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Abstract. Deep learning (DL) is one of the most emerging type of contemporary 

machine learning techniques that mimic the cognitive patterns of animal visual 

cortex to learn the new abstract features automatically by deep and hierarchical 

layers. DL is believed to be a suitable tool so far for extracting insights from very 

huge volume of so-called big data. Nevertheless, one of the three “V” or big data 

is velocity that implies the learning has to be incremental as data are 

accumulating up rapidly. DL must be fast and accurate. By the technical design 

of DL, it is extended from feed-forward artificial neural network with many 

multi-hidden layers of neurons called deep neural network (DNN). In the training 

process of DNN, it has certain inefficiency due to very long training time 

required. Obtaining the most accurate DNN within a reasonable run-time is a 

challenge, given there are potentially many parameters in the DNN model 

configuration, and high-dimensionality of the feature space in the training 

dataset. Meta-heuristic has a history of optimizing machine learning models 

successfully. How well meta-heuristic could be used to optimize DL in the 

context of big data analytics is a thematic topic which we pondered on in this 

paper. As a position paper, we review the recent advances of applying meta-

heuristics on DL, discuss about their pros and cons, and point out some feasible 

research directions for bridging the gaps between meta-heuristics and DL. 

Keywords: Deep learning, meta-heuristic algorithm, neural network training, 

nature inspired computing algorithms, algorithm design. 

1   Introduction 

Deep learning (DL) is a new branch of machine learning mainly in the aspects of 

supervised learning. Given some suitable neural network architecture, logics on neuron 

weight updates and activation function, deep learning models and extracts high-level 

abstractions from voluminous data. It is usually done by using a series of inter-

connected multiple processing layers setup in hierarchical structure. Since its inception 

in 2006 by Hinton [1], DL now is becoming one of the hottest research areas in the 

machine learning research community. DL has various versions which centered on 

collectively concept of a series of algorithms and models including but not limited 

Convolutional Neural Networks (CNN), Deep Boltzmann Machines (DBM), Deep 
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Belief Networks (DBN), Deep Representation, Recursive Auto encoders, and 

Restricted Boltzmann Machines (RBM), just to name a few. While their potential 

capabilities are to be exploited, some of the most popular applications are computer 

vision and image classification, by RBM and DBN. 

Deep learning is regarded to be “deep” as the name coined in comparison to 

the well-known “shallow learning” algorithms such as Support Vector Machine (SVM), 

boosting and maximum entropy method and other discriminative learning methods. 

Those shallow learning recognizes data features mostly by artificial sampling or 

empirical sampling from the data, so the induced model or knowledge network learn 

the mappings between the features and prediction targets in a non-layer memory 

structure. In contrast, deep learning learns the relations between the raw data which are 

characterized by feature values and the targets, layer by layer, through transforming the 

data from raw feature space to transformed feature space. Additionally, deep structure 

can learn and approach non-linear function. All these advantages are beneficial to 

classification and feature visualization [2].  

With the objective of useful deriving insights from the bottom of big data, deep 

learning has been formulated and tested in different research areas with respective to 

various performance indicators such as processing speed, accuracy and capabilities to 

adapt to continuous data collection environment. Case studies of DL applied on various 

industrial areas including image classification, pattern recognition, and natural 

language processing (NLP) etc, and more seem to come. For computer visions, there 

are proven successful examples as demonstrated in the large (CNN) scale visual 

recognition challenge (ILSVRC) by ImageNet [3]. Convolutional neural network is the 

first implemented DL tool in image classification and it showed effectiveness. The error 

rate drops from 25% to 15% when CNN was used over conventional neural network. 

Thereafter the success, the combination of techniques namely, deep learning for 

learning and prediction, big data or data warehousing, and GPU for parallel processing 

is integrated into large-scale image classification applications. Companies of search 

engine giants like Baidu and Google have upgraded their image searching capability 

using DL technology [4] in this big data analytics era. 

Although DL outperformed most of the shallow learning methods and it has 

been tested in industrial applications, its design still carries some shortcomings. A large 

CNN typically is configured with millions of parameters and it is mostly trained by 

contrastive divergence (CD) learning algorithm which is iterative and known to be time 

consuming [5]. The most significant problem is that when facing very large scaled data 

the DNN will take several days or even months to learn, even though the greedy search 

strategy is in place. Regarding this, many companies who are seriously considering to 

deploy CNN would try to alleviate the speed limitation by investing heavily into 

hardware capabilities. Using high-power processing equipment such as multi-

processors, large capacity of fast memories and parallel computing environment is a 

common approach. Some researchers alternatively try to use other training algorithms 

than CD to marginally speed up the training process. Apart from the hardware 

requirement and learning algorithm, the shortcomings lie in the fundamental structure 

of CNN where many parameters must be tuned properly. Some examples are training 

the weights for effective learning, controlling the 'attractors' which are related to 

stabilizing the system dynamics of the neural network states. The history of the inputs 

may need to be stored in a large set of attractors. All these could be possibly solved by 
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some kind of optimization algorithms. This belongs to hyperparameter search problem; 

just like any machine learning algorithm, CNN is able to induce a representative model 

that can capture some useful insights from a large data, given the model parameters are 

fine-tuned to its optimal state. A tuned machine learning model replies on balancing the 

learning at appropriate level of model complexity. Overfitting occurs if the model is 

