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Domain specific languages (DSLs) are mini-languages which are increasingly seen as being a
valuable tool for software developers and non-developers alike. DSLs must currently be created

in an ad-hoc fashion, often leading to high development costs and implementations of variable

quality. In this paper I show how expressive DSLs can be hygienically embedded in the Converge
programming language using its compile-time meta-programming facility, the concept of DSL

blocks, and specialised error reporting techniques. By making use of pre-existing facilities, and

following a simple methodology, DSL implementation costs can be significantly reduced whilst
leading to higher quality DSL implementations.
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1. INTRODUCTION

When developing complex software systems in a General Purpose Language (GPL),
it is often the case that one comes to a problem which is not naturally expressible
in the chosen GPL. In such cases the user has little choice but to find a suitable
workaround, and encode their solution in as practical a fashion as they are able.
Whilst such workarounds and encodings are often trivial, they can on occasion be
exceedingly complex. In such cases the system can become far less comprehensible
than the user may have wished. Although Steele argues that ‘a main goal in de-
signing a language should be to plan for growth’ [Steele 1999], most modern GPLs
only allow growth through the addition of libraries. The ability of a user to extend,
or augment, their chosen programming language is thus severely restricted.

Domain Specific Languages (DSLs) are an attempt to work around the lack of
expressivity in a GPL by presenting the user with a mini-language targeted to
the particular domain they are working in. [Mernik et al. 2003] define DSLs as
‘languages tailored to a specific application domain. They offer substantial gains
in expressiveness and ease of use compared with general purpose programming
languages in their domain of application’. [Hudak 1998] describes the typical costs
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of a DSL, noting that a small extra initial investment in a DSL implementation
typically leads to long term savings compared with alternative routes. Exactly
what identifies a particular language as being a ‘DSL’ is inherently subjective: for
the purposes of this paper, it can be intuitively defined as a language smaller, and
less generic, than a typical programming language such as Java, C++, or Python.

Traditionally DSLs – for example the UNIX make program or the yacc pars-
ing system – have been implemented as entirely stand alone systems. Although
such systems have many similarities in their implementations, each one tends to
be engineered from scratch; this leads to increased work for the DSL language im-
plementer, which inevitably results in implementations of variable quality. It is
therefore a fundamental tenet of this paper that implementing DSLs as stand-alone
systems is undesirable. There is another reason to shy away from implementing
DSLs as stand alone systems. DSLs tend to start out as small, declarative lan-
guages [van Deursen et al. 2000], but most tend to acquire new features as they
are used in practise; such features tend to be directly borrowed from GPLs [Hudak
1998]. So while DSL implementations tend over time to resemble programming lan-
guage implementations, they frequently lack the quality one might expect in such
a system due to the unplanned nature of this evolution.

In contrast to the traditional technique of implementing DSLs as stand alone
systems, DSLs can be implemented by embedding the DSL into a host language.
The advantage of this approach is that the DSL can inherit many of the features
and benefits of the host language (including, one hopes, a robust implementation)
with relatively little effort. The capabilities of the host language and the particular
embedding mechanism dictate the class of DSLs that can be expressed in a partic-
ular combination; embedded DSLs range from those designed to express GUIs to
constraint solving systems. In this paper I define and distinguish between homoge-
neous and heterogeneous embedding. Informally, heterogeneous embedding is when
a system external to that used to compile1 the host language is used to define the
embedding, whereas homogeneous embedding is when the system used to compile
the host language is also used to define the embedding. As shown in section 2,
heterogeneous embedding systems are able to define a wider variety of DSLs than
homogeneous embedding systems; conversely, by restricting the DSLs they can ex-
press, homogeneous systems can often define embeddings in a more concise and safe
fashion.

This paper presents a practical, self-contained approach to DSL implementation
in an homogeneous embedding environment. I show how an extension of the Con-
verge language presents a coherent approach to DSL embedding that is aimed at
facilitating rapid development and prototyping of DSLs. The novelty of this ap-
proach is in both its combination of features found in other languages, and the
new features specific to Converge. Building on its compile-time meta-programming
features, the main feature to allow DSL embeddings is the DSL block, which al-
lows arbitrary syntaxes to be embedded in the language. I show how how DSLs
can reuse the expression language from the main Converge programming language,
how both run-time and compile-time error reports can be expressed in terms of

1This could of course just as easily be an interpreter; however in the interests of brevity I use the

term ‘compiler’ throughout this paper.
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the user’s DSL input using the src info concept, and how DSL embeddings can be
made hygienic (analogous to LISP macros [Kohlbecker et al. 1986]). The approach
presented in this paper shows that homogeneous embedding approaches can express
significantly more powerful DSLs than has previously been the case, and that these
embeddings can be guaranteed to be safe.

This paper is structured as follows. First I detail existing approaches to DSL im-
plementation via embedding, categorizing approaches as being either heterogeneous
or homogeneous. I then outline the basics of the Converge programming language,
including its compile-time meta-programming facility. I then introduce the features
and techniques relating to DSL embedding in Converge, exploring them in relation
to an evolving example of a model transformation language (the full version of the
example can be found in [Tratt 2005c]). I conclude by separating out the parts
of Converge fundamental to homogeneous DSL embedding, and explain how such
features could be integrated into similar systems.

2. DSL IMPLEMENTATION VIA EMBEDDING

In the closely related area of meta-programming, [Sheard 2003] distinguishes be-
tween homogeneous and heterogeneous meta-programming systems. Similarly I
choose to distinguish between homogeneous and heterogeneous embedding systems.
[Sheard 2003] defines ‘homogeneous systems [as those] where the meta-language and
the object language are the same, and heterogeneous systems [as those] where the
meta-language is different from the object-language.’ In the context of DSL em-
bedding it is important to weaken the final clause of this definition. Basing the
definition on the languages involved is an objective choice, but not ideal as it fo-
cuses on implementation details rather than the way in which users perceive those
systems in use.

I therefore update and alter the definition in [Sheard 2003] so that heterogeneous
embedding is when the system used to compile the host language, and the system
used to implement the embedding are different2. Note that this does not imply
that the host language must be different than the language used to implement the
embedding: it is possible to identify a heterogeneous embedding approach as one
whose two separate systems just so happen to be written in the same language. Put
differently, a homogeneous system is one where all the components are specifically
designed to work with each other, whereas in heterogeneous systems at least one
of the components is largely, or completely, ignorant of the existence of the other
parts of the system.

An important reason for differentiating carefully between homogeneous and het-
erogeneous embedding approaches is that it allows readers, particularly those less
familiar with the subject area, to quickly understand whether a given approach
aims to be general or limited in its approach. There is no notion of one style being
‘better’ or ‘worse’ than the other; the normal trade-offs of generality and complexity
versus restrictions and simplicity apply, and different approaches may be appropri-
ate in different circumstances. The approaches detailed in this section cover a large
spread of the possible spectrum.

2I also believe that an equivalent clarification might be usefully applied to meta-programming.
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In the rest of the paper I use the terms parse tree and abstract syntax tree (AST)
to differentiate representations of a program that record structure but carry little
semantic information (parse trees) from those that record structure and a significant
amount of semantic information (abstract syntax trees). Typically a parse tree is
the automatic output from a parser, whereas an AST is manually created after one
or more passes over a parse tree. For a given language every AST has an equivalent
representation as a parse tree, but incorrect parse trees will have no equivalent
representation as an AST.

2.1 Heterogeneous embedding approaches

In this section I describe three different types of heterogeneous embedding technolo-
gies: first generic hard-coded implementations, and then two specific technologies
TXL and MetaBorg.

2.1.1 Hard-coded implementations. The majority of heterogeneous embedding
systems in current existence are hard-coded to translate a specific DSL within
a specific host language. For example, the standard implementation of the Icon
programming language [Griswold and Griswold 1996] defines an embedded DSL
called RTL3, which allows those implementing Icon VM code in C to encode its
goal-directed evaluation semantics in a natural fashion [Walker 1994]. A translator
called RTT takes in files containing C and the embedded RTL DSL and converts
them into pure C files. The system within the Icon implementation is indicative of
the majority of heterogeneous embedding systems in that a bespoke translator is
required to translate the embedded DSL. Such systems are only of marginal interest
in the context of this paper, since my aim is to define a mechanism for defining
arbitrary DSLs.

2.1.2 TXL. TXL [Cordy 2004] is a generic source to source transformation lan-
guage. Although originally intended for transforming instances of the programming
language Turing, it has evolved into a language capable of transforming instances
of arbitrary language grammars. In so doing, TXL has morphed into a hybrid
rule-based / functional programming language. ASF+SDF is a similar approach,
although its implementation (which can see transformation systems compiled into
machine code via C) is more like a traditional programming language [van den
Brand et al. 2002].

TXL’s general execution mechanism is simple. A TXL transformation has a
grammar for the language to be transformed, and a number of rewrite rules. A
source file is parsed according to the grammar and the rewrite rules execute on
the parse tree. Although TXL was originally designed for source-to-source trans-
formations on the same language, it has well developed mechanisms for overriding
and extending grammars. By creating a union grammar of two separate languages,
TXL can transform between languages with different grammars. Through this
mechanism one can easily realise external embedding of DSLs, with few limits on
the DSL or host language involved.

TXL has many advantages, including its maturity and efficiency, and has proved

3Although the Icon documentation does not explicitly identify RTL as such, it is clearly an

embedded DSL.
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itself capable of succinctly expressing many useful transformations. Its pragmatic
rule-based approach is amongst the most refined available; [Cordy 2004] records
a case where several billion lines of code were transformed with TXL. As TXL
operates only at the parse tree level, it is left entirely to the DSL embedding author
to be aware of the semantics of the host language beyond the simple structure
recorded in the parse tree. To take a concrete issue, for some host languages
the problem of unintended variable capture (well known in the analogous area of
macro expansion [Kohlbecker et al. 1986]) can only be solved by understanding and
accurately implementing the host languages’ scoping rule. At its most extreme, this
could mean each translator resembling a substantial subset of the host languages
compiler which would in general be a prohibitive cost.

TXL is highly interesting because it shows the fundamental trade-off of hetero-
geneous systems. TXL can read and transform any language with a context free
grammar, and its transformation language is powerful and easy to use. However
because it is, by default, almost entirely ignorant of what it is transforming – TXL
understands trees and tokens, but not what the trees or tokens represent – it is
difficult to create transformations which require deep reasoning about the program
being transformed, or to create transformations which guarantee basic safety prop-
erties such as variable capture.

2.1.3 MetaBorg. MetaBorg is a method which uses a combination of tools to
provide a heterogeneous embedding approach, allowing language grammars to be
extended in an arbitrary fashion using a rule rewriting system. [Bravenboer and
Visser 2004] provides a compelling example of MetaBorg’s power by using it to
embed a DSL called SWing User-interface Language (SWUL) which allows Swing
GUIs to be expressed natively within Java code.

