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Abstract 

Background and Objective: Bayesian network is a probabilistic model of which the prediction accuracy may not be one of the highest in the 

machine learning family. Deep learning (DL) on the other hand possess of higher predictive power than many other models. How reliable the 

result is, how it is deduced, how interpretable the prediction by DL mean to users, remain obscure. DL functions like a black box. As a result, 

many medical practitioners are reductant to use deep learning as the only tool for critical machine learning application, such as aiding tool for 

cancer diagnosis.  

Methods: In this paper, a framework of white learning is being proposed which takes advantages of both black box learning and white box 

learning. Usually, black box learning will give a high standard of accuracy and white box learning will provide an explainable direct acyclic 

graph. According to our design, there are 3 stages of White Learning, loosely coupled WL, semi coupled WL and tightly coupled WL based 

on degree of fusion of the white box learning and black box learning. In our design, a case of loosely coupled WL is tested on breast cancer 

dataset. This approach uses deep learning and an incremental version of Naïve Bayes network. White learning is largely defied as a systemic 

fusion of machine learning models which result in an explainable Bayes network which could find out the hidden relations between features 

and class and deep learning which would give a higher accuracy of prediction than other algorithms. We designed a series of experiments for 

this loosely coupled WL model.  

Results: The simulation results show that using WL compared to standard black-box deep learning, the levels of accuracy and kappa statistics 

could be enhanced up to 50%. The performance of WL seems more stable too in extreme conditions such as noise and high dimensional data. 

The relations by Bayesian network of WL are more concise and stronger in affinity too. 

Conclusion: The experiments results deliver positive signals that WL is possible to output both high classification accuracy and explainable 

relations graph between features and class. 

Keywords—Data mining methodology, deep learning, Bayesian network, Radiological data analysis. 

 

I. INTRODUCTION  

Nowadays, many technology companies have begun to study the use of AI for medical diagnosis, especially for the diagnosis 
of cancer. The detection ability helps reduce the time taken for clinicians to examine pathology scans. This achievement 
encouraged the development of large-scale online computing platform which allows huge and high-resolution pathology images 
to be stored, retrieved and analyzed as per demanded by the medical professionals. The information system is recently evolving 
into big data platform that is usually distributed with cloud storage and access, providing on-demand image uploading and 
downloading services between the central data repository and the end-user node, right to the doctor’s desktop. With this large-
scale diagnostic information system in place, pathologists are well connected to the data, the analytic services and other medical 
professionals for diagnostic tasks, group discussion and decision making, associated with radiation and chemotherapy could be 
supported very well by ICT. Given the sheer volumes of data, requirements for latency constraints for real-time and accurate and 
timely detection by machine learning, the information system is indeed an epitome of extreme automation. This big data and 
large-scale cancer imaging and diagnostic platform would be deployed to serve clinicians, medical professionals, radiologists, 
and so on, at various levels, with a wide geological coverage. For example, national cancer big data platform would serve a 
hierarchy of national research labs, both government and private hospitals, specialized cancer treatment centers, across different 
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provinces, cities and suburbs. Such large-scale information system poses great computational challenges in both strong hardware 
infrastructure and software performance requirement. 

One of the most important parts of AI medical assistant is the powerful machine learning algorithm which could accurately 
select the case with cancer from a group of cases. Google has announced that the deep learning tool outperformed traditional 
prediction models in terms of speed and accuracy. Although accurate classification from deep learning helps a pathologist’s 
microscopic examination of a tumor in patients for cancer diagnosis, making treatment decisions are far more than just detecting 
the presence of nodal metastasis. In the Google blog1, it was mentioned:  

“While LYNA achieved significantly higher cancer detection rates (Liu et al. 2017) than had been previously reported, an 
accurate algorithm alone is insufficient to improve pathologists’ workflow or improve outcomes for breast cancer patients. For 
patient safety, these algorithms must be tested in a variety of settings to understand their strengths and weaknesses. Furthermore, 
the actual benefits to pathologists using these algorithms had not been previously explored and must be assessed to determine 
whether or not an algorithm actually improves efficiency or diagnostic accuracy.” 

That implies a deep learning algorithm that is fast and accurate in a real-time PACS environment may not be the only criteria. 
When the results of machine learning can affect a patient’s life or death, the use of deep learning should be more thoughtful. 
Doctors prefer to see more supporting evidences and more comprehensive information regarding how a prediction is derived, 
instead of just being told by a machine like a black box about a computed outcome. On top of a predictive model which outputs 
generated prediction, doctors opt for a number of visualization tools and reports for them to inspect and analyze. This is the 
motivation for proposing a hybrid black and white box machine learning model, which has the benefits of both – highly accurate 
prediction and interpretable models for explaining how the predicted results came by, yet suitable for operating in an incremental 
machine learning environment that meets the real-time demands of PACS-based decision support. 

It can be safely concluded that a highly accurate predictive model is only a part of the AI medicine strategy. Many recent 
machine learning research endeavors and commercialization developments are geared towards using advanced machine learning 
technologies, such as deep learning. However, there are more than just about predicting a medical verdict by the machines; 
software tools that empower doctors to analyze and interpret the data & results could be equally if not more important for clinical 
decision supports. A typical medical analysis infrastructure is shown in Figure 1.  

 

 

Fig. 1. The infrastructure of medical AI diagnostic big data system. 

