met. Nevertheless,
there has recently been frequent outbreaks of smart contract
security vulnerabilities and privacy issues that raised concerns
and challenges to Blockchain [3, 4], given that applications of
this technology are increasing within different fields. Such
recent security issues even led to huge financial losses where
for instance, the Dao security vulnerability in 2016 resulted in
an economic loss of $50 million [5] and the security

vulnerability of parity multi-signature wallet in 2017 resulted
in loss of more than $150 million of ether [6].

Taking cognizance of the enormous growth in successful
exploits of smart contract vulnerabilities in the past years and
the significance in terms of monetary impact, it becomes
crucial to investigate effective detection of vulnerabilities in
smart contract. As such, this paper critically reviews and
analyses key approaches for detecting vulnerabilities in smart
contract within Blockchain. Findings presented in this paper
is expected to provide different contributions to the the
Blockchain and research communities in general. Firstly, the
paper compiles and discusses the different vulnerability
detection approaches that could be used during pen-testing
and security analysis of smart contracts within Blockchain,
which is relatively limited in published literature. Moreover,
the findings following application of a chosen pen-testing
quality model provides insights on different metrics pertaining
to each vulnerability detection approach and this could help
decision-making in the same context.

This paper is structured as follows: In the next section, a
background on Blockchain smart contract technology is
provided. Then, related works on vulnerabilities detection in
smart contract are reviewed in Section III. Section IV
describes the methodology used to identify and study key
vulnerability detection approaches and Section V reviews the
selected approaches. In the final sections, the existing
vulnerability detection approaches are critically compared,
before providing a conclusion related to the core of the related
study area.

II. BLOCKCHAIN AND SMART CONTRACT TECHNOLOGY:

A BACKGROUND

Blockchain is a method of storing data in such a way that
it is challenging to alter, hack, or cheat. When Blockchain
technology was first introduced by Haber and Stornetta in
1991, the initial idea was to invent a way to record documents
and time stamp them in such a way that cannot be tampered.
Data is collected in groups known as blocks, where each block
holds a set amount of information which once filled, is
encrypted, time stamped and chained together with the
previously filled block. This activity thus creates a chain of
blocks of information which gives the name Blockchain. The
next step of the Blockchain technology is to distribute the
information that has been recorded over number of
participating nodes so that no one node has control over the
information. Thus, the participating nodes also act as
guardians of the information and can verify if the transaction
being process is legitimate or not. The property of being a
decentralized database which is dispersed across multiple
participating nodes gives the name Distributed Ledger
Technology (DLT) to Blockchain. This is important because

it gives birth to multiple other use case scenarios to be built
upon this technique.

There are multiple properties of the DLT technology
which makes this technology secure, as depicted in Fig. 1. The
fact that the DLT is programmable means that codes can be
added in the system to design specific use case scenarios for
this technology. One of those programmable products is smart
contracts [3]. An American scientist named Nick Szabo was
the first to propose smart contracts in 1994. When it was
invented, it was described as computerized operations that
fulfil terms of a contract. The initial idea was to extend the
capabilities of point of sales to the digital world. Szabo also
mentions in his report that the technology could be used for
other types of complex assets such as bonds. In other words,
the technology of smart contracts could be used for sale or
purchase of assets that are complex in terms and conditions
[4].

Fig. 1 Properties of Distributed Ledger Technology (DLT) [3]

In simple terms, a smart contract is a piece of computer
codes that is programmed in a Blockchain, which cannot be
altered, deleted, or hacked. The code is just terms and
conditions that has been agreed between two parties and will
self-execute without the need of any third party once a certain
condition is met and the terms are fulfilled. Nick Szabo
described the best metaphor for a smart contract could be a
vending machine; thus, with a certain input of information by
the buyer and a code of execution guaranteed by the computer
system, a certain output is guaranteed [4]. The important
properties that should be retained here are that the codes are
written in such a way that they are self-executing, traceable,
self-verifying, and temper proof [4]. The functioning of smart
contracts is illustrated in Fig. 2 [5]. Smart contracts are
popular in industries like property ownership, patents or
intellectual property, banking and insurance, legal services,
and crowdfunding organizations, among others.