As an example of the sort of DSL that MetaBorg is intended to create, the
following is an example of some embedded SWUL code:

int cols = ...;

JPanel panel = panel of border layout {

hgap = 12 vgap = 12

north = label "Please enter your message"

center = scrollpane of textarea {

rows = 20

columns = cols

}

};

After translation by MetaBorg the resulting pure Java code is as follows:

JPanel panel = new JPanel(new BorderLayout(12, 12));

panel.add(BorderLayout.NORTH, new JLabel("Please enter your message"));

panel.add(BorderLayout.CENTER, new JScrollPane(text, 20, cols));

As this example shows, MetaBorg DSLs can interact with their surrounding envi-
ronment. Although MetaBorg by default operates on parse trees in the same way
as TXL, it does comes with standard support for representing some of the seman-
tics of languages such as Java. This allows transformation authors to write more
sophisticated transformations, and make some extra guarantees about the safety
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of their transformations4. Unlike TXL, MetaBorg is also able to maintain a strict
separation between the syntax of the hybrid DSL / host language input, and the
host language output. MetaBorg has a sound mechanism for safely mixing different
grammars, and can compose different embeddings in various ways, which further
differentiates it from TXL.

Although MetaBorg is in theory capable of defining any embedding, it appears
that the authors of the MetaBorg were aware that while it offers great power, that
power is difficult to wield effectively. The MetaBorg authors deliberately narrow
their vision for MetaBorg to a ‘method for promoting APIs to the language level.’
This is a sensible restriction since DSL that results from promoting a particular to
the language level will tend to shadow that API; therefore instances of the DSL
will generally translate fairly directly into API calls. It is unclear from MetaBorg
examples whether it would be an appropriate platform in which to implement larger
DSLs. Nevertheless MetaBorg is without doubt the most sophisticated heteroge-
neous approach yet created.

2.1.4 Macro systems. Macro systems which realise embedded DSLs through
preprocessing are a valid form of heterogeneous embedding. The fact that such
systems are often implemented in the same language as the host language does
not effect the fact that the users of such systems are very aware of the difference
between the two systems. Note that this shows the difference in the definition of
homogeneous and heterogeneous embedding as defined in this paper relative to the
original definition in [Sheard 2003], where systems such as the JSE [Bachrach and
Playford 2001] would have been classified as homogeneous. In the context of this
paper, systems such as the JSE are simply less capable (and therefore less interest-
ing) cousins of homogeneous macro systems which are described in the following
section.

2.1.5 Summary of heterogeneous embedding systems. Heterogeneous embedding
systems can in theory realise any possible DSL embedding because they are not
limited to any particular host language. However in practise such systems can be
difficult to use precisely because of their inevitably limited knowledge of the host
language. The more sophisticated a DSL is, the more complex its embedding be-
comes, which implies that a greater knowledge of the host language is required.
Because of this, in practise such systems have rarely been used to embed sophis-
ticated DSLs. Furthermore, the majority of heterogeneous embedding systems are
hard-coded for a given host language and DSL, with only a few approaches designed
to facilitate more generalised solutions.

2.2 Homogeneous embedding

2.2.1 Macro systems. The canonical, and arguably the original, example of ho-
mogeneous DSL embedding is via LISP macros. LISP’s flexible syntax and powerful
macro mechanism have been used to express countless DSLs. DSL embedding in
LISP requires the presence of only one component: the LISP compiler. This com-
ponent contains significant knowledge of the host language being embedded into.

4Although MetaBorg contains a gensym function, it is unclear whether this uses the semantic

knowledge of the host language to generate guaranteed unique variable names in a given scope.
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As a simple but compelling example, this means that a DSL embedding in LISP
will be free of variable capture since this is a feature of all respectable LISP macro
implementations.

In the case of DSL embedding in LISP, although its syntax is inherently flexible,
it is not possible to change it in a completely arbitrary fashion – DSLs expressed via
this mechanism are limited to what can be naturally expressed in LISP’s syntax.
Furthermore whilst this mechanism has been used to express many DSLs, its tight
coupling to LISP’s syntactic minimalism has largely prevented similar approaches
being applied to other, more modern programming languages [Bachrach and Play-
ford 1999]. Therefore despite LISP’s success in this area, for many years more
modern systems struggled to successfully integrate similar features [Tratt 2005a].
Dylan is one of the few such systems [Bachrach and Playford 1999], implementing
a rewrite rule based macro system which is broadly equivalent to LISP’s in power.
However Dylan’s syntax is not significantly more flexible than LISP’s, and its macro
related syntax is heavyweight, as it is a separate language from Dylan itself.

More recently languages such as Template Haskell [Sheard and Jones 2002] (which
is effectively a refinement of the ideas in MetaML [Sheard 1998]; see [Tratt 2005a]
for a more detailed comparison of these languages with Converge) have shown how
sophisticated homogeneous meta-programming systems can be implemented in a
modern language. However such languages suffer the same limitations as LISP in
respect to DSL embedding, which is the inability to extend the syntax. I have more
to say on Template Haskell, in particular, in section 4.

2.2.2 Grammar extension through macros. It is possible to use macro systems
to create an homogeneous embedding approach similar in outlook to MetaBorg. In
essence, macro calls inform the compiler of new grammar productions and provide
a mechanism to compile these extensions into base code. Nemerle was the first
example of such a language [Skalski et al. 2004], and is a statically typed OO
language in the Java / C# vein. Normal Nemerle macros are very much in the
LISP vein in that they are identified as such at compile-time and are not first-class
objects i.e. they can not be called from other code. Nemerle macros can be specified
with an optional syntax clause which inserts a new production into the Nemerle
grammar. [Skalski et al. 2004] gives the following example of a macro which adds
a C-style for loop to Nemerle:

macro for (init, cond, change, body)

syntax ("for", "(", init, ";", cond, ";", change, ")", body)

{ ... }

The Nemerle compiler defers to the for macro whenever a for loop is parsed in a
source file. Nemerle’s extensions are strictly limited to those which can be expressed
as a single production extension to its grammar. Furthermore since Nemerle macros
are not first-class citizens (similarly to LISP, but unlike Template Haskell), syntax
extensions are effectively scoped over an entire file in a coarse-grained fashion.

Two subsequent approaches take a broadly similar tack to Nemerle, but allow
richer extensions to be expressed. Metalua is a TH-derived extension to the Lua
language, that allows new productions to be inserted into the Lua grammar [Fleutot
and Tratt 2007]. xTc allows similar extensions for C [Grimm 2005]. xTc and
Metalua are broadly similar in expressive power, although xTc has the burden
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of coping with a larger, less regular base language. Both approaches allow much
richer extensions than Nemerle, although neither has a correspondingly mature
implementation. Metalua explicitly states that few guarantees can be made about
the composition of extensions; it is unclear if xTc is able to make stronger guarantees
than Metalua about composition.

2.2.3 Function composition. Homogeneous embedding should not be seen as
being simply synonymous with macro systems. After describing the high costs
of traditional DSL implementation, Hudak develops the notion of Domain Specific
Embedded Languages (DSELs) [Hudak 1998]. Hudak specifically limits his vision of
DSELs in two ways: he restricts the languages he considers suitable for embedding
to strongly typed functional languages, particularly Haskell; he explicitly rules out
any form of syntax extension. Hudak’s DSELs therefore rely on the unusual feature
set present in languages such as Haskell, such as the ability to compose functions
in powerful ways, monads, and lazy evaluation. The advantage of this approach is
that it allows an otherwise entirely ignorant language to be used to embed DSLs,
and also allows DSLs to be relatively easily combined together. The disadvantage
is that the embedding is indirect, and limited to what can be easily expressed using
these pre-existing components.

2.3 Comparison of heterogeneous and homogeneous embedding systems

In theory there is a significant difference between heterogeneous and homogeneous
embedding systems. Heterogeneous systems impose no limits on the DSLs they can
express nor on the host languages they can embed into, whereas homogeneous em-
bedding systems are inherently limited to expressing a certain class of DSLs within
a specific host language. However it is notable that heterogeneous systems such
as TXL and MetaBorg have only been used to implement relatively small DSLs.
I believe that a major reason for this is the practical difficulty of defining a safe
embedding of a DSL when the embedding system is largely, or completely, unaware
of the semantics of the host language it is embedding into. Creating a system with
suitable knowledge of the host languages’ semantics is likely to involve encoding a
significant subset of that languages compiler. In practice this is unrealistic, which is
why heterogeneous embedding systems are generally limited to small DSLs (which
even then may not have entirely safe embeddings). Homogeneous embedding sys-
tems on the other hand are limited to one compilation system and host language
and can therefore take advantage of the knowledge of the host languages semantics
embedded in the compiler. However existing homogeneous embedding systems are
very limited and can embed only simple DSLs.

2.4 A lightweight approach to DSL embedding

Although the relative power of the various DSL embedding systems detailed thus
far is hopefully clear, one important question remains unanswered: why have these
systems seen relatively little real-world use? It is my belief that there are two com-
plementary reasons. Firstly while heterogeneous embedding systems allow syntax
extension, practical implementation concerns tend to limit them to small hard-
coded DSLs for specific target languages; little of any such system can be reused
to create another. Secondly, homogeneous embedding system’s general inability to
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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permit syntax extension means that only a small subset of DSLs can be naturally
embedded within them.

It is my assertion that generic heterogeneous embedding systems are fundamen-
tally difficult systems to create. However, as argued in [Wilson 2005], syntax ex-
tension is the only way to realise powerful DSLs.

This paper thus presents a new approach to homogeneous embedding which
allows DSLs of arbitrary syntaxes to be embedded. I do this by presenting a
small extension to the Converge programming language [Tratt 2005a] which uses
its compile-time meta-programming facility to be used to embed DSLs. Although
this paper is largely expressed in terms of Converge, in section 10 I explain how
these concepts could be adapted to other languages.

3. CONVERGE BASICS

This section gives a brief overview of basic Converge features that are relevant to
the main subject of this paper. Whilst this is not a replacement for the language
manual [Tratt 2007], it should allow readers familiar with a few other programming
languages the opportunity to quickly come to grips with the most important areas
of Converge, and to determine the areas where it differs from other languages.

Converge’s most obvious ancestor is Python [van Rossum 2003] resulting in an in-
dentation based syntax, a similar range and style of datatypes, and general sense of
aesthetics. The most significant difference is that Converge is a slightly more static
language: all namespaces (e.g. a modules’ classes and functions, and all variable
references) are determined statically at compile-time. Converge’s scoping rules are
different from many other languages, and are intentionally very simple. Essentially
Converge’s functions are synonymous with both closures and blocks. Converge is
lexically scoped, and there is only one type of scope. Variables do not need to
be declared before their use: assigning to a variable anywhere in a block makes
that variable local throughout the block, and accessible to inner blocks. Variable
references search in order from the innermost block outwards, ultimately resulting
in a compile-time error if a suitable reference is not found. Fields within a class
are not accessible via the default scoping mechanism: they must be referenced via
the self variable which is automatically brought into scope in any bound function
(functions declared within a class are automatically bound functions). The over-
all justification for these rules is to ensure that, unlike similar languages such as
Python, Converge’s namespaces are entirely statically calculable.

