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Abstract—The advent of 6G networks brings diverse services,
such as immersive multimedia, augmented reality, and massive
IoT, each with stringent requirements for Quality of Service
(QoS) and fairness. These challenges expose the limitations of
traditional scheduling algorithms, which struggle to dynamically
adapt to evolving network conditions. To address this, we
propose FAIR-Q, a novel Fairness and Adaptive Intelligent
Resource Management framework with QoS optimization driven
by Reinforcement Learning (RL) approach. FAIR-Q integrates
a multi-objective reward function to optimize fairness, packet
loss, delay, and rate constraints. The framework features two
key controllers: a Parameterization Controller, which dynami-
cally adjusts scheduling parameters to ensure fairness, and a
Scheduling Rule Controller, which intelligently selects scheduling
rules to adapt to real-time network conditions and align with
QoS requirements. Simulation results demonstrate up to a 15%
improvement in fairness and QoS satisfaction compared to
static scheduling methods, underscoring the adaptability and
scalability of FAIR-Q in dynamic 6G Radio Access Networks.

Index Terms—Multi-objective Optimization, Reinforcement
Learning, Scheduling, QoS, Fairness, Dynamic Networks.

I. INTRODUCTION

The emergence of 6G networks promises to revolution-
ize multimedia services such as augmented and virtual re-
ality, holographic communications, and ultra-high-definition
streaming, all of which impose stringent Quality of Service
(QoS) requirements, including ultra-low latency, high relia-
bility, and adaptive data rates, and fairness among users [1].
These demands place significant strain on traditional Radio
Access Networks (RANs). Open RAN, with its modular and
flexible architecture, addresses these challenges by decoupling
hardware from software, enabling dynamic resource manage-
ment, programmable interfaces, and integration of advanced
algorithms to adapt to evolving network conditions [2].

Reinforcement Learning (RL) has emerged as a promising
approach to Radio Resource Management (RRM) within the
Open RAN ecosystem. By learning optimal actions through
interaction with the environment, RL dynamically adapts to
changing network conditions, improving scheduling, resource
allocation, and interference management [3]. Its ability to
handle high-dimensional state spaces, adapt to varying traffic
patterns, and enable real-time decision-making makes RL an
ideal solution for addressing challenges in 6G RRM [4].

This paper introduces FAIR-Q, a novel RL-based frame-
work designed to simultaneously address fairness and QoS ob-
jectives in scheduling diverse data traffic. FAIR-Q employs a
multi-objective optimization strategy utilizing two specialized
controllers: a Parameterization Controller, which dynamically
adjusts scheduling rule parameters to meet fairness require-
ments, and a Rule Selector Controller, which intelligently
selects the appropriate scheduling rule to achieve multiple
objectives, including user fairness, delay, Packet Loss Ratio
(PLR), and rate constraints. This intelligent and adaptive ap-
proach ensures enhanced resource management and scalability
in evolving network environments.

II. RELATED WORK

Early directions in applying RL in RRM scheduling were
proposed in [5] and [6], where a Q-learning framework was
employed to dynamically select the scheduling rule at each
Transmission Time Interval (TTI), enhancing throughput and
fairness by learning optimal policies. Throughput-fairness
tradeoff is optimized in [7] using deep RL for dynamic
resource and user scheduling. In [8] and [9] multiple RL
algorithms were trained to adapt the Generalized Proportional
Fair (GPF) scheduling rule, specifically targeting the fairness
requirements set by the Next Generation Mobile Networks
(NGMN). Extending this line of research, in [10] authors
conducted a comparative study of various RL algorithms, an-
alyzing their effectiveness under different averaging strategies
used for computing user throughput, with a focus on NGMN
fairness objective. Also, throughput optimization is addressed
in [11] using multi-agent RL with a graph attention network
to allocate radio resources effectively in 6G sub-networks.

A deep RL method is proposed in [12] to enhance through-
put and reduce delay in Open RAN, optimizing resource
allocation for both enhanced Mobile Broadband (eMBB)
and Ultra-Reliable Low-Latency Communication (URLLC)
services. In [13] a deep transfer RL framework is proposed to
optimize joint radio and cache resource allocation in 5G RAN
slicing, achieving significant improvements in throughput and
latency for eMBB and URLLC services. By focusing on
delay and drop rate minimization in applications with stringent
requirements, a novel scheduling framework is studied in [14],



leveraging RL approaches to dynamically select scheduling
rules based on real-time network conditions. This multi-
objective optimization through RL is further explored in
[15], addressing diverse traffic demands by meeting strict
rate, PLR, and delay requirements. This work is extended
to heterogeneous traffic scenarios, demonstrating significant
improvements in terms of PLR, throughput, and delay [16].

