
How Meta-Heuristic Algorithms Contribute to Deep

Learning in the Hype of Big Data Analytics

Simon Fong1, Suash Deb2, and Xin-she Yang3

1 Department of Computer Information Science, University of Macau, Macau SAR

2 Founding President, INNS-India Regional Chapter, Ashadeep, 7th Floor Jorar, Namkum,

Ranchi 834010, JHARKHAND, INDIA
3 School of Science and Technology, Middlesex University, London NW4 4BT, UK

ccfong@umac.mo, suashdeb@gmail.com, x.yang@mdx.ac.uk

Abstract. Deep learning (DL) is one of the most emerging type of contemporary

machine learning techniques that mimic the cognitive patterns of animal visual

cortex to learn the new abstract features automatically by deep and hierarchical

layers. DL is believed to be a suitable tool so far for extracting insights from very

huge volume of so-called big data. Nevertheless, one of the three “V” or big data

is velocity that implies the learning has to be incremental as data are

accumulating up rapidly. DL must be fast and accurate. By the technical design

of DL, it is extended from feed-forward artificial neural network with many

multi-hidden layers of neurons called deep neural network (DNN). In the training

process of DNN, it has certain inefficiency due to very long training time

required. Obtaining the most accurate DNN within a reasonable run-time is a

challenge, given there are potentially many parameters in the DNN model

configuration, and high-dimensionality of the feature space in the training

dataset. Meta-heuristic has a history of optimizing machine learning models

successfully. How well meta-heuristic could be used to optimize DL in the

context of big data analytics is a thematic topic which we pondered on in this

paper. As a position paper, we review the recent advances of applying meta-

heuristics on DL, discuss about their pros and cons, and point out some feasible

research directions for bridging the gaps between meta-heuristics and DL.

Keywords: Deep learning, meta-heuristic algorithm, neural network training,

nature inspired computing algorithms, algorithm design.

1 Introduction

Deep learning (DL) is a new branch of machine learning mainly in the aspects of

supervised learning. Given some suitable neural network architecture, logics on neuron

weight updates and activation function, deep learning models and extracts high-level

abstractions from voluminous data. It is usually done by using a series of inter-

connected multiple processing layers setup in hierarchical structure. Since its inception

in 2006 by Hinton [1], DL now is becoming one of the hottest research areas in the

machine learning research community. DL has various versions which centered on

collectively concept of a series of algorithms and models including but not limited

Convolutional Neural Networks (CNN), Deep Boltzmann Machines (DBM), Deep

Yang
Typewriter
Citation details: S. Fong, S. Deb, X. S. Yang, How meta-heuristic algorithms
contribute to deep learning in the hype of big data analytics, in:
Proceedings in Intelligent Computing Techniques: Theory, Practice and Applications,
Advances in Intelligent Systems adn Computing, Vol. 518, pp. 3-25, (2017).

Yang
Rectangle

Yang
Line

Yang
Typewriter
Preprint version

Yang
Line

Yang
Typewriter
3

Belief Networks (DBN), Deep Representation, Recursive Auto encoders, and

Restricted Boltzmann Machines (RBM), just to name a few. While their potential

capabilities are to be exploited, some of the most popular applications are computer

vision and image classification, by RBM and DBN.

Deep learning is regarded to be “deep” as the name coined in comparison to

the well-known “shallow learning” algorithms such as Support Vector Machine (SVM),

boosting and maximum entropy method and other discriminative learning methods.

Those shallow learning recognizes data features mostly by artificial sampling or

empirical sampling from the data, so the induced model or knowledge network learn

the mappings between the features and prediction targets in a non-layer memory

structure. In contrast, deep learning learns the relations between the raw data which are

characterized by feature values and the targets, layer by layer, through transforming the

data from raw feature space to transformed feature space. Additionally, deep structure

can learn and approach non-linear function. All these advantages are beneficial to

classification and feature visualization [2].

With the objective of useful deriving insights from the bottom of big data, deep

learning has been formulated and tested in different research areas with respective to

various performance indicators such as processing speed, accuracy and capabilities to

adapt to continuous data collection environment. Case studies of DL applied on various

industrial areas including image classification, pattern recognition, and natural

language processing (NLP) etc, and more seem to come. For computer visions, there

are proven successful examples as demonstrated in the large (CNN) scale visual

recognition challenge (ILSVRC) by ImageNet [3]. Convolutional neural network is the

first implemented DL tool in image classification and it showed effectiveness. The error

rate drops from 25% to 15% when CNN was used over conventional neural network.

Thereafter the success, the combination of techniques namely, deep learning for

learning and prediction, big data or data warehousing, and GPU for parallel processing

is integrated into large-scale image classification applications. Companies of search

engine giants like Baidu and Google have upgraded their image searching capability

using DL technology [4] in this big data analytics era.

Although DL outperformed most of the shallow learning methods and it has

been tested in industrial applications, its design still carries some shortcomings. A large

CNN typically is configured with millions of parameters and it is mostly trained by

contrastive divergence (CD) learning algorithm which is iterative and known to be time

consuming [5]. The most significant problem is that when facing very large scaled data

the DNN will take several days or even months to learn, even though the greedy search

strategy is in place. Regarding this, many companies who are seriously considering to

deploy CNN would try to alleviate the speed limitation by investing heavily into

hardware capabilities. Using high-power processing equipment such as multi-

processors, large capacity of fast memories and parallel computing environment is a

common approach. Some researchers alternatively try to use other training algorithms

than CD to marginally speed up the training process. Apart from the hardware

requirement and learning algorithm, the shortcomings lie in the fundamental structure

of CNN where many parameters must be tuned properly. Some examples are training

the weights for effective learning, controlling the 'attractors' which are related to

stabilizing the system dynamics of the neural network states. The history of the inputs

may need to be stored in a large set of attractors. All these could be possibly solved by

