
Object-Oriented Refinement and Proof using Behaviour Functions

Tony Clark
Department of Computing, University of Bradford

West Yorkshire, BD7 1DP, UK
a.n.clark@scm.brad.ac.uk

Abstract

This paper proposes a new calculus for expressing the behaviour of object-oriented systems. The semantics
of the calculus is given in terms of operators from computational category theory. The calculus aims to span the
gulf between abstract specification and concrete implementation of object-oriented systems using mathematically
verifiable properties and transformations. The calculus is compositional and can be used to express the behaviour of
partial system views. The calculus is used to specify, analyse and refine a simple case study.

1 Introduction

In [Gog75], [Ehr91] and [Gog90] Goguen et al. propose an abstract model of object systems based on standard con-
structions in Category Theory. They show how to use the constructions to build systems but do not propose a calculus
for expressing and reasoning about them. In [Cla99a], [Cla99b] and [Cla99c] a calculus is proposed for expressing
object systems based on Goguen’s work. The calculus was shown to support incremental system development based
on features of Computational Category Theory [Ryd88]. The calculus does not have a formal semantics and therefore
its link to the abstract object model is weak.

This paper develops a formal semantics for the �o-calculus. The semantics encodes the required categorical
constructions as builtin operators and then uses them to express a number of features of object-oriented systems
development including: (under-)specification; refinement; encapsulation; invariant properties.

This work contributes to the area of object-oriented systems development by providing a rigorous framework
within which aspects of development can be defined and explored. In particular the �o-calculus aims to span the gulf
between abstract specification and concrete implementation using mathematically verifiable refinement transforma-
tions. The �o-calculus can express partial views of a system and is therefore suitable as the basis for a semantics
of UML [UML98] and as such can be seen as an extension of, or complimentary to, [Cla97] [Eva98] [Eva99] and
[Lan98].

The builtin operators of the �o-calculus arise from Computational Category Theory. The reader is directed to
[Bar90], [Ryd88] and [Gog89] for definitions of the appropriate constructs and to [Cla99a] for a discussion of how
these constructs are used in the development of object-oriented systems.

This work differs from other approaches with similar aims. The Object Calculus [Bic97] uses similar categorical
constructs but uses a logic rather than a �-calculus to express models. Following Goguen, we propose that the be-
haviour of a system is a limit on a diagram of behaviours; diagrams are also used in [Ken99] [Ken97] where the aim is
to express logical properties of data. Other calculi have been proposed as the basis for object-oriented systems, notably
those defined in [Aba98]. The �o-calculus differs from other calculi in that it can express partial views of a system,
incorporates non-determinism, solve constraints via equalizers and has a builtin notion of refinement via refinement
morphisms.

The paper is structured as follows: section 2 gives an overview of the semantic model used for object-oriented
systems; section 3 defines the �o-calculus used to express the model; section 4 defines a simple system requirements

Rigorous Object-Oriented Methods 2000 1

Object-Oriented Refinement and Proof using Behaviour Functions

that is used to demonstrate features of object-oriented system development using the �o-calculus in the rest of the
paper; section 5 shows how a system invariant is verified; section 6 shows how mutual constraints can be achieved
by composing sub-systems; section 7 shows how object-oriented encapsulation can be achieved using the refinement;
finally sections 8 and 9 show how refinement achieves concrete data representation and an implementation in Java.

2 Behavioural Object-Oriented Model

Systems are constructed as a collection of objects. Each object is a separate computational system with its own state
modified in response to handling messages. A message is a package of information sent from one object to another.

The computation performed when a message is handled by an object depends on the object’s current state and
causes the object to change state and produce output messages. If we observed an object over a period of time we

would see a sequence of messages and state changes: : : : �1
(I1;O1)
7�! �2

(I2;O2)
7�! �3 : : : where each �j is an object state,

Ij are input messages, and Oj are output messages. Such a sequence is an object calculation and describes a single
object in state �j receiving messages Ij causing a state change to �j+1 and producing output messages Oj .

A message consists of a source object, a target object and some message data. The source and target objects are
identified by their object identity tags. For a given object system, the data items which can be passed as messages
will be defined for each type of target object. A message, whether input or output, is represented as (t1; t2; v) where
t1 identifies the source object, t2 identifies the target object and v is the message data. Where any of the message
components may be inferred from context they are elided.

Object systems are constructed from multiple objects interacting by passing messages. The state of an object
system is a set of object states S. Computation in an object system occurs when the messages in set I are sent to the

objects in S producing a new set of object states S 0 and a collection of output messages O: : : : 7�! S
(I;O)
7�! S0 7�! : : :

Object-oriented designs represent non-deterministic computational systems. Object calculations are represented as a
calculation graph where the nodes of the graph are labelled with sets of states and the edges are labelled with pairs of
input and output message sets.