Converge programs are split into modules, which contain a series of definitions
(imports, functions, classes and variable definitions). Each module is individually
compiled into a bytecode file, which can be linked to other files to produce an
executable which can be run by the Converge VM. If a module is the main module
of a program (i.e. passed first to the linker), Converge calls its main function to
start execution. The following module shows a caching Fibonacci generating class,
and indirectly shows Converge’s scoping rules (the i and fib cache variables are
local to the functions they are contained within), printing 8 when run:

import Sys

class Fib_Cache:

func init():
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self.cache := [0, 1]

func fib(x):

i := self.cache.len()

while i <= x:

self.cache.append(self.cache[i - 2] + self.cache[i - 1])

i += 1

return self.cache[x]

func main():

fib_cache := Fib_Cache()

Sys.println(fib_cache.fib(6))

Another important, if less obvious, influence is Icon [Griswold and Griswold 1996].
As Icon, Converge is an expression-based language. Icon has a powerful notion of
expression success and failure; for the purposes of this paper, these features are
mostly irrelevant, and are explained only as needed.

Converge’s OO features are reminiscent of Smalltalk’s [Goldberg and Robson
1989] everything-is-an-object philosophy, but with a prototyping influence that was
inspired by Abadi and Cardelli’s theoretical work [Abadi and Cardelli 1996]. The
internal object model is derived from ObjVLisp [?]. An object is said to be com-
prised of slots, which are name / value pairs typically corresponding to the functions
and fields defined by the class which created the object.

As in Python, Converge modules are executed from top to bottom when they
are first imported. This is because functions, classes and so on are normal objects
within a Converge system that need to be instantiated from the appropriate builtin
classes – therefore the order of their creation can be significant e.g. a class must be
declared before its use by a subsequent class as a superclass. Note that this only
effects references made at the modules top-level – references e.g. inside functions
are not restricted thus.

4. COMPILE-TIME META-PROGRAMMING IN CONVERGE

4.1 A first example

For the purposes of this paper, compile-time meta-programming can be largely
thought of as being equivalent to macros; more formally, it allows the user of a
programming language a mechanism to interact with the compiler to allow the
construction of arbitrary program fragments by user code. Compile-time meta-
programming allows users to e.g. add new features to a language [Sheard et al.
1999] or apply application specific optimizations [Seefried et al. 2004]. Converge’s
compile-time meta-programming facilities were inspired by those found in Template
Haskell [Sheard and Jones 2002], and are detailed in depth in [Tratt 2005a]. In
essence Converge provides a mechanism to allow its concrete syntax to describe
Abstract Syntax Trees (ASTs) which can then be then spliced into a source file.

The following program is a simple example of compile-time meta-programming,
trivially adopted from its TH cousin in [Czarnecki et al. 2004]. expand power recur-
sively creates an expression that multiplies x n times; mk power takes a parameter
n and creates a function that takes a single argument x and calculates xn; power3
is a specific power function which calculates n3:
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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func expand_power(n, x):

if n == 0:

return [| 1 |]

else:

return [| ${x} * ${expand_power(n - 1, x)} |]

func mk_power(n):

return [|

func (x):

return ${expand_power(n, [| x |])}

|]

power3 := $<mk_power(3)>

The user interface to compile-time meta-programming is inherited directly from
TH. Quasi-quoted expressions [| ... |] build ASTs that represent the program
code contained within them whilst ensuring that variable references respect Con-
verge’s lexical scoping rules. Splice annotations $<...> evaluate the expression
within at compile-time (and before VM instruction generation), replacing the splice
annotation itself with the AST resulting from its evaluation. This is achieved by
creating a temporary module containing the splice expression in a function, com-
piling the temporary module into bytecode, injecting it into the running VM, and
then evaluating the function therein. Insertions ${...} are used within quasi-
quotes; they evaluate the expression within and copy the resulting AST into the
AST being generated by the quasi-quote.

When the above example has been compiled into VM instructions, power3 es-
sentially looks as follows:

power3 := func (x):

return x * x * x * 1

By using the quasi-quotes and splicing mechanisms, we have been able to syn-
thesise at compile-time a function which can efficiently calculate powers without
resorting to recursion, or even iteration. As this example highlights, a substantial
difference from traditional LISP derived macro schemes is that Converge functions
are not explicitly identified as being macros — they are normal functions that
happen to be called at compile-time.

This terse explanation hides much of the necessary detail which can allow readers
who are unfamiliar with similar systems to make sense of the actual synthesis. In
the context of this paper, the intent of Converge’s compile-time meta-programming
is more important than the precise details; any details vital for the understanding
of this paper are described as they are needed.

5. SYNTAX EXTENSION IN CONVERGE

In this section I explain how arbitrary syntaxes can be embedded into Converge via
the DSL block construct, and how that can be used to embed DSLs. Before that,
I outline the paper’s running example of a model transformation DSL, and briefly
outline the parsing facilities available within the Converge system.
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5.1 MT

For much of the rest of this paper I use a simplified version of the MT model trans-
formation DSL. MT transforms one UML-like model into another and is described
fully in [Tratt 2005c]. It does this by specifying a ‘regular expressions for models’
language which matches against source models, and a syntactically similar language
for creating target model elements. An MT transformation has a name and con-
sists of one or more rules, the ordering of which is significant. Rules are effectively
functions which define a fixed number of parameters and which either succeed or
fail depending on whether the rule matches against given arguments. The follow-
ing fragment shows a transformation which converts a class model – effectively a
simplified UML model – into a Relational DataBase Model Scheme (RDBMS):

transformation Classes_To_Tables

rule Class_To_Table:

srcp:

(Class)[name == <n>]

tgtp:

(Table)[name := n]

The Class To Table rule matches a Class model element binding whatever its
name is to the variable n; if the match is successful it then produces a Table model
element whose name is the same as the matched class. This example of converting
class models to RDBMS is standard in the model transformations community and
is useful because most readers have an intuitive idea of what the transformation
should involve (converting classes to tables, attributes to columns etc.), and it is
easy to progressively add complexity to the example.

The purpose of this paper is not to explain MT; however, using the class to
RDBMS transformation as an example, as this paper progresses we will gradually
add further complexity to the model transformation language under consideration
to show Converge’s DSL features.

5.2 Parsing in Converge

Converge provides a parser toolkit (the Converge Parser Kit or CPK) which con-
tains a parsing algorithm based on that presented by Earley [Earley 1970]. Earley’s
parsing algorithm is interesting since it accepts and parses any Context Free Gram-
mar (CFG) — this means that grammars do not need to be written in a restricted
form to suit the parsing algorithm, as is the case with traditional parsing algo-
rithms such as LALR. By allowing grammars to be expressed without regard for
many of the traditional parsing headaches such as shift-reduce conflicts, one barrier
to rapid DSL development is removed. Practical implementations of Earley parsers
have traditionally been scarce, since the flexibility of the algorithm results in slower
parsing times than traditional parsing algorithms. The CPK utilises some (though
not all) of the additional techniques from [Aycock and Horspool 2002] to improve
its parsing time, particularly those relating to the ε production. Even though the
CPK contains an inefficient implementation of the algorithm, on a modern machine,
and even with a complex grammar, it is capable of parsing more than one thou-
sand lines per second on an average machine, which is sufficient for the purposes of
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this paper. The performance of more sophisticated Earley parsers such as Accent
[Schröer 2005] suggest that the CPK’s performance could be raised significantly
with relatively little effort.

Parsing in Converge is preceded by a tokenization (also known as lexing) phase.
Token objects record the value and type of the text they represent, as well as
recording the source file and character offset within that file of the text. The CPK
provides no special support for tokenization, since the built-in regular expression
library makes the creation of custom tokenizers trivial. However the standard
Converge tokenizer was designed to have a certain degree of flexibility built in, and
can accept a list of symbols to identify as extra keywords. As we will see later it
can often be used to tokenize DSLs; however it is perfectly acceptable to use other
tokenizers for DSLs if more appropriate.

In order to use the CPK, the user must provide it with a grammar, the name of
a start rule within the grammar, and a sequence of tokens. The result of a CPK
parse is an automatically constructed parse tree, which is represented as a nested
Converge list of the form [production name, token or list 1, ..., token or

list n]. The following program fragment shows a CPK grammar for a simple
calculator:

S ::= E

E ::= E "+" E %precedence 10

| E "*" E %precedence 30

| "(" E ")"

| N "INT" %precedence 10

N ::= "-"

|

Terminals in the grammar are those surrounded by quote marks. Groups of tokens
can be surrounded by brackets and suffixed by ? (must appear zero or one times),
* (may appear zero or more times), or + (must appear one or more times). The
precedence annotations allow an unambiguous parse tree to be created from an
ambiguous parse forest. The parse tree resulting from parsing the expression 5 +
2 * 3 with this grammar is:

["S", ["E", ["E", ["N"], <INT 5>], <+>, ["E", ["E", ["N"], <INT 2>], <*>, ["E",

["N"], <INT 3>]]]]

The Converge compiler itself uses the CPK to compile Converge files. A custom
tokenizer is provided to deal with Converge’s unusual indentation-based syntax.
The parse tree produced by the CPK is traversed, and converted into an AST; the
AST is then converted into bytecode. If one ignores the extra parts of the Con-
verge compiler dedicated to compile-time meta-programming, its implementation
is similar to standard compilers.

5.3 DSL blocks

A DSL can be embedded into a Converge source file via a DSL block. Such a block
is introduced by a variant on the splice syntax $<<expr >> where expr should eval-
uate to a function (the DSL implementation function). The DSL implementation
function is called at compile-time with a string representing the DSL block (section
8 explains why DSL blocks provide benefits above simply using raw strings), and
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is expected to return an AST which will replace the DSL block in the same way as
a normal splice: compile-time meta-programming is thus the mechanism which fa-
cilitates embedding DSLs. Colloquially one uses the DSL implementation function
to talk about the DSL block as being ‘an expr block’.

Although in this paper I only discuss DSL blocks, Converge also supports DSL
phrases which are essentially intra-line DSL inputs, suitable for smaller DSLs such
as SQL queries.

5.4 A first example

We can now see the first example of our running example, the MT DSL, with the
following DSL block:

$<<MT::mt>>:

transformation Classes_To_Tables

rule Class_To_Table:

srcp:

(Class)[name == <n>]

tgtp:

(Table)[name := n]

The MT::mt referred to between angled brackets is the DSL implementation func-
tion, and refers to a function defined in the MT module.