Yang
Typewriter
4

some kind of optimization algorithms. This belongs to hyperparameter search problem;

just like any machine learning algorithm, CNN is able to induce a representative model

that can capture some useful insights from a large data, given the model parameters are

fine-tuned to its optimal state. A tuned machine learning model replies on balancing the

learning at appropriate level of model complexity. Overfitting occurs if the model is

trained with too much examples, making the model too complex. Consequently it

overly fits the data into constructing the model on almost every instance was

considered, but it lacks of generalization power to unseen data. On the other extreme,

when the complexity of the model is too low, it will not be able to all the essential

information in the data. This phenomenon is called underfitting. In the case of CNN, a

set of hyperparameters should be determined before training big data commences. The

choice of hyperparameters can remarkably affect the final model's performance in

action. However, determining appropriate values of parameters for optimal

performance is a complex process. Claesen and Moor in 2015 [6], has argued that it is

an open challenge inherent to hyperparameter such as optimizing the architecture of

neural networks [7], whereas the count of hidden layers of a neural network is one such

hyperparameter, and the amount of neurons that associate with each layer gives rise to

another set of additional hyperparameters. The search space gets increasingly complex

when they depend conditionally upon the number of layers in the case of CNN. Tuning

all these parameters is quite difficult in real-time computing environment. Instead of

finding the perfect balance, as suggested by most hyperparameter optimization

strategies, meta-heuristic could be used [8], allowing the best model in terms of

optimization solution emerges by itself by stochastic and heuristic search over certain

iterations in lieu of brute-force or Monte-Carlo that tries through all the alternatives.

Meta-heuristic algorithms are designed find global or near optimal solutions

within acceptable search time, at reasonable computational cost. In case of CNN, the

whole model of neural network could technically be represented by a solution vector

which could be optimized to produce the best fitness in terms of prediction accuracy.

This can be easily done by encoding a vector of weights from the neural network, with

the value in each vector cell representing the weight of a linkage between a pair of

neuron in the neural network. Figure 1 illustrates this simple encoding concept that

represents a neural network to be optimized as a solution vector.

Fig. 1. Encoding the weights of neural network into a solution vector

Yang
Typewriter
5

Once the encoding is in place, we can train a neural network using a meta-

heuristic search algorithm, for finding a solution vector that represents a combination

of weights that gives the highest fitness. In this position paper, the relevant works of

applying meta-heuristic algorithms for artificial neural network’s training are reviewed.

In addition, we survey the possibility of implementing meta-heuristic algorithms on

restricted Boltzmann machine’s (RBM) parameter training process.

The reminder of this paper is organized as follow: meta-heuristic algorithms

and their fundamental design constructs are introduced in Section 2. Section 3 describes

meta-heuristic algorithms are implemented on optimizing neural network training.

Section 4 shows a case of deep learning and restricted Boltzmann machine which could

be empowered by meta-heuristics. Discussion about the prospects of apply

metaheuristics on DL and conclusion are drawn in Section 5.

2 Meta-heuristic Algorithm

Meta-heuristic is another emerging trend of research, mostly found its application in

optimization including combinatorial optimization, constrained based optimization,

fixed-integer, continuous numeric and mixed-type search space optimization [9]. Meta-

stands for some high-level control logics, that controls some rules underneath or

embraced in an iterative operation which try to improve the current solution generation

after generation. It is a collectively concept of a series of algorithms including

evolutionary algorithm, the most famous one is Genetic algorithm (GA) [10]. Recently

a branch of population-based meta-heuristics has gained popularity and showed

effectiveness in stochastic optimization. Optimal or near optimal answers are almost

always guaranteed, by going through the search repeatedly through certain number of

iteration. The movements of the search agents are mostly naturally inspired or bio-

logical algorithm, foraging the food hunting patterns and/or social behavior of

insects/animals towards to global best situations which sets as the objective of the

search operation [11]. These search-oriented algorithms found success recently in many

optimization applications, from scientific engineering to enhancing data mining

methods. Lately, with the hype of big data analytics, and the rise of neural network in

the form of CNN being shown useful in DL within big data, meta-heuristics may again

shows its edge in probably complementing the shortcomings of CNN, improving its

ultimate performance like fitting a hand into glove.

Some of the most prevalent population-based meta-heuristics is Particle

Swarm Optimization (PSO) [12]; trajectory algorithm, such as Tabu search [13], and

so on. In this review paper, we focus mainly on the underlying logics of GA and PSO,

partly because these two are the most popular meta-heuristics that have demonstrated

their merits. Another reason is that GA and PSO represent two very fundamental

concepts in terms of the movement logics, how they converge and how the solutions

emerge through trying out heuristically alternative solutions in the search process. GA

on one hand, represents a tightly coupled evolutionary mechanism, having a population

of chromosomes that represent the solutions, being mutate, cross-over and the fittest

ones pass onto the future generations till only the few fittest solutions stay.

PSO on the other hand, work in similar approach but with an explicit concept

of separating global velocity and local velocity among the swarm of moving particles

(search agents). While the global velocity is controlling the search momentum towards

the best possible solution (to be found), the local velocity associate with each particle

enables some randomness and alternatives in the hope of finding better solutions just

than the current ones. In a way, PSO unifies two subtle objectives in the logic design,

namely local intensification (LI) and global exploration (GE) [14]. These two very

underlying forces which are usually embedded in the search mechanism empower the

overall search, often yielding good results. Since PSO was launched, and the two subtle

searching forces that complement each other towards the final goal were discovered, a

number of variants of metaheuristics was created in the meta-heuristic research

community. Many of the new variants are either extensions of PSO embracing the two

concepts of LI and GE or hybrids of the existing meta-heuristic algorithms,

interchanging some implementations of LI and GE.

The latter type of new variants which are hybrid, is founded on the

shortcomings of the original prototype where the algorithm is inspired by a certain

nature phenomenon. The original prototype normal would faithfully follow the salient

features of an animal or natural manifestation, thereby limiting its algorithmic efficacy

for mimicking the animal as closely as possible. As a result, standalone and original

prototype may work as efficiently as it is wished to be, leaving some rooms for

improvement by modifications.