Object system calculations can be transformed by graph homomorphisms. Such transformations can be used
as the basis of system composition operations based on graph products and coproducts. Equalizers can be used to
constructively find equivalence proofs expressed in terms of graph homomorphisms. The behaviour of a system is
expressed as a limit on a diagram consisting of calculation graphs and graph homomorphisms. System properties can
be expressed by adding the required behaviour to the diagram and then showing that the limit is preserved.

The rest of this paper uses these features as the semantic basis of a calculus for expressing, verifying and trans-
forming object-oriented system designs.

3 The �o-Calculus

The �o-calculus is a notation for expressing object-oriented system designs. It is a standard normal order �-calculus
[Han94] [Plo75] extended with builtin operators [Lan64] for constructing behaviour functions in terms of behaviour
products, coproducts, equalizers and morphisms.

The syntax of the �o-calculus is given in figure 1. The semantics of the basic calculus is given as a convertibility
relation between terms in appendix A. All �o-terms have a type given by the type theory defined in appendix A. The
following sugar e1 whererec v = e2 is translated as (�v:e1)(�v:e2). The following sugar case e1 of : : : else e2 end
is translated as case e1 of : : : v ! e2 end.

3.1 Object Calculations and Morphisms

An object calculation is a sequence of object state transitions caused as a result of a collection of objects receiving
messages, changing state and sending messages. Given an object with identity t, state v and behaviour e, if the object
receives messages I , changes state and behaviour to v0 and e0, and produces output messages O then ef(t; v)gI =
(e0f(t; v0)g; O).

Rigorous Object-Oriented Methods 2000 2

Object-Oriented Refinement and Proof using Behaviour Functions

e ::= expressions
v variable
j �v:e function
j ee application
j �v:e recursive de�nition
j (e; : : : ; e) tuple
j ce : : : e structure
j case e of p! e; : : : ; p! e end selection
j (e; e)e object morphism

p ::= patterns
v variable
j cp : : : p structure
j (p; : : : p) tuple

v ::= values
�v:e function
j ce : : : e structure
j (e; : : : ; e) tuple
j n integer
j t tag

� ::= types
B basic type
j T tag type
j V all values
j f�g set of �
j (�; : : : ; �) tuple type
j [�] sequence of �
j � ! � function type
j � � � disjoint union

Figure 1: Syntax of �o

ef(t; v)gI = (e0 S;O)

e f(t; env e v)g
[(I;O)]
7�! e0 S

e S
[]
7�! e S

e1 S1
m1

7�! e2 S2

e2 S2
m2

7�! e3 S3

e1 S1
m1 ++m2

7�! e3 S3

e1 S1
m
7�! e2 S2

e3(�1(S2))
�2(m)
7�! e4(�1(S2)) 8S1;m

(�1; �2)e1 = e3

Figure 2: Object Calculations

Rigorous Object-Oriented Methods 2000 3

Object-Oriented Refinement and Proof using Behaviour Functions

e1 S1
m
7�! e01 S

0

1

e2 S2
m
7�! e02 S

0

2

(coprod e1 e2)(S1 � S2)
m
7�! (coprod e01 e

0

2; S
0

1 � S02)

e1 S1
m1

7�! e01 S
0

1

e2 S2
m2

7�! e02 S
0

2

` S1 � S2;` S
0

1 � S02

(prod e1 e2)(S1 � S2)
zip m1 m2

7�! (prod e01 e
0

2; S
0

1 � S02)

�(e2) = e1
(�1 � �)e2 = (�2 � �)e2

eq e1 �1 �2 = (e2; �)

Figure 3: System Construction Operators

A pre-system behaviour, of type P is a function that expects to be supplied with a set of states. The result is a
system behaviour of type O that expects a set of input messages and produces a replacement system behaviour and
a set of output messages. A system state of type � is either a single object state or a pair of system states. A system
message of type M is either a set of object messages or a pair of system messages. System behaviour types are defined
below:

P = f�g ! (O;M)
O = M ! (O;M)
� = (T; V)� (�;�)
M = f(T; T; V)g � (M;M)

Object calculations are represented by the transition relation 7�! which is defined in figure 2. Each transition is
labelled with sequences of trees of input output messages. The operator env associates all atomic state values with
a name relative to a given behaviour function, the result is a partial function � from names to values. An object
calculation e S

m
7�! e0 S0 is well formed when all output messages produced by each transition are input messages in

the next transition.
Object calculation morphisms are pairs of functions (�1; �2) such that �1 is a mapping between object states and

�2 is a mapping between sequences of input output messages. Such a morphism can be applied to a behaviour function
e in �o to produce a new function (�1; �2)ewhose behaviour is given in terms of a mapping on e-calculations as shown
in figure 2. Composition of object calculation morphisms is defined component-wise as follows: (�1; �2)� (�3; �4) =
(�1 � �3; �2 � �4). The type of a calculation morphism is � = (f�g ! f�g; [M]! [M]).