Fig. 2. Functioning of Smart Contracts [5]

 As such, even though the smart contract technology is
considered to be secure, it is not without vulnerabilities. For
instance, the year 2021 amounts to an increase of more than

1300% and a mind boggling $2 Billion hacked from mainly
smart contracts and Defi in the Blockchain network [6]. One
of the most shocking and captivating stories of 2021 revolves
around the successful exploit of a vulnerability on a smart
contract in the poly network Blockchain which amounts to
more than $600 Million [5]. Hence, security analysis and
penetration testing of smart contract technology is essential to
study and thus, the purpose of this paper becomes relevant to
be addressed.

III. RELATED WORKS

The strong security nature of the baseline technology
engulfing Blockchain, the complex architectures and the fairly
young age of the technology means that there was not enough
substantial need for research to be done in the field of security
frameworks that would detect and remediate security or
design flaws against smart contract in Blockchains. However,
due to the issues discussed in the previous section and as
highlighted in a previous study [8], there are crucial gaps that
need to be tackled between the existing security frameworks
and Blockchain in general, notably:

• New terminologies and definitions need to be outlined as
compared to traditional OWASP used in the frameworks
related to web and application security testing. Outdated
framework is being used on other technologies that share
certain traits with smart contract Blockchain.

• Multinational extension of Blockchain smart contract
implied that the laws pertaining to smart contract across
different countries has to be compiled as compliance
benchmarks.

• Privacy protection has a high security score and is an
essential integral part of security. However, in this case,
nodes operate in a decentralized way and transaction are
anonymous and thus, public nodes could be utilized in an
unlawful way and not much could be done to detect/deter
such attacks.

Another previous study [9] investigated the potential link
between vulnerabilities detected in smart contract Blockchain
and the exploitability potential of those flaws. The study
revealed that out of the most common vulnerabilities available
for smart contract in Blockchain, multiple tools and detection
modes had to be used to detect those vulnerabilities, as
depicted in Table I.

TABLE I. MEAN TIME FOR SCANNING

Within the same study [9], the list of common Smart
Contract vulnerabilities was also provided, as described in
Table II below.

TABLE II. LIST OF COMMON SMART CONTRACT VULNERABILITIES [9]

Vulnerability Brief Description

Re-Entrancy (RE) Caller is called back by malicious contract and
funds are drained from the caller’s account.

Unhandled Exceptions
(UE)

Inconsistencies due to low level commands
such as send continuing to execute even upon
failure.

Locked Ether (LE) ETH smart contracts like other smart contracts
can bind funds in such a way that it is
completely locked. If the smart contract that
locked the funds are destroy the funds are
permanently locked and cannot be transferred.

Transaction Order
Dependency (TO)

Since in the same block, multiple transactions
are possible, the smart contract will share the
same property and can be updated multiple
times, even by a malicious caller.

Integer Overflow (IO) Programming language mistakes that can
create a loop if thereby exploited by attacker
by incrementing the iterations.

Unrestricted Action
(UA)

The ability to set an owner without being
allowed to.

Whilst different Smart Contract vulnerabilities adversely
impact the security of such technology (as shown in Table II)
and that there is not one analysis tool which can detect all the
common types of vulnerabilities that exist on a particular
smart contract Blockchain (Table I), an important question
becomes important to investigate, notably, what detection
approach should be adopted? The methodology provided in
the next section describes the method used in order to answer
this key question.

IV. METHODOLOGY

The primary source of research for this paper was carried
out by screening research databases [14] and published
penetration testing reports of real multination giants in the
smart contract marketspace with the aim to gather details
about pen-testing approaches for smart contract within
Blockchain. The research databases filtered were IEEE Xplore
and Google Scholar whereas for the published reports the
website of the main actors in the market like Ethereum and
Bitcoin were explored. The key terms used in the searching
process include “Blockchain”, “vulnerability detection”, and
“smart contract”, among others. Following an initial pool of
11 results, filtering was conducted to assess relevance and
meant the context of Blockchain. 5 such vulnerability
detection approaches were identified and were eventually
reviewed comprehensively by referring to the published
resources. These approaches are discussed and critically
compared in the next sections.