 

The infrastructure is an epitome of large-scale medical AI diagnostic big data system. All the imaging and medical record 
data are meant to be stored and managed by a central cloud which typically should be owned and supported by the national 
government.  Heterogenous data are continuously uploaded from regional image centre that has a variety of PACS, with imaging 
data from CT scans, X-ray, and MRI etc., that are generated from patients on a daily basis. All such data are centralized at a 
Cloud, which in turn offers query services to public/private hospital/clinics, for medical diagnosis and inquiries.  

This type of large-scale medical information evolves from Cloud-based PACS, which was designed to replace the need to 
store and manage hard-copy films and reports in space-consuming shelving and rooms. Instead, medical images and non-image 
data can be securely stored digitally on premises or in the cloud. Cloud-based PACS store and back up an organization's medical 
imaging data to a secure off-site server. A cloud PACS enables medical staff to view medical imaging data from any approved 
devices, such as a smartphone, as an online service. 

most of the services hinge on the quality of the data analytics and reasonable fast service turnaround time. These requirements 
are typically the three criteria above-mentioned: accuracy & reliability from the data analytics, real-time accessibility and inter-
pretable data or disease analysis, they are needed for supporting useful remote medical services in addition to the basic system 
reliability requirement at the data networking and technical system levels. 

                                                           
1https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html 
*Co-correspondence authors 
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The need for data analytics in such large-scale and distributed medical data environment is the motivation for this thesis study. 
We focus on devising a machine learning methodology that embraces incremental learning, accurate and fast model training, and 
results of data analytics that can be interpreted easily by medical practitioners. The first two criteria can be met by providing an 
incremental learning solution. This is where the AI part usually comes in, by provisioning some intelligent advices and/or decision 
supports in the form of machine generated predictions and reasoning results. As mentioned earlier, there are reported news about 
recent sentiments from doctors towards AI enabled medical diagnosis and prediction explicitly stressing that, doctors prefer to 
see more supporting evidences and more comprehensive information regarding how a prediction is derived, instead of just being 
told by a machine like a black box about a computed outcome. Figure 2 shows a combination of hardware and software that form 
the building blocks of the large-scale medical system. At the software side, on top of a predictive model which outputs generated 
prediction, doctors opt for a number of visualization tools and reports for them to inspect and analyse. This is the motivation for 
proposal a hybrid black and white box machine learning model, which has the benefits of both – highly accurate prediction and 
interpretable models for explaining how the predicted results came by. 

 

Fig. 2. A combination of hardware and software building blocks. 

 

II. WHITE LEARNING MODEL  

A. Related Work  

Nowadays, cancer detection by Deep Learning is a hot topic especially in early detection. It can improve the survival rate in 
long term. Most of the detection work by Deep Learning based on medical images which is useful in early detection and monitor 
after cancer treatments. Traditionally, checking medical images is by human. Manually checking cannot avoid careless mistakes 
especially facing to these tons of numbers of medical images. So, Deep Learning applied in cancer detection changes the situation. 
Therefore, from early 1980s, computer-aided diagnosis (CAD) systems were introduced to assist doctors in interpreting medical 
images to improve their efficiency [1]. In CAD system, it basically used machine learning which the feature extraction is 
important to. So, in a long time, feature extraction is hot research topic. Depending on different kind of cancers, there are specific 
ways of feature extraction. While, methods adopting feature extraction have limitations. To further improve CAD system, more 
and more researchers turn to study Deep Learning which is representation learning techniques that learns hierarchical feature 
representation from image data. Combining with GPU, it had a great achievement in cancer detection and diagnosis.  

It is noticed that deep learning techniques which are strong in image recognition, have been applied in detecting, classifying 
and segmenting on various medical domains [2]. Most of the works however are focused on radiological imaging classification. 
Quite a few of them are applied on general prediction/classification. It is an emerging trend however in developing deep learning 
alike machine learning tools for interpretable models which could be easily understood by human users. In the past there had 
been some works, though very technical, about extracting weights from the convolution neural networks. From the internal 
information extracted from the convolution layers of the neural networks, one can infer about the importance of the features 
pertaining to the predicted target. This requires specialized computing skills, which may be quite difficult for general medical 
practitioners. 

On the other hand, Bayesian Artificial Neural Network [3][4][5] has been formulated for trying to offer both good level of 
prediction and probabilistic inference inherent by Bayes Network. It is based on a profound foundation that Bayes interference is 
capable of detailing a whole probability distribution over possible outcomes of hypothesis h, instead of a single predicted value 

of h. The golden Bayes’ rule computes the posterior probability of h given the facts, f, is 𝑝(ℎ|𝑓) =  
𝑝(𝑓|ℎ)𝑝(ℎ)

𝑝(𝑓)
 where p(h) is the 

prior probability h before knowing the facts f; and p(f|h) is the likelihood of having such facts f given h. As a tightly coupled 
computational method, the entire probability distribution of the Bayes Network is applied to the neural network over possible 
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outcomes of hypothesis. The probabilities form up the neural network weights w given the training dataset, p(w|f). Based on the 
given weights of values from the Bayesian inference, the results are a posterior distribution over a possible set of different 
configurations (sized) neural networks and their outputs. So instead of limiting getting the prediction from a single value, we 
could obtain possible answers from an entire distribution from a collection of different sized networks which were built from 
Bayesian posterior distribution. This design inspired further researchers to extend the neural network to convolutional neural 
network. For example, a Bayesian Deep CNN was proposed [6] for learning features by Gaussian networks. It is designed for 
capturing higher-order features in a case of text mining. From the training dataset, network motifs are derived and used for pre-
training the weights of CNN for enhancing its discriminative power. These models work well, despite of their relatively high 
complexity 

Some researchers however turn to some simpler fusion models, regarded as semi-coupled white learning model in the context 
of our white learning framework It is characterized by building two or more machine learning models in the form of Bayesian or 
similar white box decision tree model, and deep learning or neural network and the like, by transfer learning. Information or prior 
knowledge learnt from one model is passed onto the other model, in such a way that the learned outcomes could benefit the 
construction of another model. In semi-coupled white learning model, either control, knowledge, or messages which are related 
to shaping up the machine learning model are passed from one model to another. Several attempts were made in the following 
combinations:  

• Hidden Markov Model + Recurrent Neural Network or Long-short-term-memory Neural Network [7] 

• Backpropagation Neural Network + Bayesian Network [8] 

• Backpropagation Neural Network + Bayesian Network + Prior knowledge infusion [9], etc. 