3.2 Constructing Systems

The state of a system of objects is a set of binary trees. The leaves of each tree are labelled with object states.
Views of the same object may occur at different leaves in the tree providing that they are consistent. A system
state S is consistent ` S when it is a set of possible states for the same object t: `

S
i=1;nf(t; �i)g, when it is the

composition of two different object states: `
S
i=1;nf(t1; �i)g �

S
j=1;mf(t2; �j)g such that t1 6= t2, when it is

the composition of two views of the same object such that attribute names occurring in both have the same values:
`
S
i=1;nf(t; �i)g �

S
j=1;mf(t; �j)g when �i(n) = �j(n) for all i; j; n 2 dom(�i) \ dom(�j), and finally when

pair-wise decomposition of the state is well defined: ` S1 � S2 � S3 when ` S1 � S2, ` S1 � S3 and ` S2 � S3.
Systems are constructed from objects using the operators� : O ! O ! (O;�;�), + : O ! O ! (O;�;�) and

eq : O ! �! �! (O;�). The semantics of these operators is given in terms of system calculations. Operator� is
used to construct a system from its components, operator + is used to construct alternative possible behaviours and eq

Rigorous Object-Oriented Methods 2000 4

Object-Oriented Refinement and Proof using Behaviour Functions

is used to express system constraints. System construction is defined using the operators in figure 3 where� is disjoint
set union and zip merges pairs of sequences to produce sequences of pairs. The operators prod : O ! O ! O and
coprod : O ! O ! O are used to construct products and coproducts consisting of behaviour functions and associated
behaviour morphisms. They are defined by extending the �o-convertibility relation as follows:

�1(prod e1 e2) = e1
�2(prod e1 e2) = e2

e1 � e2 = (prod e1 e2; �1; �2)

�1 e1 = coprod e1 e2
�2 e2 = coprod e1 e2

e1 + e2 = (coprod e1 e2; �1; �2)

The theory �o is extended with equivalences for the underlying operators prod, coprod and eq. In each case a one
step transition defines term equivalence, for example:

(prod e1 e2) S
[(I;O)]
7�! e3 S

0

prod e1 e2 S I = (e3 S
0; O)

Products and coproducts must observe some simple algebraic properties given in the following theorems.

Theorem 1 Let et(t) be a terminal object behaviour defined: et(t)(�)(I) = (et(t)(�); ;). Then, e � et(t) = e =
et(t)� e.

The following proof shows that there exists an isomorphism between e and e�et(t) (and equivalently e and et(t)�e).
Define an object morphism (�1; �2) as:

(�1; �2) : e� et(t)! e

�1([f(�i; (t; �))g) = [f�ig

�2(m) =

8<
:

[] when m = []
[(I; O)] when m = [((I; O); (f�g; ;)]
�2(m1)++�2(m2) when m = m1++m2

The inverse (��1
1 ; ��1

2) : e! e� et(t) is well defined and therefore: (��1
1 ; ��2

2) � (�1; �2) = Ide and (�1; �2) �
(��1

1 ; ��1
2) = Ide�et(t). A similar argument is used to show that e� et(t) is isomorphic to et(t)� e. QED.

Theorem 2 System composition is associative, i.e. (e1 � e2)� e3 = e1 � (e2 � e3)

The following proof sketch shows that the required isomorphism exists. Firstly define an object morphism (�1; �2) :
(e1 � e2)� e3 ! e1 � (e2 � e3):

�1([f((v1; v2); v3)g) = [f(v1; (v2; v3))g

�2(m) =

8<
:

[] when m = []
[(p1; (p2; p3))] when m = [((p1; p2); p3)]
�2(m1)++�2(m2) when m = m1++m2

It is straightforward to define (��1
1 ; ��1

2). QED.

Theorem 3 The system construction operator� distributes over +, i.e. e1 � (e2 + e3) = (e1 � e2) + (e1 � e3).

The following proof uses the transition semantics of both sides of the equation to show that they are equivalent. From
e1 S1

m1

7�! e01 S
0

1, e2 S2
m2

7�! e02 S
0

2 and e3 S3
m2

7�! e03 S
0

3 we get the following:

(e1 � (e2 + e3))(S1 � (S2 � S3))
zip m1 m2

7�!

(e01 � (e02 + e03))(S
0

1 � (S02 � S03))

((e1 � e2) + (e1 � e3))((S1 � S2)� (S1 � S3))
zip m1 m2

7�!

((e01 � e02) + (e01 � e03))((S
0

1 � S02)� (S01 � S03))

Since P � (Q�R) = ((P �Q)� (P �R)) for any sets P , Q and R then we conclude that the two calculations
given above are equivalent. QED.

Rigorous Object-Oriented Methods 2000 5

Object-Oriented Refinement and Proof using Behaviour Functions

3.3 System Refinement

System development through step-wise refinement is attractive since it allows abstract models to be developed early
in the life-cycle and then refined to concrete implementations through a series of verified transformations. Consider
two behaviour functions e1 and e2 such that e2 is a more concrete version of e1. Typically, the states of e2 will be
related to those of e1 but will involve more components and inter-relationships. For example, object-oriented design
promotes the use of encapsulation whereby structured data is implemented as a collection of objects whose detail
is hidden behind method interfaces. The calculations of e1 will be more abstract than those of e2; e1 may perform
complex tasks in a single computation step whereas e2 must observe implementation constraints imposed by the target
system.

