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An Innovative Machine Learning-based Scheduling
Solution for Improving Live UHD Video Streaming
Quality in Highly Dynamic Network Environments
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Abstract—The latest advances in terms of network technologies
open up new opportunities for high-end applications, including
using the next generation video streaming technologies. As mobile
devices become more affordable and powerful, an increasing
range of rich media applications could offer a highly realistic
and immersive experience to mobile users. However, this comes at
the cost of very stringent Quality of Service (QoS) requirements,
putting significant pressure on the underlying networks. In
order to accommodate these new rich media applications and
overcome their associated challenges, this paper proposes an
innovative Machine Learning-based scheduling solution which
supports increased quality for live omnidirectional (360◦) video
streaming. The proposed solution is deployed in a highly dy-
namic Unmanned Aerial Vehicle (UAV)-based environment to
support immersive live omnidirectional video streaming to mobile
users. The effectiveness of the proposed method is demonstrated
through simulations and compared against three state-of-the-art
scheduling solutions, such as: Static Prioritization (SP), Required
Activity Detection Scheduler (RADS) and Frame Level Scheduler
(FLS). The results show that the proposed solution outperforms
the other schemes involved in terms of PSNR, throughput and
packet loss rate.

Index Terms—Omnidirectional Video, Live Streaming, QoS,
Machine Learning, Radio Resource Management, UAV.

I. INTRODUCTION

GLOBAL mobile video traffic continues to grow expo-
nentially, especially with the introduction of Ultra-High-

Definition (UHD) or so called 4K video streaming applica-
tions. This new application category puts tremendous pressure
on the current underlying networks as the average bit rate for
4K video is around 15 to 18Mbps, which is more than double
the High Definition (HD) video bit rate and nine times more
than the Standard Definition (SD) video bit rate [1].

Additionally, the increasing adoption of new Virtual Reality
(VR) and Augmented Reality (AR) enabled high-end mobile
devices together with the increasing amount of content ready
to be consumed pushes the current 4G networks closer to their
saturation. It is expected that the VR/AR generated traffic to
continue to follow a high growth trajectory especially with the
potential adoption of virtual reality streaming [1] that opens
up a new era of 5G-based media services. Moreover, Cisco [1]
also predicts that live Internet video will account for 17% of
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Fig. 1: Highly dynamic immersive live UHD streaming example
scenario.

the Internet video traffic by 2022 with IP video traffic reaching
82% of all IP traffic globally.

Consequently, in order to keep up with the current and
predicted traffic demands, the network operators have already
started an accelerated roll-out of 5G communications. As
the new 5G technology targets high data rate and very low
latency, it opens up a new range of applications starting
from immersive augmented reality to driverless cars or even
robot-enabled remote surgery. According to Cisco, by 2022,
5G devices and connections will represent more than 3% of
global mobile devices and connections, with 12% of the global
mobile traffic being generated over the 5G cellular network
[1]. However, the network operators need to demonstrate
that the tremendous potential of the 5G deployment could
meet the users’ expectations. The challenge is magnified even
further especially given the current wide and diverse range of
applications with different Quality of Service (QoS) require-
ments which need to be supported on a heterogeneity of end-
user hardware platforms. Applications such as live network
streaming require low latency and jitter, whereas, reliability
is needed for applications such as file transfer which cannot
tolerate packet loss or high delay. As most applications require
end-to-end network support, this hampers the potential devel-
opment and advantages of new applications. Consequently,
it becomes obvious that just increasing the system capacity
is not enough to meet the heterogeneous QoS requirements
for all mobile users at the same time. This is mainly due
to the increasing popularity of bandwidth-hungry applications
(e.g., multimedia-based applications), limited radio resources
and changeable wireless network conditions. Thus, along
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with the next generation networks deployment, new emerging 
technologies and solutions are being explored to help network 
operators to cope with such high traffic d emands, s uch as: 
integration of MPEG-DASH [2] as the de-facto video delivery 
mechanism, Advanced Television Systems Committee (ATSC) 
3.0 standard [3], evolved Multimedia Broadcast/Multicast Ser-
vice (eMBMS) [4], Further eMBMS (FeMBMS) and New Ra-
dio MBMS (NR-MBMS) [5], mmWave communications [6], 
satellite back-haul [7], Software Defined Networks (SDN) and 
Network Function Virtualisation (NFV) [8], [9], Mobile Edge 
Computing (MEC) [10], Unmanned Aerial Vehicle (UAV) or 
drones [11], machine learning [12], etc. As a potential use 
case of UAV, Mangina et al. [13] make use of drones for live 
streaming for people with limited mobility, so that they could 
enjoy the immersion as if they were present at the specific 
location. The aim of this framework is to use the technology 
to enable opportunities for communication and self expression 
of people of all levels of physical and cognitive ability.

This work focuses on a highly dynamic mobile scenario 
involving high bitrate live video streaming, as the one illus-
trated in Fig. 1. In this scenario, an UAV equipped with an 
omnidirectional (360◦) camera is used to send 4K/8K video 
captured in real time from a live event taking place for instance 
in a stadium, to a MEC server attached to a 5G network. VR-
enabled users get the live video stream served via the 5G 
network and expect to enjoy a high quality video experience, 
as if they were present at the venue. However, to be able 
to create a high quality immersive experience for the remote 
users, the network operators need to guarantee low latency and 
packet loss, and high throughput while also accommodating 
other traffic c lasses. U nfortunately, t his i s n ot p ossible to 
achieve with conventional resource management methods.

In this context, this paper proposes and describes an in-
novative Machine Learning (ML)-based scheduling solution 
for radio resource management to improve significantly QoS 
provisioning and increase users’ Quality of Experience (QoE) 
levels in the presence of heterogeneous traffic. T he pro-
posed solution targets particularly highly challenging scenarios 
which involve live streaming of very high bitrate video in 
highly dynamic network environments.

The remainder of this article is organized as follows: Section 
II discusses important related works in this area and Section 
III presents an overview of the proposed solution. Section IV 
details the proposed innovative ML-based scheduling solution 
for increased quality of live high bitrate video streaming in 
highly dynamic network environments and presents the asso-
ciated problem formulation. Evaluation results are discussed 
in Section V in comparison with those of alternative solutions 
and finally, conclusions a re drawn i n Section VI.

II. RELATED WORKS

A key challenge for network operators is to provide ubiq-
uitous connectivity to different device types and applica-
tions with heterogeneous QoS requirements. This challenge 
is amplified by the increasing popularity of multimedia-based 
bandwidth-hungry applications with strict QoS requirements 
that stretch the current 4G networks closer to saturation.

Consequently, to be able to accommodate all these new immer-
sive live streaming applications, known for being bandwidth-
hungry and having low-latency and packet loss requirements
[14], advanced solutions must be adopted to maintain in-
creased QoE for end-users, since QoE is expected to become
the biggest differentiator between network operators [15].

An important component that is expected to be integrated
within the 5G and beyond 5G networks is the use of UAV [16].
Apart from facilitating temporary radio access and Internet
connectivity, UAVs could also be used to facilitate live video
broadcasting and enable support for high data rate transmis-
sions [11]. However, to accommodate a high number of users
with enhanced QoE levels within the 5G radio access network,
system bandwidth needs to be properly managed. According
to [17], two adaptation methods classes can be considered to
deal with the bandwidth efficiency in order to improve QoS
and QoE, such as: passive and active. The active approaches
aim to improve the bandwidth allocation by using scheduling
algorithms, whereas passive ones refer more to bandwidth-
compliant adaptation techniques that adapt the multimedia
transmission to the available bandwidth.