5.4.1 Grammar. In the interests of brevity, the MT DSL uses the standard Con-
verge tokenizer. Therefore we start our example with a heavily simplified version
of the MT grammar:

mt_rules ::= "TRANSFORMATION" "ID" ( "NEWLINE" mt_rule )+

mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_tgt "DEDENT"

mt_src ::= "SRCP" ":" "INDENT" pt_spattern "DEDENT"

mt_tgt ::= "TGTP" ":" "INDENT" mt_tgt_expr "DEDENT"

pt_spattern ::= pt_smodel_pattern

pt_smodel_pattern ::= "(" "ID" ")" "[" "ID" "==" pt_spattern_expr "]"

| "(" "ID" ")" "[" "]"

pt_smodel_pattern_self ::= "ID"

pt_spattern_expr ::= "<" "ID" ">"

mt_tgt_expr ::= "(" "ID" ")" "[" "ID" ":=" "<" "ID" ">" "]"

This specifies that a valid transformation consists of one or more rules. Each rule
optionally contains matching (a source clause) and producing (a target clause)
clauses. Source clauses contain a pattern matching expression. In this simplified
grammar only simple model element patterns, of the form (M )[x == p ] are ex-
pressible; this matches against a model element of type M which has an x slot which
matches the pattern p , where p can be a variable binding of the form <v > which
automatically matches the slots contents and binds it to v . Target clauses contain
a model element expression of the form (M )[x == v ] which creates a new M model
element whose x slot is set to the value of the variable v . While this simplified MT
variant is not very powerful, it does give a flavour of the full DSL.
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5.4.2 DSL implementation function. DSL implementation functions tend to fol-
low a set form. Since MT uses Converge tokenizer, it is able to use a single function
call to obtain a parse tree; all it then has to do is pass it to the AST translator and
return the resulting AST. The DSL implementation function thus looks as follows:

func mt(dsl_block, src_infos):

parse_tree := CEI::dsl_parse(dsl_block, src_infos, ["transformation", "srcp", \

"tgtp", "src_when", "tgt_where"], [".."], GRAMMAR, "mt_rules")

return MT_Translater.new().generate(parse_tree)

The first argument to the function is a string representing the DSL block; the
src infos argument is covered later in section 8. The Compiler External Inter-
face (CEI) module is the interface between a Converge program and the Converge
compiler. The dsl parse function is a convenience function which takes a DSL
block, a list of src infos, a list of extra keywords for the tokenizer, a list of extra
symbols for the tokenizer, a grammar (defined elsewhere, and bound to the variable
GRAMMAR), and the name of the start rule in the grammar; it returns a parse tree.
As this shows, the cut-down MT DSL defines five new keywords (transformation,
srcp etc.) and a single new symbol ‘..’. Any errors that occur during parsing are
automatically reported to the user.

5.4.3 Translation to AST. The next step is the translation of an MT DSL block
into an AST representing a transformation. The CPK provides a generic parse
tree Traverser class (influenced by that found in the SPARK parsing kit [Aycock
and Horspool 2002]); for each relevant node n in the parse tree a corresponding
traversal function t n should be created. The preorder function takes a node
in the parse tree and passes it to the appropriate traversal function. For this
simplified MT variant, the translator class contains four traversal functions (note
that Traverser::Traverser is a superclass):

1 class MT Translator(Traverser::Traverser):

2 func t mt rules(node):

3 // mt rules ::= "TRANSFORMATION" "ID" ( "NEWLINE" mt rule )+

4 rules := []

5 i := 4

6 while i < node.len():

7 rules.append(self.preorder(node[i]))

8 i += 2

9 return [|

10 class ${node[2].value}:
11 func init(*root set):

12 for obj := root set.iterate():

13 self.transform(obj)

14 func transform(obj):

15 Try each rule in order on obj.

16 ${rules}
17 |]

18

19 func t mt rule(node):

20 // mt rule ::= "RULE" "ID" ":" "INDENT" mt src "NEWLINE" mt tgt "DEDENT"

21 return [|

22 func ${node[2].value)}(obj):
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23 // Try to match the input elements with the source pattern.

24 if bindings := ${self.preorder(node[5])}(obj):
25 // If we matched successfully, create the target object.

26 return ${self.preorder(node[7])}(bindings)
27 else:

28 return fail

29 |]

30

31 func t mt src(node):

32 // mt src ::= "SRCP" ":" "INDENT" pt spattern "DEDENT"

33 // pt smodel pattern ::= "(" "ID" ")" "[" "ID" "==" pt spattern expr "]"

34 // pt spattern expr ::= "<" "ID" ">"

35 return [|

36 func (obj):

37 // Check the model types match.

38 if obj.instance of.name != ${node[4][2].value}:
39 return fail

40 // Check the model element has the required slot name.

41 slot name := ${CEI::lift(node[4][5].value)}
42 // Bindings always match.

43 bindings := Dict{${CEI::lift(node[4][7][2].value)} : obj.get slot(slot name)}
44 return bindings

45 |]

46

47 func t mt tgt(node):

48 // Create target elements.

49 // ...

This translation is deliberately very simplistic. Essentially every transformation
is translated to a class, which is initialised with a ‘var args’ list of objects. Each
transformation rule is translated to a function in this class. Translated rules make
use of Converge’s Icon-esque semantics where a function f which returns the special
fail object causes the expression not f(...) to evaluate to true. This means that
if a translated rule fails to match against an input object, it will signal that failure
to its caller (line 40); if it succeeds it returns a dictionary of variable bindings.

Two features used in the translation require particular explanation. First is the
${rules} expression of line 13. In this case, rules is a list of ASTs representing
functions; this list is inserted into the class being created, and each function in
that list becomes a single function in the class. Second are the calls to CEI::lift
(lines 42 and 44). The CEI module exposes functions to the user to build up ASTs
that cannot be expressed via the quasi-quote mechanism (see section 4.1). The
lift function5 takes standard Converge objects (strings, lists etc) and recursively
converts them into their AST equivalent (e.g. [| 3 |] == CEI::lift(3)). In the
above example, the two calls to lift return AST strings.

For the original example, the resulting elided pretty-printed AST is the following:

class Classes_To_Tables:

func init(*$$0$$root_set$$):

...

func transform($$1$$obj$$):

5Note that the lift function is equivalent to its namesake in Template Haskell.
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...

func Class_To_Table($$2$$obj$$):

if $$3$$bindings$$ := func ($$4$$obj$$) {

if $$4$$obj$$.instance_of.name != Class:

return fail

$$5$$slot_name$$ := "name"

$$6$$bindings$$ := Dict{"n" : $$4$$obj$$.get_slot($$5$$slot_name$$)}

return $$6$$bindings$$

}($$2$$obj$$):

return func ($$7$$obj$$) {

...

}($$3$$bindings$$)

else:

return fail

The only surprise in this pretty printed AST is that variable names have been
surrounded by $$; this is part of Converge’s hygiene system and is explored in
more detail in section 9.

Although this cut-down MT variant is too simplistic to be of real use, it outlines
the basics both of DSL creation in Converge and of MT itself. While one can
easily imagine implementing this particular DSL in a stand-alone fashion (in similar
fashion to e.g. Yacc), this example does show that the embedding implementation
in Converge is relatively small and simple. However this example does not use any
of Converge’s more advanced DSL features. In the following sections I show how
this example can be extended to more advanced and realistic examples.

6. ADDING AN EXPRESSION LANGUAGE TO A DSL

The initial cut-down MT DSL allowed only very simplistic rules to be expressed; real
model transformations require significantly more expressive power. For example the
grammar of section 5.4.1 was particularly limited in its capacity to create new target
model elements, only allowing references to variable bindings from the source model
elements. In reality, model transformations often require arbitrary calculations
when creating target model elements. In the class to RDBMS model transformation,
a simple example presents itself. In most programming languages, class names
conventionally begin with a capital letter; many RDBMS systems however require
table names to be entirely in lower case.

There are two ways to extend the cut-down MT DSL to allow it to express more
complex transformations. The traditional approach would be to add entirely new
syntactic constructs for the desired new functionality. If we knew that occasionally
making a string lower-case was the only extension we would need, this might be a
good route to take. However repeatedly taking this approach as new requirements
arise, as is common, tends to lead to a DSL that resembles ‘a complex general
purpose language... where one has to look hard to find the pure domain-specific
abstractions that were its foundation’ [Hudak 1998]. Since we can reasonably as-
sume that our model transformation DSL will need many such small extensions,
continually adding new syntax is unlikely to be a practical long-term situation. Al-
ternatively one could add an expression language to the DSL, minimising the need
for new syntactic constructs. However creating a new expression language designed
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specifically for the DSL is often expensive in implementation terms; it also has an
unwanted cost for users as it forces them to learn ‘yet another’ expression language
which is similar, but not identical, to those they already know.

In an homogeneous embedding environment a different approach to adding an
expression language is possible. Rather than creating a new expression language,
it is possible to reuse the one already provided by the host language. This is
particularly easy in the sort of embedding provided by LISP. However it is not
clear how to do this in the presence of syntax extension of the sort provided by
Converge — when writing code within a DSL block, there is no obvious way to
escape back to standard Converge expressions.

Fortunately the Converge compiler allows grammars and DSL translations to
be created as extensions to it. This means that DSLs can integrate the standard
Converge expression language within them. Since CPK grammars are currently
expressed as strings, unioning two grammars is simple, although it does not pro-
vide strong guarantees about the resulting grammar; hopefully future versions of
Converge will provide modularisable grammars. In the interim, prefixing rules with
mt or pt guarantees no clashes between the union grammar. Thus to make use
of Converge’s expression language we need only edit the mt tgt expr rule to the
following:

mt_tgt_expr ::= "(" "ID" ")" "[" "ID" ":=" expr "]"

In so doing, target model expressions can now make use of the standard Converge
expression language which is expressed in the expr grammar rule (Converge’s full
grammar can be found in [Tratt 2005b]). The translation class then needs to be
updated to the following:

1 class MT Translator(IModule Generator::IModule Generator):

2 ...

3 func t mt tgt expr(node):

4 // mt tgt expr ::= "(" "ID" ")" "[" "ID" ":=" expr "]"

5 return [|

6 func (bindings):

7 // Lookup the element type.

8 new elem type := CLASSES REPOSITORY[${CEI::lift(node[2].value)}]
9 // Create a new element whose slots default value is null.

10 new elem := new elem type.new()

11 expr := ${self.preorder(node[7])}
12 expr b := Lookup variable references in bindings dict.

13 // Populate the specified slot.

14 new elem.${node[5].value} := expr b

15 return new elem

16 |]

The crucial line in this line 11 - the self.preorder call is all that is needed to
integrate Converge’s expression language with the DSL. Line 12 calls a function,
elided in the interests of brevity, which takes in an AST and replaces variable
references with lookups in the bindings dictionary. One can use this feature to
express model transformations such as the following:

rule Class_To_Table:

srcp:

(Class)[name == <n>]
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tgtp:

(Table)[name := n.to_lower_case()]

This example is interesting because it shows not only that it is possible to integrate
the standard Converge expression language into a DSL, but that such integration
requires a minimum of effort on the DSL authors behalf. Indeed this ease of use
allows the full MT DSL to make use of the integrated expression language in sev-
eral different contexts. Furthermore, it should be noted that by embedding the
expression language, DSLs can be embedded within themselves, and within other
DSLs, to an arbitrary depth.