If e1 is an abstract version of the required system behaviour and e2 is a (relatively) concrete version then e2 must
do everything that e1 can do subject to an appropriate transformation on states and calculations. Furthermore, if e1 is
complete then e2 must not introduce any behaviour that is inconsistent with that defined by e1.

A behaviour refinement from e1 to e2 is a pair of mappings (1; 2) : e1 ! e2 such that for every abstract

calculation: e1 S1
m
7�! e01 S

0

1 there exists a concrete calculation: e2 S2
2(m)
7�! e02 S2 such that 1(S2) = S1 and

1(S
0

2) = S01.

Theorem 4 If (1; 2) : e1 ! e2 and (01;
0

2) : e2 ! e3 are two refinements, then (1 �
0

1;
0

2 � 2) : e1 ! e3 is also
a refinement.

Theorem 5 If (1; 2) : e1 ! e2 is a refinement then (1; 2)� Ide : e1 � e! e2 � e is also a refinement.

3.4 Message Passing

Computation occurs in an object-oriented system in terms of message passing. A behaviour is expressed in the design
notation as a function which maps incoming messages to a pair (e S;O) where e S is a replacement behaviour and
O is a set of outgoing messages. Once the messages O have been produced, the behaviour is immediately ready to
handle new incoming messages as specified by e.

The basic model of message handling is therefore asynchronous. This decision arises because object-oriented
design notations can express both synchronous and asynchronous message passing. Typically there are different
notations to express send message and wait for reply and send message without waiting for reply.

Basing the semantic model on asynchronous message passing does not preclude synchronous message pass-
ing since an asynchronous model which incorporates replacement behaviours can implement synchronous messages
[Agh86] [Agh91]. A message m 2 O is sent synchronously when e is a behaviour that waits for an incoming message
m0 such that m0 is the response to m. When m0 is received the behaviour reverts to its original functionality.

Variations on the synchronous model described above are possible. For example, the waiting behaviour may permit
a sub-set of the functionality, or may implement a priority based interrupt mechanism, or may allow the behaviour to
send messages to itself.

The example program development described in this paper uses a form of synchronous message passing. It is
convenient to add syntactic sugar to the design notation capturing this form of message passing. The sugar is a form
of let expression occurring in the context of a behaviour function as follows:

agentf(t; v)gfmg =
case m of

: : :

p1 !

let p2 e1
in e2

: : :

end

A let expression occurs in the context of a behaviour, represented here by the function agent. The expression e 1
is a set of messages or a single message which is to be sent in response to receiving a message matching p1. The

Rigorous Object-Oriented Methods 2000 6

Object-Oriented Refinement and Proof using Behaviour Functions

��
��
��
��
���
���
���
���

��
��
��
��
���
���
���
���

1 2 3S O0
w www w w w w1 2 3 4 5 6 7 8

M
Figure 4: A Widget Dispensing Machine

behaviour agent may carry on handling messages1. Any incoming message matching p2 is a response to the messages
e1; the response of agent is defined by e2.

The semantics of let is defined by a syntax translation to the basic design notation:

agentf(t; v)gfmg =
case m of

: : :

p1 ! (agentf(t; v)g+ wait; e1)
whererec waitfmg =

case m of
p2 ! e2
else (wait; ;)

end
: : :

end

The locally created behaviour wait is used to extend agent with a handler for the response to messages e1. Typi-
cally, when the response occurs, e2 will revert back to the original behaviour agent.

4 Requirements and Initial Specification

Software to control a simple machine (see figure 4) for dispensing widgets is required. The machine consists of a
store of widgets, 4 buttons, an output tray and a two-tone beeper. The buttons are labelled 0 – 3. In order to dispense
a widget the operator must press the buttons 1, 2 and 3 in order. At any time the operator may cancel the operation
by pressing 0. Widgets are removed from the store and delivered to the output tray when they are dispensed. If the
operation succeeds the beeper makes a high beep otherwise the beeper makes a low beep. Each widget has a unique
identity.

An initial attempt at the required behaviour is shown in figure 5. The behaviour function M has two state com-
ponents s and o that are sets of widgets representing the store and output respectively. Input messages 0 – 2 cause
no state change and no output messages. Input message 3 from source object t0 causes a widget to be dispensed and
added to the output tray o if available in the store s. A boolean reply is sent to the source of the message causing a
high beep (true) if successful and a low beep (false) if the operation failed. The initial behaviour is under specified
since it includes the required behaviour, but also permits illegal sequences of buttons.

1In fact we only require agent to handle messages which it sends to itself. The extra machinery for this feature is straightforward but would
clutter the example so we omit it.