trained with too much examples, making the model too complex. Consequently it 

overly fits the data into constructing the model on almost every instance was 

considered, but it lacks of generalization power to unseen data. On the other extreme, 

when the complexity of the model is too low, it will not be able to all the essential 

information in the data. This phenomenon is called underfitting. In the case of CNN, a 

set of hyperparameters should be determined before training big data commences. The 

choice of hyperparameters can remarkably affect the final model's performance in 

action. However, determining appropriate values of parameters for optimal 

performance is a complex process. Claesen and Moor in 2015 [6], has argued that it is 

an open challenge inherent to hyperparameter such as optimizing the architecture of 

neural networks [7], whereas the count of hidden layers of a neural network is one such 

hyperparameter, and the amount of neurons that associate with each layer gives rise to 

another set of additional hyperparameters. The search space gets increasingly complex 

when they depend conditionally upon the number of layers in the case of CNN. Tuning 

all these parameters is quite difficult in real-time computing environment. Instead of 

finding the perfect balance, as suggested by most hyperparameter optimization 

strategies, meta-heuristic could be used [8], allowing the best model in terms of 

optimization solution emerges by itself by stochastic and heuristic search over certain 

iterations in lieu of brute-force or Monte-Carlo that tries through all the alternatives. 

Meta-heuristic algorithms are designed find global or near optimal solutions 

within acceptable search time, at reasonable computational cost. In case of CNN, the 

whole model of neural network could technically be represented by a solution vector 

which could be optimized to produce the best fitness in terms of prediction accuracy. 

This can be easily done by encoding a vector of weights from the neural network, with 

the value in each vector cell representing the weight of a linkage between a pair of 

neuron in the neural network. Figure 1 illustrates this simple encoding concept that 

represents a neural network to be optimized as a solution vector. 

 

 
Fig. 1. Encoding the weights of neural network into a solution vector 
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Once the encoding is in place, we can train a neural network using a meta-

heuristic search algorithm, for finding a solution vector that represents a combination 

of weights that gives the highest fitness. In this position paper, the relevant works of 

applying meta-heuristic algorithms for artificial neural network’s training are reviewed. 

In addition, we survey the possibility of implementing meta-heuristic algorithms on 

restricted Boltzmann machine’s (RBM) parameter training process. 

The reminder of this paper is organized as follow: meta-heuristic algorithms 

and their fundamental design constructs are introduced in Section 2. Section 3 describes 

meta-heuristic algorithms are implemented on optimizing neural network training. 

Section 4 shows a case of deep learning and restricted Boltzmann machine which could 

be empowered by meta-heuristics. Discussion about the prospects of apply 

metaheuristics on DL and conclusion are drawn in Section 5. 

2   Meta-heuristic Algorithm 

Meta-heuristic is another emerging trend of research, mostly found its application in 

optimization including combinatorial optimization, constrained based optimization, 

fixed-integer, continuous numeric and mixed-type search space optimization [9]. Meta-

stands for some high-level control logics, that controls some rules underneath or 

embraced in an iterative operation which try to improve the current solution generation 

after generation. It is a collectively concept of a series of algorithms including 

evolutionary algorithm, the most famous one is Genetic algorithm (GA) [10]. Recently 

a branch of population-based meta-heuristics has gained popularity and showed 

effectiveness in stochastic optimization. Optimal or near optimal answers are almost 

always guaranteed, by going through the search repeatedly through certain number of 

iteration. The movements of the search agents are mostly naturally inspired or bio-

logical algorithm, foraging the food hunting patterns and/or social behavior of 

insects/animals towards to global best situations which sets as the objective of the 

search operation [11]. These search-oriented algorithms found success recently in many 

optimization applications, from scientific engineering to enhancing data mining 

methods. Lately, with the hype of big data analytics, and the rise of neural network in 

the form of CNN being shown useful in DL within big data, meta-heuristics may again 

shows its edge in probably complementing the shortcomings of CNN, improving its 

ultimate performance like fitting a hand into glove. 

Some of the most prevalent population-based meta-heuristics is Particle 

Swarm Optimization (PSO) [12]; trajectory algorithm, such as Tabu search [13], and 

so on. In this review paper, we focus mainly on the underlying logics of GA and PSO, 

partly because these two are the most popular meta-heuristics that have demonstrated 

their merits. Another reason is that GA and PSO represent two very fundamental 

concepts in terms of the movement logics, how they converge and how the solutions 

emerge through trying out heuristically alternative solutions in the search process. GA 

on one hand, represents a tightly coupled evolutionary mechanism, having a population 

of chromosomes that represent the solutions, being mutate, cross-over and the fittest 

ones pass onto the future generations till only the few fittest solutions stay.  



PSO on the other hand, work in similar approach but with an explicit concept 

of separating global velocity and local velocity among the swarm of moving particles 

(search agents). While the global velocity is controlling the search momentum towards 

the best possible solution (to be found), the local velocity associate with each particle 

enables some randomness and alternatives in the hope of finding better solutions just 

than the current ones. In a way, PSO unifies two subtle objectives in the logic design, 

namely local intensification (LI) and global exploration (GE) [14]. These two very 

underlying forces which are usually embedded in the search mechanism empower the 

overall search, often yielding good results. Since PSO was launched, and the two subtle 

searching forces that complement each other towards the final goal were discovered, a 

number of variants of metaheuristics was created in the meta-heuristic research 

community. Many of the new variants are either extensions of PSO embracing the two 

concepts of LI and GE or hybrids of the existing meta-heuristic algorithms, 

interchanging some implementations of LI and GE. 