Although it is not made explicit in this example, this integration is fully hygienic
in the sense that no unintended variables can be captured. This important property
is explored in more detail in section 9.

7. CONTRASTING DSL EVOLUTION THROUGH THE ADDITION OF SYNTAC-
TIC CONSTRUCTS, AND THROUGH USING AN INTEGRATED EXPRESSION
LANGUAGE

One of the problems noted in [Hudak 1998] is that DSLs tend to be subject to
continual, unplanned evolution that can eventually lead to the DSL losing much of
the domain-specific focus that made it desirable in the first place. In the context of
Converge DSLs new requirements can be addressed either by adding new syntax to
the DSL or by integrating an expression language. In this section I show how two
different features of MT are best added to the cut-down MT DSL, one by adding a
new syntactic construct, and one by using the integrated expression language.

7.1 Adding new syntactic constructs

In model transformations, it is often the case that one wants to match against more
than one model element. For example, when transforming class models, one often
needs to find all associations which have a given class as their source. One can cer-
tainly imagine using an integrated expression language to solve this problem, but
the resulting solution would be somewhat verbose and clumsy since backtracking
is required. However there is a related domain which provides a much neater syn-
tactic solution to this problem. Most developers have at least a passing familiarity
with textual regular expressions, where expressions such as ab* mean that the every
string starting with an ‘a’ character followed by zero or more ‘b’s will match the reg-
ular expression. Complex regular expressions can encode sophisticated behaviour
in terse text.

MT therefore co-opts the familiar syntax and semantics of regular expression
multiplicities such as *. Every pattern in a source clause can optionally be suffixed
by a multiplicity which specifies how many times the pattern should match, and
a variable binding to which the resulting list of matched model elements will be
assigned6. A simplified version of the grammar for multiplicities is as follows:

pt_spattern ::= pt_smodel_pattern ( pt_multiplicity "<" "ID" ">" )?

pt_multiplicity ::= "*"

6Note that in the full version of MT a list of dictionaries is assigned, but this complexity is elided

in the interests of brevity in this paper.
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| "*" "!"

| "*" "?"

In order, the three multiplicities in this fragment are ‘greedily match zero or more
times’, ‘must match all’, ‘non-greedily match zero or more times’. Assuming that
the cut-down MT DSL is also enhanced so that model element patterns and model
element expressions can now accept more than one slot, rules such as the following
can be expressed:

rule Class_To_X:

srcp:

(Class, <c>)[name == <n>]

(Association)[src = c] : * <assocs>

tgtp:

...

In the interests of brevity, I do not include the full translation of this feature, since
matching in the face of multiplicities involves backtracking, which requires careful,
if tedious, book-keeping. However, the simple syntax addition of multiplicities hides
a significant layer of complexity from the MT user.

7.2 Using the expression language for complex calculations

Although adding an expression language to model element expressions in section 6
allows more powerful model transformations to be expressed, there are occasions
when more complex calculations can not be captured in a single expression. As
in section 6, adding new syntax is not a scalable solution; but unlike section 6 we
really need to embed more than just a simple expression language. What we need to
embed is a sequence of expressions, and for that sequence of expressions to provide
full programming language like abilities.

MT thus provides a ‘where’ sub-clause tgt where for the target part of a rule (and
also a similar, but not identical, ‘when’ sub-clause for the matching part of rule),
which allows an arbitrary number of Converge expressions to be evaluated before
the main tgtp clause is executed. In the tgt where sub-clause, variable bindings
can be accessed from the matching part of the rule, and new variables defined in
the sub-clause can be referenced in the tgtp clause. The affected grammar rules
are the following:

mt_tgt ::= "TGTP" ":" "INDENT" mt_tgt_expr ( mt_tgtw )? "DEDENT"

mt_tgtw ::= "NEWLINE" "TGT_WHERE" ":" "INDENT" expr_block "DEDENT"

expr block references a rule in the Converge grammar in identical fashion to the
previous reference to the expr rule. Similarly, the translation of an expression
block in a DSL requires only a single line of code, but allows calculations such as
the following to be expressed:

rule Class_To_Table:

srcp:

(Class)[name == <n>, attributes == <attrs>]

(Association)[src = c] : * <assocs>

tgtp:

(Table)[name := n.to_lower_case(), cols := cols]
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tgtp_where:

cols := []

for a := (attrs + assocs).iterate():

cols.append(self.transform(a))

As we shall see in section 9, it is also possible for code in the embedded expression
language to call normal Converge code outside of the DSL block.

7.3 Comparison

So far this section has skirted around an inherently subjective field, that of language
design. There can be no absolute rules as to when it is best to add new syntax to a
DSL, or when instead to embed an expression language. However since every DSL
designer is by definition a language designer, guidance of some sort is useful. As
these examples suggest, there are some simple questions that DSL designers can ask
themselves that may aid in this decision. If the desired feature is fairly specific to
the DSLs domain and if it expresses a concept that translates to a lot of back-end
code, it may be a candidate for new syntax. If the feature seems as if it may be
an instance of a more generic feature, consider embedding an expression language.
If in doubt, it is often best to err on the side of embedding an expression language
since – as many language designers will ruefully attest – removing syntax tends to
be a politically difficult sell to users.

8. ERROR REPORTING

A significant usability problem associated with conventional DSL embedding, par-
ticularly when it involves syntax extension, concerns error reporting. This is both a
problem at compile-time and particularly at run-time: when an error occurs, should
the result be flagged in terms of the original user’s input, or in terms of what it
is translated into? The intuitive answer is the former; however none of the syntax
extension systems described earlier in this paper are capable of reliably achieving
this ([Tratt 2005a] evaluates a number of macro and related systems in this regard).

Converge takes a novel approach to this problem based on the concept of a src
info. Not only can DSL authors can report errors to users at compile-time, but the
error information displayed at run-time can be fully customised based on the user’s
input. In this section, I first explain Converge’s src info concept, before showing
how errors can be reported and customised.

8.1 Src infos

In section 5.4.2 we saw that DSL implementation functions take two arguments: a
string representing the DSL block and the hitherto mysterious src infos argument.
This latter argument is a list of src infos. A src info is a (src path, src offset) pair
which records a relationship back to a specific byte offset in a specific input file. Src
infos start life in the Converge tokenizer, where every token records its src info; when
the compiler converts parse trees to ASTs, the ASTs carry over the relevant src
infos; and when the compiler compiles ASTs into bytecode, every single bytecode
instruction records the src infos it relates to. Thus the src info concept is used
uniformly throughout the Converge parser, compiler, and VM.
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There are three important design decisions behind the src info concept. First,
source paths are stored in a src info because compile-time meta-programming means
that individual binary files may arbitrarily interleave bytecode generated from more
than one source file. Second, storing the byte offset allow errors reporting to pin-
point errors within (and not just between) lines; when reporting errors in syntac-
tically rich DSLs, knowing merely the line number of an error is often not enough
information to debug problems. Third, most importantly and, I believe, entirely
unique to Converge is that Converge always deals with lists of src infos, so that
individual errors can be reported as belonging to more than one location. This
latter concept is examined in section 8.4.

8.2 Using DSL blocks and src infos for accurate error reporting

Let us assume the user attempts to compile a file containing the following marginally
incorrect DSL block (which contains a spurious colon character ‘:’):

$<<MT::mt>>:

transformation Class_To_Table:

...

If we were to näıvely parse the dsl block argument to a DSL implementation
function, then the resulting parsing error that the user would see would be along
the following lines:

Line 1, column 31: Parsing error at or near ’:’ token.

This is misleading since the DSL block must have been at least 2 lines into the file.
Up until this point, DSL blocks could have been seen to be somewhat superfluous

as the same effect could have been achieved using normal strings7 as in the following:

$<MT::mt("""

transformation Class_To_Table:

...

""")>

The disadvantage of using strings to embed DSLs is that the Converge compiler has
no way of knowing that it should pass information to the MT::mt function about
the position of the DSL input within the overall source file. Thus a motivating
factor in making DSL blocks a distinct syntactic construct in Converge is that it
signifies that the DSL implementation function will be passed src infos, allowing it
to accurately report errors to the user.

In fact, the Converge tokenizer is passed (generally via the dsl parse function)
the src infos argument from the MT DSL implementation function, which it uses
to add the appropriate byte offset to all the tokens it produces. Thus when the
parser comes to report an error it reports the true line number of the error:

Line 37, column 31: Parsing error at or near ’:’ token.

7As in Python, triple quoted strings in Converge allow single quotes to be embedded within them.
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8.3 Reporting DSL defined errors at compile-time

One of the advantages of using compile-time meta-programming to embed a DSL
is that a significant amount of analysis can be done by a DSL at compile-time;
Converge provides a simple framework for reporting resulting errors to the user.

In the case of the MT DSL, a simple error that can be detected is a variable
being referenced despite not being bound anywhere, such as the following:

$<<MT::mt>>:

transformation Class_To_Table:

rule Class_To_Table:

srcp:

(Class)[name == <n>]

tgtp:

(Table)[name := name]

Such errors can be reported by passing a string and a list of src infos to the error
(or warning if more appropriate) function in the compiler object, which is accessed
via the CEI::compiler() method. The src infos associated with a given token can
be accessed via the tokens src infos slot. An elided example is as follows:

func t mt tgt expr(node):

// mt tgt expr ::= "(" "ID" ")" "[" "ID" ":=" "<" "ID" ">" "]"

if variable in node[8] not found :

CEI::compiler().error(Strings::format("Variable ’%s’ not bound.",

node[8].value), node[8].src info)

Which results in an error such as the following being reported to the user:

Line 44, column 19: Variable ’name’ not bound.

Using this facility, it is possible to create DSLs with e.g. sophisticated static type
systems, and to report any errors in the input to the user.

8.4 The need for src infos as lists

Users generally assume that compilers are flawless programs. However bugs created
by compilers in generated code can be exceedingly frustrating to track down, since
it is generally unclear from the resulting run-time error whether the problem is due
to a bug in the user’s input program, or a bug in the code generator. This problem
is identical in DSL development where run-time errors in particular may be the
result of bugs in the DSL user’s input, or bugs in the DSL implementation.

Taking one translation function from section 6, we introduce a random – but, for
the sake of example, obvious – bug into the code:

1 func _t_mt_rule(node):

2 // mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_tgt "DEDENT"

3 return [|

4 func ${node[2].value)}(obj):

5 // Try to match the input elements with the source pattern.

6 if bindings := ${self.preorder(node[5])}(obj):

7 Sys::println("Matched ", obj.name, " class")

8 // If we matched successfully, create the target object.