Rigorous Object-Oriented Methods 2000 7

Object-Oriented Refinement and Proof using Behaviour Functions

Mf(t; (s; o))gfmg =
case m of

0! (Mf(t; (s; o))g; ;)
1! (Mf(t; (s; o))g; ;)
2! (Mf(t; (s; o))g; ;)
(t0; 3)!

case s of
; ! (Mf(t; (s; o))g; f(t; t0; false)g)
fwg [s0 ! (Mf(t; (s0; o [fwg))g; f(t; t0; true)g)

end
end

Figure 5: Initial Specification

5 A Simple System Invariant

A simple system property is that the number of widgets available in both the store and the output tray is an invariant,
i.e. pushing buttons cannot cause widgets to be introduced or lost. This can be expressed as a behaviour:

If(t; w)gfmg = (If(t; w)g; ;)

together with a behaviour morphism from M to I that translates an M state (s; o) to an I state #s + #o and is
identity everywhere else. In order to show that I is an invariant we show that the limit on the diagram M is the same
as the limit on the diagram M ! I .

Theorem 6 I is an invariant of M .

The proof shows that there exists a total behaviour morphism � : M ! I such that a limit on the diagram containing
M is unchanged (isomorphic to) a limit on the diagram containing � : M ! I . The mapping is defined as follows:

�1f(t; (s; o))g = f(t;#s+#o)g

�2(m) =

8<
:

[] whenm = []
[(i; ;)] whenm = [(i;)]
�2(m1)++�2(m2) whenm = m1++m2

Proposition 1 The behaviour morphism � defines a total graph homomorphism.

The following proof is by induction on the length of object calculations. Consider anyM transitionMf(t; (s; o))g
m
�!

Mf(t; (s0; o0))g and proceed by case analysis on the message sequencem. Note that we omit any message information
that is not relevant or can be inferred from context.

When m = [(0; ;)], �2(m) = m, f(t; (s; o))g = f(t; (s0; o0))g and therefore �1f(t; (s; o))g = �1f(t; (s
0; o0))g.

The same argument holds for m = [], m = [(1; ;)] and m = [(2; ;)]. When m = [(3; O)], �2(m) = [(3; ;)] and either
s = ; or s 6= ;; we proceed by case analysis on s. When s = ;, O = f(t; t0; false)g, f(t; (s; o))g = f(t; (s0; o0))g and
therefore �2f(t; (s; o))g = �2f(t; (s

0; o0))g. When s = fwg [s0, o0 = fwg [o and O = f(t; t0; true)g, therefore:
�2f(t; (s; o))g = f(t;#(fwg [s0) + #(o0 � fwg))g

= f(t; 1 +#s0 +#o0 � 1)g
= �2f(t; (s

0; o0))g+ 1� 1
= �2f(t; (s

0; o0))g

When m = m1++m2 then assume by induction that the invariant is true for both Mf(t; (s; o))g
m1

7�!Mf(t; (s0; o0))g

andMf(t; (s0; o0))g
m2

7�!Mf(t; (s00; o00))g and is therefore true by definition forMf(t; (s; o))g
m1 ++m2

7�! Mf(t; (s00; o00))g.
It remains to show that M is a limit on diagrams containing M and : M ! I respectively.

Proposition 2 M is a limit on the diagram containing M and IdM : M !M .

Rigorous Object-Oriented Methods 2000 8

Object-Oriented Refinement and Proof using Behaviour Functions

Pf(t; �)gfmg =
case m of

0! (Pf(t; A)g; ;)
1! case � of A! (Pf(t; B)g; ;) end
2! case � of B ! (Pf(t; C)g; ;) end
3! case � of C ! (Pf(t; A)g; ;) end

end

Figure 6: Legal Message Sequences

The proof follows directly from the properties of the identity morphism. Now consider the second diagram. Firstly
construct a product M � I in which nodes are labelled with states from the free product states(M)� states(I). Note
that the product contains states that are legal f((t1; (s; o)); (t2;#s+#o))g and those that are not.

Now construct an equalizer e : L!M � I such that � �1 � e = �2 � e:

L

?

e

M � I

@

@
@R

�1

�

�
�	

�2

M I-

The behaviour L is a limit on the diagram and contains just those states that are legal. The limit L is not exactly
the same as M but there exists an isomorphism between them. Therefore we conclude that : M ! I is a property
of M . QED

6 Removing Illegal Message Sequences

The behaviourM is under specified since it permits buttons on the machine to be pressed in illegal sequences. Object-
oriented design notations such as UML restrict behaviours such as M using state transition models that impose order-
ings on sequences of permitted message calls. The machine consists of three states referenced as 1, 2 and 3.

The initial state for the machine is 1. Button 1 may only be pressed in state 1 causing a state change to 2. Button
2 may only be pressed in state 2 causing a state change to 3. Button 3 may only be pressed in state 3 causing a state
change to 1; a widget is dispensed as a side effect. Button 0 may be pressed in any state causing a change to state 1.