V. APPROACHES FOR DETECTING VULNERABILITIES IN

SMART CONTRACT WITHIN BLOCKCHAIN

Using the methodology defined in the previous section, the
selected vulnerability detection approaches are discussed as
follows:

A. OWASP Top 10

According to previous studies [8, 10], the Open Web
Application Security Project (OWASP) Top 10 was found to
map well to the baseline architecture of smart contract and
Blockchain. The OWASP Top 10 is a list of the 10 most severe
security issues as defined and regularly updated by the

OWASP community. Though the project is limited to those 10
main categories, the OWASP Top 10 also provides
information about industry vulnerabilities and the integral
framework to test them. OWASP has been applied for
penetration testing of Bitcoin smart contract, where different
vulnerabilities were revealed, as shown in Fig. 3. These
vulnerabilities were eventually analysed and appropriate
recommendations were made towards enhancing security
[11].

Fig. 3. Application of OWASP to Bitcoin Smart Contract [11]

B. SCSVS

 Smart Contract Security Verification Standard (SCSVS) is
regarded as the next evolutionary phase in the effectiveness of
the penetration testing activity for smart contracts [12]. While
OWASP is regarded as an effective approach, it has been
designed with web applications in mind. However,
decentralized applications and smart contract Blockchain have
a slightly different trait, as illustrated in Fig. 4 . This fact
implies that OWASP as penetration testing framework is
likely to have components that are relevant to smart contracts,
as also highlighted in previous research [11, 12]:

Fig. 4. Architectural Difference Web App vs Smart Contracts [12]

 Based on the OWASP Application Security Verification
Standard (ASVS), the SCSVS (v1.2) consists of 14-part
checklist developed with the aim to standardize security of
smart contracts [13]. This list can be used by key stakeholders
of smart contract including developers, architects, security
reviewers as well as vendors and provides useful guidance in
order to prevent key security issues at every stage of the
development cycle of smart contracts.

C. Using Vulnerability Detection Tools

 A previous study proposed a detection framework based
on a list of most common vulnerabilities for smart contracts as
outlined in Table 2 and using a list of automated software that

can detect those vulnerabilities [14]. The techniques used
involve:

• code translation: recompiling or decoding the code used
into another form so that it can be interpreted in a way
that permits the detection of vulnerability

• static analysis: analysis of smart contract codes without
execution;

• dynamic analysis: executing the code in an environment
where detection of vulnerabilities is possible.

According to the same study, the right combination of
detection tools can potentially generate an effective result,
also based on the results of the comparative analysis of the
tools shown in Table III. The limitations of these techniques
are however based on not relying on one particular tool or
technique for penetration testing, it is rather a combination of
tools that will provide a successful result.

TABLE III. RESULTS OF COMPARATIVE ANALYSIS OF VULNERABILITY

TOOLS FOR SMART CONTRACTS [14]

D. Fuzz Testing

Previous studies have developed and adopted fuzz testing
as baseline proposal for vulnerability testing for smart
contracts [15, 16]. Fuzz testing, also known fuzzing, is a
black-box software testing technique used to find bugs in an
automated way through the injection of malformed/semi-
malformed data [17]. A previous study [15] outlined an
architecture for fuzz testing for Smart Contracts as shown in
Fig. 5:

Fig. 5. Fuzz Testing Architecture for Smart Contracts [15]

 In this architecture, the smart contracts that were tested
generated a high quality result, meaning that the number of
false positives were minimal and a high number of different
vulnerabilites class for smart contracts were detected as
summarized in Table 5 [16]. The vulnerabilities detected were
classified into different categories, but the true strength of this
approach lies in the accuracy of the detection, where little false
positives were identified. This implies that the overall
efficiency of this technique is commendable.