Under this observation that mods are better than the original (they have to be

better in order to get the papers published), researchers have been trying to combine

multiple meta-heuristics in the hope of yielding some better results since it is already

known that no meta-heuristic alone is able to offer the best. In the process of thinking

of a new hybrid, the original meta-heuristic algorithm is dissected into different parts,

checking of its unique function(s) and how they were built suitable for some particular

types of complex problem. Blum and Roli [15] explained that the power of the meta-

heuristics search is somehow due to the dual efforts and cooperation between the local

exploitation and global exploration strategies. Figure 2 shows the dual steps are integral

part of the original metaheuristic algorithm, in general sense.

Fig. 2. LI and GE in a general meta-heuristic algorithmic logic.

By understanding these two underlying forces in the meta-heuristic design, it

helps finding suitable optimization constructs for improving any machine learning

algorithms, including CNN of course. GI is designed to continuously find a global

optimum from some afar positions of the search space. Therefore in some

metaheuristics the GI components enable the search agents to wide-spread the search

agents from their current positions through some random mechanism. So it is in the

hope that by venturing far away, the swarm is able to escape from being stuck at local

optimum as well as finding a better terrain undiscovered previously. On the other hand,

LI is designed to guide the search agents to scout intensively at the current proximity

for refining the locally best solution they have found so far.

Referring to the other trend of metaheuristics than hybrids, variants of PSO in

the names of some animals have subsequently been arisen. They can be considered as

enhanced versions of PSO, with unique features of keeping LI and GE explicitly

defined. For typical examples, are Wolf Search Algorithm (WSA) [16] and Elephant

Search Algorithm (ESA) [17] that have been recently proposed and they are considered

as “semi-swarm” meta-heuristics. The search agents by the semi-swarm design have

certain autonomous capacity focusing in LI, yet they cooperatively follow the

guidelines of GE to outreach for global exploration. Their pseudo codes are shown in

Figures 3, 4 and 5 respectively. In particular the LI and GE parts are highlighted in the

pseudo-codes showing their similarities, yet loosely coupled movements by the search

agents enforcing these two crucial search forces.

In Figure 3, it can be seen that PSO the global velocity and the individual

particles’ velocities are tightly coupled in the rule. By the design of WSA as shown in

Figure 4, WSA relaxes this coupling by allowing every wolf search agent to roam over

the search space individually by taking their local paths in various dimensions. They

sometimes merge when they are bound within certain visual ranges. At a random

chance, the wolf search agents jump out of their proximity for the sake of GE. At the

end, the search agents would unite into their nuclear family packs which eventually

would have migrated to the highest achievable solution (that has the maximum fitness

found so far by both GE and LI). In Figure 5, ESA is comprised of search agents of two

genders. Each gender group of elephant search agents will explicitly do GE and LI. The

two search forces are separately enforced by the two genders in ESA. The leader of the

female herd which has the local best fitness guides her peers in doing local search

intensively around the proximity. The male elephants venture far away to search for

terrains that may yield better fitness. When positions of higher fitness is found by the

male elephants, the female elephant herds will migrate over there. Unlike PSO and

WSA, the two underlying forces are being fulfilled diligently by two genders of

elephant groups, totally separately and autonomously. In addition to separation of GE

and LI, the unique design of ESA is all elephants follow a limited life-span. Aged

elephants will expire, be relinquished from the search process, and new elephants will

be born in locations which are inferred from a mix of best positions from their parents,

female group leaders and some randomness. This extra force, evolution, is shown in

Figure 4. To certain perspective, ESA carries the goodness of semi-swarm

metaheuristics with respect to GE and LI, and combine this virtue into some

evolutionary mechanism, ensuring the future generations progress into better solutions

than the existing ones. Such designs will hopefully shed some light into applying meta-

heuristic into optimizing DL tools such as CNN.

Fig. 3. Simplified version of PSO with local and global search efforts highlighted.

Fig. 4. Simplified version of WSA with local and global search efforts highlighted.

Fig. 5. Simplified version of ESA with local and global search efforts highlighted.

Depending on the complexity of the hyperparameter challenges in CNN

optimization and the presences of multi-modals (local optima), meta-heuristics ranging

from fully swarm, to semi-swarm and loosely coupled with evolutionary abilities are

available.

3 Applying Meta-heuristic Algorithm on Neural Network Training

There have been some debates among researchers in the computer science research

community, on the choice of optimization methods for optimizing shallow and deep

neural networks like CNN for instance. Some argued that meta-heuristic algorithms

should be used in lieu of classical optimization methods such as Gradient Descent,

Nesterov, Newton-Raphson etc., because meta-heuristics were designed to avoid

falling stuck at local minima.

 Researchers who are skeptical about the use of meta-heuristics usually share

the concern that local minima are not of a serious problem that needs to be heavily

optimized at the neural networks. The presences of local minima which are believed to

come in mild intensity and quantity are caused by some permutation of the neurons at

the hidden layers, depending on the symmetry of the neural network. It was supposed

that finding a good local minimum by minimizing the errors straightforwardly is good

enough. It is an over-kill using extensive efforts in searching for the global minima to

the very end. Moreover some are wary that overly optimizing a neural network limits

its flexibility, hence leading to overfitting the training data if metaheuristic is used or

excessively used. The overfitted neural network may become lack of generalization

power when compared to a neural network that was trained by gradient descent that

achieved a local minima which is good enough. When this happens some regularization

function would be required to keep the complexity of the model under check. To the

end of this, some researchers suggested using an appropriate kernel or radial basis

function provides simple and effective solution.

 Nevertheless researchers from the other school of thoughts believed that

applying meta-heuristic on neural network training has its edge on providing the weight

training to its optimum state. Like the epitome of a doctrine, the name meta-heuristic

consists of the terms “meta” and ‘‘heuristic” are Greek where, “meta” is “higher level”

or “beyond” and heuristics implies ‘‘to find”, ‘‘to know”, ‘‘to guide an investigation”

or ‘‘to discover”. Heuristics are simple logics to find best (or near-best) optimal

solutions which are on par with the absolute best (which is extremely difficult to find)

at a reasonable computational cost. In a nutshell, meta-heuristics are a collection of

simple but intelligent strategies which could fit into a wide range of application

scenarios for enhancing the efficiency of some heuristic procedures [18]. Optimizing

the configuration of neural network is one of such heuristic procedures.