9 return ${self.preorder(node[7])}(bindings)
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10 else:

11 return fail

12 |]

The error here is in some ways subtle. When a source clause matches against a
class (or any other object with a name slot), line 7 prints that name out. However
if the user matches against a model element without a name slot, an exception will
be raised. Let us assume we have the class to RDBMS transformation and a new
(contrived) extra rule X where Y is a model element type without a name slot:

rule Class_To_Table:

...

rule X:

srcp:

(Y)[...]

...

Compiling a file c2r.cv with the above DSL block in it, with rule X starting at
line 98, will proceed without error. When the user runs their transformation, class
names will be printed out to screen until such point as the X rule matches against
a Y element. At such point an exception along the following lines will be raised:

Traceback (most recent call last):

1: File "c2r.cv", line 188, column 8, in main

2: File "MT.cv", line 117, column 18, in _t_mt_tgt_expr

Exception: No such slot ’name’ in instance of ’Y’.

If the user opens up the MT.cv file and looks at line 117, they will see the Sys::println
function call. This is deeply confusing: the user has no idea why this line, which has
clearly executed successfully on several occasions, suddenly fails. Similarly, line 88
in c2r.cv is simply the function call which runs a model transformation, providing
no useful clues. The reason for this confusion is simple: ASTs with bugs in them
have no direct relation to the user input that caused them to fail. Errors in the
DSL user’s input – a very different class of error – also lead to such confusing error
reports.

The fundamental question thus becomes: what source location should be reported
as being the source of the error? For many macro systems, unfortunately the answer
is not to report any source location as being the source of the error. A few macro
systems can pinpoint the splice-site of the AST as the source of the error; thus all
errors appear to originate from a single source location. By reporting the precise
location in the DSL translator, Converge is therefore already providing some useful
information for debugging.

Recent versions of Converge have a powerful and novel feature, allowing AST
elements to be associated with one or more src infos; similarly, bytecode instructions
record their location to one or more src infos. This makes it possible to pinpoint
an error as being related to multiple source locations. In our case it is therefore
possible to relate an AST element both to its location in the AST generator and its
location in the user’s DSL input. This means that stack backtraces of the following
form can be reported:
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Traceback (most recent call last):

1: File "c2r.cv", line 188, column 8, in main

2: File "MT.cv", line 117, column 18, in _t_mt_tgt_expr

File "c2r.cv", line 98, column 2, in X

Exception: No such slot ’name’ in instance of ’Y’.

This should be read as ‘location 2 in the stack backtrace is associated with both
line 117 in MT.cv and line 98 c2r.cv’. Thus the user and the DSL developer can
check both the relevant part of the input transformation and the DSL translator
to determine the cause of an error. In general, AST elements can be associated
with any number of src infos, and it is not unusual in complex DSL development
for individual AST elements to be associated with three or more src infos.

8.4.1 Adding extra src infos to an AST element. As implied earlier, when an
AST is generated via quasi-quotes, it automatically records its src info in the source
file containing the quasi-quotes. Quasi-quotes provide a simple syntactic extension
which allows extra src infos to be added to the standard src info. This extended
quasi-quotes takes the form of [<e >| ... |] where e is an expression which
must evaluate to a list of src infos. Since tokens record their src infos, the standard
idiom for using this is as follows:

1 func _t_mt_rule(node):

2 // mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_tgt "DEDENT"

3 return [<node[1].src_infos>|

4 ...

5 |]

Each element of the AST created by the quasi-quotes thus contains the extra src
infos from node[1].src infos. By using different src infos to augment different
quasi-quoted expressions, it is possible to provide fine-grained error reports to the
user which pinpoint errors to individual tokens in a line.

9. ENSURING THAT EMBEDDINGS WITH AN INTEGRATED EXPRESSION LAN-
GUAGE ARE HYGIENIC

All of the examples thus far in this paper have been hygienic, which is defined
to mean (as in LISP-esque macro systems) that variables are not captured in-
advertently, in this case between translated DSL code and integrated Converge
expressions. Ensuring that this property is maintained in DSL embeddings is cru-
cial to making reliable embeddings. In this section, I briefly define the concept of
hygiene, explain how DSL embeddings may break hygiene and hence be unsafe,
before presenting a complete solution to this problem for DSLs in Converge.

9.1 Defining hygiene

The concept of hygiene is defined in [Kohlbecker et al. 1986], and is most easily
explained by example. Consider the Converge functions f and g:

func f():

return [| x := 4 |]

func g():

x := 10
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$<f()>

Sys.println(x)

The question to ask oneself is simple: when g is executed, what is printed to screen?
In older macro systems, the answer would be 4 since when, during compilation, the
AST from f was spliced into g, the assignment of x in f would ‘capture’ the x in g.
Such unintended variable capture can be incredibly difficult to debug. This is thus
a serious issue since it makes embeddings and macros ‘treacherous [, working] in
all cases but one: when the user ... inadvertently picks the wrong identifier name’
[Kohlbecker et al. 1986].

The solution to this problem, as outlined in [Kohlbecker et al. 1986], is to α-
rename variables to avoid such capturing. In identical fashion to Template Haskell,
quasi-quoted Converge expressions in fact have another highly desirable property
besides allowing AST’s to be created via concrete syntax. Variables which are
bound in quasi-quotes are preemptively α-renamed to a fresh name, that is a name
which the compiler guarantees will be unique (see [Tratt 2005a] for more details).
It is an important property of Converge that the α-renaming of variables in this
manner does not affect a programs semantics. α-renaming of variables in quasi-
quoting is the default behaviour, but can be turned off by prefixing a variable with
the ‘&’ character to achieve dynamic scoping. Although an implementation detail,
it can be instructive to note that the variable x in the quasi-quoted expression in f
is α-renamed to a variable whose fresh name will be along the lines of $$0$$x$$,
ensuring that when it is spliced into g there is no inadvertent variable capture.

9.2 Why hygiene could be violated in DSL embeddings

At first it may seem that the α-renaming performed by the quasi-quotes mechanism
precludes the possibility of non-hygienic embeddings; indeed many simple embed-
dings – including those seen up until this point in this paper – can use this as a
guarantor of hygiene. However the simplistic AST generation techniques we have
used previously do not scale well in practise. For example, the full version of the
class to RDBMS transformation in the full MT DSL is around 100 lines long; the
translated AST however is an order of magnitude larger. Creating large ASTs from
sub-ASTs that are entirely localised and do not communicate with each other is
generally impractical. In practise, complex DSLs frequently use dynamic scoping
to bind together AST fragments into larger AST chunks (the full MT DSL uses this
feature frequently). However this use of dynamic scoping, while entirely necessary
from a practical point of view, can violate hygiene.

An example of this problem can be seen by considering an optional clause that
MT rules can have: the tracing override clause. When model transformations
execute, tracing information recording the link between source and target model
elements is created. Since the default tracing information created is sometimes not
what is desired by the MT user, it can be overridden by using a tracing override
clause. A (slightly contrived) example of this part of the translation is as follows:

1 func _t_mt_tgt(node):

2 // mt_tgt ::= "TGTP" ":" "INDENT" mt_tgt_expr mt_tgt_trc "DEDENT"

3 // mt_tgt_trc ::= "TRACING_OVERRIDE" expr

4 // |

5 if node[5].len() == 1:
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6 // mt_tgt_trc ::=

7 tracing_expr := [| &tracing := ... |]

8 else:

9 // mt_tgt_trc ::= "TRACING_OVERRIDE" expr

10 tracing_expr := [| &tracing := ${self.preorder(node[5][2])} |]

11

12 return [|

13 func (obj):

14 new_elem := ${self.preorder(node[4]}(obj)

15 ${tracing_expr}

16 self.tracing.add(&tracing)

17 return new_elem

18 |]

The difference between this traversal function and its predecessors in this paper is
not that the AST is built in fragments: it is that the AST fragments are linked
together by the dynamically scoped variable tracing (lines 7, 10, and 16). This
unfortunately means that this variable is also scoped over the tgtp clause and
could cause inadvertent variable capture on the expressions therein (note that the
new elem variable in lines 14 and 17 will be α-renamed, thus avoiding this problem).

An example of this problem in practise is the following:
tracing := ...

$<<MT::mt>>:

transformation T

rule X:

...

tracing_override:

tracing + ...

Here a variable tracing is defined outside the DSL block. The user expects that the
tracing reference within the DSL block will refer to the tracing variable defined
outside the DSL block; instead it will be bound to the tracing variable defined
in the AST created in the traversal function. Allowing the integrated expression
language to reference variables outside allows the user significant expressive power.
However to make this feature consistent with Converge’s quasi-quotes mechanism,
it must fully respect lexical scoping (in a similar fashion to [Dybvig et al. 1992])
which would be easily achievable if not for the problem of variable capture.

The issue with variable capture in DSL embeddings is that it results from the
deliberate use of dynamic scoping; when dynamic scoping is not used, hygiene can
not be violated. This problem may appear to be entirely of Converge’s own making,
since LISP-like approaches do not suffer from this issue. I believe that this is because
‘traditional’ uses of compile-time meta-programming tend to generate small ASTs
which can be built in one step. Converge DSLs, such as MT, on the other hand
often generate ASTs that are the equivalent of thousands of lines of hand written
code; practical experience has shown that building these in one step is impractical.
It is therefore necessary to create large ASTs from smaller ASTs, and to provide
a mechanism – dynamic scoping – for these ASTs to communicate naturally with
each other.

A partial solution to this problem is presented in [Tratt 2005c] which α-renames
free variables and assigns the value of the variable outside of the DSL block to
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the renamed variable. In the example of outer variable capture given earlier the
translated AST passed to the compiler looks along the lines of the following:

tracing := [...]

class T:

func (...):

$$11$$tracing$$ := tracing

...

$$11$$tracing$$ + [...]

...

The problem with this approach is that the two variables $$11$$tracing$$ and
tracing shadow each other; assigning to either variable during the execution of
the DSL block means that the contents of the two become desynchronized, with
consequently unpredictable results. Although it is possible to reduce the window
of opportunity for such desynchronizations, it can not be eradicated altogether.

9.3 The core ingredient of a solution

More recent versions of Converge provide a small and novel language feature that
allows outer variable capture to be avoided whilst also sidestepping the synchroniza-
tion problems associated with variable shadowing. The rename x as y declaration
at the beginning of a function causes the variable x to be completely removed from
the scope of the function, and a new variable y to be introduced. x and y do not
shadow each other; rather y represents the same ‘underlying’ variable as x, modulo
α-renaming. Renaming a variable also makes it ‘nonlocal’ to a block, meaning that
assigning to the renamed variable does not create a local variable but assigns to the
‘underlying’ variable in the outer block8. Thus the following prints 7 when run:

x := 3

func f():

rename x as y

y := 7

f()

Sys::println(x)

There are two things to note about this example. First it would be illegal to add an
expression such as z := x to f in isolation, because there is no variable x in scope
in f to reference. Second that adding an expression such as x := 5 to f would not
affect the value printed to screen, since the x in f would be local to f.