TABLE IV. FUZZ DETECTIONS FOR SMART CONTRACTS [16]

E. AI-Driven Approach

Previous studies [18, 19] proposed the approaches of
machine learning, artificial intelligence, and deep learning
integrated within vulnerability detection for smart contracts.
In these studies, the fundamental approach involves building
a system that can automatically evolve into more effectively
detecting vulnerabilities in smart contracts. Such a proposed
architecture for smart contract vulnerability detection using
the mentioned approaches is illustrated in Fig. 6.

Fig. 6. AI architecture for Smart Contract Vulnerability Detection
[19]

This architecture in Fig. 6 consists of using machine
learning algorithm into training an artificial intelligence (AI)
model that can understand what smart contracts are and the
vulnerabilities associated to them. In the proposed model in a
previous study [18], AI was used to learn detection of 13 types
of smart contract vulnerabilities using Oyente and Remix
detectors. Once the model was trained, it was used to
automatically detect vulnerabilities in smart contracts with a
high level of accuracy, as illustrated in Table V. In the same
study, different AI learning models were used such as logistic
regression, SVM linear, SVM kernel, K-Nearest Neighbor,
Decision Tree, Randon Forest and Gradient Boosting. Among
these algorithms, it was found that the Logistic Regression
model provides a high level of accuracy and precision and that
the final score is above the other models.

TABLE V. AI DETECTION RESULT FOR SMART CONTRACT VULNERABILITIES

[18]

VI. CRITICAL ANALYSIS

 In order to critically analyse the selected vulnerability
detection approaches, the penetration testing quality model
described in ISO/IEC 25010:2013 was adapted and used. The
same adapted model was used in previous published research
[20] related to comparative analysis of penetration testing
frameworks and is thus relevant to this study. An illustration
of the model is provided in Fig. 7.

Fig. 7. Penetration Testing Quality Model [20]

 The framework has different qulality metrics, notably:

• Extensibility: involves assessing how easy it is to modify
or extend the approach in order to add new components.

• Maintainability: relates to assessing how easy it is to
maintain the approach.

• Domain coverage: relates to the scope of the approach
whereby evaluating if the approach covers sufficient
areas within its context.

• Usability: entails assessing how easy it is to use and apply
the overall approach.

• Availability: involves evaluating if the approach is
available for use whenever needed.

• Reliability: entails measuring if the approach is reliable
sufficiently such that it can sustain different conditions
such as different application scenarios and environments.

 The above quality metrics were applied to the selected
approaches reviewed in this study using similar method
involved in the previous study [20], whereby comprehensively
referring to published resources pertaining to each approach.
Findings are presented in Table VI and results showed that
none of the vulnerability detection approaches meet all the
quality metrics. To start with, although OWASP is popular for
web systems, it does not cover all areas in relation to smart

contracts, as shown in Fig. 3. As such, it is not fully reliable
for complete pen-testing of smart-contracts. The same
findings was noted for the adoption of the SCSVS approach.
As such, vulnerability detection approaches like OWASP or
SCSVS are effective in detecting vulnerabilities in smart
contracts and are normally applied at an interval, notably
when the company owning the smart contract decides to invest
in a penetration testing activity for its Blockchain. As such,
the key limitation is that smart contracts are constantly being
generated and if the interval is lengthy, vulnerabilities could
be exploited by attackers.

 On the other hand, even though the use of a combination
of vulnerability detection tools was found to meet most of the
criteria including domain coverage and reliability, some of the
tools can be challenging to acquire due to costs or licenses
involved. Furthermore, due to the nature of inputs and data
involved in the fuzz testing approach, maintainability and
usability are key contstraints noted. The Fuzz testing models,
or dynamic fuzz models would be more efficient for smart
contracts because these models detect vulnerabilities
constantly at entry point. However, fuzz testing also has its
limitations since vulnerabilities constantly evolve. This
implies that new vulnerabilities need to be tested with newer
kinds of inputs, thus impacting maintainability of such
approach.