 To further simplifies the hybridization, researchers resorted to loosely-coupled model by which the connection is limited to 
passing data. In this model, a Bayesian Network that represents white-box learning and a Neural Network which learns like a 
black box are setup and operate independently. They learn collectively hand-in-hand or in sequence, passing the learnt/processed 
training data along the training process. Some typical approaches of data passing are as follow: 

• Ensemble learning using multiple Neural Networks [10] 

• Ensemble learning using Decision Tree, Support-vector-machine and two types of Neural Networks [11] 

• Ensemble learning using multiple Neural Networks and multiple Bayesian Networks [12] 

• Ensemble learning using a single Convolutional Neural Network and a single Bayesian Networks (naïve version without 
any optimization) [13] 

 It can be seen that there exist many possible combinations and varieties of putting different and multiple learners together; 
they might share and co-process certain portions of training data. Out of the mixed models, the one that offers the highest level 
of accuracy is selected as a winner for doing the final prediction. This approach is simple, but often the performance is not at its 
maximal. Therefore, in this work, a suite of White Learning model is proposed which leverages fast optimization functions 
suitable for PACS environment where speed, accuracy and interpretability are concerned. 

 

B. White Learning By Misclassified Recall And Swarm Feature Selection  

In this thesis study, a relatively easy to implement white learning model is proposed and setup. There are one each classical 
black and white learner in the system, one is NBU the other is DL, the default version with default parameter settings by the 
benchmarking software Weka. The two learners are connected by a filter class called Misclassified Recall which essentially 
cleans up the data and using NBU which is relatively fast and passing the cleaned data to DL for refined accuracy. The WL model 
mainly works at the data level, taking a matrix of dataset, while loading the data by a sliding window (of size 1000 instances) at 
a time, the optimal features are selected, and the problematic data instances are removed progressively.  

In our proposed WL model, there are modification schemes for further enhancing the prediction performance made available. 
They are novel ideas designed for upgrading the efficacy of swarm feature selection, namely Early abandonment, Accelerated 
swarm and Teng-yue swarm. Those novel ideas are developed in this study; experimentation of the three novel modifications are 
carried out, the results are reported in subsequent sections. 

The block diagram for our proposed WL model is shown in Figure 3. A glossary of terms that are pertaining to Figure 3 is 
defined in Appendix A for clarity. Together with the block diagrams for individual white-learner model and individual black-
learner model respectively, we can compare the outputs resulted from the three models. The individual white learner model 
outputs both prediction result with performance measured, and a causal graph as Bayesian network. It is noted that the Bayesian 
network generated by individual white-learner has full number of nodes and possible relations in the network. The individual 
black learner model however only outputs a prediction result with performance measured. Nevertheless, the WL model, outputs 
not only the sum of the outputs from the individual white-learner and black-learner, the prediction accuracy of the DL in the WL 
model should be higher, and the Bayesian network would be more concise in terms of network structure and the quality of the 
causality paths. 
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Fig. 3. (Up) Standard white learner model and black learn model. (Below) Proposed white learning model. 

WL works basically by first negotiating with the users about the QoS requirements. As this WL framework is supposed to 
support real-time AI medicine applications, time, latency, accuracy, reliability indicators (kappa statistics) and perhaps other 
metrics like false alarm rate, precision and recall, etc., are of concern to medical applications. There should be a calibration phase 
in the WL framework where a collection of algorithms that were to be implemented as white-learner and black-learner would 
have been tried; their performance are recorded and retained as some knowledge cache. Therefore the WL framework would 
know how to find the best possible combinations of candidate algorithms with known performance that would meet the QoS 
requirements by the users. Once the user's QoS request is found acceptable, it proceeds to picking the best available algorithms 
and parameters. Start loading in the data incrementally. When an appropriately sufficient amount of data is accumulated, a dy-
namic data pre-processing process initiated. Based on the accumulated data that is held in a cache, the two facets of the structured 
dataset are fixed. Over the columns of the dataset, a stochastic feature selection is applied which trims off reductant features. The 
selection process is empowered by swarm search which uses a number of search agents to scout for a suitable subset of features 
that give rise to the highest possible accuracy. On the other facets, the data rows are filtered by using a misclassified filter which 
purges data instances preemptively before they enter further into the main predictive model building process. During the data 
cleaning process, a white learner is constructed because it is relatively faster and simpler to train a white-learner which could be 
used as a base learner in the classifier-based feature selection and misclassified removal. By the time when the data is cleansed, 
a white-learner is readily built to close perfection in terms of performance. The same data that was polished and used in building 
white-learner is sent to build a black-learner in the hope of achieving the highest accuracy. There are of course other alternatives 
in choosing the sequence of building models, cleaning data and passing data. This recommended approach should be one that 
saves time because a white-learner would have been trained anyway during the data pre-processing step.  