Building on prior work, this paper takes a comprehensive
approach by integrating both fairness and diverse QoS require-
ments—such as rate, packet loss, and delay—into a unified
RL-based scheduling framework. This holistic method ensures
equitable resource allocation while simultaneously optimizing
user satisfaction and network performance. The key benefits
of this approach include improved fairness across users,
enhanced adaptability to heterogeneous traffic conditions, and
the ability to meet stringent QoS demands, making it well-
suited for next-generation wireless networks.

III. SYSTEM MODEL

The proposed FAIR-Q system model from Fig. 1 consists
of two key components: the scheduling and resource allo-
cation module, and the proposed RL framework. Scheduling
prioritizes user requests during each TTI t, while resource
allocation assigns radio resources to these prioritized users. As
highlighted in the related work, the performance of scheduling
(measured in terms of QoS provisioning and fairness assur-
ance) relies heavily on the choice of the scheduling rule,
especially in dynamic network and traffic conditions. The
proposed RL framework is designed to dynamically select
the appropriate scheduling rule at each TTI t, based on the
instantaneous scheduler state s(t) ∈ S , which includes QoS
indicators, traffic characteristics, and channel conditions. The
scheduler state must be processed at each TTI to enable effi-
cient RL operation, ensuring compliance with stringent QoS
and fairness requirements under dynamic network conditions.
To achieve the multi-objective goals of fairness and QoS, the
proposed RL framework employs two specialized controllers:
a Parameterization Controller, which tunes the parameters of
the scheduling rule, and a Rule Selector, which determines
the most suitable scheduling rule to apply at each TTI.

A. Problem Formulation

We consider downlink multimedia communications using
OFDMA radio access scheme, where the available bandwidth
is divided into J equally sized Resource Blocks (RBs). Let
J = {1, 2, . . . , J} represent the set of RBs to be shared
among the active users, denoted by It = {1, 2, . . . , It}, where
It is the number of active users at TTI t. The scheduler is
tasked with allocating each RB j ∈ J to user i ∈ It in
each TTI, aiming to maximize the long-term fulfillment of
QoS and fairness requirements. To formalize the objectives,
let O = {1, 2, . . . , O} denote the set of objectives targeted
by the scheduling process within RRM. In this model, we
consider O = 4 objectives, where o = 1 addresses NGMN
fairness, followed by objectives for rate (o = 2), delay (o = 3),
and PLR (o = 4). For each user i ∈ It, the objective
o ∈ O is addressed by employing a specific function Fo

which dictates the scheduling of users with the highest deficit

Fig. 1: Proposed FAIR-Q System Model

concerning the selected objective o. Given the diverse QoS
requirements, dynamic network conditions, user preferences,
and traffic characteristics, a variety of scheduling rules have
been developed to address individual or combined objectives.
Let D = {1, 2, . . . , D} denote the set of scheduling rules. At
each TTI, the scheduling entity must determine the objective
to address, the rule to apply, the users to prioritize, and
the RBs to allocate in order to meet the QoS and fairness
requirements. This task forms a multi-objective combinatorial
scheduling problem, mathematically expressed as follows:

max
x,y,z

∑
o

∑
d

∑
i

∑
j

xo,d(t) · yd,i(t) · zi,j(t) · Fo

(
Qo,i,

λi,j
Λi

)
·λi,j ,

s.t.

(1)

qo,i constrained by q̄o,i, ∀o ∈ O, ∀i ∈ It (1.a)
xo,d(t) ∈ {0, 1}, ∀o ∈ O,∀d ∈ D, (1.b)
yd,i(t) ∈ {0, 1}, ∀d ∈ D,∀i ∈ It, (1.c)
zi,j(t) ∈ {0, 1}, ∀i ∈ It,∀j ∈ J , (1.d)∑

o
xo,d(t) ≥ 1, d = 1, 2, ..., D, (1.e)∑

d
yd,i(t) = 1, i = 1, 2, ..., It, (1.f)∑

i
zi,j(t) ≤ 1, j = 1, 2, ..., J. (1.g)