As an active adaptation entity, the packet scheduler is
responsible for dynamically sharing the system bandwidth
between the end-users such that the QoS provisioning is
maximized. Different scheduling strategies are proposed in
the literature to deal with QoS targets [18]. A scheduler that
encapsulates the features of different scheduling strategies
is proposed in [19] for 3G downlink systems to assure the
multidimensional QoS provisioning under varying traffic and
radio channel conditions. However, most of the state-of-the-art
schedulers targeting multidimensional QoS requirements aim
to prioritize some traffic classes while ignoring others. For
instance, Frame Level Scheduler (FLS) [20] prioritizes real-
time traffic (e.g. video, voice, gaming) over the more elastic
traffic classes (e.g. file transfer, HTTP). In contrast, Required
Activity Detection (RADS) [21] prioritizes a group of users
according to their packet delay and fairness criterion. However,
most of the prioritization schemes are unable to react to the
dynamics of the wireless environment, such as: increasing
number of users, various traffic characteristics, and changeable
network conditions. As a consequence, some traffic classes are
over-provisioned while others may have a degraded QoS.

A passive method used for traffic prioritization and band-
width adaptation is proposed in [17] to manage the transmis-
sion of massive clinical applications in high-speed ambulance
scenario under variable and limited communication bandwidth.
The approach works in two stages: a) the clinical multimedia
data is prioritized in four classes based on the disease model
and the criticality of each model; b) according to the avail-
able bandwidth, different heuristic algorithms are proposed to
reduce the clinical data rates according to their priority class.
The evaluations show the effectiveness of this approach by
transferring the most critical information within the limited
bandwidth. By focusing only on QoE improvement, the system
bandwidth can remain underutilized. In this sense, a passive
adaptation scheme is proposed in [22] to facilitate the video
rate adaptation by considering the physical layer information
to enable accurate bandwidth estimation. The latest network
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Fig. 2: Proposed 5G UAV-based live streaming framework.

advancements need to accommodate advanced applications
and services with very high data rates and extremely low
latency. Wang et al. [23] propose the use of fog networking
to coordinate a network of drones equipped with cameras to
broadcast live events. The objective of the proposed framework
is to maximizing the coverage area as well as the available
throughput for high-quality video streaming to video servers.

In terms of Radio Resource Management (RRM) and QoS
provisioning, classical RRM functionalities would not be able
to meet the stringent QoS requirements of all these immersive
live streaming applications while also catering for the rest of
application classes. In the context of 5G, ML is currently
gaining considerable attention as it is seen as one of the
key enablers for QoS provisioning [12], [18], [24]–[26] as
well as for the development of intelligent services for smart
cities [27]. An autonomous network resource management for
QoS and QoE provisioning is proposed in [12] to predict the
amount of network resources that needs to be allocated to
cope with the traffic demands for live and on-demand dynamic
adaptive streaming over HTTP. Machine learning is used to
optimize the scheduling and resource allocation problems in
5G radio access networks focusing on different combinations
of QoS objectives, such as: throughput, delay and packet loss
in [18], packet loss and delay in [24], system throughput and
user fairness in [25]. However, these ML-based scheduling
solutions are designed for homogeneous traffic types only. The
ML framework proposed in [26] aims to optimize the resource
and power allocation problem for heterogeneous traffic with
the scope of improving the delay of Ultra-Reliable and Low-
Latency Communications (URLLC) users and throughput of
enhanced Mobile Broadband (eMBB) users. Compared to
previous works, this paper proposes a ML-based scheduling
and resource allocation solution to enable high level of QoS
provisioning for mobile users experiencing UAV VR-based
live video content while maintaining an acceptable service

quality of other traffic types with diverse QoS requirements.
To this extent, the contributions of this paper are two fold:
• an innovative ML-based scheduling solution to enable

QoS provisioning for Ultra High Definition video stream-
ing in highly dynamic network environments;

• a QoS-oriented UAV-based integrated system for enabling
high quality levels for immersive live video streaming.

The benefits of the proposed ML-based solution compared
to other state-of-the-art schedulers are summarized as follows:
• enhanced QoS provisioning (in terms of delay, throughput

and packet loss requirements), higher throughput and
Peak Signal-to-Noise Ratio (PSNR) for users requesting
UHD VR-based live video;

• gains in excess of 100% when monitoring the time frac-
tion when the heterogeneous QoS requirements are met
in a mixture of services with various QoS requirements;

• improved inter-class fairness by respecting over time the
standard prioritization order; it can accommodate a higher
number of UHD VR video connections and avoids the
over/under-provisioning of other traffic classes.

III. PROPOSED FRAMEWORK FOR UAV-BASED 4K
STREAMING

The main components of the proposed quality and
performance-oriented system for high quality live video
streaming are illustrated in Fig. 2. The figure presents a very
challenging deployment involving a UAV with a 360◦ camera,
a MEC server, a 5G intelligent packet scheduler and VR
users. The UAV has a 360◦ spherical camera that records a
live event (e.g., football games, concerts, festivals, etc.). The
UAV communicates via the 5G network on the ground to
send 4K/8K UHD video to the MEC server. For simplicity,
it is assumed that there is no loss on the communication link
between the UAV and the MEC server. The MEC server will
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then stream live the UHD video content to the users. However, 
in order to accommodate a heterogeneous traffic m ix with 
different QoS requirements, an intelligent ML-based packet 
scheduler is proposed to enable high QoS provisioning for 
different traffic c lasses, i ncluding f or l ive h igh b itrate video 
streaming. The mix of traffic c an c onsider t he 5 G services 
and use cases such as eMBB, URLLC and massive Machine 
Type Communications (mMTC) as well as other types of 4G 
related services with more relaxed QoS requirements.

The role of the packet scheduler is to allocate the available 
frequency resources to active users within a given cell to 
improve as much as possible the fraction of scheduling time 
when the QoS requirements are met for each traffic type. 
The scheduling process is conducted at each Transmission 
Time Interval (TTI) and usually works in two steps: a) Time-
based Prioritization (TP) where a group of users with more 
stringent QoS requirements is prioritized among other users 
with more relaxed QoS constraints and b) Frequency-based 
Prioritization (FP) that aims to allocate the radio resources 
in order to increase the QoS provisioning in terms of delay, 
packet loss and rate requirements for the pre-selected group 
of users. While time prioritization is seen as an outer QoS 
provisioning scheme for all traffic c lasses b ased o n a  given 
priority order, frequency prioritization acts as an inner QoS 
provisioning scheme for the pre-selected users. Consequently, 
the scheduler will prioritize data packets in both time and 
frequency domains based on current networking conditions 
that may change at each TTI, including: number of users for 
each traffic c lass, Q oS p rofiles, he terogeneous Qo S parame-
ters, VR live streaming characteristics, channel conditions, etc. 
However, many existing scheduling schemes are not able to 
adapt to the dynamic and unpredictable networking conditions 
[18]. For instance, some time-based prioritization schemes 
aim to over-provision some traffic c lasses w hile degrading 
the performance of others [20], [21], whereas the frequency-
based prioritization techniques will address only particular 
QoS requirements at any time [18]. In order to avoid these 
drawbacks, the proposed scheduling solution is flexible, being 
able to adapt according to the current network conditions in 
order to enhance the fraction of time when the heterogeneous 
QoS requirements are respected.

