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A B S T R A C T

In this paper, we provide a comprehensive analysis of the time-varying interdependence among the
economic cycles of the major world economies during the post-Great Moderation period. We document
a significant increase in the global business cycle interdependence occurred in the early 2000s. Such
increase is mainly attributed to the emerging market economies, since their business cycles became more
synchronized with the rest of the world around that time. Moreover, we find that the increase in global
interdependence is highly related to decreasing differences in sectoral composition among countries.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Recent decades have witnessed increased globalization of the
world economy associated with economic and financial integration
among countries. On the one hand, economic and financial integra-
tion may exert a positive effect on economic growth by reducing
transaction costs, ameliorating information asymmetries, facilitating
specialization among countries according to their comparative
advantage, and facilitating the transfer of resources across countries.
On the other hand, economic and financial integration, which is
associated with high business cycle interdependence, may increase
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global systemic risk, since country-specific shocks can be rapidly
transmitted to other economies.

The degree of interdependence between the economy of a
given country and the rest of the world may also experience
significant changes over time due to uncountable number of reasons,
such as economic unions, trade agreements, financial liberalization,
just to mention a few. Therefore, understanding the patterns and
mechanisms governing world economic interdependence is crucial
for policy makers and investors to evaluate the degree of exposure
that a given country has to external shocks.

Several studies have focused on assessing changes in the degree
of global business cycle synchronization. Kose et al. (2012) and Kose
et al. (2003) focus on assessing the variability of country GDP growth
explained by common components, they use linear dynamic factor
models (DFM) to assess changes in synchronization by splitting the
data into sub-samples. Del Negro and Otrok (2008) proceed in a
similar way, but rely on time-varying parameters DFM to assess
endogenous changes. Since one of the defining characteristics of the
business cycle is its asymmetric nature, Burns and Mitchell (1946),
the degree and speed of the business cycle shocks transmission
may also depend on the economic phase that a given country faces
(recession or expansion). To account for such nonlinear dynamics,
other studies have focused on assessing the bilateral synchroniza-
tion between cycles, defined as the alternation of expansionary and
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recessionary phases, see Harding and Pagan (1999) and Camacho
et al. (2008). Information about bilateral synchronization is useful
to identify groups of countries following similar business cycle pat-
terns and to explain those patterns. Although the frameworks used in
these studies provide an overall assessment of the interdependence
between the economic cycles of a set of countries, such assessment
is constant over time. Therefore, to identify potential changes in the
interdependence of cycles the sample has to be splitted on a given
date, which is usually controversial.

Another important issue is assessing the main determinants of
business cycle interdependence. To address this issue most of the
studies in the literature have used the correlation of GDP growth
(or de-trended GDP) between pairs of countries as a measure of
business cycle synchronization and relied on cross-section analy-
sis to assess its main determinants. Previous studies find a positive
relationship between business cycle synchronization and trade
(Imbs, 2004), financial integration (Frankel and Rose, 1998), cur-
rency unions (Rose and Engel, 2002), sectoral composition, pub-
lic sector size (Camacho et al., 2008), institutional environment
and cultural factors (Altug and Canova, 2012). Also the determi-
nants may vary across sets of countries. Imbs (2006) and Clark and
Van Wincoop (2001) find high synchronization between financially
open developing countries and the G7. Canova and Ciccarelli (2012)
and Canova and Schlaepfer (2013) analyze business cycle interde-
pendence among Mediterranean countries and find that traditional
transmission channels, such as trade and financial integration, are
not very important determinants of business cycle interdependence
in this region.

Although these studies contribute to a better understanding of
the factors influencing business cycle interdependence, they have
two important limitations. First, none of these studies account for
model uncertainty, which is motivated by the lack of consensus
in the theoretical and empirical business cycle literature regard-
ing the main factors driving business cycle co-movement. Instead,
these studies only rely on small pre-determined sets of potential
determinants and assess their corresponding statistical significance,
potentially incurring in a problem of omitted variables, which may
yield bias estimates. As suggested in Sala-i-Martin et al. (2004), a
natural way to think about model uncertainty is to admit that we do
not know which model is “true” and, instead, attach probabilities to
different models. Second, these studies use time-invariant measures
of synchronization and therefore, are not able to identify the sources
of potential changes in global business cycle interdependence. More-
over, if synchronization patterns and their potential determinants
experience significant variation over time, a cross-sectional regres-
sion analysis may yield misleading insights about the underlying
factors driving business cycle interdependence.