The latter type of new variants which are hybrid, is founded on the 

shortcomings of the original prototype where the algorithm is inspired by a certain 

nature phenomenon. The original prototype normal would faithfully follow the salient 

features of an animal or natural manifestation, thereby limiting its algorithmic efficacy 

for mimicking the animal as closely as possible. As a result, standalone and original 

prototype may work as efficiently as it is wished to be, leaving some rooms for 

improvement by modifications. 

Under this observation that mods are better than the original (they have to be 

better in order to get the papers published), researchers have been trying to combine 

multiple meta-heuristics in the hope of yielding some better results since it is already 

known that no meta-heuristic alone is able to offer the best. In the process of thinking 

of a new hybrid, the original meta-heuristic algorithm is dissected into different parts, 

checking of its unique function(s) and how they were built suitable for some particular 

types of complex problem. Blum and Roli [15] explained that the power of the meta-

heuristics search is somehow due to the dual efforts and cooperation between the local 

exploitation and global exploration strategies. Figure 2 shows the dual steps are integral 

part of the original metaheuristic algorithm, in general sense. 

 

 
 

Fig. 2. LI and GE in a general meta-heuristic algorithmic logic. 



By understanding these two underlying forces in the meta-heuristic design, it 

helps finding suitable optimization constructs for improving any machine learning 

algorithms, including CNN of course. GI is designed to continuously find a global 

optimum from some afar positions of the search space. Therefore in some 

metaheuristics the GI components enable the search agents to wide-spread the search 

agents from their current positions through some random mechanism. So it is in the 

hope that by venturing far away, the swarm is able to escape from being stuck at local 

optimum as well as finding a better terrain undiscovered previously. On the other hand, 

LI is designed to guide the search agents to scout intensively at the current proximity 

for refining the locally best solution they have found so far. 

Referring to the other trend of metaheuristics than hybrids, variants of PSO in 

the names of some animals have subsequently been arisen. They can be considered as 

enhanced versions of PSO, with unique features of keeping LI and GE explicitly 

defined. For typical examples, are Wolf Search Algorithm (WSA) [16] and Elephant 

Search Algorithm (ESA) [17] that have been recently proposed and they are considered 

as “semi-swarm” meta-heuristics. The search agents by the semi-swarm design have 

certain autonomous capacity focusing in LI, yet they cooperatively follow the 

guidelines of GE to outreach for global exploration. Their pseudo codes are shown in 

Figures 3, 4 and 5 respectively. In particular the LI and GE parts are highlighted in the 

pseudo-codes showing their similarities, yet loosely coupled movements by the search 

agents enforcing these two crucial search forces. 

In Figure 3, it can be seen that PSO the global velocity and the individual 

particles’ velocities are tightly coupled in the rule. By the design of WSA as shown in 

Figure 4, WSA relaxes this coupling by allowing every wolf search agent to roam over 

the search space individually by taking their local paths in various dimensions. They 

sometimes merge when they are bound within certain visual ranges. At a random 

chance, the wolf search agents jump out of their proximity for the sake of GE. At the 

end, the search agents would unite into their nuclear family packs which eventually 

would have migrated to the highest achievable solution (that has the maximum fitness 

found so far by both GE and LI). In Figure 5, ESA is comprised of search agents of two 

genders. Each gender group of elephant search agents will explicitly do GE and LI. The 

two search forces are separately enforced by the two genders in ESA. The leader of the 

female herd which has the local best fitness guides her peers in doing local search 

intensively around the proximity. The male elephants venture far away to search for 

terrains that may yield better fitness. When positions of higher fitness is found by the 

male elephants, the female elephant herds will migrate over there. Unlike PSO and 

WSA, the two underlying forces are being fulfilled diligently by two genders of 

elephant groups, totally separately and autonomously. In addition to separation of GE 

and LI, the unique design of ESA is all elephants follow a limited life-span. Aged 

elephants will expire, be relinquished from the search process, and new elephants will 

be born in locations which are inferred from a mix of best positions from their parents, 

female group leaders and some randomness. This extra force, evolution, is shown in 

Figure 4. To certain perspective, ESA carries the goodness of semi-swarm 

metaheuristics with respect to GE and LI, and combine this virtue into some 

evolutionary mechanism, ensuring the future generations progress into better solutions 

than the existing ones. Such designs will hopefully shed some light into applying meta-

heuristic into optimizing DL tools such as CNN.  



 
Fig. 3. Simplified version of PSO with local and global search efforts highlighted. 

 

 
Fig. 4. Simplified version of WSA with local and global search efforts highlighted. 

 



 
Fig. 5. Simplified version of ESA with local and global search efforts highlighted. 

 

Depending on the complexity of the hyperparameter challenges in CNN 

optimization and the presences of multi-modals (local optima), meta-heuristics ranging 

from fully swarm, to semi-swarm and loosely coupled with evolutionary abilities are 

available. 

3  Applying Meta-heuristic Algorithm on Neural Network Training 

There have been some debates among researchers in the computer science research 

community, on the choice of optimization methods for optimizing shallow and deep 

neural networks like CNN for instance. Some argued that meta-heuristic algorithms 

should be used in lieu of classical optimization methods such as Gradient Descent, 

Nesterov, Newton-Raphson etc., because meta-heuristics were designed to avoid 

falling stuck at local minima.  