Since live UHD VR-based video streaming has strict QoS 
requirements with data rates at least twenty times greater than 
other conventional applications [1], the best practice would 
be to decide at each TTI the most suitable traffic c lass to 
be prioritized in order to: a) meet the very stringent QoS 
requirements of live UHD VR-based traffic a nd b ) avoid 
the starvation effect for other types of applications. In the 
frequency domain, the most suitable scheduling rule is selected 
to improve the QoS provisioning for each selected traffic class. 
Therefore, an intelligent ML-based solution is introduced to 
learn over time and propose the most suitable prioritization 
decisions based on current scheduler states. Therefore, this 
paper proposes an innovative ML-based scheduler for het-
erogeneous traffic in Orthogonal Frequency Division Multiple 
Access (OFDMA) downlink systems. The proposed ML-based 
scheduling solution is able to take each time two scheduling 
decisions in order to increase the amount of time when all

QoS requirements are met. This two-dimensional decision
prioritizes a certain traffic class at each TTI and decides the
scheduling rule that allocates the available bandwidth to users
of the pre-selected class in the frequency domain.

IV. INTELLIGENT ML-BASED SCHEDULING SOLUTION

As previously stated, the proposed ML-based scheduler (see
Fig. 2) is able to select at each TTI the most suitable traffic
class to be prioritized in time domain and the best scheduling
rule for the user prioritization in frequency domain in order
to improve the QoS provisioning. These decisions could be
taken based on various parameters, such as: wireless channel
conditions, application requirements, traffic characteristics,
users profile, device types, etc. The details of the ML-based
scheduler are presented next in this section.

A. Prioritization-based Scheduling

In frequency domain, it is considered that the available
bandwidth is divided in equal Resource Blocks (RBs), the
smallest radio resource that can be allocated by the Base
Station (BS) to the user (see Fig. 2). We define by B =
{1, 2, ..., B} the set of available RBs in a given bandwidth. To
get the necessary bandwidth needed to accommodate a high
number of UHD VR-enabled live video streaming connections,
we aggregate multiple radio bandwidths. Each User Equipment
(UE) is characterized by a single traffic class, with a given
priority and a QoS profile in terms of delay, packet loss and
throughput requirements. Multiple UEs may request different
services with heterogeneous QoS requirements. A successful
scheduler should be able to accommodate UHD VR-based live
services as well as other conventional traffic types (e.g. video,
voice, file transfer, etc) without penalizing one over the other.
The list of symbols used in this paper is presented in Table I.

Let us consider P the number of traffic classes with different
QoS profiles. We define by P = {1, 2, ..., P} the priority set
such that traffic class 1 has the highest priority (i.e. UHD
VR-based live streaming traffic) while traffic class P has
the lowest priority. The Static prioritization (SP) is defined
according to the 3GPP guidelines [28] as follows: regardless
of the network conditions, the scheduling process respects
the priority set P = {1, 2, ..., P} for the entire downlink
transmission session. Let us define the set of active users for
all classes as U = {U1,U2, ...,UP }, where Up is the subset of
users corresponding to traffic class p ∈ P . We denote by Up
the number of users belonging to class p ∈ P , while by U , the
total number of active users from all classes. Moreover, the set
of heterogeneous QoS objectives in terms of their requirements
accomplishment is defined as O = {O1,O2, ...,OP }, where
Op is the set of objectives for class p ∈ P . It is said that set Op
is met if the delay, packet loss and throughput requirements are
respected by all active users belonging to traffic class p ∈ P .

In frequency domain, the process of user scheduling and
resource allocation is conducted according to a given schedul-
ing rule that is oriented on a particular QoS objective or on
a group of QoS objectives. We define the set of scheduling
rules as R = {1, 2, ..., R}, where R represents the maximum
number of rules. Assuming that a SP scheme is employed at
this stage at each TTI, the set of active users U1 is passed in
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TABLE I: List of Notations

Parameter Description
A Discrete and two-dimensional controller action space
a[t] Current action a ∈ A decided at TTI t
B Set of resource blocks from different carriers
b Random resource block b ∈ B
B Max. no. of resource blocks
Ec Error of critic neural network
Ea Error of actor neural network
LH Number of hidden layers

mb,p,u Metric of user u ∈ Up on RB b ∈ B
Nl Number of nodes corresponding to layer l
O Set of heterogeneous objectives
Op Set of objectives corresponding to class p
o Objective index belonging to a given set Op

Op Number of QoS objectives for the traffic class p ∈ P
P Set of traffic classes in the priority order given by [28]
p Random traffic class p ∈ P
P Max. no. of traffic classes
R Set of scheduling rules
r Random scheduling rule r ∈ R
R Max. no. of scheduling rules from R
S Continuous and multi-dimensional scheduler state space
s[t] Current scheduler state s ∈ S at TTI t
U Set of heterogeneous users
Up Set of users corresponding to class p
u User index belonging to a given class Up
Up Number of active users from Up
U Total number of heterogeneous users

xo,p,u QoS indicator of o ∈ O and user u ∈ Up
x̄o,p,u QoS requirement of o ∈ O and user u ∈ Up
Γd,u Utility function of rule r ∈ R and user u ∈ Up
ρ[t+ 1] System reward value received at TTI t+1

the frequency domain for scheduling. Here, a given scheduling
rule r ∈ R contributes to the metric computation for each user
u ∈ U1 on each RB b ∈ B. Each metric shows how necessary
is for each user u ∈ U1 to get each resource b ∈ B from the
perspective of the addressed objective o ∈ O1 targeted by the
scheduling rule r ∈ R. In the initial phase of scheduling, a
number of U1 metrics is computed for each RB b ∈ B by
summing a total number of U1 · B metrics. In the second
phase, the scheduler allocates each RB b ∈ B to the user with
the highest metric and the process is repeated RB-by-RB until
the entire set B is allocated. However, some metrics can be
zero since the QoS objectives are met or there are not enough
packets in the queue for some users. If all metrics are equal,
then the RB b ∈ B remains unoccupied. Finally, the third phase
of the scheduling process aims at calculating the size of the
transport block for each user scheduled on different RBs and
determines the modulation and coding scheme necessary to
decode the data at the reception. The scheduling process can
be repeated for the next prioritized class (i.e. p = 2) if some
RBs are unoccupied once the users from U1 are scheduled.

By employing this SP scheme, the UHD VR-based live
video streaming traffic is always allocated the best resources
while adversely affecting QoS provisioning for other traffic
classes. To avoid this fundamental drawback, other traffic
classes must be prioritized when network conditions are fa-
vorable. Consequently, in this work, the proposed approach
aims to select at each TTI the traffic class p ∈ P in such a
way that the satisfaction of heterogeneous QoS requirements
has the highest possible outcome under the current networking
conditions. In this way, we decide at each TTI the prioritization
set P[t] = {p, 1, ..., p − 1, p + 1, ..., P}, where class p ∈ P
gets as many resources as needed up to the maximum number
of RBs, whereas other classes receive the remaining resources
by following the priority order of {1, ..., p − 1, p + 1, ..., P}.

Even so, if always applying the same scheduling rule for
frequency prioritization, only one objective across all traffic
classes would be addressed, while harming the performance
of other QoS targets. Consequently, in the frequency domain,
our aim is to apply at each TTI the most suitable scheduling
rule in order to increase the fraction of time (in TTIs) when
the heterogeneous QoS requirements are met.