In (1), λi,j represents the achievable rate on RB j ∈ J
for user i ∈ It, emphasizing that the primary objective of
the scheduling process is to maximize system throughput by
exploiting multi-user frequency diversity. This rate maximiza-
tion objective is modulated by the scheduling rule Fo, which
prioritizes fairness by incorporating the ratio λi,j/Λi, where
Λi is the average throughput of user i ∈ It. This ratio ensures
that users with relatively higher average throughput are depri-
oritized in favor of those with lower average throughput or
potentially more unfavorable channel conditions. The NGMN
fairness requirement provides a framework for balancing
fairness with throughput maximization. Beyond fairness, the
rate maximization objective is further refined by the QoS
dataset Qo,i = {qo,i, q̄o,i}, where qo,i represents the QoS
indicators (e.g., throughput, delay, PLR) for objective o ∈ O,
and q̄o,i denotes the associated QoS requirement. A specific
QoS objective o ∈ O is fulfilled for user i when qo,i meets
q̄o,i. In such cases, the scheduling process prioritizes users
with the lowest degree of QoS satisfaction for the given
objective o ∈ O. Within the constraints of fairness and QoS
as outlined in (1.a), the combinatorial optimization problem
seeks to determine the best binary decision variables defined



in (1.b), (1.c), and (1.d). These decision variables include:
• Objective and rule selection variable: xo,d[t], which indi-

cates whether objective o ∈ O is selected and scheduling
rule d ∈ D is applied. If xo,d(t) = 1, objective o is
targeted using rule d; otherwise, xo,d(t) = 0. Constraints
(1.e) ensure that at least one objective is associated with
each scheduling rule d ∈ D.

• Rule assignment variable: yd,i[t], which assigns rule d ∈
D to user i ∈ It. If yd,i(t) = 1, rule d is assigned to user
i; otherwise, yd,i(t) = 0. Constraints (1.f) ensure that
each active user is prioritized by using one scheduling
rule each TTI.

• Resource allocation variable: zi,j [t], which indicates
whether RB j ∈ J is allocated to user i ∈ It. If
zi,j(t) = 1, RB j is allocated to user i; otherwise,
zi,j(t) = 0. Constraints (1.g) ensure that at most one
RB is allocated to each active user in every TTI.

When applied in accordance with the dynamic conditions
of the network and traffic, these variables collectively frame
the optimization problem, enabling decisions that effectively
balance fairness, QoS satisfaction, and resource utilization.

IV. PROPOSED FAIR-Q RL FRAMEWORK

In general, reinforcement learning (RL) seeks to learn an
optimal policy of actions that maximizes a long-term reward.
Specifically, the proposed RL framework depicted in Fig. 1
learns from its interactions with the scheduling and other
RRM entities to identify a policy of scheduling rules that
optimizes rewards related to fairness and QoS satisfaction. At
each TTI t, a new state s ∈ S is observed, comprising channel
conditions, traffic characteristics, and instantaneous QoS indi-
cators and requirements. Given the large and dynamic nature
of this state representation, the framework applies processing
functions to derive a more stable and representative version.
The RL framework observes the processed state s ∈ S and
selects an action a ∈ A, which corresponds to a scheduling
rule d ∈ D. At TTI t + 1, a reward function evaluates the
effectiveness of the selected action in terms of fairness and
QoS satisfaction, while a new state s′ ∈ S is observed.
Through multiple state-action-reward-state transitions, the RL
controller refines a policy of scheduling rules. This refined
policy enables the algorithm to automatically determine the
appropriate scheduling rule to apply in each state, thereby
maximizing fairness and QoS outcomes.

Given the optimization problem outlined in (1), the RL
controller depicted in Fig. 1 is tasked with selecting the
decision variable xo,d, which determines the objective o to
be addressed and the corresponding scheduling rule d to be
applied. At each TTI, when the RL controller selects a specific
objective to address (e.g., NGMN fairness, rate, delay, or
PLR), the scheduling rule recommended by the Rule Selector
is applied. This rule is then parameterized by the Parameter-
ization Controller to optimize the multi-objective target for
the subsequent TTI. The parameterization of scheduling rules
allows the scheduling process to adapt to dynamic network
and traffic conditions, ensuring compliance with the NGMN
fairness requirement. The scheduling function from (1) can
then be further decomposed as:

Fo

(
Qo,i,

λi,j
Λi

)
= fo(Qo,i) ·

(λi,j)
βt−1

(Λi)αt
. (2)

Here, fo represents the QoS component of the scheduling
function, while the remaining terms constitute the parameter-
ized version of the GPF rule. This parameterization focuses
on dynamically adapting [αt, βt] at each TTI to achieve the
NGMN fairness objective. Therefore, at each TTI, the central
controller selects the scheduling rule d ∈ D and the parameter-
ization scheme [αt, βt] to improve the multi-objective revenue
in the subsequent TTI in terms of NGMN fairness, Guaranteed
Bit Rate (GBR), delay and PLR requirements.