The intellectual contribution from the works in this paper is three-fold: First, a WL methodology (passing cleaned data) is 
designed; second, two add-on’s for swarm feature selection are applied: Early Abandonment, and Accelerated Swarm; thirdly, a 
qualitative analysis on Bayes Net from the white-learner by comparing with medical facts. 

III. EXPERIMENT  

The experiment is conducted over two datasets and has two respective purposes. First, we compare how medical datasets can 
be used to induce a model using three different types of machine learning algorithms –NBU, DL, and the WL. The second 
objective is to try reducing dimensions by applying metaheuristic search to do feature selection on two medical datasets; one is 
about recognizing breast cancer cells in numeric values, the other type is nominal data which records the symptoms and events 
of a disease, whether they would be leading to liver disorder. 
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A. Noise test  

To address the challenge of fast and accurate binary-class classification from operation in a distributed AI medical 
environment, a noise-test is arranged which simulate small levels of noise in the data for representing an imperfect data 
transmitting environments. The testing data is simulated by adding artificially generated random noise, with increment of 1% all 
the way up to 20%. The objective is to observe how the loosely coupled white learning model perform in the presence of noise, 
which is not uncommon in distributed online information platform, running over affordable connectionless communication pro-
tocols.  

B. Swarm Search and Early abandonment  

In the following experiments, we aim at finding the most suitable swarm search algorithm to do feature selection that helps 
increase WL performance in data stream mining environment. In this section, we used two datasets, one is Breast cancer dataset, 
and the other is Liver Disorder dataset, which all include 1,000 instances and 10,000 instances respectively. We first run the 
original datasets in Massive Online Analysis benchmarking platform which simulates incremental learning in data stream mining 
environment, and set the sliding window size as 50, which means in one time the model will allow 50 data come in and get tested, 
trained and get performance. When we finished this step, we could get three sets of performance results, which are from WL, DL 
and NBU through data stream mining. Then it could tell us, under data stream mining, which algorithm have best performance. 
The next step is try to optimize the performance of WL. In the following experiments, we tried many swarm search algorithms 
to do feature selection. We used Ant, Bat, Bee, Cuckoo, Firefly, Flower, Genetic Algorithm, Harmony, Particle Swarm Optimi-
zation, and Wolf to join this competition. 

As we known in the former experiments, we try to use swarm algorithms to improve White Learning performance. We tried 
10 different ways. When we only after running out all the algorithms, we could get the best performance swarm, which takes 
time because have to run all the swarm methods throughout the whole load of data. Therefore, we consider whether we could 
have some early knowledge to know which swarm algorithm is quite suitable to this dataset. In this experiment, we also used two 
datasets, one is Breast cancer, and the other one is Liver disorder. The sampled dataset is obtained by running some swarm feature 
selection over the original dataset. Sampling over the original dataset is by Weka Reservoir Sampling function, which means the 
function could generate subsample by randomly picking certain percentage of data from original dataset, while, the classification 
ratio of the subset is the same as the classification ratio of the original data set. Therefore, we generate sub sample data set for 
each of the original dataset after swarm FS by 5 % increment from 5% to 95%. Then we run each sub dataset in WL. So we could 
get a beautiful chart. In this figure, the horizontal axis is from 5% to 100%, and the vertical axis is the accuracy. There are ten 
curves, representing ten different swarm algorithms. So, it could tell us useful information. The motivation for this experiment is 
to test the “minimum little” of sample dataset that is needed for providing satisfactory performance by swarm algorithm. 

C. Accelerated swarm 

We aim at accelerating those swarm algorithms. Making it lower time cost and get same or better accuracy. Instead of letting 
the agents in the swarm algorithms to start from random positions initially, we assign some “good” starting positions for the 
agents. The good starting positions are hinted from the quality of the feature (attribute) candidates. So that we would know in 
advance which features should be searched firstly that would potentially give better performance. One fast way to know the 
quality of the features is to do a quick statistics check. In our implementation we chose CV that stands for coefficient of variation. 
To compute CV value for each feature, one needs to only know the mean and standard deviation, which are quite fast and simple. 
It is believed that CV has relation to feature selection. It was believed that CV has a direct proportion to goodness of feature 
selection task. If a feature has a very small or almost zero CV values, that means the values of the feature do not vary at all or 
vary very little. In this case, there won’t be good results by including such feature in the candidate subset and do feature selection. 
In contrast, if a feature has a good CV value, the feature contributes to the effectiveness of feature selection [20]. Using this 
approach could make the whole swarm search converge earlier and more quickly. Compared to random start, the results are better 
and obtained earlier. That is why it is named as accelerated swarm search. Taken from the article which is written by the author 
and published, this diagram shows how CV feature selection works. For more details, readers are referred to [20]. 