This paper analyzes the dynamics of global business cycle inter-
dependence from different perspectives and assesses their main
explanatory factors, accounting for the aforementioned issues. To
study global synchronization from a disaggregated perspective, we
rely on bilateral synchronizations and consider the time-varying
index of business cycle interdependence recently proposed by
Leiva-Leon (2016). This index endogenously identifies changes in the
synchronization of economic cycles accounting for the non-linearity
inherent to the alternation between expansions and recessions.
To measure global synchronization from a unified perspective, we
propose a nonlinear dynamic factor model that allows us to endoge-
nously identify changes in the degree of comovement between a
given country and the world business cycle, taking into account
its expansionary and recessionary dynamics. This is achieved by
allowing the factor to follow a global regime switching process and
the loadings to be time-varying.

Our study proceeds in two steps. First, the dynamic interdepen-
dence between the main world economies is rigorously analyzed
from intra-group, inter-group and global perspectives. Moreover, the

proposed framework allows us to assess changes in the propagation
pattern of business cycle shocks relying on network analysis. Second,
after describing the time-varying patterns of global business cycle
interdependence, we proceed to explain them with the traditional
determinants in the literature. However, to account for model uncer-
tain, we use a Bayesian model averaging (BMA) panel data approach.
To the best of our knowledge, this is the first study that addresses
model uncertainty in identifying the main drivers of business cycle
interdependence over time.

Our main results can be summarized as follows. First, we
document a significant and gradual increase in world business cycle
synchronization. Specifically, global interdependence increased
during the recent globalization period, since the early 2000s.1 Sec-
ond, in addressing which countries have contributed the most to
such increase, we perform a cluster analysis and find that countries
can be grouped into four clusters, relatively stable over time: a Euro
area cluster, an Anglo-Saxon cluster, an Asian Tigers cluster, and an
emerging markets cluster. We find that the significant increase in
global business cycle interdependence is mainly attributed to the
emerging economies. Third, a network analysis of the transmission
of business cycle shocks discloses that when countries become more
synchronized with the rest of the world, they are more prone to
recessionary phases than to expansionary phases. Fourth, the most
robust determinants of business cycle co-movement are financial
openness, bilateral trade, government expenditure, liquid liabilities
and human capital. Fifth, the increase in global interdependence is
mainly explained by decreasing differences in sectoral composition
among countries.

In what follows, in Section 2 we study the changes of business
cycle interdependence from inter-group, intra-group and global per-
spectives. In Section 3, we focus on assessing the factors driving the
changes in global business cycle interdependence. Finally, Section 4
concludes the paper.

2. Changes in business cycle interdependence

This section provides a comprehensive analysis of the time-
varying interdependence among the business cycles of the major
world economies listed in Table 1.2 Unlike previous related studies,
we rely on measures of synchronization that allow for non-linear
dynamics inherent in expansionary and recessionary phases. First,
we construct global synchronization measures to assess potential
changes in the overall interdependence among countries over time.
Second, we classify countries based on their cyclical fluctuations and
assess the main sources of changes in global interdependence. Third,
we use methods for social network analysis to evaluate the rela-
tive influence of each country on the dynamics of world business
cycles.

2.1. Measuring global synchronization

We rely on an extension of the approach proposed in Leiva-Leon
(2015) to evaluate changes in the synchronization of business cycle
phases. This methodology allows us to measure the synchroniza-
tion in economic cycles between pairs of countries over time, taking
into account the asymmetric nature of business cycles, i.e., non-
linear dynamics, and potential breaks in volatility, as documented in
Doyle and Faust (2005).3 The methodology consists in assessing the

1 This result is consistent with Canova and Schlaepfer (2013) and Imbs (2006).
2 We consider this list of countries because we prefer to use quarterly GDP data,

instead of annual, to obtain more precise inferences about expansions and recessions.
3 Using Monte Carlo experiments and an application for the economic activity of

U.S. states, Leiva-Leon (2015) shows that this methodology is useful for tracking
changes in synchronization. This framework is also applied to analyze the interdepen-
dence among U.S. industrial cycles in Camacho and Leiva-Leon (2014).
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Table 1
List of countries.