A. States

We define first the state components of each active user
i ∈ It at each TTI given by si = [cqii,qi], where cqii
represents the Channel Quality Indicator (CQI) vector, and
qi = [qo,i, q̄o,i − qo,i] denotes the Key Performance Indicator
(KPI) vector. This KPI vector contains the QoS indicators
qo,i and their deviations from the QoS requirements q̄o,i for
each objective o = 1, 2, . . . , O. Aggregating CQI reports
from all active users within one TTI yields to cqi = [cqii],
i = 1, 2, . . . , It. Similarly, regrouping all qi vectors by each
objective o ∈ O gives qo = [qo,i, q̄o,i − qo,i], i = 1, 2, . . . , It.
Combining these vectors across all objectives provides a com-
prehensive representation of KPI vector q = [q1,q2, . . . ,qO].
In these conditions, the instantaneous and unprocessed state
s(t) ∈ S at each TTI becomes:

s = [αt, βt, cqi,q]. (3)

This state representation varies with the number of active
users, necessitating compression techniques to reduce its
dimensionality, as detailed later. However, the state vector
in (3) is utilized by the rule selector controller to provide
a comprehensive overview of the satisfaction levels across
all objectives at each TTI. In contrast, the parameterization
controller requires only a subset of this representation corre-
sponding to the fairness objective (o = 1). Consequently, the
state for the parameterization controller becomes:

s1 = [αt, βt, cqi,q1]. (4)

The state representations from (3) and (4) permits to efficiently
process information, enabling the application of appropri-
ate parameterization and the selection of the most effective
scheduling strategies.

B. Actions

The central controller is tasked with providing the action
a(t) ∈ A at each TTI t, which directs the scheduling entity on
both the choice of scheduling rule and the parameterization
variables. This action is expressed as a = [ar, αt, βt], where
ar ∈ {1, 2, . . . , D} represents the rule selector’s decision.
The fairness parameters are updated only when the GPF
scheduling rule is selected (f1), utilizing the parameterization
controller’s action ap = [∆αt,∆βt], which specifies the
parameter adjustments for the current TTI. When invoked,
these actions update the fairness parameters as follows:{

αt = αto +∆αt,

βt = βto +∆βt,
(5)



where to denotes the timestamp of the last parameters’ ad-
justment. Hence, the rule selector is responsible for achieving
all objectives globally, while the parameterization controller
specifically ensures adherence to the NGMN constraints.

C. Reward Functions

As observed, the rule selector and the parameterization
controllers operate on distinct state representations. Similarly,
the reward scheme is tailored to their specific roles: the rule
selector aims to maximize a multi-objective function that
integrates NGMN fairness, GBR, delay, and PLR metrics. In
contrast, the parameterization controller focuses on determin-
ing optimal parameters to ensure compliance with the NGMN
fairness requirement.

For the NGMN fairness objective, the controller’s goal is
to align the Cumulative Distribution Function (CDF) with
the requirement, ensuring it falls within the so-called fea-
sibility region, represented as s1 ∈ FS [10]. To the left
of this requirement lies the unfair region, s1 ∈ UF , where
the solutions prioritize system throughput at the expense of
fairness. Conversely, to the right of the feasibility region is the
over-fair region, s1 ∈ OF , where overly fair solutions result
in significant system throughput degradation. The reward
function for fairness (o = 1) is therefore defined as [10]:

r′1(s1,ap) =


ruf , s′1 ∈ UF ,
1, s′1 ∈ FS,
rof , s′1 ∈ OF ,

(6)

where, s′1 is the parameterization controller state at TTI t +
1 and sub-rewards ruf and rof are calculated differently as
proposed in [10].

In the case of QoS objectives, we define ro,i as the QoS
revenue obtained after applying scheduling rule d ∈ D in state
s ∈ S, expressed as follows:

ro,i =


1− q̄o,i−qo,i

q̄o,i
, q̄o,i > qo,i, o = 2,

1− qo,i−q̄o,i
qo,i

, q̄o,i < qo,i, o ∈ {3, 4},
1, otherwise,

(7)

where, o = 2 corresponds to the GBR objective, which aims
to ensure that the average throughput of all users meets or ex-
ceeds their requirements. The objectives o ∈ {3, 4} represent
delay and PLR, respectively, and aim to keep the indicators
below their corresponding requirements for all active users
at each TTI. The QoS reward across all active users is then
calculated based on:

r′o(s, d) =

{∑It
i=1 r

′
o,i −

∑It
i=1 ro,i,

∑
i r

′
o,i ̸=

∑
i ro,i,

1, otherwise,
(8)

where reward r′o calculated at TTI t + 1 for objective o ∈
{2, 3, 4} detects the improvement of QoS provision compared
to the previous TTI.