By tapping on the searching ability of global optimum by meta-heuristic

algorithms, researchers aim to train a neural network to execute faster than traditional

gradient descent algorithm. In the following part, I reviewed four researchers’ work on

implementing meta-heuristic on neural network training including GA on NN, PSO on

NN and hybrid GA&PSO on NN.

 Though in the above-mentioned section, the basic constructs of most of the

meta-heuristics algorithms are GE and LI (in addition to initialization, stopping criteria

checking and other supporting functions), meta-heuristic operate by implementing

different forms of agents such as chromosome (GA), particles (PSO), fireflies (firefly

algorithm). These agents collectively keep moving close to the global optimum or near

global optimum through iterative search. Many strategies such as evolutionary strategy,

social behaviour and information exchange are implemented, thereby many versions

were made possible. Readers who want to probe into details of the variety of meta-

heuristics are referred to a latest review [19].

Artificial neural network (ANN) are traditionally constructed in layout of

multi-layered feed-forward neural network; some used back-propagation (BP) as error

feedback to modify the weights for training up the cognitive power of the network. The

weight training strategy has been traditionally gradient descent (GD). However, in the

literature, there have been numerous cases of applying meta-heuristic on optimizing

such traditional neural network for speeding up the training process. This is primarily

achieved by replacing the GD strategy with iterative evolutionary strategy or swarm

intelligence strategy by meta-heuristics [20, 21, 22, 23, 24].

Gudise, V. G., et al [20] compared the performance of feed-forward neural

network optimized by PSO and feed-forward neural network with BP, the experiment

result shows that feed-forward network with PSO is better than that with BP in terms

of non-linear function.

Leung, F. H., et al [24] showed their work on the efficacy of tuning up the

structure and parameters of a neural network using an improved genetic algorithm

(GA). The results indicate that the improved GA performs better than the standard GA

when the neural networks are being tested under some benchmarking functions.

Juang, C. F. [22] proposed a new evolutionary learning algorithm based on a

hybrid of genetic algorithm (GA) and particle swarm optimization (PSO), called

HGAPSO. It takes the best of the both types of meta-heuristics: swarming capability

and evolutionary capability. Defining the upper-half of the GA population as elites and

enhancing them by PSO, while the rest of the population are processed by GA, the

hybrid method outperforms PSO and GA individually in training a recurrent or fuzzy

neural network.

Meissner, M., et al [23] used Optimized Particle Swarm Optimization (OPSO)

to accelerate the training process of neural network. The main idea of OPSO is to

optimize the free parameters of the PSO by generating swarms within a swarm.

Applying the OPSO to optimize neural network training it aims to build a quantitative

model. OPSO approach produces a suitable parameter combination which is able to

improve the overall optimization performance.

Zhang, J. R., Zhang [21] proposed a hybrid algorithm of PSO coupled with BP

for neural network training. By leveraging the advantage of PSO’s global searching

ability as well as BP’s deep search capability, the hybrid algorithm showed very good

performance respective to convergent speed and convergent accuracy.

Optimizing shallow learning by traditional neural network approaches has

been shown successfully possible using the meta-heuristic methods as above-

mentioned. In contrast, DL by CNN is a relatively unexplored field. Very few papers

have been published except for one by [25] which used Simulated Annealing (SA)

algorithm to optimize the performance of CNN and showed improved results.

Nonetheless, there is a still good prospects in trying out different meta-heuristics for

optimizing CNN for DL, because the fundamental problems and solutions are about the

same: you have a number of unknown variables on hand, and meta-heuristics attempt

to offer the best possible solution.

Structures of deep learning model is similar to the traditional artificial neural

network, except for some modifications are implemented for better learning ability. For

instance, the CNN is a traditional ANN modified with pooling procession and the

structure of RBM is an undirected graph or a bidirectional neural network. DL model

shares similar models with neural network; more importantly, different training

algorithm may be called upon instead of gradient descent strategy. This warrants further

exploration into this research arena. Several important contributions which have been

mentioned about are elaborated as follow.

3.1 Genetic Algorithm on Neural Network
Leung et al [24] first tried implementing genetic algorithm (GA) on neural network

training in 2003. Though Leung et al may not be the pioneer in apply GA on neural

network, an improved version of GA that is made suitable for ANN is put forward.

Crossover operations, mutation operations and fitness function of GA are all re-defined,

custom-made. Firstly, when it comes to encoding the chromosome and perform the

crossover operation, four possible offspring candidates will be generated and the one

with the largest fitness value will be chosen as offspring. The four possible crossover

offspring are generated as regulations listed below:

𝑜𝑠𝑐
1 = [𝑜𝑠1

1, 𝑜𝑠2
1, … 𝑜𝑠𝑛

1] =
𝑝1 + 𝑝2

2

𝑜𝑠𝑐
2 = [𝑜𝑠1

2, 𝑜𝑠2
2, … 𝑜𝑠𝑛

2] = 𝑝𝑚𝑎𝑥(1 − 𝑤) + 𝑚𝑎𝑥(𝑝1, 𝑝2)𝑤

𝑜𝑠𝑐
3 = [𝑜𝑠1

3, 𝑜𝑠2
3, … 𝑜𝑠𝑛

3] = 𝑝𝑚𝑖𝑛(1 − 𝑤) + 𝑚𝑖𝑛(𝑝1, 𝑝2)𝑤

𝑜𝑠𝑐
4 = [𝑜𝑠1

4, 𝑜𝑠2
4, … 𝑜𝑠𝑛

4] =
(𝑝𝑚𝑖𝑛 + 𝑝𝑚𝑎𝑥)(1 − 𝑤) + (𝑝1 + 𝑝2)𝑤

2

where the pmax and pmin are calculated respectively according to the parameters of the

neural network by maximizing and minimizing them such as 𝑝𝑚𝑎𝑥 =
[𝑝𝑎𝑟𝑎𝑚𝑎𝑥

1 , 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
2 , . . . , 𝑝𝑎𝑟𝑎𝑚𝑎𝑥

𝑛], 𝑝𝑚𝑖𝑛 = [𝑝𝑎𝑟𝑎𝑚𝑖𝑛
1 , 𝑝𝑎𝑟𝑎𝑚𝑖𝑛

2 , … , 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑛]. For

example, Max([1,-1,4],[-3,3,2])=[1,3,4] and Min([1,-1,4],[-3,3,2])=[-3,-1,2]. Secondly,

the mutation operations are re-defined. The regulations are given below:

𝑜𝑠 = 𝑜𝑠 + [𝑏1∆𝑛𝑜𝑠1, 𝑏2∆𝑛𝑜𝑠2, … , 𝑏𝑛∆𝑛𝑜𝑠𝑛]

os is the chromosome with biggest fitness value in all four possible offspring. b1 random

equals to 0 or 1 and ∆𝑛𝑜𝑠𝑖 is random number making sure 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑖 ≤ 𝑜𝑠𝑖 + 𝑏𝑖∆𝑛𝑜𝑠𝑖 ≤

𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑖 . 𝑜𝑠′ is the final generation after crossover operation and mutation operation.

Thirdly, the fitness value is defined. By adding parameters in the neural

network mathematical expression, the actual output of GA-optimized neural network

yk equals to:

𝑦𝑘 = ∑ 𝛿(𝑠𝑗𝑘
2)𝑤𝑗𝑘𝑙𝑜𝑔𝑠𝑖𝑔 [∑ 𝛿(𝑠𝑖𝑗

1)𝑤𝑖𝑗𝑥𝑖 − 𝛿(𝑠𝑗
1𝑏𝑗

1)

𝑛𝑖

𝑖=1

] − 𝛿(𝑠𝑘
2)𝑙𝑜𝑔𝑠𝑖𝑔(𝑏𝑘

2)

𝑛ℎ

𝑗=1

in which k=1,2, .., nout, sij denotes link from ith neuron in input layer to jth neuron in

hidden layer, sjk denotes link from jth neuron in hidden layer to kth neuron in output

layer, wjk denotes weight between each neuron, 𝑏𝑘
1 and 𝑏𝑘

2 denote bias in input layer and

hidden layer respectively, nin, nh and nout denote the number of neurons of input layer,

hidden layer and output layer, respectively. The error of the whole network is defined

as mean of all chromosomes:

𝑒𝑟𝑟𝑜𝑟 = ∑
|𝑦𝑘 − 𝑦𝑘

𝑑|

𝑛𝑑

𝑛𝑜𝑢𝑡

𝑘=1

in which nd denotes the number of chromosome used in the experiment, 𝑦𝑘
𝑑 denotes the

desired output of output neuron k. Given the error of the network, GA is implemented

to optimize the network thus minimize the error. The fitness function is defined as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 + 𝑒𝑟𝑟𝑜𝑟

where the smaller the error and the bigger the fitness value. GA is implemented to find

the global optimum of the fitness function thus the parameter combinations of weight

w are the trained weight for the network.

3.2 Particle Swarm Optimization on Neural Network
Gudise and Venayagamoorthy [5] implemented PSO on neural network training in

2003. The fitness value of each particle (member) of the swarm is the value of the error

function evaluated at the current position of the particle and position vector of the article

corresponds to the weight matrix of the network.

Zhang et al [21] developed a hybrid algorithm of BP & PSO that could balance

training speed and accuracy. The particle swarm optimization algorithm was showed to

converge rapidly during the initial stages of a global search, but around global optimum,

the search process will become very slow. On the contrary, the gradient descending

method can achieve faster convergent speed around global optimum, and at the same

time, the convergent accuracy can be higher.

When the iteration process is approaching end and current best solution is near

global optimum, if the change of the weight in PSO is big, the result will vibrate

severely. Under this condition, Zhang supposed with the increase of iteration time, the

weight in PSO should decline with the iteration time’s increasing to narrow the search

range thus pay more attention to local search for global best. He suggest the weight

decline linearly first then decline nonlinearly as shown in Figure 6.

Fig. 6. Change of inertia weight through linear and non-linear curve

The concrete working process is summarized as follow: For all the particles

pi, they have a global best location pglobal_best. If the pglobal_best keeps unchanged for over

10 generations, that may infer the PSO pays too much time on global search thus BP is

implemented for pglobal_best to deep search for a better solution.

Similar to GA’s implementation in neural network, the fitness function defined

is also based on whole network’s error and to minimize the error as the optimization of

PSO. The learning rate 𝜇 of neural network is also controlled in the algorithm, as

𝜇 = 𝑘 × 𝑒−𝜇0∙𝑒𝑝𝑜𝑐ℎ

where 𝜇 is learning rate, k and 𝜇0 are constants, epoch is a variable that represents

iterative times, through adjusting k and 𝜇0, the acceleration and deceleration of learning

rate can be controlled.

By implementing the strategy that BP focusing on deep searching and PSO

focusing on global searching, the hybrid algorithm has a very good performance.

3.3 Hybrid GA & PSO on Neural Network
Juang et al [22] proposed in 2004, hybrid genetic algorithm and particle swarm

optimization for recurrent network’s training.

The hybrid algorithm called HGAPSO is put forward because the learning

performance of GA may be unsatisfactory for complex problems. In addition, for the

learning of recurrent network weights, many possible solutions exist. Two individuals

with high fitness values are likely to have dissimilar set of weights, and the

recombination may result in offspring with poor performance.

Juang put forward a conception of “elite” of the first half to enhance the next

generation’s performance. In each generation, after the fitness values of all the

individuals in the same population are calculated, the top-half best-performing ones are

marked. These individuals are regarded as elites.

In every epoch, the worse half of the chromosome is discarded. The better half

is chosen for reproduction through PSO’s enhancement. All elite chromosomes are

regarded as particles in PSO. By performing PSO on the elites, we may avoid the

premature convergence in elite GAs and increase the search ability. Half of the

population in the next generation are occupied by the enhanced individuals, the others

by crossover operation. The working flow of algorithm has mechanism of evolving the

offsprings as well as enhanced elites through crossover and mutation.