It is important to realise that the rename declaration is not intended to be used
for day-to-day programming: it was specifically added to Converge to facilitate the
integration of expression languages in embedded DSLs. The rename declaration
allows us to make fully hygienic, transparent embeddings even in the face of dy-
namic scoping and integrated expression languages. Furthermore it does this while
ensuring that standard compile-time meta-programming in Converge is hygienic by
default in the same fashion as languages such as Template Haskell and Scheme.

8Although not discussed in this paper, non-renamed variables can also be declared as being non-

local with the nonlocal keyword.
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9.4 Making an embedding hygienic

The key to hygienic DSLs is to use the rename declaration to α-rename free vari-
ables in any instance of the embedded expression language to fresh names. Thus
free variables can never be captured by dynamically scoped variables in the outer
scope of translated AST. Although it is possible to code this by hand, it is an en-
tirely mechanical operation and as such Converge provides a convenience function
CEI::mk hygienic itree which takes in an AST and returns an AST of a rename
declaration (renaming all free variables in the input AST to fresh names) and a
copy of the input AST with all free variables α-renamed to the appropriate fresh
name. Although it is not used in this paper, mk hygienic itree takes a second
input parameter which is a list of variable names which, even if they are free, should
not be α-renamed; this is used to pass values in and out of instances of the em-
bedded expression language. As an example, CEI::mk hygienic itree([| x + 2
+ y |], Set{y}) returns two ASTs rename x as $$8$$x$$ and $$8$$x$$ + 2 +
y.

In order to use the mk hygienic itree function, the translation function from
section 9.2 needs a slight rewriting to the following:

1 func _t_mt_tgt(node):

2 if node[5].len() == 1:

3 tracing_expr := [| &tracing := ... |]

4 renames := []

5 else:

6 expr := self.preorder(node[5][2])

7 renamed_expr, renames := CEI::mk_hygienic_tree(expr, Set{})

8 tracing_expr := [| &tracing := ${renamed_expr} |]

9

10 return [|

11 func (obj):

12 ${renames}

13 new_elem := ${self.preorder(node[4]}(obj)

14 ${tracing_expr}

15 self.tracing.add(&tracing)

16 return new_elem

17 |]

The crucial parts of this translation function are lines 7 and 12. Line 7 gets an AST
of a rename declaration, and a version of the tracing override expression with
free variables α-renamed. Line 12 inserts the rename declaration into the AST. We
can thus now be sure that there is no unintended variable capture. In the example
of variable capture given earlier, this means that what is passed to the compiler
after the DSL blocks translation looks along the lines of the following:

tracing := [...]

class T:

func (...):

rename tracing as $$11$$tracing$$

...

$$11$$tracing$$ + [...]

...

With fully hygienic embeddings, DSLs can interact fully with surrounding code,
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calling Converge functions in arbitrary modules and so on.
Creating large ASTs using dynamic scoping and CEI::mk hygienic itree re-

quires that sub-ASTs only dynamically scope agreed variables; all other variables
should use Converge’s default behaviour of α-renaming variables to fresh names.
In other words, if one is gluing together various sub-ASTs which communicate
around the dynamically scoped variable tracing, then every other variable in each
sub-AST must have been α-renamed (using CEI::mk hygienic itree if necessary).
This is not as onerous a requirement as may first seem: it is equivalent to stating
that code should not arbitrarily update the contents of objects which are ‘owned’
by other sections of code.

10. SEPARATING OUT THE KEY DSL-RELATED ASPECTS

Up to this point, I have concentrated on showing how showing how embedded DSLs
can be created in Converge, and how those embeddings can be made safe. Although
I believe Converge to be the first technology which allows safe, powerful DSL em-
beddings in an homogeneous fashion, it should not be seen as being necessarily
special. Rather it can be seen as a combination of language features and compiler
APIs which collectively constitute a number of design lessons and implementation
techniques that are equally applicable to other languages.

This section has two aims. First to separate out the features which are funda-
mental to homogeneous DSL embedding and to explain how these might be applied
to other languages – both those already in existence, or those yet to be designed.
Second to explain why it is this particular combination of features that is necessary
to allow homogeneous DSL embedding.

10.1 A compile-time meta-programming facility

The distinguishing feature of a homogeneous embedding DSL approach is the ex-
istence of a compile-time meta-programming facility. Since DSL embeddings can
potentially be extremely complex it is necessary that this facility is hygienic, which
also implies that it works at the AST, rather than concrete syntax, level (mean-
ing that while LISP-style macros are sufficient, C-esque pre-processing isn’t; see
[Brabrand and Schwartzbach 2000]). As suitable facilities now exist in a differ-
ent flavours of programming languages from lazy functional languages (Template
Haskell) to dynamically typed OO languages (Converge), it is reasonable to assume
that adding such a facility should be possible for many programming languages.

Although in theory all that is needed in a raw compile-time meta-programming
facility is an equivalent of the splice operator, I believe that in practical terms a
mechanism similar to Converge’s quasi-quotes facility is needed to allow AST’s to
be built up via concrete syntax. Without such a mechanism users are forced to
build ASTs via an API, which tends towards the unusable [Weise and Crew 1993].

10.2 DSL blocks

As shown in section 8.2, DSL blocks are a vital part of the Converge approach to
DSL. Although they initially appear to be almost identical to the normal splice
annotation, DSL blocks signify to the Converge compiler that extra information
needs to be passed to the DSL implementation function. This then allows both
compile-time and run-time errors to be accurately reported to the user.
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Any language with a compile-time meta-programming facility where macro def-
initions are normal first-class functions (such as Template Haskell) would need to
have a similar syntactic construct to DSL blocks in order to signify that extra infor-
mation should be passed to them. For LISP-esque macro systems, one could define
a different category of macro (or some way of marking a normal macro as such)
which signifies to the compiler that it requires extra information to be passed to it.

10.3 Accurate and complete error reporting

Traditional macro systems have paid little attention to the problem of accurately
reporting errors to users. This is even more critical when embedding DSLs since
errors could be due either to a faulty translation, or to a bug in the user’s DSL input.
Converge’s src info concept, when threaded throughout a languages’ compiler and
execution environment, allows errors to be associated with multiple source locations
leading to significantly easier debugging of errors.

10.4 Free variable calculation and α-renaming

If an expression in a DSL block can reference variables in scope outside of it, then
various problems arise, including the violation of hygiene. It is my experience
that even seemingly mundane embedded DSLs are likely to be non-hygienic if an
integrated expression language is used. The principal part of a hygienic embedding
solution is to be able to α-rename free variables in expressions in the DSL.

Any hygienic compile-time meta-programming facility is able to calculate an
AST’s free and bound variables, and α-rename variables as appropriate. Many
such systems do not expose this functionality directly to the user, keeping it in-
ternal to the compiler; however users must be able to α-rename free variables in
a given AST to fresh names, in order to make hygienic embeddings. The precise
way in which this functionality is exposed is a matter of choice. Converge pro-
vides the CEI::mk hygienic itree convenience function which wraps the required
functionality up into a single call. However it is also possible to obtain the same
functionality at a much lower level e.g. by making use of the fact that each AST
element has a free vars slot which is a set detailing the elements’ free variables.

10.5 Maintaining a link between α-renamed variables

Once issues concerning hygiene have been satisfied, a more subtle problem regarding
the synchronization of the contents of an α-renamed variables to the contents of
the non α-renamed variable arises (see section 9.2). It must be possible to ‘link’ an
α-renamed variable to the unrenamed variable, so that changes to the contents of
either variable are atomically reflected in the other. The use of the word atomic is
deliberate: clever run-time tricks can reduce the problem, but can not fully resolve
it (see [Tratt 2005c] for further explanation). Thus there needs to be some way
of informing the compiler of the link between variables. This could be achieved in
various ways; Converge’s rename declaration is merely one approach, although it has
the useful property that it doesn’t effect ‘normal’ compile-time meta-programming
notions of hygiene and so on.
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10.6 Implications for a languages implementation

Assuming one has a compiler which can support compile-time meta-programming,
adding support for DSL embedding of the type outlined in this paper is surprisingly
trivial, since it can really be viewed as a variation on the semantics of the splice
operator (this statement holds equally true for more traditional macro systems).
In the case of the Converge compiler, the DSL embedding system detailed in this
paper was only designed and added to the compiler after the complete base compiler,
including the compile-time meta-programming facility, had been completed. I hope
my experience with the Converge compiler is thus not unindicative of the effort
needed for systems at a similar stage of development.

For the Converge compiler adding the concept of DSL blocks necessitated a
rewrite of the tokenizer, but the addition of only around 10 lines of code to the
rest of the compiler. Other changes to the compiler are mostly likely to involve
small alterations to expose otherwise internal operations such as the ability to
calculate an AST’s free variables. In the case of Converge, only two substantial
changes to the compilers internals were required: adding the rename declaration,
which required touching a number of critical parts of the compiler, took around
three man days of effort to design, implement, test and debug; adding the src info
concept uniformly throughout the compiler took around one man day of effort since
it touched nearly every part of the compiler. The only other component which may
be missing from other systems is an equivalent parsing library to Converge’s CPK.
Since parser implementation is well understood, this is not of great concern.

10.7 Feature combination

A question which we are now able to consider is the following: is the complete set
of features outlined earlier in this section necessary to achieve the same effect as
Converge? In other words, can we drop features and still create the similar DSLs
with similar levels of effort?

The first thing that can be said is that a compile-time meta-programming facility
is the key enabling feature in a Converge-style approach. In order to make such a
facility usable, one also needs a quasi-quotes mechanism to build ASTs. Although
one can remove DSL blocks, this would prevent accurate intra-DSL error reporting;
in practice this makes creating large, reliable DSLs very difficult.

Small DSLs can often be created in ‘one shot’. However in order to implement
large DSLs, one typically creates ASTs piece-meal, which means that dynamic
scoping of variables of sub-ASTs is necessary to ‘glue’ sub-ASTs together. Al-
lowing the host languages’ expression language to be integrated into DSLs then
raises the spectre of variable capture in the presence of such dynamic scoping; at
that point, a facility such as the rename declaration (and possibly its associated
mk hygienic tree function) is vital to retain the hygiene property.

Since a DSL implementation is as likely to contain bugs as any other program, the
ability to track down errors quickly is important. Since errors reported to the user
may result from bugs in their input or a bug in the translation, removing Converge’s
ability to easily associate multiple source locations with an AST fragment makes
debugging significantly more difficult. Similarly, the fact that src infos can be
associated with different files is vital, given that code is usually generated in one
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file and spliced into another.
As this section suggests, it is possible to select a subset of the features presented

in this section; however this also implies that only a subset of functionality is
achieved. In certain cases, that may be all that is required. However full Converge-
like functionality can only be achieved by combining the complete set of features
outlined in this section. Note however that it might be possible to strip down some
of the features, and still achieve similar functionality (e.g. the mk hygienic tree
function is a convenience, rather than being a fundamental building block).