When training the parameterization controller to optimally
adjust the parameters [α, β] in alignment with the NGMN
fairness requirement at each TTI, the reward values from (6)
are reinforced to guide its learning process. In contrast, the
Rule Selector Controller is trained using a distinct reward
function that encapsulates the multi-objective nature of the

scheduling task. This reward function is defined as:

r′(s, d) =
(
r′1 +

O∑
o=2

r′o

)/
4. (9)

This formulation balances the multi-objective components,
integrating fairness and other QoS objectives, to train the
scheduling rule selector effectively.

D. RL Functions

We employ reinforcement learning (RL) to derive a set of
policies that can effectively select appropriate actions for each
scheduler state. A policy, in general, represents the probability
of taking a specific action given a particular state. In this
approach, we consider two distinct policies, corresponding to
two types of actions required in our framework:

πr(s, d) = E[ar(t) = d | s(t) = s], (10.a)

πp(s1,ap) = E[ap(t) = ap | s1(t) = s1], (10.b)

where πr(s, d) is the probability of selecting scheduling rule
d ∈ D in state s ∈ S, and πp(s1,ap) is the probability
of choosing action ap when the parameterization controller
is in state s1. To ensure appropriate decision-making, each
controller must train functions that approximate these policies
as closely as possible to their optimal forms.

The value function V : S → R in general measures the
value of a policy π starting from any initial state. Therefore,
we denote two types of value functions written as follows:

Vr(s) = Eπr

[ ∞∑
t=0

γt · r′ | s(0) = s

]
, (11.a)

Vp(s1) = Eπp

[ ∞∑
t=0

γt · r′1 | s1(0) = s1

]
, (11.b)

where γ ∈ [0, 1] is the discount factor and γt · r′ is the
discounted reward value from state to state.

The action-value function Qπ : S × A → R quantifies the
expected value of a policy π starting from any initial state
s(0) ∈ S and taking any initial random action. All subsequent
actions are then determined according to the learned policy,
capturing the long-term reward achievable under π. Thus, the
representations of this function for each controller become:

Qr(s, d) = Eπr

[ ∞∑
t=0

γt · r′ | s(0) = s, ar(0) = d

]
, (12.a)

Qp(s1,ap) = Eπp

[ ∞∑
t=0

γt · r′1 | s1(0) = s1,ap(0) = ap

]
.

(12.b)
Considering the principle of temporal difference learning

and building upon the findings in [14], the value function
and action-value function can be expressed iteratively between
consecutive states as follows:

Vr(s) = r(s, d) + γ · Vr(s′) (13.a)

Qr(s, d) = r(s, d) + γ ·Qr(s
′, d′) (13.b)

Vp(s1) = r1(s1,ap) + γ · Vp(s′1) (13.c)

Qp(s1,ap) = r1(s1,ap) + γ ·Qp(s
′
1,a

′
p), (13.d)

where d′ and a′p are the actions of rule selector and parameter-
ization controller, chosen on next states s′ and s′1, respectively.



The objective is to determine the optimal value functions
(V ∗

r , V
∗
p ) and action-value functions (Q∗

r , Q
∗
p), where opti-

mality corresponds to achieving the highest expected return
when the scheduling process begins at a given initial state
and a specific action. In our scenario, the state space for both
controllers is infinite and multi-dimensional, while the action
space for the parameterization controller is continuous and
infinite. Consequently, classical and tabular RL methods are
unsuitable as they rely on discrete state and action spaces,
making optimality unattainable. Instead of ensuring absolute
optimality, our approach focuses on deriving effective approx-
imations of these value functions that are sufficiently close
to their optimal counterparts, enabling practical and efficient
decision-making under these complex conditions.
E. Approximation of RL Functions

The dependency of the controller states on variability
caused by the number of users and system bandwidth is
mitigated using the state compression functions proposed in
[14]. Despite these compression techniques, the state remains
multi-dimensional, making it infeasible to store state-action
transitions in regular tabular formats. To address this, we
approximate the value and action-value functions using neural
networks, enabling efficient representation and learning in
high-dimensional state spaces. Let Ṽ ∗

r and Q̃∗
r denote the ap-

proximations of the value and action-value functions, respec-
tively, for the rule selector controller. These approximations
are modeled by the following neural networks:

Ṽ ∗
r (s) = hvr [θ

v
t , ψ(s)], (14.a)