The crossover operation of HGAPSO is similar to normal GA, random

selecting site on chromosome and exchange the sited piece of chromosome to finish the

crossover operation. In HGAPSO, uniform mutation is adopted, that is, the mutated

gene is drawn randomly, uniformly from the corresponding search interval.

3.4 Simulated Annealing on CNN
Rere et al [25] claimed to be the first which applied a meta-heuristic called Simulate

Annealing (SA) on optimizing CNN for improved performance. Their results showed

that SA is effective on optimizing CNN with better results than the original CNN

although it comes with an increase of computation time cost. The SA works by

progressively improving the solution; the logics are outlined as follow: Step 1. Encode

the initial solution vector at random, compute the objective function; Step 2. Initialize

the temperature which is a crucial parameter relating to the convergence speed and

hitting onto the global optimum; Step 3. Pick a new solution in the neighborhood of the

current position. New solutions are generated depending on T – this is similar to the

local intensification; Step 4. Evaluate the goodness of the new solution candidates.

Update the global best if a better candidate is found; Step 5. Periodically lower the

temperature during the search process. So that the chance of receiving deteriorating

moves drops, so the search is converging; Step 6. Repeat the above steps until the

stopping criterion is satisfied.

 In the meta-heuristic search design, SA is trying to minimize the standard error

on fitness function of the vector solution and the training set. The fitness function is

formulated as follow:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0.5 × √
∑ (|𝑦 − 𝑦′|)2𝑁

𝑖=1

𝑁

where 𝑦′ is the expected output, y is the actual output, N is the amount of training

samples. SA should converge hence stop when the minimum neural network

complexity have attained the most optimal (lowest) state and the approximate error

accuracy indicates a very low value. In the optimization process, the CNN computes

the weights and the bias of the neural network, the results are past from the last layers

to evaluate the lost function. This is being proceeded as SA tries to find the best solution

vector, like a wrapper process. SA attempts at scouting for a better solution in each

iteration by randomly picking a new solution candidate from the proximity of the

current solution by adding some random ∆x. This optimization is relatively simple,

because only the last layer of the CNN is used to instill the solution vector, where the

convolution part is almost left untouched. The SA seems doing only local search, and

it does not require a large number of search agents, nor doing much of global

exploration. The results show that the larger the neighborhood sizes (10, 20 and 50) the

better the accuracy is achieved. However, the gain in accuracy was most obvious in

small numbers of epoch, from 1 to 9. From epoch 10 onwards, the marginal difference

in performance between the original CNN and SA applied on CNN diminish. The time

cost however becomes more than double at epoch 10 between the CNN and SA+CNN

with 50 neighbor size. This is doubtful where SA is a suitable meta-heuristic to be

applied on CNN especially if the epoch reaches a large number in magnitudes greater

than 10 for some complex big data analytics. This work nevertheless promotes the use

of meta-heuristics, researchers would be encouraged to try other meta-heuristics.

4 Deep Learning and Restricted Boltzmann Machine

When dealing with image classification or other problems, traditional method is using

pre-processing transforming data as input values for neural network learning while

using deep learning method for classification, raw data (pixel values) are used as input

values. This will keep to the maximum extent protecting all information regardless of

useful or not from being destroyed by extraction methods. The most advantage lies that

all the extraction methods are based on expert knowledge and expert choice thus are

not extensible to other problems, while deep learning algorithm can overcome these

limitations by using all data with its powerful processing ability. A convolutional neural

network (CNN) is shown in Figure 7.

Fig. 7 Typical architecture of a convolutional neural network

The Boltzmann machine only has two layers of neurons, namely input and output layers

respectively. The first layer is the input layer and the second layer is the output layer,

although the structure is very simple only contains two layers, but it mathematical

function in it is not simple. In here we need to introduce the following probability

equation to know the RBM.

From the equation we are knowing there are three item in it, they are the energy

of the visible layer neural, the energy of the hidden layer neural, and the energy is

consisted of the two layer. From the energy function of the RBM, we can see there are

three kinds of parameters lie in the RBM, different from the neural network, each

Neuron has a parameter too, but for the neural network only the connection of two

layers has the parameters. Also, the neural network does not carry any energy function.

They use the exponential function to express the potential function. There are also the

probabilities existing in the RBM. They work exactly in the same way as the two kind

of the probabilities such as p(v|h) and p(h|v). It has a similarity with probability graph

model in details, examples are Bayesian network and Markov network. It looks like a

Bayesian network because of the conditional probability. On the other hand it does not

look like a Bayesian because of the two directions probabilities. These probabilities are

lying on the two variables that have only one direction.

Compared with the Markov network, the RBM seems to be having a little bit

relation with it, because the RBM has the energy function just as the Markov network.

But it is not so much alike because the RBM’s variable has parameter, and the Markov

network does not have any parameter. Furthermore, the Markov network does not have

conditional probability because it has no direction but just the interaction. From the

graph’s perspective, variables in the Markov network use cliques or clusters to

represent the relations of close and communicated variables. It uses the production of

the potentials of the clique to express the joint probability instead of conditional

probability just like the RBM. Its input data are the kind of the Boolean data, within the

range between 0 and 1.

The training way of the RBM is to maximize the probability of the visible

layer, and to generate the distribution of the input data. RBM is a kind of special

Markov random function and a special kind of Boltzmann machine. Its graphical model

is corresponding to the factor product analysis. Different from the probability graphical

model, the RBM’s joint distribution directly uses the energy function of both visible

layer v and hidden layer h to define instead of potential of it given as

𝐸(𝑣, ℎ) = −𝑎𝑇𝑣 − 𝑏𝑇ℎ − 𝑣𝑇𝑊ℎ

𝑃(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ)

Later we will know that Z is the partition function defined as the sum of

𝑒−𝐸(𝑣,ℎ) over all the possible configurations. In other words, it is just a constant

normalizing the sum over all the possible hidden layer configurations.