 Researchers who are skeptical about the use of meta-heuristics usually share 

the concern that local minima are not of a serious problem that needs to be heavily 

optimized at the neural networks. The presences of local minima which are believed to 

come in mild intensity and quantity are caused by some permutation of the neurons at 

the hidden layers, depending on the symmetry of the neural network. It was supposed 

that finding a good local minimum by minimizing the errors straightforwardly is good 

enough. It is an over-kill using extensive efforts in searching for the global minima to 



the very end. Moreover some are wary that overly optimizing a neural network limits 

its flexibility, hence leading to overfitting the training data if metaheuristic is used or 

excessively used. The overfitted neural network may become lack of generalization 

power when compared to a neural network that was trained by gradient descent that 

achieved a local minima which is good enough. When this happens some regularization 

function would be required to keep the complexity of the model under check. To the 

end of this, some researchers suggested using an appropriate kernel or radial basis 

function provides simple and effective solution. 

 Nevertheless researchers from the other school of thoughts believed that 

applying meta-heuristic on neural network training has its edge on providing the weight 

training to its optimum state. Like the epitome of a doctrine, the name meta-heuristic 

consists of the terms “meta” and ‘‘heuristic” are Greek where, “meta” is “higher level” 

or “beyond” and heuristics implies ‘‘to find”, ‘‘to know”, ‘‘to guide an investigation” 

or ‘‘to discover”. Heuristics are simple logics to find best (or near-best) optimal 

solutions which are on par with the absolute best (which is extremely difficult to find) 

at a reasonable computational cost. In a nutshell, meta-heuristics are a collection of 

simple but intelligent strategies which could fit into a wide range of application 

scenarios for enhancing the efficiency of some heuristic procedures [18]. Optimizing 

the configuration of neural network is one of such heuristic procedures. 

By tapping on the searching ability of global optimum by meta-heuristic 

algorithms, researchers aim to train a neural network to execute faster than traditional 

gradient descent algorithm. In the following part, I reviewed four researchers’ work on 

implementing meta-heuristic on neural network training including GA on NN, PSO on 

NN and hybrid GA&PSO on NN. 

 Though in the above-mentioned section, the basic constructs of most of the 

meta-heuristics algorithms are GE and LI (in addition to initialization, stopping criteria 

checking and other supporting functions), meta-heuristic operate by implementing 

different forms of agents such as chromosome (GA), particles (PSO), fireflies (firefly 

algorithm). These agents collectively keep moving close to the global optimum or near 

global optimum through iterative search. Many strategies such as evolutionary strategy, 

social behaviour and information exchange are implemented, thereby many versions 

were made possible. Readers who want to probe into details of the variety of meta-

heuristics are referred to a latest review [19].  

Artificial neural network (ANN) are traditionally constructed in layout of 

multi-layered feed-forward neural network; some used back-propagation (BP) as error 

feedback to modify the weights for training up the cognitive power of the network. The 

weight training strategy has been traditionally gradient descent (GD). However, in the 

literature, there have been numerous cases of applying meta-heuristic on optimizing 

such traditional neural network for speeding up the training process. This is primarily 

achieved by replacing the GD strategy with iterative evolutionary strategy or swarm 

intelligence strategy by meta-heuristics [20, 21, 22, 23, 24]. 

Gudise, V. G., et al [20] compared the performance of feed-forward neural 

network optimized by PSO and feed-forward neural network with BP, the experiment 

result shows that feed-forward network with PSO is better than that with BP in terms 

of non-linear function. 

Leung, F. H., et al [24] showed their work on the efficacy of tuning up the 

structure and parameters of a neural network using an improved genetic algorithm 



(GA). The results indicate that the improved GA performs better than the standard GA 

when the neural networks are being tested under some benchmarking functions. 

Juang, C. F. [22] proposed a new evolutionary learning algorithm based on a 

hybrid of genetic algorithm (GA) and particle swarm optimization (PSO), called 

HGAPSO. It takes the best of the both types of meta-heuristics: swarming capability 

and evolutionary capability. Defining the upper-half of the GA population as elites and 

enhancing them by PSO, while the rest of the population are processed by GA, the 

hybrid method outperforms PSO and GA individually in training a recurrent or fuzzy 

neural network.  

Meissner, M., et al [23] used Optimized Particle Swarm Optimization (OPSO) 

to accelerate the training process of neural network. The main idea of OPSO is to 

optimize the free parameters of the PSO by generating swarms within a swarm. 

Applying the OPSO to optimize neural network training it aims to build a quantitative 

model. OPSO approach produces a suitable parameter combination which is able to 

improve the overall optimization performance. 

Zhang, J. R., Zhang [21] proposed a hybrid algorithm of PSO coupled with BP 

for neural network training. By leveraging the advantage of PSO’s global searching 

ability as well as BP’s deep search capability, the hybrid algorithm showed very good 

performance respective to convergent speed and convergent accuracy. 

Optimizing shallow learning by traditional neural network approaches has 

been shown successfully possible using the meta-heuristic methods as above-

mentioned. In contrast, DL by CNN is a relatively unexplored field. Very few papers 

have been published except for one by [25] which used Simulated Annealing (SA) 

algorithm to optimize the performance of CNN and showed improved results. 