 Finally, AI-Driven approach, was found to meet most
quality metrics besides availability as implemented algorithms
are mostly propriatery (part of research projects or
publications) or implemented within tools, that could be
challenging to acquire. Overall, each approach outlined in this
study have strengths and weaknesses in specific subdomains.
This is also highly correlated with the fact that the smart
contract Blockchain technology itself is growing in maturity.

 Even though the comparative analysis through the use of
different quality metrics provided insightful findings
regarding approaches used to detect vulnerabilities in smart
contracts within Blockchain, different limitations also
undermine the results provided in this study. For instance,
findings were based on published information and could be
better validated through practical application of different
approaches in order to derive more critical insights regarding
each approach.

VII. CONCLUSION

 In this paper, different factual realisation points were
noted. The fact that Smart Contracts within Blockchain are
undeniably vulnerable to multiple types of security issues
leads to the need for penetration testing and security analysis

 TABLE VI. ANALYSIS OF VULNERABILITY DETECTION APPROACHES USING PEN-TESTING QUALITY MODEL

Pen-Testing Approach Quality Metric

Extensibility Maintainability Domain Coverage Usability Availability Reliability

OWASP Top 10 ✓ ✓  ✓ ✓ 

SCSVS ✓ ✓  ✓ ✓ 

Using Vulnerability Detection Tools ✓ ✓ ✓ ✓  ✓

Fuzz Testing ✓  ✓  ✓ ✓

AI-Driven Approach ✓ ✓ ✓ ✓  ✓

in order to detect vulnerabilities in smart contracts in a timely
manner. Five key vulnerability detection approaches were
investigated through the application of an adapted penetration
testing quality model described in ISO/IEC 25010:2013 to
study six quality metrics, notably extensibility,
maintainability, domain coverage, usability, availability and
reliability. Results revealed that all the approaches have their
limitations. For instance, the application OWASP Top 10 and
SCSVS were limited in their domain coverage as both
approaches do not fully cover all areas of pen-testing for smart
contract. As such, their complete reliability are also
questionable for the context of vulnerability detection in smart
contracts. Furthermore, even though using vulnerability
detection tools and AI-driven approaches can help to detect
various classes of vulnerabilities, it is not easy to acquire some
of them. In addition, the usability of fuzz testing is limited due
to the characteristics of data and inputs needed in the process.
As such, the best approach would be a combination of
approaches whereby involving AI with reinforcement learning
that constantly learns following pen-testing instances in order
to produce strengthened models that can be used to detect
vulnerabilities in Smart Contract source codes in a predictive
manner. As future works, the limitations identified in this
study can be further investigated whereby practically applying
different vulnerability detection approaches in order to derive
further insights.

REFERENCES

[1] U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N.

Kumar and M. Alazab, “Blockchain for industry 4.0: A

comprehensive review,” IEEE Access, vol. 8, pp. 79764-

79800, 2020.

[2] D. Berdik, S. Otoum, N. Schmidt, D. Porter and Y. Jararweh,

“A survey on blockchain for information systems

management and security,” Information Processing &

Management, vol. 58, no. 1, p. 102397, 2021.

[3] X. Tang, K. Zhou, J. Cheng, H. Li and Y. Yuan, “The

Vulnerabilities in Smart Contracts: A Survey. In International

Conference on Artificial Intelligence and Security,” Cham,

2021.

[4] S. Sayeed, H. Marco-Gisbert and T. Caira, “Smart contract:

Attacks and protections,” IEEE Access, vol. 8, pp. 24416-

24427, 2020.

[5] I. Sergey and A. Hobor, “A concurrent perspective on smart

contracts,” in International Conference on Financial

Cryptography and Data Security, Cham, 2017.

[6] T. Bocek and B. Stiller, “Smart contracts – blockchains in the

wings.,” in Digital Marketplaces Unleashed, Heidelberg,

Springer, 2018, p. 169–184.