Q̃∗
r(s, d) = hdr [θ

d
t , ψ(s)], (14.b)

where hvr , h
1
r, h

2
r, . . . , h

D
r denote the neural networks used

to approximate the value and action-value functions, re-
spectively. The feature vector is represented as ψ(s), and
θv, θ1, θ2, . . . , θD are the sets of weights that must be opti-
mized during RL training. Consequently, the rule selector has
a dedicated neural network corresponding to each scheduling
rule. In case of the parameterization controller, we denote by
Ṽ ∗
p and Q̃∗

p the approximated value and action-value functions,
respectively, through the following neural networks:

Ṽ ∗
p (s1) = hvp[θ

v
t , ψ(s1)], (15.a)

Q̃∗
p(s1, d) = hqp[θ

q
t , ψ(s1)], (15.b)

where hvp and hqp are the neural networks approximating the
value and action-value functions, respectively, for the parame-
terization controller. The action-value function is realized us-
ing a single neural network, which outputs a two-dimensional
continuous action [∆αt,∆βt] at each TTI, effectively tuning
the scheduling parameters dynamically.

F. Training the Controllers

The structure of the neural network is characterized by
the number of layers and the number of hidden nodes in
each layer. Let L represent the total number of layers in
the network, and Nl denote the number of nodes in layer
l ∈ {1, 2, ..., L}. The number of nodes in the input and output
layers is predefined: N1 corresponds to the dimensionality of
the state space, while NL = 1 for the rule selector neural
network and NL = 2 for the parameterization controller.

However, the architecture of the hidden layers (specifically, the
number of hidden layers L−2 and the number of nodes in each
hidden layer) must be determined through cross-validation
procedures to optimize performance.

The sets of weights θvr , θ
1
r , θ

2
r , . . . , θ

D
r or θvp , θ

q
p are inter-

connecting the nodes between successive layers in the neural
network. Let Wl = {wb,m, b = 1, . . . , Nl,m = 1, . . . , Nl+1}
denote the matrix of weights connecting layer l to layer l+1.
The number of weights to be tuned during the learning phase
between these layers is (Nl + 1) × Nl+1. The compressed
controllable states s ∈ S propagate through the network, un-
dergoing non-linear transformations at each layer. The errors,
calculated as the difference between the network’s learned
values and their ground truth (or the reinforced values derived
from (13.a) - (13.d)), are backpropagated through the network.
This process, applied to each neural network type as described
in [10] and [14], updates the weights at each layer and node
based on the gradient descent principle.

G. RL Algorithms

The RL algorithms used in this paper vary for each con-
troller. However, in general, when training RL with neural
network approximations, the choice of algorithm depends on
how target values are computed and how output layer errors
are estimated [10], [14]. In the case of rule selector, the target
values for a given state s′ ∈ S are computed using (13.a)
and (13.b). Specifically, s′ is propagated through the network
to obtain an approximated value or action-value, which is
then updated with the observed reward. Subsequently, the
previous state s ∈ S is propagated through the network to
compute another approximation of the value or action-value.
The manner in which the error is calculated based on these
approximations for the current (s′) and previous (s) states
determines the choice of RL algorithm employed [14].

The parameterization controller is updated less frequently
than the rule selector, with its errors reinforced only when
the simple GPF rule (d = 1) is selected. However, the target
values for network approximations are computed similarly,
using (13.c) and (13.d). The errors are determined at each
TTI based on the learning experiences {s1,ap, r1, s′1} [10].

V. SIMULATION RESULTS

We consider downlink transmission with a system band-
width of 20MHz and J = 100 RBs to be shared among
active users with varying network and traffic conditions. The
number of active users It ∈ {15, 120} is randomly adjusted
each one second to have high diversity of status change
from active to idle states and vice-versa. The user speed is
120kmph with fast-fading Jakes model to experience high
diversity in CQI reports in both time and frequency domains.
The CQI report is errorless, periodic and full-band in order to
have complete information about the CQI statistics for each
active user i ∈ It. The rest of physical layer parameters are
imported from the 3GPP simulation scenarios [14]. The RLC
layer is modeled through ARQ ACK mode with 5 maximum
retransmissions in case of lost packets. Experimental results
were conducted by using the LTE-Sim [17] equipped with
data processing and ML algorithms as developed in [18].