B. Multi-Class and Multi-Objective Optimization Problem

Let us define by xp,u,o the Key Performance Indicator (KPI)
of user u ∈ Up and objective o ∈ Op and by x̄p,u,o its
associated requirement. It is said that user u ∈ Up meets
objective o ∈ Op if and only if xp,u,o respects x̄p,u,o.
Furthermore, let us define the current KPI vector xp,u[t] =
[xp,u,o1 , xp,u,o2 , ..., x̄p,u,Op ] and its associated requirement
vector x̄p,u = [x̄p,u,o1 , x̄p,u,o2 , ..., x̄p,u,Op ]. User u ∈ Up
meets all QoS objectives if and only if xp,u respects the
requirement vector x̄p,u. By extending this reasoning, the
entire set of objectives is met for each traffic class p ∈ P ,
if vector xp[t] = [xp,1,xp,2, ...xp,Up

] respects its require-
ments x̄p = [x̄p,1, x̄p,2, ...x̄p,Up ]. The proposed framework
aims to increase the number of TTIs when the KPI vector
x = [x1,x2, ...,xP ] respects the QoS requirement vector
x̄ = [x̄1, x̄2, ..., x̄P ]. We formulate in (1) the multi-class and
multi-objective optimization problem that aims to determine
at each TTI the most convenient traffic class to be prioritized
and scheduling rule to be applied in the frequency domain such
that vector of QoS indicators x reaches the highest possible
outcome when reporting to the vector of QoS requirements x̄.

max
i,j,k

∑
r∈R

∑
p∈P

∑
u∈Up

∑
b∈B

ir,p[t] · jp,u[t] · ku,b[t] · Γr,p(xp,u[t])

·γu,b[t], (1)

s.t. ∑
u
ku,b[t] ≤ 1, b = 1, ..., B, (1.a)∑

p
jp,u[t] ≤ 1, u = u1, ..., uUp

, p = 1, ..., P, (1.b)∑
u
jp∗,u[t] = Up∗ , p∗ ∈ P, (1.c)∑

u
jp⊗,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (1.d)∑

r
ir,p[t] = 1, p = 1, 2, .., P, (1.e)∑

p
ir∗,p[t] = P, r∗ ∈ R, (1.f)∑

p
ir⊗,p[t] = 0, ∀r⊗ ∈ R\{r∗}, (1.g)

ir,p[t] ∈ {0, 1}, ∀r ∈ R,∀p ∈ P, (1.h)
jp,u[t] ∈ {0, 1}, ∀p ∈ P,∀u ∈ Up, (1.i)
ku,b[t] ∈ {0, 1}, ∀u ∈ Up,∀b ∈ B. (1.j)

In (1) γu,b[t] is the achievable user rate that quantifies
the number of bits transmitted if the RB b ∈ B would be
allocated to user u ∈ Up. Basically, γu,b[t] is determined
based on the Channel Quality Indicator (CQI), a bandwidth
dependent vector reported by each user u ∈ Up to the base
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station. For each scheduling rule r ∈ R, a unique utility 
function Γr,p(xp,u) is associated in order to attenuate the 
channel variations given by γu,b[t] and to provide to the user 
the priority to be scheduled in the frequency domain. Any 
utility function Γr,p(xp,u) : R → R must be monotone and 
concave [29]. The utility functions can be designed in many 
ways by considering different KPIs as arguments with certain 
impact when meeting the heterogeneous and multidimensional 
QoS requirements. More examples of utility functions are 
presented in the next section. When setting the same utility 
function Γr,p(xp,u) for all traffic c lasses, n o m atter what 
the prioritization set Pp[t] is, the KPI vector x respects the 
requirement vector x̄ in a certain measure. The idea is to select 
at each TTI the prioritization set Pp[t] and the most suitable 
utility such that the QoS provisioning would be maximized.

The traffic c lass, s cheduling r ule a nd r adio r esources are 
assigned based on the decision variables. In (1), ku,b[t] is the 
resource allocation variable: ku,b[t] = 1 when RB b ∈ B is 
allocated to UE u ∈ Up and ku,b[t] = 0, otherwise. Constraints 
in (1.a) aim to allocate at most one user to each RB. Variable 
jp,u[t] assigns each user to a specific t raffic class. Constraints 
(1.b) indicate that each user belongs to at most one traffic 
class. Constraints (1.c) and (1.d) show that only users from 
the selected traffic c lass p ∗ ∈  P  a re p assed i n t he frequency 
domain. Variable ir,p[t] determines the type of utility to be 
selected at each TTI. Constraints (1.e) indicate that one type of 
utility function per traffic class is selected at each TTI, whereas 
constraints (1.f) and (1.g) show that the same scheduling rule 
is selected for all traffic classes, where variable r ∗ ∈ R  is the 
selected scheduling rule at TTI t and r⊗ ∈ R are the other 
scheduling rules remained un-selected at TTI t. Constraints 
(1.h), (1.i) and (1.j) make the entire problem combinatorial.

Due to very high complexity, solving the optimization 
problem from (1) at each TTI is difficult to achieve. Thus, we 
propose a sub-optimal solution aiming to split this problem in 
two sub-problems: in the first s ub-problem, t he prioritization 
set Pp[t] is decided and the most appropriated scheduling rule 
r ∈ R is assigned; in the second sub-problem, the resource 
allocation is performed based on the prioritized traffic class 
and selected scheduling rule. For the first s ub-problem, we 
propose a ML-based approach [30] to decide at each TTI the 
class p∗ ∈ P to be prioritized at first a nd t he b est fitting 
scheduling rule r∗ ∈ R for the resource allocation. The second 
sub-problem aims to solve the user scheduling from Up∗ and 
the resource allocation based on the selected scheduling rule 
r∗ ∈ R as described in Sub-section IV.A. As a first s tep of 
the scheduling process, we determine the metric mb,p∗,u for 
each user u ∈ Up∗ and RB b ∈ B at each TTI as follows:

mb,p∗,u[t] = Γr∗,p∗(xp∗,u) · γu,b[t]. (2)

As a result, the matrix of metrics m = [mb,p∗,u] ∈ RUp∗×B is
computed, where b = {1, 2, ..., B} and u = {u1, u2, ..., uUp∗ }.
For each RB b ∈ B, a vector of metrics is considered, such
as: mb = [mb,p∗,u1

,mb,p∗,u2
, ...,mb,p∗,uUp∗

]. Resource b ∈ B
is allocated to that user that has the maximum metric value
from the vector mb, written in the following manner:

b 7→ u, if u = argmaxu′(mb,p∗,u′ [t]), (3)

where expression b 7→ u allocates RB b to user u and
ku,b = 1. It is important to mention that the allocation
is performed RB-by-RB until the entire set of RBs B gets
allocated. However, if for example mb′ = [0, 0, ..., 0], then
RB b′ ∈ B remains unoccupied. This resource can be allocated
when the scheduling process is repeated for the next prioritized
traffic class from the remained set of P[t]\{p∗}. By following
this model, under certain network conditions it might happen
that not all the users could get enough resources to meet
their QoS objectives. The aim of the proposed scheduler is to
increase as much as possible the QoS provisioning for UHD
VR video users with insignificant QoS degradation of other
services by properly selecting each time the traffic class to
be prioritized and the scheduling rule to be performed in the
frequency domain.

C. Types of Scheduling Rules
A scheduling rule r ∈ R provides a unique utility function

Γr,p(xp,u) focused on a particular or a group of QoS objec-
tives. User fairness is one of the most popular objectives which
can be addressed when employing the following function [31]:

Γ1,p(T̄p,u) = 1/T̄p,u. (4)

where T̄p,u is the average throughput of user u ∈ Up calculated
based on the exponential moving filter and the scheduling rule
r = 1 is Proportional Fair (PF). According to (2), (3) and (4),
user u ∈ Up with the highest ratio between achievable rate and
average throughput on RB b ∈ B is selected, while keeping a
certain fairness with the previously served users.

Guaranteeing the Bit Rates (GBR) is another QoS objective
that can be addressed when selecting the function [32]:

Γ2,p(
¯̄Tp,u) = [1 + w1 · e−w2·( ¯̄Tp,u−TR

p,u)] · Γ1,p(T̄p,u). (5)

where ¯̄Tp,u is the average user throughput calculated with the
median moving filter and r = 2 is the Barrier Function (BF)
scheduling rule. Users with lower average rates than that of the
corresponding requirements TRp,u are preferred to be scheduled
on each RB.