Country ISO code Country ISO code

Argentina AR Malaysia MY
Australia AU Mexico MX
Austria AT Netherlands NL
Belgium BE New Zealand NZ
Brazil BR Norway NO
Bulgaria BG Philippines PH
Canada CA Portugal PT
Chile CL Romania RO
China CN Singapore SG
Denmark DK South Africa ZA
Finland FI South Korea KR
France FR Spain ES
Germany DE Sweden SE
Greece GR Switzerland CH
Hong Kong HK Taiwan TW
Iceland IS Thailand TH
Indonesia ID Turkey TR
Iraq IQ United Kingdom GB
Ireland IE United States US
Italy IT Venezuela VE
Japan JP Africaa AA
Luxembourg LU

a Because of the lack of data on real GDP for African countries, this series corre-
sponds to an index of the overall economic activity of Africa.

time-varying dependency relationship between the latent variables
governing bivariate Markov-switching specifications.

[
ya,t

yb,t

]
=

[
la,0 + la,1sa,t

lb,0 + lb,1sb,t

]
+

[
ea,t

eb,t

]
, (1)

where yi,t is the real GDP growth rate of country i; si,t is an unobserv-
able state variable that indicates the phase of yi,t, for i = a, b. The
innovations et = [ea,t, eb,t]′ are distributed as et ∼ N(0,Yt), where

Yt = Y0(1 − dt) + Y1dt (2)

and dt is an unobserved state variable that indicates the regimes of
volatility.

The state variables sa,t and sb,t evolve according to first-order
Markov chains with transition probabilities:

p (sk,t = jk|sk,t−1 = ik) = pk
ij, for ik, jk = 0, 1 and k = a, b. (3)

The expected growth of country i during a recessionary phase, i.e.,
when si,t = 0, is given by E(yi,t|si,t = 0) = l i,0, while its growth in
expansionary phase, i.e., when si,t = 1, is E(yi,t|si,t = 1) = l i,0 + l i,1,
for i = a, b. The state variable dt evolves according to a first-order
Markov chain, independent from the state variables sa,t and sb,t, and
with transition probabilities:

p (dt = 1|dt−1 = 1) = pd (4)

p (dt = 0|dt−1 = 0) = 1. (5)

In order to account for a potential structural break in volatility, we
follow Barnett et al. (2016) and truncate one of the transition prob-
abilities to model an absorbing state. Accordingly, the covariance
matrix of the innovations during a low volatility regime is given

by E(ete
′
t|dt = 0) = Y0, while during a high volatility regime, the

covariance matrix is defined as E (ete
′
t|dt = 1) = Y1.4

The primary aim of the framework is to obtain the synchroniza-
tion between the state variables sa,t and sb,t in order to assess whether
countries a and b share the same business cycle phase at time t:

sync(sa,t , sb,t) = p (sa,t = sb,t) , for t = 1, . . . , T. (6)

Although the relationship between sa,t and sb,t is unknown, we can
model the two extreme cases, as in Harding and Pagan (1999), and
express the joint probability of the state variables as follows:

i) If sa,t and sb,t are fully independent, then

p (sa,t = ja, sb,t = jb, dt = l) = p (sa,t = ja) p (sb,t = jb) p (dt = l) .