Nonetheless, there is a still good prospects in trying out different meta-heuristics for 

optimizing CNN for DL, because the fundamental problems and solutions are about the 

same: you have a number of unknown variables on hand, and meta-heuristics attempt 

to offer the best possible solution. 

Structures of deep learning model is similar to the traditional artificial neural 

network, except for some modifications are implemented for better learning ability. For 

instance, the CNN is a traditional ANN modified with pooling procession and the 

structure of RBM is an undirected graph or a bidirectional neural network. DL model 

shares similar models with neural network; more importantly, different training 

algorithm may be called upon instead of gradient descent strategy. This warrants further 

exploration into this research arena. Several important contributions which have been 

mentioned about are elaborated as follow. 

 

3.1 Genetic Algorithm on Neural Network 
Leung et al [24] first tried implementing genetic algorithm (GA) on neural network 

training in 2003. Though Leung et al may not be the pioneer in apply GA on neural 

network, an improved version of GA that is made suitable for ANN is put forward. 

Crossover operations, mutation operations and fitness function of GA are all re-defined, 

custom-made. Firstly, when it comes to encoding the chromosome and perform the 

crossover operation, four possible offspring candidates will be generated and the one 

with the largest fitness value will be chosen as offspring. The four possible crossover 

offspring are generated as regulations listed below: 



𝑜𝑠𝑐
1 = [𝑜𝑠1

1, 𝑜𝑠2
1, … 𝑜𝑠𝑛

1 ] =
𝑝1 + 𝑝2

2
 

𝑜𝑠𝑐
2 = [𝑜𝑠1

2, 𝑜𝑠2
2, … 𝑜𝑠𝑛

2 ] = 𝑝𝑚𝑎𝑥(1 − 𝑤) + 𝑚𝑎𝑥(𝑝1, 𝑝2)𝑤 

𝑜𝑠𝑐
3 = [𝑜𝑠1

3, 𝑜𝑠2
3, … 𝑜𝑠𝑛

3 ] = 𝑝𝑚𝑖𝑛(1 − 𝑤) + 𝑚𝑖𝑛(𝑝1, 𝑝2)𝑤 

𝑜𝑠𝑐
4 = [𝑜𝑠1

4, 𝑜𝑠2
4, … 𝑜𝑠𝑛

4 ] =
(𝑝𝑚𝑖𝑛 + 𝑝𝑚𝑎𝑥)(1 − 𝑤) + (𝑝1 + 𝑝2)𝑤

2
 

 

where the pmax and pmin are calculated respectively according to the parameters of the 

neural network by maximizing and minimizing them such as 𝑝𝑚𝑎𝑥 =
[𝑝𝑎𝑟𝑎𝑚𝑎𝑥

1 , 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
2 , . . . , 𝑝𝑎𝑟𝑎𝑚𝑎𝑥

𝑛 ],  𝑝𝑚𝑖𝑛 = [𝑝𝑎𝑟𝑎𝑚𝑖𝑛
1 , 𝑝𝑎𝑟𝑎𝑚𝑖𝑛

2 , … , 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑛 ]. For 

example, Max([1,-1,4],[-3,3,2])=[1,3,4] and Min([1,-1,4],[-3,3,2])=[-3,-1,2]. Secondly, 

the mutation operations are re-defined. The regulations are given below: 

 

𝑜𝑠 = 𝑜𝑠 + [𝑏1∆𝑛𝑜𝑠1, 𝑏2∆𝑛𝑜𝑠2, … , 𝑏𝑛∆𝑛𝑜𝑠𝑛] 
 

os is the chromosome with biggest fitness value in all four possible offspring. b1 random 

equals to 0 or 1 and ∆𝑛𝑜𝑠𝑖  is random number making sure 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑖 ≤ 𝑜𝑠𝑖 + 𝑏𝑖∆𝑛𝑜𝑠𝑖 ≤

𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑖 . 𝑜𝑠′ is the final generation after crossover operation and mutation operation. 

Thirdly, the fitness value is defined. By adding parameters in the neural 

network mathematical expression, the actual output of GA-optimized neural network 

yk equals to: 

 

𝑦𝑘 = ∑ 𝛿(𝑠𝑗𝑘
2 )𝑤𝑗𝑘𝑙𝑜𝑔𝑠𝑖𝑔 [∑ 𝛿(𝑠𝑖𝑗

1 )𝑤𝑖𝑗𝑥𝑖 − 𝛿(𝑠𝑗
1𝑏𝑗

1)

𝑛𝑖

𝑖=1

] − 𝛿(𝑠𝑘
2)𝑙𝑜𝑔𝑠𝑖𝑔(𝑏𝑘

2)

𝑛ℎ

𝑗=1

 

 

in which k=1,2, .., nout, sij denotes link from ith neuron in input layer to jth neuron in 

hidden layer, sjk denotes link from jth neuron in hidden layer to kth neuron in output 

layer, wjk denotes weight between each neuron, 𝑏𝑘
1 and 𝑏𝑘

2 denote bias in input layer and 

hidden layer respectively, nin, nh and nout denote the number of neurons of input layer, 

hidden layer and output layer, respectively. The error of the whole network is defined 

as mean of all chromosomes: 

 

𝑒𝑟𝑟𝑜𝑟 = ∑
|𝑦𝑘 − 𝑦𝑘

𝑑|

𝑛𝑑

𝑛𝑜𝑢𝑡

𝑘=1

 

 

in which nd denotes the number of chromosome used in the experiment, 𝑦𝑘
𝑑 denotes the 

desired output of output neuron k. Given the error of the network, GA is implemented 

to optimize the network thus minimize the error. The fitness function is defined as  

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 + 𝑒𝑟𝑟𝑜𝑟
 

 



where the smaller the error and the bigger the fitness value. GA is implemented to find 

the global optimum of the fitness function thus the parameter combinations of weight 

w are the trained weight for the network. 