𝑃(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ

The hidden unit activations are mutually independent given the activations. That is, for

m visible and n hidden units, the conditional probability of a configuration of the visible

unit v, given a configuration

𝑃(𝑣|ℎ) = ∏ 𝑃(𝑣𝑖|ℎ)

𝑚

𝑖=1

Conversely, the conditional probability of h given v is P(h|v). Our goal is to

infer the weights that maximize the marginal of the visible, in details we can step

through the following equation to infer and learn the RBM.

arg
𝑀𝑎𝑥

𝑤
𝐸 [∑ 𝑙𝑜𝑔𝑃(𝑣)

𝑣∈𝑉

]

As for the training algorithm, the main idea is also applied gradient descent

idea into RBM. Hinton put forward Contrastive Divergence [26] as a faster learning

algorithm. Firstly, the derivative of the log probability of a training vector with respect

to a weight is computed as

𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑤𝑖𝑗

= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙

where the angle brackets are used to denote expectations under the distribution

specified by the subscript that follows. This leads to a very simple learning rule for

performing stochastic steepest ascent in the log probability of the training data:

∆𝑤𝑖𝑗 = 𝜀(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙)

where 𝜀 is a learning rate.

Because there are no direct connections between hidden units in an RBM, it is

very easy to get an unbiased sample of 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎. Given a randomly selected training

image, v, the binary state, hj, of each hidden unit, j, is set to 1 with probability

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎 (𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗

𝑖

)

where bj is the current state of hidden neuron j, (x) is the logistic sigmoid function

𝜎(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
. vjhj is then an unbiased sample. The contrastive divergence (CD) is

used to calculate the latter part 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 . Details can be found in their respective

publications.

Considering the complicated computation of implementing CD, the training

process of RBM is not easy. Under this condition, implementing meta-heuristic on

RBM training to substitute CD is of high possibility.

3 Discussion and Conclusion

Meta-heuristic has successfully implemented in neural network training in the past

years. The algorithm used includes GA, PSO, their hybrids as well as many other meta-

heuristic algorithms. Moreover, feed-forward back-propagation neural network and

spiking neural network [27] are all trained with tests on famous classification problems,

where benchmarking their performance is easy. Given the rises of these two emerging

trends of meta-heuristics and deep learning which are gaining momentums both in

academic research communities and industries, these two trends do cross-road. At this

junction, this paper contributes as a timely review on how meta-heuristics contribute to

optimizing deep learning tools such as convolutional neural network (CNN).

The basic structure of deep learning network is similar to traditional neural

network. CNN is a special neural network with different weight computation

regulations and Restricted Boltzmann Machine (RBM) is a weighted bio-dimensional

neural network or bio-dimensional graph. Their training processes are also mainly

executed through iterative formula on error which is similar to traditional neural

network’s training. Given their iterative natures in execution and the fact that a neural

network (at least a part of it) could be coded as a solution vector, it is natural to tap onto

the power of meta-heuristics to optimize their layouts, configurations, weights

computations and so forth.

In the near future, it is anticipated that it is of high possibility of applying meta-

heuristic in deep learning to speed up training without declining performance.

However, relevant publications along this direction are still rare. Nevertheless the

interests which are expressed in terms of Google Trends show some take-off. In Figure

8, it is seen that the four trends are indeed converging to about the same level of

popularity in 2016 and beyond. The four trends are by the keywords of deep learning,

machine learning, mathematical optimization and big data. Interestedly, optimization

was very much hyped up in the early millennium and now it is approach a steady state.

Fig. 8 Google Trend screenshot that shows the popularities of the four fields of study

from 2004 till present

Fig. 9 Google Trend screenshot that shows the popularities of the four fields of study

from the past 12 months

The other three trends, especially big data rose up from nowhere since 2011,

exceeding the rest by now. The trends of machine learning and deep learning share the

same curve patterns. These trends imply sufficient interest levels for these techniques

to fuse and cross-apply over one another. In Figure 7, which is the Google Trend result

of these four fields of study, the timeline is of past 12 months. It is apparent to see that

they do share similar patterns and fluctuation over time, though they are setting at

different interest levels.

Furthermore, there still exists a question that goes under today’s computation

ability, especially the GPU parallel computing whose computation ability is many times

stronger than CPU that has been widely used in industrial area [28]. This would further

propel the use of meta-heuristic in solving DL problems. The original design of meta-

heuristics especially those population-based search algorithms, are founded on parallel

processing. The search agents are supposed to operate in parallel, thereby maximizing

their true power in GPU environment. When the time cost overhead is removed from

the design consideration in GPU environment, searching for near optimal results by

meta-heuristic is still attractive as they can offer an optimal configuration of CNN. It is

also anticipated that the parameters and structures of CNN will only become

increasingly complex when they are applied to solve very complex real-life problems

in the big data analytic era. It is foreseen that classical meta-heuristics such as PSO and

GA will be first applied to solve DL problems, followed by variants and hybrids of

those. While most of the papers in the first wave will concentrate on local

intensification in scouting for new solution candidates by adding some randomness and

Levy flight distribution, more are expected to follow which embrace both local

intensification and global exploration. GE will be useful only when the search space is

sufficiently huge, e.g. self-adaptive versions of meta-heuristics such as Bat algorithm

[29] and Wolf search algorithm [30], the search space is the summation of the

dimensions of the existing possible solutions and the allowable ranges of the parameters

values. This advanced meta-heuristic technique translate to parameter-free optimization

algorithms which are suitable to deal with only very complex neural network

configuration and performance tuning problems. Then again, considering the big

challenges of big data analytics in solving big problems (e.g. analyzing in real-time of

road traffic optimization problems using Internet-of-Things), corresponding powerful

DL tools should be equipped with effective optimization strategies.

Acknowledgement

The authors are thankful for the financial support from the Research Grant called "A

Scalable Data Stream Mining Methodology: Stream-based Holistic Analytics and

Reasoning in Parallel", Grant no. FDCT/126/2014/A3, offered by the University of

Macau, FST, RDAO and the FDCT of Macau SAR government.