(7)

ii) If sa,t and sb,t are totally dependent, then sa,t = sb,t = rab,t;
hence,

p (sa,t = ja, sb,t = jb, dt = l) = p (rab,t = jab) p (dt = l) . (8)

To infer p(sa,t = ja, sb,t = jb, dt = l), Leiva-Leon (2015) enlarges
the setting by introducing an additional state variable, vab,t, which
facilitates the assessment of the dependency relationship between
sa,t and sb,t. This state variable, vab,t, is defined as:

vab,t =
{

0 If sa,t and sb,t are fully independent
1 If sa,t and sb,t are completely dependent

, (9)

where vab,t follows a Markov process with transition probabilities:

p (vab,t = jv|vab,t−1 = iv) = qab
ij , for iv, jv = 0, 1. (10)

By relying on p(sa,t = ja, sb,t = jb, dt = l|vab,t = jv), that is, the joint
probability of sa,t, sb,t, and dt conditional on vt, inferences regarding
the bivariate dynamics of the model in Eq. (1) can be expressed as a
weighted average between the two extreme cases:

p (sa,t = ja, sb,t = jb, dt = l) = p (vab,t = 1) p (rab,t = jab) p (dt = l)

+(1 − p (vab,t = 1)) p (sa,t = ja) p (sb,t = jb) p (dt = l) , (11)

where the weights are endogenously determined by

p (vab,t = 1) = da,b
t . (12)

Notice that if dab
t is close to one, then sa,t and sb,t are sharing similar

dynamics; by contrast, dab
t is close to zero, then sa,t and sb,t are fol-

lowing independent patterns at time t. Therefore, dab
t provides a

measure of the degree of synchronicity in the business cycle phases
between countries a and b for every period of time. The parame-
ters are estimated using Bayesian methods, Gibbs sampling, see Kim
and Nelson (1999). The filtering algorithm that is used to obtain the
inferences relies on an extension of the Hamilton’s (1994) filter. For
a detailed description of the filtering algorithm, see Appendix A.

To illustrate how the model’s output should be interpreted, we
present two cases. First, we analyze the case of Canada and Mexico,

4 The probability that dt will switch from state 1 (high volatility regime), at an
unknown change point t, to state 0 (low volatility regime), at time t + 1, is greater
than zero. However, once the economy switches to state 0, it will stay at this state
permanently.
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Fig. 1. Business cycle interdependence between Canada and Mexico. Note: The results shown in the figure come from the bivariate Markov-switching model for the real GDP
growth of Mexico and Canada. The sample period is 1981:Q1–2013:Q2.

shown in Fig. 1. The input of the model consists in the real GDP
growth of both countries, yCA,t and yMX,t, while the model’s output
consists in the recession probabilities for Canada and Mexico and
the time-varying synchronization of their cycles, dCA,MX

t , which has
significantly increased during the recent globalization era, i.e., from
1995 onward. Before 1995, both economies experienced expansions
and recessions at different points of time. However, after 1995, the
probability of recession was low in both countries, and it simultane-
ously increased during the Great Recession of 2008–2009, as can be
observed in the top right chart of the figure. This increase in may
be highly influenced by the North American Free Trade Agreement,
which came into force on January 1994. The model also provides
inference about a change in the covariance matrix of the innovations
driving real GDP growth of both countries, indicating that since the
mid 2000s shocks hitting Canada and Mexico have experienced less
volatile dynamics.

We also analyze the case of Australia and New Zealand, shown
in Fig. 2. These economies experienced low levels of synchroniza-
tion during the 1980s, but from the 1990s onward, their business
cycle phases tend to experience similar dynamics. This is reflected
in the increased synchronization plotted in the bottom right chart of
Fig. 2. Such increase in synchronization may be associated with the
total elimination of tariffs or quantitative restrictions in the Closer
Economic Relations Trade Agreement between Australia and New
Zealand, signed in July 1990. Based on the estimated probability of
low volatility regime, the results also indicate that business cycle
fluctuations in both countries have “moderated” since the mid 1990s.