E. Datasets 

Two datasets from medical domain are used in the experiments. The first dataset has all numeric attributes, the other dataset 
has all nominal attributes. The first training dataset contain empirical mammogram data that come from a database of patients in 
a hospital. The data are anonymized. The dataset is consisted of 1000 records of patient’s cells information – there are 6 cells 
being circled by experienced oncologist, which are considered to be the most significant features that characterise the levels of 
the alleged disease. The attributes which are used to characterise the cells include the shape of the cells such as radius, perimeter, 
surface area, and the surface of the cell such as smoothness, compactness, concavity, concave points, symmetry, and fractal 
dimension of the cell. Total there are 60 attributes. The dataset comes from a PACS of electronic health records at the first 
affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou city, China. The sensitive fields of the 
are is anonymized for the confidentiality of patients. The DDSM and its curated breast imaging subset are the collaborative efforts 
between Massachusetts General Hospital, Sandia National Laboratories and the University of South Florida Computer Science 
and Engineering Department. The bright and scattered distribution of irregular calcification tissue in a breast MRI (illustrated in 
the blue circle in Fig. 7) is an important clinical symptom for the doctor to diagnose with breast cancer. This lesion can also be 
detected by the margin or border of normal tissue and sick area using their significant difference of obscured, circumscribed and 
speculated texture properties. Similar to left ventricle size prediction, it is also challenging to identify breast cancer very precisely 
due to the dense breast tissue under mammogram screening and the analogous symptoms from an infection or other breast dis-
eases such as mastitis. The second dataset came from a HEPAR project that was conducted in the Institute of Biocybernetics and 
Biomedical Engineering of the Polish Academy of Sciences in co-operation with physicians at the Medical Centre of Postgraduate 
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Education. The HEPAR system contains a database of patient records of the Gastroenterological Clinic of the Institute of Food 
and Feeding in Warsaw. The data has 70 nominal attributes and 10,000 patient records. The presence or absence of the symptoms 
in the 70 attributes lead to whether liver disorder or not. 

F. Performance Evaluation 

The experiment follows a prequential evaluation scheme which is also called test-then-train strategy. First, the model is tested 
with each newly arrived instance. If there is enough test data to imply that new rules need to be generated, the decision tree or 
decision table will expand and the trained model will be updated. In our experiment, the sliding window will work. We set the 
window size to 50, each time there will be 50 data from the dataset pass the model. The classification performance will be 
evaluated from the start of the process... The prequential operations for a standard data stream mining environment and the 
prequential benchmarking environment for evaluating WL model are shown in Figures 4a and 4b respectively. 

Since the real-time performance is a big issue in online cancer detection scenarios, the accuracy, kappa, and time cost criteria 
are used to evaluate the performance of data mining and data stream mining in this experiment.  Accuracy is how many percent 
of data being correctly classified. Cohen's kappa coefficient (κ) is a statistic value which estimates the inter-rater agreement for 
qualitative data objects. It is usually considered to be a more convincible measurement value than accuracy of classification in 
data mining. Kappa is therefore regarded to be a measure of reliability for a data mining model. 

 

 
Fig. 4a. Prequential evaluation for a typical data stream mining scenario in sequence diagram. 
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Fig. 4b. Prequential evaluation for the proposed WL incremental learning model scenario in sequence diagram. 

 

IV. RESULTS AND DISCUSSION  

A. Noise test 

The levels of accuracy, kappa and model construction time of White Learning, NaiveBayesUpdatable and Deep Learning are 
compared, and the results are shown in Figures 5.1.1-5.1.3. 

 

 
Fig. 5.1.1. The accuracy performance by using White Learning, NaiveBayesUpdatable and Deep Learning in cancer classifica-

tion. 
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Fig. 5.1.2. The kappa performance by using White Learning, NaiveBayesUpdatable and Deep Learning in cancer classification. 

 
Fig. 5.1.3. The time performance by using White Learning, NaiveBayesUpdatable and Deep Learning in cancer classification. 

The performance curves for accuracy and kappa are almost identical indicating that a good model is both accurate and gener-
alizable for different new datasets and vice-versa. In Figure 5.1, it is easy to observe that the orange curve which is represent the 
Deep Learning method fluctuates greatly than the other two methods, White learning and NaiveBayesUpdatable. That shows DL 
is very sensitive to environment changing, when there is no noise being added, the performance of DL could reach 96% of 
accuracy, which is higher than that of NBU and almost equal to that of WL. As the noise keeping increasing, the DL start unable 
to control the situation and shows big drop at the noise level 6%. During the experiment, the accuracy of WL and NBU also 
decreases but smoothly and slowly in a linear way with increasing noise. In the worst case of adding 20% noise, the performances 
of WL and NBU are around 75% of accuracy and 0.5 of Kappa value, but the performance of DL is lower than that of random 
guessing. Among the WL and NBU, it is still clear to see that WL performance is slightly better than that of NBU at the most of 
time. In this experiment, WL is no doubt the best and the worst is DL. It is the best way to observe the differences between the 3 
algorithms performance by setting the trend lines to each curve. The gradients of the curves which are represent the accuracy of 
Deep Learning, NaiveBayesUpdatable and white learning are -2.4843, -1.1614 and -1.2979 respectively That means within the 
same unit, the larger the absolute value of the gradient, the more intense the change.  If the dataset is ideally pure without any 
noise, the accuracy levels for deep learning, NaiveBayesUpdatable and white learning are 96.1765%, 93.8235% and 96.4706% 
respectively. Even during the worst scenarios in the simulation, the accuracy levels are maintained around 41.1765%, 70.8824% 
and 72.3529% respectively. A high efficacy is demonstrated by white learning which is a hybrid comparing to NB and DL alone. 
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Fig. 5.1.4. The accuracy performance by using White Learning, NaiveBayesUpdatable and Deep Learning in liver disorder 
classification. 

 

Fig. 5.1.5. The kappa performance by usingWhite Learning, NaiveBayesUpdatable and Deep Learning in liver disorder classi-
fication. 