 

3.2 Particle Swarm Optimization on Neural Network 
Gudise and Venayagamoorthy [5] implemented PSO on neural network training in 

2003. The fitness value of each particle (member) of the swarm is the value of the error 

function evaluated at the current position of the particle and position vector of the article 

corresponds to the weight matrix of the network. 

Zhang et al [21] developed a hybrid algorithm of BP & PSO that could balance 

training speed and accuracy. The particle swarm optimization algorithm was showed to 

converge rapidly during the initial stages of a global search, but around global optimum, 

the search process will become very slow. On the contrary, the gradient descending 

method can achieve faster convergent speed around global optimum, and at the same 

time, the convergent accuracy can be higher. 

When the iteration process is approaching end and current best solution is near 

global optimum, if the change of the weight in PSO is big, the result will vibrate 

severely. Under this condition, Zhang supposed with the increase of iteration time, the 

weight in PSO should decline with the iteration time’s increasing to narrow the search 

range thus pay more attention to local search for global best.  He suggest the weight 

decline linearly first then decline nonlinearly as shown in Figure 6. 

 

 
Fig. 6. Change of inertia weight through linear and non-linear curve 

 

The concrete working process is summarized as follow: For all the particles 

pi, they have a global best location pglobal_best. If the pglobal_best keeps unchanged for over 

10 generations, that may infer the PSO pays too much time on global search thus BP is 

implemented for pglobal_best to deep search for a better solution. 



Similar to GA’s implementation in neural network, the fitness function defined 

is also based on whole network’s error and to minimize the error as the optimization of 

PSO. The learning rate 𝜇 of neural network is also controlled in the algorithm, as 

 

𝜇 = 𝑘 × 𝑒−𝜇0∙𝑒𝑝𝑜𝑐ℎ 
 

where 𝜇 is learning rate, k and 𝜇0 are constants, epoch is a variable that represents 

iterative times, through adjusting k and 𝜇0, the acceleration and deceleration of learning 

rate can be controlled. 

By implementing the strategy that BP focusing on deep searching and PSO 

focusing on global searching, the hybrid algorithm has a very good performance.  

 

3.3 Hybrid GA & PSO on Neural Network 
Juang et al [22] proposed in 2004, hybrid genetic algorithm and particle swarm 

optimization for recurrent network’s training. 

The hybrid algorithm called HGAPSO is put forward because the learning 

performance of GA may be unsatisfactory for complex problems. In addition, for the 

learning of recurrent network weights, many possible solutions exist. Two individuals 

with high fitness values are likely to have dissimilar set of weights, and the 

recombination may result in offspring with poor performance.  

Juang put forward a conception of “elite” of the first half to enhance the next 

generation’s performance. In each generation, after the fitness values of all the 

individuals in the same population are calculated, the top-half best-performing ones are 

marked. These individuals are regarded as elites. 

In every epoch, the worse half of the chromosome is discarded. The better half 

is chosen for reproduction through PSO’s enhancement. All elite chromosomes are 

regarded as particles in PSO. By performing PSO on the elites, we may avoid the 

premature convergence in elite GAs and increase the search ability. Half of the 

population in the next generation are occupied by the enhanced individuals, the others 

by crossover operation. The working flow of algorithm has mechanism of evolving the 

offsprings as well as enhanced elites through crossover and mutation. 

The crossover operation of HGAPSO is similar to normal GA, random 

selecting site on chromosome and exchange the sited piece of chromosome to finish the 

crossover operation. In HGAPSO, uniform mutation is adopted, that is, the mutated 

gene is drawn randomly, uniformly from the corresponding search interval. 

 

3.4 Simulated Annealing on CNN 
Rere et al [25] claimed to be the first which applied a meta-heuristic called Simulate 

Annealing (SA) on optimizing CNN for improved performance. Their results showed 

that SA is effective on optimizing CNN with better results than the original CNN 

although it comes with an increase of computation time cost. The SA works by 

progressively improving the solution; the logics are outlined as follow: Step 1. Encode 

the initial solution vector at random, compute the objective function; Step 2. Initialize 

the temperature which is a crucial parameter relating to the convergence speed and 

hitting onto the global optimum; Step 3. Pick a new solution in the neighborhood of the 

current position. New solutions are generated depending on T – this is similar to the 

local intensification; Step 4. Evaluate the goodness of the new solution candidates. 



Update the global best if a better candidate is found; Step 5. Periodically lower the 

temperature during the search process. So that the chance of receiving deteriorating 

moves drops, so the search is converging; Step 6. Repeat the above steps until the 

stopping criterion is satisfied.  