Unlike the previous examples, there are also some pairs of coun-
tries that have experienced a relatively constant synchronization
over time, e.g. United States and Canada, and the pairs of countries
formed by the members of the Euro area in the G-7 (Germany, France
and Italy). Also, we find an overall drop in the probability of high
volatility regime during the last decades across countries, implying
that growth seems to have stabilized. These results are consistent
with the findings in Doyle and Faust (2005).5

The pairwise analysis is relevant if policy makers are focused
on a specific pair of countries. However, since our interest is
placed on “the big picture” of global synchronization’s evolution, we

5 The results for all the possible pairs of countries listed in Table 1 are not reported
to save space, since we estimate 903 different pairwise models

(
C43

2 = 903
)
. However,

these results are available upon request.

summarize the results of the 903 pairwise models in a single index
obtained by using all the synchronization measures, da,b

t for a �=
b. As these synchronization measures are estimated variables from
Markov processes, we rely on simple non-parametric approaches to
combine them without making any distributional assumptions. The
simplest way to create a single index to measure global business
cycle interdependence is by averaging the level of synchronization
for all the 903 pairwise models:

f a
t =

1
L

L∑
l=1

dl
t , (13)

for l = 1, . . . , L, where l denotes the l-th pairwise model, n is the
number of countries, L = n(n − 1)/2, and f a

t represents the average
synchronization. For robustness, we also consider another measure,
which consists on extracting the common variation from the
synchronization measures by using principal component analysis:

dl
t = klf

c
t + ul,t , (14)

for l = 1, . . . , L, where kl are the factor loadings, ul,t has a zero mean
and an unknown diagonal covariance matrix and f c

t is the first princi-
pal component, which accounts for most of the variation in the data
and therefore represents common synchronization.6

The two indexes of global synchronization, plotted in Fig. 3, show
similar patterns. Until the late 1990s, global business cycle synchro-
nization was relatively low and stable; however, in the early 2000s, it
started to continuously increase, reaching its maximum level at the
end of 2008, i.e., in the middle of the last global recession, as dated
by the IMF. These findings imply that world economic activity has
become more synchronized during the last two decades, suggesting
a change in the propagation of business cycle shocks among coun-
tries. It is important to notice that after the Great Recession, many
European countries continued to experience recessionary phases,
due to the European debt crisis, while most of the emerging markets

6 Given that principal component requires the data to be standardized prior to use,
we rescale the extracted factor by using f−fMIN

fMAX −fMIN
, where fMIN is the factor with the

minimum variance and fMAX is the factor with the largest variance, the first factor. This
transformation makes the index belong to the unit interval to facilitate interpretation.
This has no effect on any of the subsequent results obtained from the use of index.
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Fig. 2. Business cycle interdependence between Australia and New Zealand. Note: The results shown in the figure come from the bivariate Markov-switching model for the real
GDP growth of Australia and New Zealand. The sample period is 1981:Q1–2013:Q2.

engaged in expansionary phases. This heterogeneity is reflected in
the decrease in global synchronization after the great crisis.

2.2. Source of the increase in global interdependence

The purpose of this section is to assess the main source of the
increase in global synchronization from the country perspective.
Specifically, we are interested in identifying the set of countries that
have contributed the most to the significant gradual increment in
global interdependence. For this purpose, first, we analyze whether
there are groups of countries experiencing similar business cycle
patterns. Second, we analyze the evolution of the interdependence
between groups of countries and infer the main drivers of the
increase in global interdependence. Third, we assess changes in the
comovement between each country and the world economic activity.
This analysis allows us to identify the set of country that have
engaged in a higher synchronization with the rest of the world.

2.2.1. Intra-group interdependence
We use an agglomerative hierarchical cluster tree (Ward’s linkage

method) to identify groups of countries with similar dynamics in

0.0
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0.4
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0.8

1.0
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Fig. 3. Global time-varying synchronization. Note: The solid line (left axis) represents
an index of global business cycle interdependence obtained by taking the first
principal component between each of the pairwise synchronization measures across
countries. The dashed line (right axis) represents an index of global business cycle
interdependence obtained by averaging the pairwise synchronization measures across
models. The sample period is 1981:Q1–2013:Q2.

their business cycle phases. As the Ward’s linkage method uses
a distance measure to group countries into different clusters, we
convert the synchronization measures, da,b

t , into de-synchronization
measures as follows:

ca,b
t = 1 − da,b

t (15)

where the de-synchronization index, ca,b
t , may be interpreted as the

cyclical distance. A detailed description of the clustering approach is
provided in Appendix B.