The state transition machine is expressed as a behaviour function P in figure 6. The behaviour describes a single
state component � whose value is the machine state. The behaviour handles all machine messages making appropriate
state changes but otherwise does nothing.

Behaviour M includes all correct behaviour but also includes incorrect behaviour. Applying the constraint P to
M will produce just the required behaviour. The constraint is applied by combining M and P using the behaviour
combination operator �. This produces a new behaviour M 0 = M � P shown in figure 7. The behaviour M 0 has
a state (s; o; �) that is the combination of states from M and P . Message dispatch has been combined so that the
conditions from both M and P are taken into account. The multiple patterns (0; �) for all states � has been combined
into a single pattern (0;) since the same transition occurs in all cases. Notice that the machine simply ignores buttons
that are pressed out of sequence and that if an operator gets into trouble they may always press 0 to reset the machine.

7 Object-Oriented Encapsulation

The behaviour M 0 does not observe the principle of encapsulation since the state (s; o) accesses state components of
both s and o. In order to be object-oriented, the behaviour M 0 must reference both s and o as objects. Accessing and

Rigorous Object-Oriented Methods 2000 9

Object-Oriented Refinement and Proof using Behaviour Functions

M 0
f(t; (s; o; �)gfmg =

case (m;�) of
(0;)! (M 0

f(t; (s; o; A))g; ;)
(1; A)! (M 0

f(t; (s; o; B))g; ;)
(2; B)! (M 0

f(t; (s; o; C))g; ;)
(t0; (3; C))!

case s of
; ! (M 0

f(t; (s; o; A))g; f(t; t0; false)g)
fwg [s0 ! (M 0

f(t; (s0; o [fwg; A))g; f(t; t0; true)g)
end

end

Figure 7: Combining M and P

Sf(t; Q)gfmg =
case m of

(t0; empty)! (Sf(t; Q)g; f(t; t0; Q = ;)g)
(t0; get)!

case Q of
fwg [Q0

! (Sf(t; Q0)g; f(t; t0; w)g)
end

end

Of(t; Q)gfmg =
case m of

store(w) ! (Of(t; Q [fwg)g; ;)
end

Figure 8: Store and Output Behaviour

changing state in both s and o must occur via message passing.

Although both s and o are represented as sets of widgets, they are used in different ways. These differences may
result in radically different implementation strategies and so we implement each as a separate behaviour in figure 8.
A store behaviour S handles messages empty and get. The former replies with true when the store is empty and the
latter replies with an element of the store selected at random. An output tray behaviour O handles a single message
store containing a widget x. The widget is added to the output tray.

The behaviour function M 0 must be refined in order to use references to the store and output tray. The result is
a new behaviour function M 00 shown in figure 9. When M 00 receives a message 3 from object t0 in state 3 it sends a
message empty to the store and waits for the reply. If the store is not empty then M 00 sends it another message get and
waits for a widget to be returned. On receiving the widget x, M 00 sends a store(x) message to the output tray. Finally,
M 00 replies to t0 with true or false.

Theorem 7 S �M 00
�O is a refinement of M 0

Rigorous Object-Oriented Methods 2000 10

Object-Oriented Refinement and Proof using Behaviour Functions

M 00
f(t; (s; o; �))gfmg =
case (m;�) of

(0;)! (M 00
f(t; (s; o; A))g; ;)

(1; A)! (M 00
f(t; (s; o; B))g; ;)

(2; B)! (M 00
f(t; (s; o; C))g; ;)

(t0; (3; C))!
let b f(t; s; empty)g
in if not(b)

then let w f(t; s; get)g
in (M 00

f(t; (s; o; A))g; f(t; t0; true); (t; o; store(w))g)
else (M 00

f(t; (s; o; A))g; f(t; t0; false)g)
end

Figure 9: Encapsulating the Store and Output Tray

A proof of correctness for a refinement is established by defining a refinement homomorphism (1; 2):

1f(t; (ts; to; �)); (ts; s); (to; o)g = f(t; (s; o; �))g

2(m) =

8>>>><
>>>>:

[] when m = []
[(i; ;)] when m = [(i; ;)]8i 2 0 : : : 2
3; get; empty; true; false when m = [(3; ffalseg)]
3; get; empty; false; get; w; true; store(w)when m = [(3; ftrueg)]
2(m1)++ 2(m2) when m = m1++m2

Theorem 8 (1; 2) : M
0
! S �M 00

�O is a refinement homomorphism.

The proof must establish that for all transitions M 0(1(W))
m
7�! M 0(1(W

0)) there exists a transition (S �M 00
�

O)W
2(m)
7�! (S�M 00

�O)W 0. The refinement is complete if it holds for all transitions performed byM 0 and is sound
if it holds for all transitions performed by S �M 00

� O. The proof is by induction on the structure of m; we proceed
by case analysis of m.

When m = [], since 2(m) = [], W = W 0 and 1(W) = 1(W
0). When m = [(f0g; ;)] then 2(m) = [(f0g; ;)]

and for any W = f(t; (ts; to; x); (ts; s); to; o)g, W 0 = f(t; (ts; to; A)); (ts; s); (to; o)g, therefore M 0(1(W))
m
7�!