 In the meta-heuristic search design, SA is trying to minimize the standard error 

on fitness function of the vector solution and the training set. The fitness function is 

formulated as follow: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0.5 × √
∑ (|𝑦 − 𝑦′|)2𝑁

𝑖=1

𝑁
 

 

where 𝑦′ is the expected output, y is the actual output, N is the amount of training 

samples. SA should converge hence stop when the minimum neural network 

complexity have attained the most optimal (lowest) state and the approximate error 

accuracy indicates a very low value. In the optimization process, the CNN computes 

the weights and the bias of the neural network, the results are past from the last layers 

to evaluate the lost function. This is being proceeded as SA tries to find the best solution 

vector, like a wrapper process. SA attempts at scouting for a better solution in each 

iteration by randomly picking a new solution candidate from the proximity of the 

current solution by adding some random ∆x. This optimization is relatively simple, 

because only the last layer of the CNN is used to instill the solution vector, where the 

convolution part is almost left untouched. The SA seems doing only local search, and 

it does not require a large number of search agents, nor doing much of global 

exploration. The results show that the larger the neighborhood sizes (10, 20 and 50) the 

better the accuracy is achieved. However, the gain in accuracy was most obvious in 

small numbers of epoch, from 1 to 9. From epoch 10 onwards, the marginal difference 

in performance between the original CNN and SA applied on CNN diminish. The time 

cost however becomes more than double at epoch 10 between the CNN and SA+CNN 

with 50 neighbor size. This is doubtful where SA is a suitable meta-heuristic to be 

applied on CNN especially if the epoch reaches a large number in magnitudes greater 

than 10 for some complex big data analytics. This work nevertheless promotes the use 

of meta-heuristics, researchers would be encouraged to try other meta-heuristics. 

4   Deep Learning and Restricted Boltzmann Machine 

When dealing with image classification or other problems, traditional method is using 

pre-processing transforming data as input values for neural network learning while 

using deep learning method for classification, raw data (pixel values) are used as input 

values. This will keep to the maximum extent protecting all information regardless of 

useful or not from being destroyed by extraction methods. The most advantage lies that 

all the extraction methods are based on expert knowledge and expert choice thus are 

not extensible to other problems, while deep learning algorithm can overcome these 

limitations by using all data with its powerful processing ability. A convolutional neural 

network (CNN) is shown in Figure 7.  



 

 
 

Fig. 7 Typical architecture of a convolutional neural network 

 

The Boltzmann machine only has two layers of neurons, namely input and output layers 

respectively. The first layer is the input layer and the second layer is the output layer, 

although the structure is very simple only contains two layers, but it mathematical 

function in it is not simple. In here we need to introduce the following probability 

equation to know the RBM. 

From the equation we are knowing there are three item in it, they are the energy 

of the visible layer neural, the energy of the hidden layer neural, and the energy is 

consisted of the two layer. From the energy function of the RBM, we can see there are 

three kinds of parameters lie in the RBM, different from the neural network, each 

Neuron has a parameter too, but for the neural network only the connection of two 

layers has the parameters. Also, the neural network does not carry any energy function.  

They use the exponential function to express the potential function. There are also the 

probabilities existing in the RBM. They work exactly in the same way as the two kind 

of the probabilities such as p(v|h) and p(h|v). It has a similarity with probability graph 

model in details, examples are Bayesian network and Markov network. It looks like a 

Bayesian network because of the conditional probability. On the other hand it does not 

look like a Bayesian because of the two directions probabilities. These probabilities are 

lying on the two variables that have only one direction.  

Compared with the Markov network, the RBM seems to be having a little bit 

relation with it, because the RBM has the energy function just as the Markov network. 

But it is not so much alike because the RBM’s variable has parameter, and the Markov 

network does not have any parameter. Furthermore, the Markov network does not have 

conditional probability because it has no direction but just the interaction. From the 

graph’s perspective, variables in the Markov network use cliques or clusters to 

represent the relations of close and communicated variables. It uses the production of 

the potentials of the clique to express the joint probability instead of conditional 

probability just like the RBM. Its input data are the kind of the Boolean data, within the 

range between 0 and 1.  

The training way of the RBM is to maximize the probability of the visible 

layer, and to generate the distribution of the input data. RBM is a kind of special 



Markov random function and a special kind of Boltzmann machine. Its graphical model 

is corresponding to the factor product analysis. Different from the probability graphical 

model, the RBM’s joint distribution directly uses the energy function of both visible 

layer v and hidden layer h to define instead of potential of it given as 

 

𝐸(𝑣, ℎ) = −𝑎𝑇𝑣 − 𝑏𝑇ℎ − 𝑣𝑇𝑊ℎ 

𝑃(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) 

 

Later we will know that Z is the partition function defined as the sum of 

𝑒−𝐸(𝑣,ℎ) over all the possible configurations. In other words, it is just a constant 

normalizing the sum over all the possible hidden layer configurations. 

 

𝑃(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ

 

 

The hidden unit activations are mutually independent given the activations. That is, for 

m visible and n hidden units, the conditional probability of a configuration of the visible 

unit v, given a configuration 

 

𝑃(𝑣|ℎ) = ∏ 𝑃(𝑣𝑖|ℎ)

𝑚

𝑖=1

 

 

Conversely, the conditional probability of h given v is P(h|v). Our goal is to 

infer the weights that maximize the marginal of the visible, in details we can step 

through the following equation to infer and learn the RBM. 