References

1. Hinton, G. E., Osindero, S., and Teh, Y. W. "A fast learning algorithm for deep belief nets",

Neural Computation. 2006;18(7):1527-1554

2. Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. "Deep learning: yesterday, today, and

tomorrow", Journal of Computer Research and Development. 2013;50(9):1799-1804

3. ILSVRC2012. Large Scale Visual Recognition Challenge 2012 [Internet].[Updated 2013-

08-01]. Available from: http:/www.imagenet. Org/challenges/LSVRC/2012/

4. Izadinia, Hamid, et al. "Deep classifiers from image tags in the wild". In: Proceedings of the

2015 Workshop on Community-Organized Multimodal Mining: Opportunities for Novel

Solutions; ACM; 2015

5. Gudise, V. G. and Venayagamoorthy, G. K. "Comparison of particle swarm optimization

and back propagation as training algorithms for neural networks". In: Proceedings of In

Swarm Intelligence Symposium SIS'03; 2006. p. 110-117

6. Marc Claesen, Bart De Moor, "Hyperparameter Search in Machine Learning", MIC 2015:

The XI Metaheuristics International Conference, Agadir, June 7-10, 2015, pp.14-1 to 14-5

7. Steven R. Young, Derek C. Rose, Thomas P. Karnowski, Seung-Hwan Lim, Robert M.

Patton, "Optimizing deep learning hyper-parameters through an evolutionary algorithm",

Proceedings of the Workshop on Machine Learning in High-Performance Computing

Environments, ACM, 2015

8. Papa, Joao P.; Rosa, Gustavo H.; Marana, Aparecido N.; Scheirer, Walter; Cox, David D.

"Model selection for Discriminative Restricted Boltzmann Machines through meta-heuristic

techniques". Journal of Computational Science, v.9, SI, p.14-18, July 2015.

9. Xin-She Yang, "Engineering Optimization: An Introduction with Metaheuristic

Applications", Wiley, ISBN: 978-0-470-58246-6, 347 pages, June 2010

10. Goldberg, D. E. and Holland, J. H. "Genetic algorithms and machine learning". Machine

Learning. 1988;3(2):95-99.

11. Iztok Fister Jr., Xin-She Yang, Iztok Fister, Janez Brest, Dusan Fister, "A Brief Review of

Nature-Inspired Algorithms for Optimization

", ELEKTROTEHNISKI VESTNIK, 80(3): 1–7, 2013

12. Kennedy, J. "Particle Swarm Optimization"; Springer, USA; 2010. p.760-766

13. Glover, F. "Tabu search-part I". ORSA Journal on Computing. 1989;1(3):190-206

14. Xin-She Yang, Suash Deb, Simon Fong, "Metaheuristic Algorithms: Optimal Balance of

Intensification and Diversification", Applied Mathematics & Information Sciences, 8(3),

May 2014, pp.1-7

15. C. Blum, and A. Roli, "Metaheuristics in combinatorial optimization: Overview and

conceptual comparison", ACM Computing Surveys, Volume 35, Issue 3, 2003, pp.268–308

16. Simon Fong, Suash Deb, Xin-She Yang, "A heuristic optimization method inspired by wolf

preying behavior", Neural Computing and Applications 26 (7), Springer, pp.1725-1738

17. Suash Deb, Simon Fong, Zhonghuan Tian, "Elephant Search Algorithm for optimization

problems", 2015 Tenth International Conference on Digital Information Management

(ICDIM), IEEE, Jeju, 21-23 Oct. 2015, pp.249-255

18. Beheshti, Z. and Shamsuddin, S. M. H. "A review of population-based meta-heuristic

algorithms". International Journal of Advances in Soft Computing & Its Applications,

2013;5(1):1-35.

19. Simon Fong, Xi Wang, Qiwen Xu, Raymond Wong, Jinan Fiaidhi, Sabah Mohammed,

"Recent advances in metaheuristic algorithms: Does the Makara dragon exist?", The Journal

of Supercomputing, Springer, 24 December 2015, pp.1-23

20. Gudise, V. G. and Venayagamoorthy, G. K. "Comparison of particle swarm optimization

and back propagation as training algorithms for neural networks". In: Proceedings of In

Swarm Intelligence Symposium SIS'03; 2006. p. 110-117

21. Zhang, J. R., Zhang, J., Lok, T. M., and Lyu, M. R. "A hybrid particle swarm optimization–

back-propagation algorithm for feed forward neural network training". Applied

Mathematics and Computation. 2007;185(2):1026-1037

22. Juang, C. F. "A hybrid of genetic algorithm and particle swarm optimization for recurrent

network design". Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

2004;34(2):997-1006

23. Meissner, M., Schmuker, M., and Schneider, G. "Optimized particle swarm optimization

(OPSO) and its application to artificial neural network training". BMC Bioinformatics.

2006;7(1):125

24. Leung, F. H., Lam, H. K., Ling, S. H., and Tam, P. K. "Tuning of the structure and

parameters of a neural network using an improved genetic algorithm". IEEE Transactions

on Neural Networks. 2003;14(1):79-88

25. L.M. Rasdi Rere, Mohamad Ivan Fanany, Aniati Murni Arymurthy, "Simulated Annealing

Algorithm for Deep Learning", The Third Information Systems International Conference,

Procedia Computer Science 72 (2015), pp.137–144

26. Hinton, G. E., "Training products of experts by minimizing contrastive divergence.", Neural

Computing, 2002 Aug;14(8):1771-800

27. Maass, W. "Networks of spiking neurons: The third generation of neural network models".

Neural Networks. 1997;10(9):1659-1671.

28. Simon Fong, Ricardo Brito, Kyungeun Cho, Wei Song, Raymond Wong, Jinan Fiaidhi,

Sabah Mohammed, "GPU-enabled back-propagation artificial neural network for digit

recognition in parallel", The Journal of Supercomputing, Springer, 10 February 2016, pp.1-

19

29. Iztok Fister Jr., Simon Fong, Janez Brest, and Iztok Fister, "A Novel Hybrid Self-Adaptive

Bat Algorithm," The Scientific World Journal, vol. 2014, Article ID 709738, 12 pages, 2014.

doi:10.1155/2014/709738

30. Qun Song, Simon Fong, Rui Tang, "Self-Adaptive Wolf Search Algorithm", 5th

International Congress on Advanced Applied Informatics, July 10-14, 2016, Kumamoto

City International Center, Kumamoto, Japan

Yang
Typewriter
25