M 0(1(W
0)). When m = [(f1g; ;)] and m = [(f2g; ;)] the proof has the same structure as that for m = [(f0g; ;)].

When m = [(f3g; fbg)] with b = false then 2(m) = get; empty; true; false, W = f(t; (ts; to; C)); (ts; ;); (to; o)g,
therefore W 0 = W and M 0(1(W))

m
7�! M 0(1(W

0)). When m = [(f3g; fbg)] with b = true then 2(m) =
get; empty; false; get; w; true; store(w), W = f(t; (ts; to; C)); (ts; fwg [s); (to; o)g and therefore:

W 0 = f(t; (ts; to; A)); (ts; s); (to; fwg [o)g

M 0(1(W))
m
7�!M 0(1(W

0))

When m = m1++m2 we assume by induction than the theorem holds for the sequences m1 and m2 and therefore
it holds for m by the transitivity of 7�!. QED

8 Concrete Data Representation

The behaviours S and O do not uphold the principle of concrete data representation. Java does not provide a represen-
tation for data structures that is fully consistent with sets. One possible refinement for S and O is to use the standard
behaviour for indexed sets that can be implemented directly in Java using either arrays or vectors. The store and output
tray behaviours are refined as shown in figure 10.

Rigorous Object-Oriented Methods 2000 11

Object-Oriented Refinement and Proof using Behaviour Functions

S0f(t; (Q; i))gfmg =
case m of

(t0; empty)! (S0f(t; (Q; i))g; f(t; t0; i = �1)g)
(t0; get)! (S0f(t; (Q; i� 1))g; f(t; t0; Q[i])g)

end

O0
f(t; (Q; i))gfmg =

case m of
store(x)! (O0

f(t(Q[i] := x; i+ 1))g; ;)
end

Figure 10: Refinement of Store and Output Tray Behaviours

The states of S0 and O0 consist of an indexed set Q and an index i. The values in Q are indexed by integers from
0 upwards and i+ 1 is the size of the indexed set. Given an indexed set Q, the value associated with index k is Q[k].
The indexed set is extended with a value x indexed by k to produce Q[k] := x.

Theorem 9 S0 �M 00
�O0 is a legal refinement of S �M 00

�O

A proof follows from theorem 5 and the existence of two refinements from S to S 0 and from O to O0. The refinement
(1; 2) : S ! S0 is defined as follows:

1f(t; (Q; i))g = f(t; fQ[j] j j 2 0 : : : ig)g
2(m) = m

Notice that (1; 2) reduces the non-determinism occurring in S since the get method always returns widgets in a
particular order for a given state.

9 Implementation in Java

Composition of refinement morphisms by theorem 4 shows the resulting system S 0�M 00
�O0 to be a valid refinement

of the initial specification M . The system is implemented by identifying a one-to-one correspondence between the
design components and programming language components that give rise to the same behaviour. Each behaviour
function corresponds to a Java class. Each state component of a behaviour function corresponds to a private field.
Each message handled by a class corresponds to a public method.

The implementation is given in figure 11. During implementation we may identify certain behaviours that are
consistent with behaviours provided by existing Java classes. This occurs here with S 0 and O0 both of which are
consistent with the behaviour of Vector.

References

[Aba98] Abadi, M. & Cardelli L.: A Theory of Objects. Springer, 1998.

[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In proceedings of REX School/Workshop on
Foundations of Object-Oriented Languages, LNCS 489, Springer-Verlag, 1991.

[Bar90] Barr, M. & Wells, C.: Category Theory for Computing Science. Prentice Hall International Series in Computer
Science, 1990.

Rigorous Object-Oriented Methods 2000 12

Object-Oriented Refinement and Proof using Behaviour Functions

class M {
private Store s;
private OutputTray o;
private int state = 1;
public M(Store s,OutputTray o) { this.s = s; this.o = o; }
public void zero() { state = 1; }
public void one() { if(state == 1) state = 2; else error(); }
public void two() { if(state == 2) state = 3; else error(); }
public void three()
{
if(state != 3)
error();

else {
if(!s.empty()) o.store(s.get());
state = 1;

}
}

}

class Store {
private Vector q;
public Store(Vector q) { this.q = q; }
public boolean empty() { return q.size() == 0; }
public Widget get() { return (Widget)q.removeElement(); }

}

class OutputTray {
private Vector q = new Vector();
public store(Widget x) { q.addElement(x); }

}

Figure 11: Implementation of Machine

[Bic97] Bicarregui, J., Lano, K. & Maibaum, T.: Towards a Compositional Interpretation of Object Diagrams. Tech-
nical Report, Department of Computing, Imperial College, 1997.

[Cla97] Clark, A. N. & Evans, A. S.: Semantic Foundations of the Unified Modelling Language. In the proceedings
of the First Workshop on Rigorous Object-Oriented Methods: ROOM 1, Imperial College, June, 1997.