Delay objective aims at respecting the Head-of-Line (HoL)
packet delay of each user at each TTI. One possible solution
to achieve this target is to employ the following function [33]:

Γ3,p(Dp,u) = ew3·Dp,u/D
R
p,u · Γ1,p(T̄p,u), (6)

where Dp,u is the HOL delay of user u ∈ Up at TTI t, DR
p,u

is the corresponding requirement and r = 3 is entitled the
EXPonential (EXP) rule. Users with packets approaching to
their deadline receive a much higher priority to be scheduled
given the exponential function.

The Packet Loss Rate (PLR) of each user can be improved
when the scheduler employs the following utility function [34]:

Γ4,p(Lp,u) = w4 · Lp,u/LRp,u · Γ1,p(T̄p,u), (7)

where Lp,u is the PLR value at TTI t of user u ∈ Up,
LRp,u is the corresponding PLR requirement and r = 4 is
the Opportunistic Packet Loss Fair (OPLF) scheduling rule.
When the throughput, delay and PLR requirements are met
by all users, BF, EXP and OPLF, respectively act similar to
the PF scheduling rule.
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D. Controller and Packet Scheduler Interaction

In order to increase the fraction of scheduling time when the
heterogeneous QoS requirements are respected, we propose
the use of Reinforcement Learning (RL) [30] to learn the
most suitable traffic prioritization and scheduling rule that
can be applied in real time scheduling. RL makes use of
an agent (e.g., intelligent controller) that in time will learn
to take actions which will generate the maximum reward by
interacting with the environment (e.g., packet scheduler). As
seen from Fig. 2, at TTI t, the controller observes a state
s[t] ∈ S, representing the current network conditions, and
takes an action a[t] = [p, r] ∈ A that prioritizes traffic
class p ∈ P in time domain and selects the scheduling rule
r ∈ R to be applied in the frequency domain. The scheduling
procedure is conducted based on the selected action and the
system evolves to the next state s[t + 1] = s′ ∈ S at TTI
t+ 1. As illustrated in Fig. 2, the reward value received from
the scheduling environment evaluates the performance of the
applied action in the previous state. This function is calculated
based on the set of KPIs x[t+ 1] = x′ received at TTI t+ 1.
If we define the reward function as ρ : X → [−1, 1], where
X ⊂ S is the state space of KPI vectors, then the proposed
function takes the following form:

ρ(s′) =
∑

p

∑
o
wp · ρp,o(x′p), (8)

where ρp,o is the reward value of traffic class p ∈ P and
objective o ∈ Op, respectively. In (8), x′p is the KPI vector
of class p ∈ P at TTI t+1. This ρp,o value denotes how
far the online KPI parameters of traffic class p ∈ P are
from their requirements in terms of objective o ∈ Op. The
weight wp sets the 3GPP priority for each class as denoted
by the static prioritisation set P . The controller must explore
a high number of state-to-state transitions to optimize the
prioritization decisions.

E. RL-based Scheduling Framework

Since the scheduler state space is multi-dimensional and
continuous, the scheduling problems cannot be enumerated
exhaustively. We can only approximate the best traffic class
to be prioritized and the scheduling rule to be performed
in the frequency domain, such that the QoS provisioning is
much improved. To reduce the complexity for the learning
framework, Neural Network (NN) is used to approximate the
best prioritization decisions at each current state. During the
learning stage, the NN weights are updated at each TTI based
on the scheduler and controller interaction as shown in Fig.
2. In the exploitation stage, these weights are saved and the
neural network is implemented as a non-linear function.

We propose the implementation of RL framework with a
minimum complexity. In this sense, let M be the number of
NN output pins in which, the first M/2 pins can be used
to determine the index of the traffic class to be prioritized
and the rest of output pins to decide the scheduling rule to
be applied in the frequency domain. To train this non-linear
function with multi-dimensional input and output variables,
we use Continuous Actor-Critic Learning Automata (CACLA)
algorithm [35]. As seen from Fig. 3, CACLA considers two

Fig. 3: CACLA-based RL controller architecture.

neural networks: a) the critic neural network that approximates
the state value function and criticizes the action taken on
each state; b) actor neural network that approximates the best
prioritization set Pp[t] and scheduling rule r ∈ R to be applied
on each state. The role of the critic function is to examine the
actor activity and improve its decisions over time.

As an internal structure, a neural network is composed by L
number of layers, including here the hidden and output layers
only. Therefore, we define the number of hidden layers as
LH = L− 1. Each layer l ∈ {1, 2, ..., L+ 1} is composed by
neurons or nodes and interconnection matrices that represent
the weights connecting the nodes within two consecutive
layers, for example l and l+1. If Nl and Nl+1 are the number
of nodes (not including the bias nodes) of layers l and l + 1,
respectively, then the total number of weights to be updated
at each TTI is

∑L
l=1 (Nl + 1) ·Nl+1. As indicated in Fig. 3,

when CACLA algorithm is employed, two sets of weights need
to be updated since both actor and critic neural networks are
involved during the learning stage.

The functional structure of critic NN is taking the form of
the non-linear function defined as: V : S → [−1, 1]. The actor
NN takes the same form with the amendment that the output
value is multi-dimensional and the definition domain is A :
S → [−1, 1]M . In the learning stage, two steps are performed
at each TTI: a) the updating step in which the weights of both
neural networks V and A are updated according to CACLA
algorithm and b), the action selection step, that determines the
policy of how the controller action is selected at each TTI. In
the exploitation stage, only the learnt actor function is used
to provide the M dimensional decision under the form of the
controller action a[t + 1] = [p, r] that can be decoded into
traffic class prioritization and scheduling rule selection.

The updating process based on CACLA algorithm aims to
refine the weights of both networks iteratively, on each state.
For example, when the current state is s′ ∈ S , the error
between the impact of applied action a[t] ∈ A in the previous
state s[t] ∈ S and its expectation must be reinforced through
the neural networks. Since CACLA makes use of two neural
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networks, then two types of errors must be reinforced:
Critic Error: At the beginning of the learning stage, the 

weights of the critic NN are randomly chosen. Thus, these 
weights are gradually updated based on the quality of the 
applied actions in every state. As seen in Fig. 3, the adaptation 
of the critic NN weights comprises two steps: a) forward 
propagation responsible to get the consecutive critic values 
{V (s), V (s′)} ∈ [−1, 1] in order to quantify the impact of 
action a ∈ A in state s ∈ S; and b) back-propagation 
step that calculates the critic error and propagates it through 
the critic NN based on the gradient descent principle [35]. 
Without going into details, the gradient descent calculates 
the error for each neuron of each layer l ∈ {2, ..., L + 1} 
and updates the weights accordingly. The critic error function 
Ec : S ×S → [−1, 1] is defined (9), where {V T (s), V (s)} are 
determined by propagating the states (s, s′) through the critic 
NN from input to the output layers:

Ec(s
′, s) = V T (s)− V (s). (9)

Here, the target value is determined as V T (s) = ρ+γ ·V (s′),
where γ ∈ [0, 1] is a discount factor and ρ is the reward value
calculated with (8).