For Liver disorder dataset, it shows identical result trend with Cancer data result in both Accuracy and Kappa value. In Figure 
5.1.4, it shows White Learning curve is always higher than curves of NBU and DL in accuracy. The accuracy result of Deep 
Learning also fluctuate a lot when noise added which is the same as the trend in Breast cancer dataset. It is the best way to observe 
the differences between the 3 algorithms performance by setting the trend lines to each curve. It can be observed that the gradients 
of the trend-lines for deep learning, NaiveBayesUpdatable and white learning are -1.299, -0.7733 and -0.807 respectively. If there 
is no noise added, all the performances could be around 90%. When noise added, the accuracy of DL rapidly decreases with a 
slop of -1.299 which is much higher than the slop of WL -0.807.  That means within the same unit, the larger the absolute value 
of the gradient, the more intense the change. WL is the most sustainable under noise in terms of the rate of accuracy degradation. 
If the dataset is ideally pure without any noise, the accuracy rates for deep learning, NaiveBayesUpdatable and white learning 
are 85.2396%, 89.9735% and 91.4142% respectively. During the worst scenarios in the simulation, the accuracy levels are still 
sustained at 61.8935%, 74.4780% and 74.8603% respectively. Again, the efficacy of white learning is demonstrated comparing 
to NB and DL alone. 
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B. Swarm Search and Early abandonment  

In the former experiments we test WL noise tolerance and scalability compared with WL and NBU. We found that WL has 
excellent performance in both aspects. In this experiment we try to use swarm algorithms to do feature selection to achieve two 
missions. Firstly, we try to improve WL performance in both accuracy and kappa value. Secondly, we try to find the most suitable 
swarm algorithm from more than 10 of them. In this experiment, we Massive Online Analysis (MOA) [21] is applied here due to 
its popularity in data stream mining, many researchers have used MOA as a benchmarking platform for evaluating data stream 
mining algorithms. In MOA we will set sampling frequency and member check frequency to 50. That means the system will give 
us a performance evaluation report after train-and-test per 50 instances. In this experiment, we also used 2 dataset which are 
Cancer dataset and Liver dataset. We firstly run the original dataset in MOA to compare WL with DL and NBU. Then we apply 
10 different swarm algorithms to do feature selection to two original datasets respectively. We use datasets that have been pre-
processed by swarm feature selection to test WL in MOA and record each performance. Finally, we can compare which algorithm 
would be the best. 

In this experiment, we used accuracy and kappa as indicators to measure the quality of the model. For original cancer dataset, 
the accuracy, Kappa, Memory cost and Time results for comparing WL, DL and NB in MOA are shown in from Figure 5.3.1 to 
Figure 5.3.4 respectively. On the x-axis the variable is the number of instances, and it varies from 50 to 10,000 with an increment 
of 50 in each step. In Figure 5.2.1, it is observed that there is a big drop in the middle of the blue line, which represents the 
accuracy of NB in original Cancer dataset. At the same time, we can see from the Figure 5.2.2 that Kappa value of NB, which 
corresponds to the accuracy, also experienced a big drop. While, the other two lines maintain relatively high performance in both 
accuracy and Kappa value. We can see WL and DL are more stable and will not fluctuate a lot like NB. When we look at the 
front part of Figure 5.2.1, before the 2150 instances, the performance of both accuracy and Kappa value of WL is so much better 
than DL. When the abscissa value is around 1000 instance, both curve of accuracy of WL and DL reach the peak. But the accuracy 
of WL is 8% higher than DL, which are 80% and 72% respectively. Overall, WL is better than DL and NB in both accuracy and 
Kappa. 

 

Fig. 5.2.1. The accuracy performance by using White Learning, NaiveBayesUpdatable and Deep Learning in cancer classifica-
tion in MOA. 

 

Fig. 5.2.2. The kappa performance by using White Learning, NaiveBayesUpdatable and Deep Learning in cancer classification 
in MOA. 
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Fig. 5.2.3. The accuracy performance by using White Learning, NaiveBayesUpdatable and Deep Learning in liver disorder 
classification in MOA. 

 

Fig. 5.2.4. The kappa performance by using White Learning, NaiveBayesUpdatable and Deep Learning in liver disorder 
classification in MOA. 

For Liver dataset, the same trend of accuracy occurred. In the Figure 5.2.3, we can see the fluctuation of NB curve is much 
larger than the other two curves and it is always under the other two curves. That means, NB doesn’t perform well in this exper-
iment. As shown by the accuracy results, it can be observed that WL is better than DL in most cases. The Kappa result of WL is 
also in the middle of the other two curves. 

In conclusion, WL is better than DL and NB in both accuracy and Kappa in this test. 

B. Swarm Search and Early abandonment  

After verifying the good performance of WL we try to improve it by using Swarm Search to do feature selection and pick the 
best swarm search algorithm. There are 11 swarm search algorithms on our testing list. They are Ant, Bat, Bee, Cuckoo, Elephant, 
Firefly, Flower, Genetic Algorithm, Harmony, Particle search optimization and Wolf. We also test these in both Cancer dataset 
and Liver dataset. 

For the Cancer dataset, it is observed in Figure 5.3.1 and Figure 5.3.2, the average accuracy and kappa values are shown 
clearly in the bar chart. For convenience observation, we manually set a reference line according to the original data result. Then 
we can observe that, there are two swarm algorithms over the original one in both accuracy and kappa values which are Ant and 
Wolf. Especially, for the Wolf algorithm, its accuracy is higher than the original by 0.15% and Kappa value higher than the 
original by 0.1, which is a significant improvement. 
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Fig. 5.3.1. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average accuracy for 
cancer dataset. 

 

Fig. 5.3.2. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average kappa for cancer 
dataset. 