TABLE I: Mean Percentages of Satisfied Users with Fairness and QoS Objectives

Scheduling Rule 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

GPF & CACLA2 9.288 9.037 8.67 8.012 6.502 3.332 2.183 0.759 0.235 0.048 0.005
BF 23.764 18.793 15.891 8.392 3.049 0.842 0.554 0.066 0.004 0 0
RAD 22.524 18.736 16.32 9.424 4.004 1.349 0.917 0.127 0.011 0 0
mM 5.35 4.794 4.544 4.002 1.266 1.185 1.18 1.124 1.038 0.654 0.654
LM 25.283 21.818 19.995 14.801 9.001 4.51 3.226 1.053 0.32 0.062 0.032
EDF 17.476 15.718 14.548 10.93 6.566 3.327 2.462 0.687 0.094 0.008 0.007
MLWDF 12.391 12.116 11.966 11.742 11.623 11.445 11.328 11.065 10.746 9.946 9.353
LOG 23.041 22.368 21.93 21.491 21.101 20.7 20.343 19.914 19.03 15.979 13.135
EXP1 20.329 19.611 18.838 18.109 17.324 15.84 14.734 11.546 6.942 2.671 1.713
EXP2 24.752 20.87 18.468 11.167 4.753 1.471 0.931 0.095 0 0 0
MDU 24.238 23.577 23.138 22.395 21.54 20.621 20.308 19.47 18.164 15.402 13.289
PLF 0.291 0.118 0.093 0.039 0.011 0.003 0.002 0 0 0 0
OPLF 0.87 0.505 0.406 0.238 0.126 0.055 0.049 0.018 0.004 0.001 0

RL Algorithm 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Q 26.706 26.564 26.455 26.306 26.118 25.777 25.482 24.258 20.817 15.368 12.885
DQ 21.614 21.221 20.952 20.566 20.092 19.411 19.107 17.756 15.156 10.803 9.266
SARSA 22.523 22.375 22.268 22.147 22.024 21.919 21.818 21.664 21.356 20.561 19.599
QV 18.815 17.898 17.331 15.785 13.103 9.32 7.858 4.172 1.508 0.399 0.243
QV2 28.767 28.295 27.924 27.568 27.217 26.671 26.143 24.614 20.5 13.982 10.705
QVMAX 23.851 21.961 20.71 18.828 17.133 15.208 14.508 11.926 8.947 5.717 4.812
QVMAX2 19.526 18.53 18.18 16.668 14.054 10.453 9.982 5.477 2.026 0.535 0.209
ACLA 20.127 19.688 19.342 18.911 18.525 17.975 17.777 16.891 15.364 12.153 11.235

Each active user requests a Variable Bit Rate (VBR) service
type with a packet size given by a Pareto distribution and
the arrival rate in MAC queue with a geometric distribution
[14]. To increase the dynamics of network conditions, we
vary the QoS requirements each 1000 TTIs in the follow-
ing ranges of values: GBR requirement (o = 2) q̄2 ∈
{32, 64, 128, 256, 512, 1024}kbps; delay requirement (o = 3)
q̄3 ∈ {50, 100, 150, 200, 250, 300}ms; PLR requirement (o =
4) q̄4 ∈ {10−3, 10−4, 10−5, 10−6}.

A wide pallette of scheduling rules is used to train the rule
selector controller and achieve the multi-objective target. For
fairness objective (o = 1), we consider the GPF rule with the
double parameterization [αt, βt] decided by the parameteriza-
tion controller. For the GBR objective (o = 2), we consider
four scheduling rules [18]: Barrier Function (BF), Required
Activity Detection (RAD), minimum/Maximum rate (mM),
Langrange Multiplier (LM). The scheduling rules focused on
packet delay minimization (o = 3) are [18]: Earliest Due
to Date Function (EDF), Modified Largest Weighted Delay
First (MLWDF), Logarithmic Function (LOG), Exponential
Function 1 (EXP1), Exponential Function 2 (EXP2) and
Max-Delay Utility (MDU). The PLR objective (o = 4) is
represented by Packet Loss Fair (PLF) and Opportunistic
Packet Loss Fair (OPLF) [18]. All these algorithms are applied
in parallel by using the same network and traffic conditions
relying on comprehensive comparison of the obtained results.

When training the rule selector controller to apply the
most appropriate scheduling rule on each state to meet
the feasibility NGMN region while respecting the dynamic
QoS requirements, different RL algorithms are implemented
[18]: Q-Learning, Double-Q-Learning, SARSA, QV, QV2,
QVMAX, QVMAX2, and ACLA. Each algorithm is trained
for a period of 500 seconds by using the same network
and traffic conditions. The value and action-value neural
networks consider a number L = 3 layers with N2 = 150

hidden nodes and tangent hyperbolic activation functions.
The parameterization controller is trained based on CACLA2
algorithm [10] in the same time with the rule selector, meaning
that the training samples are provided only when the fairness
objective is addressed and the GPF rule is selected. Even
in these conditions, CACLA2 shows very well convergence
properties for a structure of neural networks with L = 3
with N2 = 100 hidden nodes. Once trained, both controllers
are evaluated across ten independent simulations, each with a
duration of 100 seconds, and the results are averaged.