Actor Error: If the critic error is positive Ec(s′, s) ≥ 0, then
the previous action was a good choice and the actor NN can
be updated as well. If Ec(s′, s) < 0, then the previous action
was an unfortunate choice and then, the actor NN must be dis-
couraged in taking such decision in the future. Consequently,
the actor NN is not updated. When Ec(s

′, s) ≥ 0, the actor
NN is updated by following the same forward and backward
propagation principles. The multi-dimensional actor error is
determined based on the function Ea : S → [−1, 1]M :

Ea(s) = AT (s)−A(s), (10)

where AT is the target multi-dimensional action value deter-
mined based on some probability distributions. At the begin-
ning of the learning stage, it is not recommended to exploit
the actor NN decisions and then, a random multi-dimensional
value of AT (s) different from A(s) is preferred in order to
enlarge the exploration of the scheduler state space. This is
denoted as the improvement step. Once the learning process
is approaching to its deadline, we aim to exploit more the
actor decisions and then, the multi-dimensional target AT (s)
is equal to A(s). This is denoted as the exploitation step.
For an optimal learning, it is preferred to mix improvement
and exploitation steps with certain probabilities. Certainly,
more improvements steps are preferred at the beginning of the
learning stage, whereas the end of the learning stage is likely
to use more exploitation steps. In this way, we monitor if the
mean actor error can converge or not to certain error levels.
Once the neural network(s) is(are) updated, the RL controller
decides the new action a′ ∈ A to be applied in state s′ ∈ S.

V. SYSTEM EVALUATION

The proposed adaptation framework was implemented in
the RRM Scheduler Simulator [31], which is a C/C++ object
oriented tool that inherits the LTE-Sim simulator [36]. For
the performance evaluation, an infrastructure of 7 Intel(R) 4-
Core(TM) machines with i7-2600 CPU at 3.40GHz, 64 bits,

8GB RAM and 120 GB HDD Western Digital storage was
used. Each traffic type is generated by using the models
provided by LTE-Sim simulator adapted to generate UHD VR-
based video large data packets.

The wireless channel is simulated by using the Jakes
fast fading model, that is considered deterministic, similar
to Rayleigh fading as it makes use of sinusoidal summing
[31]. Jakes fading considers the central frequency of 2GHz,
the system bandwidth in order to determine the periods of
sinusoids, and the user speed to determine the pulsation and
the number of paths for the initial phase calculation. In our
case, the user speed is 3kmph with random direction in both
learning and exploitation stages. Then, a number of 6 to 12
paths are randomly generated at each TTI as implemented
in [36]. The channel propagation considers the loss given
by: path, shadowing and penetration. We consider the urban
microcell model for the path loss calculation, the shadowing
loss is modelled as a log-normal distribution (µ = 0, σ = 8dB)
in the range of [0, 20] dB, and the penetration loss is fixed to
10dB as it considers only the wall attenuation.

At each TTI, the user CQI is reported by following five
steps. In the first step, the reference signal is broadcasted at
each TTI by the base station over the entire system bandwidth.
In the second step, each user calculates the power of the
received reference signal that is attenuated by fading and prop-
agation loss models. In the third step, each user measures the
channel gain or the Signal-to-Interference/Noise Ratio (SINR)
for each RB based on the received power and interference
values. In our model, the intra-cell interference is negligible
while the inter-cell interference considers a cluster of 7 cells
for each component carrier. The ML-based solution and other
schedulers run only on the central cell of each cluster, while
other cells provide the inter-cell interference levels. In the
fourth step, the CQI value for each RB is determined based on
mapping curves between SINR and BLock Error Rate (BLER),
where the target BLER is 10% [31]. Finally, the fifth step
involves the transmission of each user CQI to the base station
via a separate uplink channel which is errorless in our case.

We consider downlink transmission with carrier aggregation
with a bandwidth of 100 MHz (B = 500), a micro cell
radius of 200m and the FDD transmission mode. The CQI
reporting scheme is full-band and periodically sent at each
TTI to each user. The packet scheduler works on the carrier
component basis and makes use of separate entities for RLC
functionalities, retransmission schemes and modulation/coding
assignments. Each RLC entity works in acknowledged mode
and considers a maximum number of 5 retransmissions for
each data packet. Packets failing to get successfully transmit-
ted within this period are declared lost. The user PLRs and
rates are summed per each carrier component at each TTI.

Four traffic classes with different QoS profiles are consid-
ered for scheduling, such as: 20% UHD VR-based live video
streaming (p = 1), 60% live conventional video (p = 2), 15%
voice (p = 3) and 5% file transfer (p = 4) [1]. UHD VR-based
video traffic is generated with a rate higher than 20Mbps,
where the packet delay requirement is 10ms and the packet
loss rate less than 10−3. The conversational video traffic has a
variable data rate with a mean of 1Mbps and more relaxed QoS
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TABLE II: Learning Performance of Different Configurations of 
Neural Networks

No. Hidden No. Hidden Minimum Normalized Normalized
Nodes Layers Critic Error Complexity Complexity
(Nl) (LH ) (EC ) Forward Prop. Backward Prop.

1 0.0116691 0.06 0.64
150 3 0.0114227 0.21 0.88

5 0.0120037 0.39 1.2
1 0.0119183 0.07 0.65

200 3 0.0122024 0.35 1.11
5 0.0121528 0.67 1.67
1 0.0121407 0.08 0.68

250 3 0.0125644 0.53 1.45
5 0.0122383 0.98 2.31
1 0.00969642 0.09 0.69

300 3 0.0106559 0.73 1.8
5 0.0107797 1.37 3.06

profile. In the frequency domain, a mixture of scheduling rules
is considered, such as PF, BF (w1 = 1.25, w2 = 1.31 · 10−5),
EXP (w3 = 6) and OPLF (w4 = 10) functions as detailed in
Sub-section IV.C.

A. Learning Stage

In the learning stage, the number of users for each traffic
class is randomly chosen in the given ratio at predefined time
slots in order to increase the possibility of the actor-critic
neural networks to experience as many as possible variants
of instantaneous states from different space regions. Under
these circumstances, the optimal configuration of both actor
and critic NNs must be found in terms of the number of
hidden layers LH and hidden nodes Nl, l = {2, ..., L}. With
a lower number of hidden layers and nodes, the actor NN
may underfit the input data in the sense that some regions
of the state space are not very well represented by the learnt
non-linear function. On the other hand, a higher number of
hidden layers and nodes may determine the neural networks
to overfit the training data, in the sense that, the framework
will also learn the noisy data. In both cases, the critic error
starts to increase at a certain moment of time in the learning
stage. In order to find the best options for the number of
hidden layers and nodes, we simulated the learning stage
in parallel for about 107 TTIs (with the same networking
conditions) for each of the following group of configurations:
(Nl = 150;LH = {1, 3, 5}), (Nl = 200;LH = {1, 3, 5}),
(Nl = 250;LH = {1, 3, 5} and (Nl = 300;LH = {1, 3, 5}).
Table II presents the numerical results of these configurations
in terms of the critic error and system complexity.

By monitoring the minimum error of a neural network over
the learning stage, the over-fitting can be detected when in-
creasing the number of hidden layers and nodes. For example,
if the error decreases as the NN topology increases, then the
system can learn better with the higher configuration. On the
other side, if the minimum error increases as the NN topology
size increases, then the over-fitting can appear and the system
can learn better with the lower configuration. As seen in Table
II for Nl = 150 hidden nodes, the minimum critic error gets
lower as the critic NN configuration increases from LH = 1
to LH = 3 and gets higher when increasing the number of
layers from LH = 3 to LH = 5. For the first set of results
(Nl = 150;LH = {1, 3, 5}) obtained with the same network-

ing conditions, it can be concluded that above 450 hidden
nodes ({LH = 3;Nl = 150}), the risk of over-fitting becomes
higher. For other three sets of results (Nl = {200, 250, 300}),
it can be observed that the critic error increases as the number
of hidden layers increases from LH = 1 to LH = 5. Although
these four sets of simulations are not obtained with the same
networking conditions, it can be concluded that the critic NN
configurations with (LH = 1, Nl = {150, 200, 250, 300}) and
(LH = 3, Nl = 150) can be used for the proposed ML-based
scheduling solution. The same observations are respected for
the actor NN, with the amendment that the over-fitting appears
much later since the weights are not updated at each TTI due
to the critic decision. For a higher topology, the over-fitting
can cause poor QoS provisioning for UHD VR users as well
as over-provisioning of other traffic classes.