 

arg
𝑀𝑎𝑥

𝑤
𝐸 [∑ 𝑙𝑜𝑔𝑃(𝑣)

𝑣∈𝑉

] 

 

As for the training algorithm, the main idea is also applied gradient descent 

idea into RBM. Hinton put forward Contrastive Divergence [26] as a faster learning 

algorithm. Firstly, the derivative of the log probability of a training vector with respect 

to a weight is computed as  

 
𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑤𝑖𝑗

= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙  

 

where the angle brackets are used to denote expectations under the distribution 

specified by the subscript that follows. This leads to a very simple learning rule for 

performing stochastic steepest ascent in the log probability of the training data: 

 

∆𝑤𝑖𝑗 = 𝜀(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙) 

 



where 𝜀 is a learning rate. 

Because there are no direct connections between hidden units in an RBM, it is 

very easy to get an unbiased sample of 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎. Given a randomly selected training 

image, v, the binary state, hj, of each hidden unit, j, is set to 1 with probability 

 

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎 (𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗

𝑖

) 

 

where bj is the current state of hidden neuron j, (x) is the logistic sigmoid function 

𝜎(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
.  vjhj is then an unbiased sample. The contrastive divergence (CD) is 

used to calculate the latter part 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 . Details can be found in their respective 

publications. 

Considering the complicated computation of implementing CD, the training 

process of RBM is not easy. Under this condition, implementing meta-heuristic on 

RBM training to substitute CD is of high possibility. 

3   Discussion and Conclusion 

Meta-heuristic has successfully implemented in neural network training in the past 

years. The algorithm used includes GA, PSO, their hybrids as well as many other meta-

heuristic algorithms. Moreover, feed-forward back-propagation neural network and 

spiking neural network [27] are all trained with tests on famous classification problems, 

where benchmarking their performance is easy. Given the rises of these two emerging 

trends of meta-heuristics and deep learning which are gaining momentums both in 

academic research communities and industries, these two trends do cross-road. At this 

junction, this paper contributes as a timely review on how meta-heuristics contribute to 

optimizing deep learning tools such as convolutional neural network (CNN). 

The basic structure of deep learning network is similar to traditional neural 

network. CNN is a special neural network with different weight computation 

regulations and Restricted Boltzmann Machine (RBM) is a weighted bio-dimensional 

neural network or bio-dimensional graph. Their training processes are also mainly 

executed through iterative formula on error which is similar to traditional neural 

network’s training. Given their iterative natures in execution and the fact that a neural 

network (at least a part of it) could be coded as a solution vector, it is natural to tap onto 

the power of meta-heuristics to optimize their layouts, configurations, weights 

computations and so forth.  

In the near future, it is anticipated that it is of high possibility of applying meta-

heuristic in deep learning to speed up training without declining performance. 

However, relevant publications along this direction are still rare. Nevertheless the 

interests which are expressed in terms of Google Trends show some take-off. In Figure 

8, it is seen that the four trends are indeed converging to about the same level of 

popularity in 2016 and beyond. The four trends are by the keywords of deep learning, 

machine learning, mathematical optimization and big data. Interestedly, optimization 

was very much hyped up in the early millennium and now it is approach a steady state.  



 
Fig. 8 Google Trend screenshot that shows the popularities of the four fields of study 

from 2004 till present 

 

 
Fig. 9 Google Trend screenshot that shows the popularities of the four fields of study 

from the past 12 months 

 

The other three trends, especially big data rose up from nowhere since 2011, 

exceeding the rest by now. The trends of machine learning and deep learning share the 

same curve patterns. These trends imply sufficient interest levels for these techniques 

to fuse and cross-apply over one another. In Figure 7, which is the Google Trend result 

of these four fields of study, the timeline is of past 12 months. It is apparent to see that 

they do share similar patterns and fluctuation over time, though they are setting at 

different interest levels. 



Furthermore, there still exists a question that goes under today’s computation 

ability, especially the GPU parallel computing whose computation ability is many times 

stronger than CPU that has been widely used in industrial area [28]. This would further 

propel the use of meta-heuristic in solving DL problems. The original design of meta-

heuristics especially those population-based search algorithms, are founded on parallel 

processing. The search agents are supposed to operate in parallel, thereby maximizing 

their true power in GPU environment. When the time cost overhead is removed from 

the design consideration in GPU environment, searching for near optimal results by 

meta-heuristic is still attractive as they can offer an optimal configuration of CNN. It is 

also anticipated that the parameters and structures of CNN will only become 

increasingly complex when they are applied to solve very complex real-life problems 

in the big data analytic era. It is foreseen that classical meta-heuristics such as PSO and 

GA will be first applied to solve DL problems, followed by variants and hybrids of 

those. While most of the papers in the first wave will concentrate on local 

intensification in scouting for new solution candidates by adding some randomness and 

Levy flight distribution, more are expected to follow which embrace both local 

intensification and global exploration. GE will be useful only when the search space is 

sufficiently huge, e.g. self-adaptive versions of meta-heuristics such as Bat algorithm 

[29] and Wolf search algorithm [30], the search space is the summation of the 

dimensions of the existing possible solutions and the allowable ranges of the parameters 

values. This advanced meta-heuristic technique translate to parameter-free optimization 

algorithms which are suitable to deal with only very complex neural network 

configuration and performance tuning problems. Then again, considering the big 

challenges of big data analytics in solving big problems (e.g. analyzing in real-time of 

road traffic optimization problems using Internet-of-Things), corresponding powerful 

DL tools should be equipped with effective optimization strategies. 
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