For Liver disorder dataset, we can see that Figure 5.3.3 and Figure 5.3.4, which is show the average accuracy and average 
Kappa values respectively. It is shown in Figure 5.3.3, there are 6 kinds of swarm search accuracy result higher than the original 
one. Among them, Flower algorithm own the best average accuracy, which is 1.5% higher than the original dataset result. For 
the average Kappa value, we can observe that there are also 6 swarm algorithms result higher than the original result. But inter-
estingly, the average kappa of flower is near 0. That means, although Flower could achieve higher accuracy, it is not stable. So, 
at the end of the experiment, we find that there is only one swarm algorithm, both its average accuracy and its average kappa 
value are higher than the original one, which is Wolf swarm search algorithm. 

 

Fig. 5.3.3. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average accuracy for 
cancer dataset. 
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Fig. 5.3.4. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average kappa value for 
cancer dataset. 

From the experiments above, we applied more than 10 kinds of swarm search algorithms to improve the WL performance. 
After testing all the algorithms, we will know which algorithm work best. Running the whole length of datasets which could be 
very large in big data environment, takes time, and very cumbersome. Only after running all the experiments, we could know 
which swarm algorithms are not suitable, and should be abandoned. What if we could know it earlier before we run for the full 
lengths of data in the experiment? So, we designed this experiment to choose the best swarm search algorithm, using data sam-
pling approach. This approach could be applied at model calibration where small samples of datasets are used to test the efficacy 
of swarm search methods. 

In this experiment, our goal is to early know which swarm search algorithms can be retained and which should be early 
terminated without training all the data in the dataset. Therefore, we first divide all datasets into subsets of 5% to 95% with an 
increase rate of 5%. The method applied is by using WEKA ReservoirSample function. It generates a random subsample by 
applying the reservoir sampling algorithm. Each subset maintains the same classification ratio as the original dataset or after 
running different swarm search algorithms datasets. 

In this experiment, we only test Liver dataset because it is 10 times larger than cancer and it has 10 attributes more than the 
cancer dataset. So, for the sake of testing the efficacy of sampling for early abandoned, it is preferred to use a larger dataset. It is 
anticipated that similar results would be generated for the cancer dataset, therefore the test is not repeated for the cancer dataset.  

For the Liver dataset, as we have known earlier, all the swarm search algorithms improved the WL performance. The top 5 
from the previous test are PSO, Harmony, Cuckoo, Bee, Wolf. According to our experimental theory, the swarm search algo-
rithms that performed well in the former experiment should show the same advantages in this experiment. For the convenience 
of observation, we artificially set three peak lines in Figure 5.3.5. It can be observed that almost every swarm search algorithm 
get the peak and the values almost have no difference. Except we can say PSO get the Top position in the first peak. At the second 
peak, PSO, Bee, Cuckoo, Wolf, Ant and Harmony are ranked high. At the third peak, Cuckoo, PSO, Wolf, Bee, Elephant, Har-
mony and Bat have a good performance. The rankings of these three peaks are roughly consistent with our ranking in the above 
experiment. In other words, those perform well swarm algorithms we should remain them run out all the dataset. While, those 
performing bad, like Firefly which always at the bottom and Wolf which fluctuated a lot and can be seen in the top peak and deep 
bottom, should be abandon early. 

 

Fig. 5.3.5. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average accuracy for 
Liver dataset for early abandonment. 
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Fig. 5.3.6. Comparison of 11 kinds of swarm search algorithms applied in White Learning in terms of average kappa for Liver 
dataset for early abandonment. 

C. Accelerated swarm 

From the results charted in the Figures below, Accelerated swarm search methods have advantages in improving WL accuracy 
in general. The improvement is obvious except for Flower search and Bee search. For Kappa however, accelerated swarm search 
methods seem to under-perform compared to normal swarm search methods. For cases of PSO, Flower, Bee and Cuckoo, the 
Kappa values are about the same. The lower Kappa may be explained by that the accelerated search (that leads to early conver-
gence) might not have covered many possibilities thereby compromising the generalization of the model hence lower Kappa 
value. 

 

Fig. 5.4.1. Accuracy results of improved SSFS by Accelerated Swarm Search for WL. 
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Fig. 5.4.2. Kappa results of improved SSFS by Accelerated Swarm Search for WL. 

V. QUALITATIVE ANALYSIS OVER BAYESIAN NETWORKS  

The qualitative analysis is planned to systemically showcase the Bayesian network as a result of using a collection of machine 
learning. It is started from the most basic Naïve Bayes learner over (1) the original liver disorder dataset, (2) the same dataset that 
has been applied with Misclassified Recall, and (3) with swarm feature selection methods. The objective is to observe the differ-
ences in Bayesian networks that are generated from different tools. 

Figures 6.1 shows a full structure of Bayesian network. Since the full dataset is used in inducing this Bayesian network, the 
relations are at their fullest as well, having many links weaving through many nodes. Six possible causal paths link up factors 
leading to the destination node. Tracing the six paths, there are a collection of yellow nodes which serve as originators where the 
causal relations started from. Under examination of the yellow nodes, it is discovered that the originators nodes are quite general, 
for instances hospital, age, diabetes and gallstones etc. It is true enough that these attributes do have certain relations to carcinoma. 
Those source nodes might not be the original causes by common sense. The relationship between nodes (especially the 
relationship between initiators) is inaccurate, which may be due to poor base mapping between attributes and targets in the original 
dataset. Nevertheless, this preliminary demonstrates that it is technically possible to generate an interpretable Bayesian network 
for medical users to investigate the relations among factors and how they lead to a target. 