Alongside the performance of the critic error, Table II
presents the complexity analysis for the forward and backward
propagation of both actor and critic NNs. The backward
propagation includes here the error propagation from output
to the input layers and the refinement of NN weights. We
measure the normalized complexity as a ratio between the sum
of additional time (in seconds) needed to back-propagate the
errors through critic and actor NNs at each TTI averaged over
the total learning time (in seconds). Note that the backward
propagation complexity of actor NN is measured only when
the critic error is Ec ≥ 0. The normalized complexity for the
forward propagation procedure of both actor and critic NNs
is determined in a similar way by averaging over the learning
stage the accumulated time needed to forward the states from
input to the output layers at each TTI. As seen in Table II, the
normalized complexity of both monitored processes increases
as the NN topology includes higher number of hidden layers
and nodes. When considering the complexity analysis for the
most indicated NN configurations from the perspective of over-
fitting, we observe that a topology of (LH = 3, Nl = 150) re-
quires 3.5 times more computational time to forward propagate
the states through the actor and critic NNs when compared
to the case of (LH = 1, Nl = 150). For the backward
propagation, the normalized complexity (LH = 3, Nl = 150)
is only 1.5 times greater than that of (LH = 1, Nl = 150) since
the actor NN is not updated at each TTI. However, we are
interested in exploiting the performance of the configuration
that provides the lowest complexity (LH = 1, Nl = 150). The
additional execution overhead required by this configuration
in the scheduling process is about 70% in the learning stage
(6% for the forward propagation and 64% for the backward
propagation) for both actor and critic neural networks. In the
exploitation stage, the additional complexity is 3% since only
the actor NN is used.

B. Exploitation Stage

In the exploitation stage, the performance of the proposed
ML-based scheduling solution is analyzed when using the
configuration of LH = 1 and Nl = 150. The proposed
CACLA framework is compared with FLS [20], RADS [21]
and SP schemes. Among other scheduling approaches, RADS
and FLS schedulers are time efficient and target a multitude of
QoS objectives divided between time and frequency schedul-
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Fig. 4: (a) QoS provisioning (GBR, delay and PLR) for UHD VR-based live video streaming; (b) 5th Percentile throughput performance
for UHD VR-based live video streaming; (c) 5th Percentile PSNR performance for UHD VR-based live video streaming; (d) Heterogeneous
QoS provisioning (GBR, delay and PLR) for all traffic classes; (e) 95th Percentile PLR performance per traffic type when the range of
heterogeneous users is [10, 30]; (f) 95th Percentile PLR performance per traffic type when the range of heterogeneous users is [31, 50].

ing domains. The TP stage for FLS estimates the amount of
real-time data to be transmitted in the next frame based on
discrete-time linear control theory arguments. Then, the real-
time flows are prioritized based on the approximated quota of
data necessary to meet the delay constraints. The configuration
details on this controlling loop can be found in [20]. The TP
stage of RADS scheme is conducted based on a function that
considers the fairness, delay and user rates in order to create an
inter-class user prioritization at each TTI. The number of users
to be passed to the FP scheduler at each TTI must be a priori
configured. For our simulations, a maximum number of U/2
users show the best performance when measuring the average
scheduling time when the heterogeneous QoS requirements are
respected. For SP scheme, TP domain considers a static prior-
itization between different classes at each TTI as presented in
Sub-section IV.A. In the frequency domain, FLS employs the
PF scheduler to improve the fairness between users preselected
in the TP stage, whereas RADS and SP make use of the OPLF
scheduler to enhance the PLR performance.

In order to measure the performance of the proposed so-
lution in real time scheduling, three types of evaluations are
considered: intra-class, aggregate and inter-class. For the intra-
class evaluation (Figures 4.a, 4.b, 4.c), the aim is to measure
the performance when scheduling the UHD VR-based live
video traffic only. In this case, we evaluate the intra-class QoS
provisioning, throughput and PSNR depending on U1 number
of UHD VR connections, where U1 represents a ratio of 20%
from the total number of heterogeneous users (U1 = 1/5 ·U).
The aggregate evaluation (Fig. 4.d) aims to measure the
overall scheduling performance in terms of heterogeneous QoS
provisioning as a function of the total number of active users
U . The intra-class evaluation (Fig. 4.e and Fig. 4.f) presents the
over-provisioning effect by considering the PLR performance

of each scheduler per different traffic class. Finally, in Fig. 5
we analyze the execution overhead required by each scheduler
while varying the number of heterogeneous users.

Figure 4.a presents the normalized scheduling duration
when all QoS objectives (in terms of GBR, delay and PLR)
are respected for the UHD VR-based live streaming traffic
only. As expected, the SP scheme provides the highest possible
performance as it gives the highest priority to the UHD VR-
based live streaming traffic at all times. For the entire user
range, CACLA performs much better than FLS and RADS by
obtaining gains in excess of 100% when serving more than
six UHD VR-based live video connections.

The Cumulative Distribution Function (CDF) of user
throughput is determined at the end of the exploitation stage
(for each configuration in terms of the number of users) based
on the throughput values collected from each user at each
TTI. Looking at the 5th percentile of user throughput from
the CDF curve (worst user throughput) for the UHD VR-
based live streaming traffic (Fig. 4.b), smooth degradation
can be observed in the case of CACLA scheme compared
to SP when the number of UHD VR-based live streaming
users goes above seven. When scheduling more than five
users from the first class, RADS and FLS aim to focus
more on scheduling lower priority users by degrading the
user throughput of the first prioritized traffic class. As seen
in Fig. 4.b, when scheduling eight UHD VR users, CACLA
outperforms FLS and RADS by more than 1Mbps and 2Mbps,
respectively. For ten users, the gain gets much higher at about
3Mbps and 5Mbps, respectively. This is because when the
number of heterogeneous users gets very high, CACLA aims
at working similarly to the SP scheme by providing a much
higher prioritization to the UHD VR connections.

Figure 4.c presents the performance of the 5th percentile
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PSNR in order to highlight the worst user PSNR performance 
when experiencing UHD VR content. This choice is motivated 
by the fact that PSNR is considered as one of the most popular 
objective QoE indicators used to evaluate the user perceived 
quality for video services [15]. Based on the evaluation 
provided in [37], an excellent Mean Opinion Score (MOS) can 
be obtained when P SNRdB ≥ 36 while an acceptable MOS 
is considered when 29 ≤ P SNRdB < 36. Thus, a very good 
MOS performance for CACLA is obtained when scheduling 
less than eight users while an acceptable level can be attained 
for more than eight UHD VR users. When employing RADS 
and FLS schedulers, the best MOS performance is obtained 
for U1 ∈ [2, 5], an acceptable MOS value when U1 = 6 and 
poor and even bad MOS levels are obtained when U1 > 6. 
When U1 > 9, CACLA obtains gains higher than 50% when 
compared to FLS and RADS in terms of the worst user PSNR.

When all the traffic c lasses a re c onsidered, w e p resent in 
Fig. 4.d the performance when provisioning heterogeneous 
QoS. We monitor the number of TTIs when all users meet 
their QoS requirements by using the priority policies given by 
SP, RADS, FLS and CACLA. It can be noticed that SP is not 
able to provide an acceptable QoS level when scheduling more 
than 20 heterogeneous users. In this case, CACLA can achieve 
up to 50% more time when the heterogeneous QoS objectives 
are achieved. When reporting to RADS and FLS, CACLA can 
obtain gains higher than 100% for a range of scheduled users 
of U ∈ [20, 40]. When the number of users start to increase 
(U > 45), the achievement of QoS objectives gets close to the 
saturation. Consequently, CACLA aims to prioritize more the 
UHD VR traffic c lass as showing i n Figures 4 .b and 4.c.