To evaluate the effectiveness of the trained RL algorithms,
we use a performance metric defined as the percentage of TTIs
during which the NGMN fairness and QoS constraints are
met for a specified proportion of users (x%). Specifically, we
denote this metric as px, which represents the mean percentage
of TTIs where the multi-objective target is achieved for at least
x% of users. This approach enables us to comprehensively
assess the performance of each scheduling rule and the
trained RL policies by observing how effectively they balance
fairness and QoS requirements across various user satisfaction
thresholds (x%). By using this metric, we gain insights into
the adaptability and robustness of the scheduling strategies in
meeting diverse network demands.

Table I presents the performance metrics for all eval-
uated scheduling rules and RL-based policies. The GPF
scheduling rule, parameterized using the CACLA2 RL algo-
rithm, shows relatively low percentages of TTIs satisfying
all four objectives, as it primarily focuses on meeting the
feasibility requirements of the NGMN fairness criterion. BF
and RAD scheduling rules deliver comparable performance
across metrics but experience an 11% drop in satisfaction
when moving from x=60% to x=70% satisfied users. The
mM scheduling rule performs poorly in achieving the multi-
objective target, consistent with previous findings that it oper-
ates effectively only under low-traffic conditions [18]. Among



GBR-oriented scheduling rules, the LM metric exhibits a
notable 4% improvement at p75 compared to other GBR-
focused metrics. For delay-oriented scheduling rules, LOG
and MDU perform the best, with p100 values exceeding 13%,
indicating that these rules are the most effective in satisfying
all objectives under high user satisfaction thresholds. EXP1
and EXP2 demonstrate similar performance up to p65, after
which their satisfaction rates decline significantly. Packet-loss-
oriented scheduling rules, which prioritize users with high
retransmission counts and poor network conditions, negatively
impact fairness and other QoS metrics. When combining
these scheduling rules within RL-driven policies, the outcomes
differ significantly. Among the RL algorithms, QV2 provides
the highest proportion of TTIs satisfying the multi-objective
target for 50% to 85% of users. However, SARSA achieves
the best results for higher satisfaction thresholds (90%, 95%,
100%), with p100 = 19.6%, surpassing the best standalone
scheduling rule (MDU) by over 6%. This highlights SARSA’s
ability to maintain consistent performance under stringent QoS
and fairness requirements, ensuring that nearly 20% of the
scheduling sessions satisfy all objectives for all users.

VI. CONCLUSIONS

In this paper, we propose FAIR-Q, a multi-objective RL
framework designed to simultaneously meet four critical ob-
jectives: NGMN fairness, throughput, delay, and packet loss
requirements. FAIR-Q incorporates two controllers: a Rule
Selector Controller, which dynamically selects the most appro-
priate scheduling rule based on real-time network and traffic
conditions, and a Parameterization Controller, which optimally
adjusts the parameters of the GPF rule to address fairness
deficits under varying traffic loads. Each controller is trained
using dedicated RL algorithms and leverages neural networks
that can be extended to deeper architectures, enabling the ex-
ploration of additional scenarios to effectively balance multi-
objective performance. Our implementation demonstrates that
SARSA learning produces the most effective policies for
scheduling rule selection, while CACLA2 excels in parame-
terizing the GPF rule to ensure adherence to NGMN fairness
requirements. Simulation results reveal that more than 15% of
the scheduling time achieves a state where all users meet the
proposed multi-objective criteria.

The FAIR-Q framework seamlessly integrates into the
evolving 6G landscape by addressing its stringent QoS and
fairness demands. As 6G networks promise dynamic and het-
erogeneous traffic scenarios—ranging from ultra-low-latency
applications to massive IoT deployments—the adaptability of
FAIR-Q ensures alignment with the needs of future network
operations. By incorporating advanced scheduling strategies
and adaptive parameterization mechanisms, FAIR-Q enables
scalable and intelligent RRM, making it well-suited for next-
generation multimedia services, mission-critical applications,
and diverse user demands. The modular RL-based design of
FAIR-Q facilitates integration into Open RAN architectures,
which are expected to play a pivotal role in 6G networks.
This adaptability positions FAIR-Q as a robust and forward-
thinking solution to the complex challenges of multi-objective
resource allocation in 6G environments.
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