11. COMPARISON TO RELATED WORK

I detailed existing approaches to DSL embedding in detail in section 2; in this
section I attempt to identify what place the approach outlined in this paper occu-
pies within the spectrum of such systems. At a high level, a distinguishing feature
of Converge is that it is geared towards facilitating the rapid development and
prototyping of large DSLs; this particular class of problem has been left largely
unexplored by previous approaches. However, there are many other areas for com-
parison with other approaches, which I now tackle.

Comparing homogeneous and heterogeneous embedding approaches has tradi-
tionally been very difficult. While both approaches have broadly similar aims,
their wildly differing technical approaches mean that they were applied in very
different contexts. Converge in some senses bridges these two extremes—it shows
that homogeneous approaches can get much closer to heterogeneous approaches in
expressive power than has previously been possible. Technologically speaking, het-
erogeneous embedding approaches are strictly more expressive than Converge, as
they can be applied to any embedding problem, whereas Converge can only embed
DSLs in Converge code. However practically speaking, heterogeneous approaches
such as TXL are not well suited to embedding complex DSLs, as they have little
knowledge of the language they are embedding into, placing this burden on the
author of the embedding. However as Converge and TXL are specifically designed
for very different tasks, there is little scope for a meaningful comparison.

More advanced approaches such as MetaBorg are capable of practically embed-
ding vastly more complex DSLs than previous homogeneous embedding approaches.
Some of the larger MetaBorg DSLs are similar in intent, and implementation, to
some of the smaller Converge DSLs. Comparing Converge and MetaBorg is thus of
practical interest. Clearly MetaBorg has the significant advantage that it is not tied
to a specific target language. MetaBorg is also able to more neatly express small,
fine-grained extensions to the target language, whereas Converge uses the slightly
coarser-grained DSL block construct. However, for larger DSLs, Converge has sev-
eral benefits. Whereas Converge allows full programming language expressivity to
express complex DSLs, MetaBorg’s term rewriting system is intentionally more lim-
ited. In a sense, MetaBorg can be thought of as a DSL for creating DSLs, whereas
Converge is a programming language for creating DSLs. Perhaps more fundamen-
tally, MetaBorg is also at the mercy of the target language in various aspects. For
example, since run-time error reporting, in particular, depends on the target lan-
guage, MetaBorg can not replicate Converge’s advanced error reporting facilities.
Similarly, MetaBorg can not practically allow large DSLs to be built out of sub-
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ASTs which are glued together with dynamically scoped variables, as most target
languages have no equivalent of Converge’s rename declaration to restore hygiene.
Thus MetaBorg’s transformations can not be as easily decomposed or modularised
as their Converge equivalents. In summary, a MetaBorg style approach is the only
choice when an arbitrary target language is mandated, and will often be at least
as practical as Converge for small DSLS; but for large DSLs, various Converge fea-
tures, which do not (and in some cases, can not) have an equivalent in MetaBorg,
can make a large practical difference.

The most obvious difference between the approach outlined in this paper and
other homogeneous embedding approaches is with regard to syntax extension. Most
homogeneous embedding approaches are not capable of syntax extension at all.
The three languages capable of syntax extension – Nemerle, xTc, and Metalua
– take a very different, more fine-grained, approach than Converge. Essentially
these languages allow, at compile-time, their grammars to be extended. Therefore,
and similarly to MetaBorg, for small extensions these languages allow a neater
integration of new constructs than Converge can manage. Converge’s DSL block
construct is more coarse-grained, but has the advantage that DSL blocks need not
be constrained by compatibility with the host language grammar. Furthermore
Converge has a substantially more developed ability to report compile-time and
run-time error messages in terms of the user’s DSL input. Although the approach
outlined in this paper is more involved than Hudak’s DSEL concept for example,
it is still relatively lightweight, and is directly comparable to these three languages
in complexity.

12. FUTURE WORK

The main direction for future work is to continue implementing different DSLs
for a wider variety of domains. In so doing, I would hope that useful techniques,
idioms, and approaches for DSL implementation will be identified, codified, and
documented. My experience of DSL implementation has already identified a num-
ber of common threads in DSL development, and I believe that further experience
could help streamline the process substantially.

Currently, Converge consists of a compiler and associated libraries. Many devel-
opment teams expect such systems to come with a plethora of associated tools, such
as intelligent editors, debuggers, refactoring tools and so on. Compile-time meta-
programming makes some of these more challenging—editors, and refactoring tools
particularly. In order to make the technologies in Converge more acceptable to a
wider audience, it will be necessary to uncover techniques for making compile-time
meta-programming interact well with such tools.

13. CONCLUSIONS

In this paper I first identified the advantages of using DSLs to aid development. I
then asserted that the traditional technique of implementing DSLs as stand-alone
applications was slow, and resulted in implementations of variable quality. I then
defined two different types of DSL embedding – homogeneous and heterogeneous.
Crudely put, homogeneous embedding allowed simple DSLs to be implemented
quickly and safely, whereas heterogeneous embedding allowed more complex DSLs
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to be implemented but with fewer safety guarantees about e.g. hygiene; conse-
quently most heterogeneous approaches have to restrict themselves to less complex
embeddings.

This paper then presented a novel, practical, and complete approach to DSL
implementation in an homogeneous embedding environment. By adding the simple
concept of a DSL block to the Converge programming language, arbitrary syntaxes
can be translated at compile-time using its compile-time meta-programming facility.
I then showed how DSLs can integrate the expression language from the main
Converge language, and how the src info concept allows accurate and detailed
compile-time and run-time error reports. I then showed how DSL embeddings can
be made fully hygienic in the presence of an integrated expression language. Finally
I separated out the parts of Converge fundamental to homogeneous DSL embedding,
and discussed how such features might be integrated into similar systems.

The running example in this paper was a cut-down version of the MT model
transformation DSL; the full version of this DSL is documented in [Tratt 2005c].
MT is an example of a Converge DSL which implements sophisticated behaviour
that is considered, by the model transformation community, to be inexpressible in
a traditional homogeneous embedding approach. Despite the power of the resulting
language, its implementation is relatively small at around 1000LoC, a fraction of
the size of other model transformation implementations. MT is an example of a
DSL which is particularly well suited to Converge since it is effectively a complete
language in its own right; at its most extreme such DSLs effectively conflate the
concept of Converge source files with DSL blocks. Conversely DSLs such as the TM
(Typed Modelling language) DSL [Tratt 2005c] are not quite as easy a fit, since
different DSL blocks, generally small in length, need to influence each other in some
fashion; while this is possible, the resulting implementation is inevitably less neat
and tidy.

Converge has also been used in industry to implement non-computing related
DSLs such as DSLs for the telecoms and insurance domains. Although further ex-
perience will be required to make definitive statements in this regard, it already
appears that Converge has a much wider applicability than was originally antici-
pated. Successful DSLs appear to share some common traits e.g.: careful thought
has been put into the DSL design, most obviously the grammar; the DSL imple-
menter is fluent and confident in the problem domain; the DSLs make use of as
much ‘normal’ Converge code as possible to avoid duplicating effort. Although
Converge’s user’s have reported DSL creation in Converge to be much swifter than
traditional methods, the benefits become more pronounced for complex DSLs. In
other words, the time needed to create a small DSL using ‘traditional’ techniques
is relatively low, so there is not as much to improve upon as for larger DSLs, where
the implementation effort may previously have been measured in weeks or months.

In summary I believe that the approach outlined in this paper details a useful new
point in the DSL implementation spectrum — whilst more general than traditional
homogeneous embedding approaches, the Converge system is often less complex in
use than the more general heterogeneous embedding approaches. Although DSL
design and implementation is a fundamentally challenging task, for many tasks
Converge lowers the barrier to entry.
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Free implementations of Converge (under a MIT / BSD-style license), which can
execute all of the examples in this paper, can be found at http://convergepl.org/.

My thanks to Kelly Androutsopoulos for comments on an early draft, and to the
anonymous referees whose detailed comments significantly improved latter versions.
This research was partly funded by a grant from Tata Consultancy Services.

REFERENCES

Abadi, M. and Cardelli, L. 1996. A Theory of Objects. Springer.

Aycock, J. and Horspool, R. N. 2002. Practical Earley parsing. The Computer Journal 45, 6,
620–630.

Bachrach, J. and Playford, K. 1999. D-expressions: Lisp power, Dylan style.

http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf Accessed Nov 22 2006.

Bachrach, J. and Playford, K. 2001. The Java syntactic extender (JSE). In Proc. OOPSLA.

31–42.

Brabrand, C. and Schwartzbach, M. 2000. Growing languages with metamorphic syntax

macros. In Workshop on Partial Evaluation and Semantics-Based Program Manipulation.
SIGPLAN. ACM.

Bravenboer, M. and Visser, E. 2004. Concrete syntax for objects. Domain-specific language

embedding and assimilation without restrictions. In Proc. OOPSLA’04, D. C. Schmidt, Ed.
ACM SIGPLAN, Vancouver, Canada.

Cordy, J. R. 2004. TXL - a language for programming language tools and applications. In
Proc. LDTA 2004, ACM 4th International Workshop on Language Descriptions, Tools and

Applications.

Czarnecki, K., O’Donnell, J., Striegnitz, J., and Taha, W. 2004. DSL implementation in

MetaOCaml, Template Haskell, and C++. 3016, 50–71.

Dybvig, R. K., Hieb, R., and Bruggeman, C. 1992. Syntactic abstraction in scheme. In Lisp
and Symbolic Computation. Vol. 5. 295–326.

Earley, J. 1970. An efficient context-free parsing algorithm. Communications of the ACM 13, 2
(Feb.).

Fleutot, F. and Tratt, L. 2007. Contrasting compile-time meta-programming in Metalua and
Converge. In Workshop on Dynamic Languages and Applications.

Goldberg, A. and Robson, D. 1989. Smalltalk-80: The Language. Addison-Wesley.

Grimm, R. 2005. Systems need languages need systems! 2nd ECOOP Workshop on Programming

Languages and Operating Systems.

Griswold, R. E. and Griswold, M. T. 1996. The Icon Programming Language, Third ed.

Peer-to-Peer Communications.

Hudak, P. 1998. Modular domain specific languages and tools. In Proc. Fifth International
Conference on Software Reuse. 134–142.

Kohlbecker, E., Friedman, D. P., Felleisen, M., and Duba, B. 1986. Hygienic macro expan-
sion. In Symposium on Lisp and Functional Programming. ACM, 151–161.

Mernik, M., Heering, J., and Sloane, A. M. 2003. When and how to develop domain-specific
languages. Tech. rep., Centrum voor Wiskundeen Informatica. Dec.
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