In the next experiment, Misclassified Recall (MR) which is the core function in WL is applied on the liver order data. It is 
noticed that as shown in Figure 6.2, the structure of the Bayesian network is exactly the same as the one in Figure 6.1. By using 
MR, certain amount of data instances are removed because they cause confusion in the machine learning process. These 
misclassified data, once cleansed, the dataset is left with only good quality data which help induce a more accurate prediction 
model. In this case, the dataset is modified while the attributes remain the same. Therefore, there is no change in the Bayesian 
network structure. However, the links as shown in Figure 6.2 are different from the links in Figure 6.1. The links which represent 
the causal relations have changed totally after MR, indicating that new insights could be revealed from this new Bayesian network 
after MR.  

Under a close observation, in Figures 6.2 and Figures 6.2 a-e, there are five paths existing in the Bayesian network. It 
indicates that with misclassified applied, liver cancer originates from something called AMA. What is AMA? In the following 
article, there is a mention of the relation between AMA and liver cancer: 

https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/gastroenterology-hepatology/primary-biliary-
cholangitis/ 

Most importantly, there is this sentence: "Approximately 95% of patients will test positive for antimitochondrial antibodies 
(AMA). AMAs are highly specific for PBC and are usually the first laboratory abnormality to occur." The casualty paths in Figure 
6.2 indicates just this phenomenon. The yellow nodes which are the sources, originated from AMA, leading to PBC and other 
factors related to the disease. 

In the Bayesian network by WL diagram, it shows AMA is highly related to PBC. Another medical article proves the same. 
Most importantly, there is this statement in the article: "Antimitochondrial antibodies (AMA) are autoantibodies that are strongly 
associated with primary biliary cholangitis (PBC), formerly called primary biliary cirrhosis. " 
https://labtestsonline.org/tests/antimitochondrial-antibody-and-ama-m2. 

https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/gastroenterology-hepatology/primary-biliary-cholangitis/
https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/gastroenterology-hepatology/primary-biliary-cholangitis/
https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/gastroenterology-hepatology/primary-biliary-cholangitis/
https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/gastroenterology-hepatology/primary-biliary-cholangitis/
https://labtestsonline.org/tests/antimitochondrial-antibody-and-ama-m2
https://labtestsonline.org/tests/antimitochondrial-antibody-and-ama-m2


17 

The conclusion is: one can see how closely consistent the Bayesian network by WL to the actual liver cancer information is as 
reported in medical documents! Essentially, it shows if we don't apply WL, we get some rather random results as in the first 
diagram by just using NB alone. After misclassified recall is applied, the WL has increased accuracy of the model via the cleansed 
data. It can also be noticed the diagram is clearer without many unnecessary nodes and links as compared to the earlier NB 
diagram in Figure 6.1. 

Furthermore, after swarm feature selection is applied, the structure of the Bayesian network is simplified because many 
nodes are removed. The relations are shortened and became fewer too. However, the most important factors such as AMA and 
PBC are still preserved in the Bayesian networks which are resulted from using swarm feature selection and MR.  

 

Fig. 6.1. Bayesian network by original liver disorder dataset. 

 

Fig. 6.2. Bayesian network by misclassified recall liver disorder dataset. 
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Fig. 6.3. Bayesian network by misclassified recall + FS-WSA liver disorder dataset. 

VI. CONCLUDING REMARKS 

In general, as concluding remarks, if the user is in a hurry to extract only the most significant causality result from the data, 
swarm feature selection + MR should be used. It results in very concise and may be even overly simplified Bayesian network 
which shows only the strongest causality links. Otherwise, if fuller information in terms of more causal paths and factors are 
opted to be observed, the user can choose without feature selection. But it is still advisable to apply MR as in the WL model to 
retrieve paths that are very relevant to the prediction target. Otherwise, if just applying NB to generate a Bayesian network from 
the original dataset, the resultant causal paths may not be so accurate as the sources seem to be irrelevant to the disease. 
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Appendix A - Definition 

White-learning model (WL). WL is an ensembled supervised machine learning model which consists of minimum one 
white-learner and one black-learner, so WL provides dual output results - one from the black-learn which usually is focused to 
achieve a prediction with the highest possible accuracy, and an explainable graph which can be interpreted by the users to know 
how the prediction is derived in the induction and/or deduction process. The two types of leaners are supposed to be coupled as 
a hybrid at various levels. (More details follow in the next sub-section.) In our case, the WL model we implemented and tested 
in experimentation is most basic one which connects a typical black learner and a classical white learner by passing data. The 
machine learners in WL need to operate in incremental manner, taking only one portion of incoming training data at a time. Inside 
WL model, there are optional pre-processing tools designed for enhancing the performance of WL by improving the quality of 
the training data. The black learner and white learner could be implemented by different algorithms, as long as they output dual 
prediction results, in the form of an accurate prediction and some patterns which could be understood by human users. In the 
context of experimentation and application as documented in this thesis, WL is generally referred to a methodology of employing 
both white-box learner and black-box learn to generate dual prediction results. WL consists of both black-box and white-box 
algorithms. 

Black-learner (BLN). BLN is a computer program algorithm which induces training data into a learnt supervised machine 
learning model, without any knowledge of its internal workings; likewise, it outputs a result without explaining how it is inferred. 
The output is often just a univariate number or nominal answer. The performance of the prediction often could be evaluated. 

White-learner. WLN is a computer program algorithm which induces training data into a learnt supervised machine earning 
model, with knowledge of its internal workings, such as probabilistic learning; likewise, it outputs a result with explanation about 
how it is inferred. The output is often dual that predicts a univariate number or nominal answer, as well as showing the relations 
between the predictor variables and the prediction target, e.g. decision trees, Bayesian network and classification-based associa-
tion rules. The performance of the prediction often could be evaluated. 