[7] Euromoney Learning, “What is blockchain?,” Euromoney,

2022. [Online]. Available:

https://www.euromoney.com/learning/blockchain-

explained/what-is-blockchain. [Accessed 14 Jan 2022].

[8] J. Frankenfield, “Smart Contracts,” Investopedia, 2022.

[Online]. Available:

https://www.investopedia.com/terms/s/smart-contracts.asp.

[Accessed 2 Feb 2022].

[9] D. Vaidya, “Smart Contracts,” WallStreetMojo, 2022.

[Online]. Available: https://www.wallstreetmojo.com/smart-

contracts/ . [Accessed 10 Feb 2022].

[10] R. Behnke, “The 10 Biggest Defi hacks of 2021,” Halborn,

2022. [Online]. Available: https://halborn.com/the-10-

biggest-defi-hacks-of-2021-a-recap/. [Accessed 3 Feb 2022].

[11] G. Chavez-Dreyfuss and M. Price, “Explainer: How hackers

stole and returned $600 mln in tokens from Poly Network,”

Reuters, 2021. [Online]. Available:

https://www.reuters.com/technology/how-hackers-stole-613-

million-crypto-tokens-poly-network-2021-08-12/. [Accessed

14 Feb 2022].

[12] A. Bhardwaj, S. Shah, A. Shankar, M. Alazab, M. Kumar and

T. Gadekallu, “Penetration testing framework for smart

contract blockchain,” Peer-to-Peer Networking and

Applications, vol. 14, no. 5, pp. 2635-2650, 2021.

[13] D. Perez and B. Livshits, “Smart contract vulnerabilities:

Vulnerable does not imply exploited,” in 30th USENIX

Security Symposium (USENIX Security 21), 2021.

[14] A. Zakari, A. Lawan and G. Bekaroo, “Towards improving

the security of low-interaction honeypots: Insights from a

comparative analysis,” in International Conference on

Emerging Trends in Electrical, Electronic and

Communications Engineering, Cham, 2016.

[15] H. Poston, “Mapping the OWASP top ten to blockchain,” in

Procedia Computer Science, 2020.

[16] Under Defence, “Penetration Testing Report for Bitcoin

Exchange Company,” 2018.

[17] D. Rusinek, “Secure Smart Contracts Development using

SCSVS,” OWASP, 2022.

[18] D. Rusinek and P. Kuryłowicz, “Smart Contract Security

Verification Standard,” GitHub, 2022. [Online]. Available:

https://securing.github.io/SCSVS/. [Accessed 10 Apr 2022].

[19] J. Xu, F. Dang, X. Ding and M. Zhou, “A Survey on

Vulnerability Detection Tools of Smart Contract Bytecode,”

in 2020 IEEE 3rd International Conference on Information

Systems and Computer Aided Education (ICISCAE), 2020.

[20] X. Mei, I. Ashraf, B. Jiang and W. Chan, “A fuzz testing

service for assuring smart contracts,” in 2019 IEEE 19th

International Conference on Software Quality, Reliability and

Security Companion (QRS-C), 2019.

[21] W. Chan and B. Jiang, “Fuse: An architecture for smart

contract fuzz testing service,” in 2018 25th Asia-Pacific

Software Engineering Conference (APSEC), 2018.

[22] OWASP, “Fuzzing,” OWASP, 2022. [Online]. Available:

https://owasp.org/www-community/Fuzzing. [Accessed 13

Feb 2022].

[23] J. Liao, T. Tsai, C. He and C. Tien, “Soliaudit: smart contract

vulnerability assessment based on machine learning and fuzz

testing,” in 2019 Sixth International Conference on Internet

of Things: Systems, Management and Security (IOTSMS),

2019.

[24] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed and L. Khan,

“VSCL: Automating Vulnerability Detection in Smart

Contracts with Deep Learning,” in 2021 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), 2021.

[25] A. Shanley and M. Johnstone, “Selection of penetration

testing methodologies: A comparison and evaluation,” in

Australian Information Security Management Conference,

2015.