For each traffic c lass, we monitor PLR values of each user 
at each TTI. At the end of each exploitation simulation, we 
compute the CDF curves for each of these classes in order to 
get the worst user percentiles of PLR. When compared to user 
throughput and PSNR, the worst PLR percentiles are found at 
the upper limit of the CDF curve. Figure 4.e analyses the inter-
class performance when averaging the 95th PLR percentiles 
for each traffic c lass o ver t he r ange o f U  ∈  [10, 3 0]. When 
employing CACLA-based scheduling solution, up to 30 UHD 
VR connections can be supported (the PLR requirements are 
met) in the network while providing the requested PLR levels 
of other services. For this range, SP is over-provisioning the 
UHD VR traffic c lass b eing u nable t o a ssure t he requested 
PLR for other traffic c lasses. R ADS a nd F LS a re u nable to 
respect the PLR requirement of UHD VR traffic c lass (10−3) 
when the worst user PLR is monitored.

As stated previously, the RADS and FLS prioritization 
schemes are unable to react to the changeable networking 
conditions in terms of the number of active users U , variable 
arrival bit rates when generating the traffic, and wireless chan-
nel conditions. Thus, some traffic classes are over-provisioned 
while others may have degraded QoS performance. Figure 
4.f demonstrates the aforementioned statement. The inter-class 
performance when averaging the 95th PLR percentile for each 
traffic c lass o ver t he r ange o f U  ∈  [31, 5 0] i s a nalyzed. This 
is achieved in order to monitor the behavior of each scheme 
when the heterogeneous QoS provisioning is getting closer to 
the saturation level due to the increase in number of users.

Fig. 5: System complexity of involved schedulers.

As seen from this figure, FLS is over-provisioning the video
and VoIP classes while degrading the QoS performance of the
UHD VR-based live streaming traffic. As expected, the SP
scheme prioritizes UHD VR users while drastically penalizing
the rest of the traffic classes. CACLA prioritizes more the
UHD VR-based live streaming class when the number of users
is increasing, while it aims to give enhanced inter-class fairness
when the number of users is lower and the QoS provisioning
can be attained for each class as shown in Fig. 4.e. This is
possible due to the adaptation capability of this policy when
the number of users increases/decreases. The impact of the
scheduling rule adaptability based on channel conditions and
application characteristics is highlighted in Fig. 4.e, where
CACLA is able to obtain better PLR performance than FLS
and RADS while the PLR requirements for other classes are
respected by all these candidates. The RADS scheme shows a
notable limitation in Fig. 4.f due to the prioritization scheme
used in time domain. A certain level of inter-class fairness
can be observed but at lower PLR levels when compared to
CACLA, even if the PLR minimization is considered in the
frequency domain since the OPLF scheduler is employed.

Figure 5 represents the complexity analysis of the previ-
ously analyzed scheduling schemes. The complexity analysis
measures the number of clock ticks elapsed for the TP and
FP stages divided to the total number of clocks within one
second and averaged over the exploitation stage duration (in
seconds). Below twenty aggregate users, FLS and RADS are
less time consuming since the frequency domain scheduling
is performed for a less number of users than that of SP and
CACLA schemes. Since the networking conditions permit,
CACLA and SP perform the FP stage for all four traffic
classes. However, a slight complexity increase is required by
the traffic class selection procedure when performing CACLA
scheduling. Above this level of 20 aggregate users, SP solution
gets the lowest complexity since only the first prioritized class
(live UHD VR video users) is sent to the FP domain (see
correlation with Fig. 4.a and Fig. 4.d.). Starting from the level
of 30 heterogeneous users, RADS becomes a better option
than FLS since the TP stage pre-selects a lower number of
users to be sent in the frequency domain. At this point, RADS
and FLS provide a complexity gain of 11.1% when compared
to CACLA. As seen from Fig. 4.d, in the range of [30, 40]
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users, CACLA obtains gains in excess of 100% in terms 
of heterogeneous QoS provisioning when compared to FLS 
and RADS. However, this performance comes at the expense 
of the complexity increase as depicted in Fig. 5. Since the 
FP stage is performed for all traffic c lasses a t a lmost each 
TTI, CACLA needs additional time resources in proportion of 
20% to complete its tasks when compared to FLS, while the 
extra complexity requirement exceeds 30% when compared to 
RADS. Above this level, the complexity required by CACLA 
starts to stabilize or even to decrease since it behaves more 
like a SP scheme, while the FLS complexity becomes higher.

C. Practical Implications

According to our findings, some aspects must be consid-
ered when employing a RL-based scheduling solution for
traffic prioritization, user scheduling and resource allocation
in practice, such as: the training data set, the state space
pre-processing, the controller configuration and termination
condition for the learning stage. In order to get a generalised
training data set, the training samples must consider variable
number of users and changed at certain time intervals for each
traffic class. Moreover, different speed levels and direction
models should be considered for mobile users in order to
explore a high variety of channel conditions. Under its original
form, the training data-set is multidimensional and variable,
depending on the number of active users that may change over
time. Therefore, some pre-processing methods are necessary
to compress the dimension of input state to some constant
representations. Statistical methods can be used to get the
mean and standard deviation values for the QoS indicators
(i.e packet loss, delay, throughput, etc.) for each traffic class
[18]. Also, supervised learning can be used to classify the CQI
reports in given patterns for users of each traffic class [31]. The
optimal configuration of RL controller depends on the number
of traffic classes and scheduling rules. When the number
of traffic classes increases, higher number of hidden layers
and nodes can be required with respect to some complexity
constraints. Additionally, the output layer for the actor neural
network must be properly managed and decoded in traffic class
and scheduling rule selection as the size of the action space
increases. During learning, both critic and actor errors must be
monitored. In case of over-fitting (error increases above given
threshold), the weights should be saved and learning process
stopped. Otherwise, learning can continue for a number of
iterations (TTIs) a priori established.

VI. CONCLUSIONS

This paper proposes an intelligent Machine Learning-based
scheduling solution which makes use of Reinforcement Learn-
ing by employing CACLA, to react to the changeable network-
ing conditions and take the best decisions in order to improve
the fraction of time (in TTIs) when the QoS requirements
are met for diverse services. Thus, the algorithm decides
at each TTI the traffic class prioritization and the type of
scheduling rule to be employed. Different traffic classes are
dynamically prioritized such that the over-provisioning effect
for some applications is avoided, whereas radio resources are

intelligently managed by choosing the best scheduling rule for
user scheduling and resource allocation. The proposed solution
is deployed in a very challenging dynamic environment in
which UAV performs UHD VR-based live video streaming to
ground users. The proposed solution was evaluated through
simulations and compared against other three state-of-the-art
scheduling algorithms, such as: SP, RADS and FLS. The sim-
ulation results indicate that the proposed CACLA-based RL
scheduling solution outperforms the other schemes involved
while considering four perspectives: a) CACLA outperforms
RADS and FLS in terms of packet loss, delay, throughput
and PSNR when considering UHD VR-based users only; b)
when considering a mixture of users requesting heterogeneous
services, CACLA shows gains in excess of 100% by measuring
the fraction of TTIs when the heterogeneous QoS requirements
are respected; c) by measuring the inter-class packet loss,
CACLA can accommodate a higher number of UHD VR users
in the network, while SP and FLS prioritization schemes are
over-provisioning some traffic classes; d) CACLA provides the
best performance vs. complexity tradeoff.
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