The cluster analysis is summarized in dendrograms. Using the
transition probabilities in Eq. (7), we compute the ergodic measure,
d̄a,b, which can be interpreted as the “average” synchronization
between countries a and b for the entire sample period (1981–
2013). Then, we obtain the ergodic distance, c̄ab, and the correlation
dissimilarity matrix of business cycle distances, D = 1 − |corr(c̄)|,
to create a dendrogram that represents the average clustering con-
figuration of countries, shown in the top chart of Fig. 4.7 The height
of each tree determines the different clusters, i.e., the height of the
inverted U represents the level of dissimilarity between two coun-
tries or clusters. It is possible that some of the observed clusters
are caused by outliers or sampling error. We assess uncertainty in
the group assignments using a multiscale bootstrap resampling to
compute the approximately unbiased (AU) p-values.8 For clusters
with AU p-value greater than 95, we can reject the null hypothesis
that “the cluster does not exist” at the 5% significance level.

We find that there are at least four groups of countries with
similar patterns of business cycle synchronization. First, there is a
cluster comprising France, Italy, Switzerland, Belgium, Netherlands,
Austria, Germany, Ireland, Greece, Luxembourg, Portugal, and Spain.
Since all these countries, except Switzerland, share the same cur-
rency, we define this group as the “Euro area cluster”. The second
group comprises Norway, Denmark, the U.S., Australia, Iraq, Iceland,
Canada, Finland, New Zealand, Sweden, and the U.K. This cluster
consists of mostly advanced Anglo-Saxon countries and some Euro-
pean countries; hence, we define this group as the “Anglo-Saxon

7 The ergodic probabilities are computed as d̄a,b
i =

(
1 − qab

00

)
/

(
2 − qab

00 − qab
11

)
,

where qab
ij represents the estimated transition probabilities associated with the state

variable, vt , that measures synchronization.
8 See Efron et al. (1996) and Shimodaira (2002) for a detailed explanation of the

multiscale bootstrap resampling. We use 1,000,000 bootstraps to reduce sampling
error in the AU p-values.
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Fig. 4. Hierarchical clustering from business cycle interdependence. Note: The length of the dendrograms represents the level of dissimilarity at which observations or clusters
are merged. AU p-values greater than 90 indicate that H0: “cluster does not exist”, can be rejected at the 10% significance level.

cluster”. The third group comprises Taiwan, Turkey, Hong Kong,
Singapore, Japan, Indonesia, South Korea, and Thailand. Given that
most of these Asiatic nations have recently enjoyed a dramatic
economic upswing, we call this group the “Asian Tigers cluster”.
The last cluster includes Bulgaria, Romania, Philippines, South Africa,
Malaysia, Mexico, Brazil, Chile, Argentina, China, and Venezuela.
These countries are considered by the IMF to be emerging economies,
so we call this group the “emerging markets cluster”. This clustering
analysis provides a reasonable description of how countries share
similar expansions and recessions and shows that geographic and
cultural factors are important factors driving economic interde-
pendence among countries within the Euro area, Asian Tigers,
and Anglo-Saxon clusters. The existence of an emerging markets
cluster also suggests that countries’ level of economic develop-
ment is an important factor explaining business cycle co-movement.
These four clusters of countries are statistically significant at the
10% level. However, some sub-clusters such as Denmark–United
States, Argentina–China–Venezuela, New Zealand–Sweden–United
Kingdom and the Asian sub-clusters (with the exception of the
Indonesia–South Korea–Thailand sub-cluster) are not statistically
significant, even at the 10% level.9

9 We also examine if the groups of countries change over time by dividing the sam-
ple in three periods and performing the clustering analysis in each subsample. The
results, not presented for the sake of brevity, suggest that the clusters are relatively
stable over time.

2.2.2. Inter-group interdependence
Once groups experiencing similar cyclical fluctuations have been

identified, our next goal is to analyze how the interdependence
among these groups has evolved over time in order to examine
where the increase in global business cycle interdependence is com-
ing from.