[Cla99a] Clark, A. N.: A Semantics for Object-Oriented Systems. Presented at the Third Northern Formal Methods
Workshop. September 1998. To appear in BCS FACS Electronic Workshops in Computing, 1999.

[Cla99b] Clark, A. N.: A Semantics for Object-Oriented Design Notations. Technical report, submitted to the BCS
FACS Journal, 1999.

[Cla99c] Clark, A. N.: A Semantic Framework for Object-Oriented Development. Technical report, Computing De-
partment, University of Bradford, 1999.

[Ehr91] Ehrich, H-D., Goguen, J. A. & Sernadas, A.: A Categorical Model of Objects as Observed Processes. In the
proceedings of REX School/Workshop on Foundations of Object-Oriented Languages, LNCS 489, Springer-
Verlag, 1991.

[Eva98] Evans, A. S.: Reasoning with UML Class Diagrams. In WIFT ’98, IEEE Press, 1998.

[Eva99] Evans, A. S. & Lano, K. C.: Rigorous Development in UML. To appear in the proceedings of the ETAPS
’99, FASE Workshop, 1999.

[Gog75] Goguen, J.: Objects. Int. Journal of General Systems, 1(4):237–243, 1975.

[Gog89] Goguen, J.: A Categorical Manifesto. Technical Report PRG-72, Programming Research Group, Oxford
University, March 1989.

Rigorous Object-Oriented Methods 2000 13

Object-Oriented Refinement and Proof using Behaviour Functions

[Gog90] Goguen, J. A.: Sheaf Semantics for Concurrent Interacting Objects. Mathematical Structures in Computer
Science, 1990.

[Han94] Hankin, C.: Lambda Calculi A Guide for Computer Scientists. Clarendon Press, Oxford. 1994.

[Ken99] Kent, S. & Gil J.: Visualising Action Contracts in Object-Oriented Modelling. To appear in the IEE Software
Journal, 1999.

[Ken97] Kent, S.: Constraint Diagrams: Visualising Invariants in Object-Oriented Models. In the proceedings of
OOPSLA 97, ACM Press, 1997.

[Lan64] Landin P.: The Next 700 Programming Languages. Communication of the ACM, 9(3), 1966, pp 157 – 166.

[Lan98] Lano, K. & Bicarregui, J.: UML Refinement and Abstraction Transformations. In the proceedings of the
Second Workshop on Rigorous Object-Oriented Methods: ROOM 2, Bradford, May, 1998.

[Plo75] Plotkin, G.: Call-by-name, call-by-value and the lambda calculus. Theoretical Computer Science, 1, pp 125
– 159.

[Rui95] Ruiz-Delgado, A., Pitt, D. & Smythe, C.: A Review of Object-Oriented Approaches in Formal Specification.
The Computer Journal, 38(10), 1995.

[Ryd88] Rydeheard, D. E. & Burstall, R. M.: Computational Category Theory. Prentice Hall International Series in
Computer Science, 1988.

[UML98] The UML Notation version 1.1, UML resource center, http://www.rational.com.

A The Theory �o
Figure 12 defines a semantics for the �o-calculus using a convertibility relation between terms. Figure 13 defines a
type theory for �o-terms.

(�v:e1)e2 = e1[v := e2] �v:e = e[v := �v:e]

e1 = �

�(p) = �

case e1 of : : : p! e2 : : : end = e2

e = e0

�v:e = �v:e0

e1 = e01
e2 = e02

e1e2 = e01e
0

2

e = e0

�v:e = �v:e0

ei = e0
i
8i = 1; : : : ; n

(e1; : : : ; en) = (e01; : : : ; e
0

n
)

ei = e0
i
8i = 1; : : : ; n

ce1 : : : en = ce01 : : : e
0

n

e = e0

ei = e0
i
8i = 1; : : : ; n

case e of p1 ! e1; : : : ; pn ! en end =
case e0 of p1 ! e01; : : : ; pn ! e0

n
end

Figure 12: The Theory �o

Rigorous Object-Oriented Methods 2000 14

Object-Oriented Refinement and Proof using Behaviour Functions

A ` v : A(v)

A; v : � ` e : �

A ` �v:e : �! �

A ` e1 : �! �

A ` e2 : �

A ` e1e2 : �

A; v : � : e : �

A ` �v:e : �

A ` ei : �i 8i = 1; : : : ; n

A ` (e1; : : : ; en) : (�1; : : : ; �n)

A ` c : ~� ! �

A ` ei : �i 8i = 1; : : : ; n

A ` ce1 : : : en : �

A ` e : �1
A; vi : �i ` pi : � 8i = 1; : : : ; n
A; vi : �i ` ei : �2 8i = 1; : : : ; n

A ` case e of p1 ! ei; : : : ; pn ! en end : �2

Figure 13: Type Theory for �o

Rigorous Object-Oriented Methods 2000 15