For this purpose, we rely on multidimensional scaling maps.
These techniques consist on projecting the business cycle distances
among the N countries in a map in such a way that the Euclidean
distances among the countries plotted in the plane approximate the
business cycle dissimilarities. In the resulting map, countries that
exhibit large business cycle dissimilarities have representations in
the plane that are far away from each other. Moreover, we use the
time-varying business cycle distances, ca,b

t , to create a sequence of
maps, one for each t, that can help us to analyze the dynamic evo-
lution of the interdependence of countries and groups of countries
and to disentangle the main source of the increase in global synchro-
nization. A detailed description of dynamic multidimensional scaling
(DMS) analysis is provided in Appendix C.

Fig. 5 plots the maps for selected periods during global recessions,
as dated by the IMF. For illustration purposes only, we draw a link
between countries a and b if their business cycle synchronization
during period t is larger than 0.5, i.e., da,b

t > 0.5. The distance
between the countries in the graph approximates their business
cycle synchronization, so the closer two countries in each graph are,
the more synchronized they are. Notice that the depiction in the
figure coincides fairly well with the clustering patterns obtained in
Section 2.2.1.
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Fig. 5. World business cycle synchronization network. Note: The figure shows dynamic multidimensional scaling maps based on the distance between the business cycles of
43 developed and developing countries across periods of global recessions, as dated by the IMF: 1981 quarter 3, 1990 quarter 3, 2001 quarter 1, and 2007 quarter 4. The closer
two countries are in the map, the higher their business cycle synchronization is. Solid lines denote links between pairs of countries, which are drawn if the probability that both
countries are in a synchronized phase is higher than 0.5. The sequence of maps for the 1981:Q1–2013:Q2 periods can be found at: https://sites.google.com/site/daniloleivaleon/
global-business-cycles.

During early 1980s global recession (top left chart of Fig. 5),
the Euro area cluster shows the highest within-group interdepen-
dence, followed by the Asian Tigers cluster and Anglo-Saxon cluster
that experience a lower degree of within-group interdependence.
For the early 1990s global recession (top right chart), the Euro area
and Asian Tigers clusters maintain their degree of interdependence,
but countries in the Anglo-Saxon cluster start to become more con-
nected. However, most of the emerging markets remain isolated,
as is the case of Mexico, Malaysia, and Turkey, among others. In
the early 2000s global recession (bottom left chart), the picture
changes considerably, showing a more connected map. The Euro
area, Asian Tigers and Anglo-Saxon clusters continue to be highly
related, but most of the countries in the emerging markets cluster,
which is the largest cluster, become more interdependent with the
rest of the world. Notice that this period corresponds to the signif-
icant and gradual increase in global synchronization, as discussed
in Section 2.1. Thus, this increase in global business cycle interde-
pendence can be mainly attributed to emerging economies. During
the Great Recession (bottom right chart), the map experiences the
highest connectivity, which is consistent with the propagation of
contractionary shocks through most of the economies during that
period. For the sake of brevity, we do not present the charts for all the
world business cycle maps for every quarter from 1981 to 2013.10

2.2.3. Interdependence with global factor
By relying on bilateral synchronization measures, the previous

sections show that the business cycles of emerging economies have
become more synchronized with the economic cycles of the other

10 However, the complete sequence is available at the authors’ website. We use all
the charts of the different maps periods to create a video that shows the evolution of
the world business cycle interdependence from 1981 to 2013. The video can be found
at: https://sites.google.com/site/daniloleivaleon/global-business-cycles.

countries in the world, contributing significantly to the increase in
global interdependence starting in the early 2000s. Although the pre-
vious analysis in this paper is based on the results from independent
pairwise models, we attempt to mitigate this caveat by adopting
a more integrated perspective. Specifically, we follow the line of
Kose et al. (2012) and rely on dynamic factor models to identify
changes in the degree of comovement between a given country and
the world business cycle.

To capture changes in comovement without having to rely on
specific partitions of the sample, as in Kose et al. (2012), we fol-
low a closer approach to Del Negro and Otrok (2008) that allows for
time-varying factor loadings. In particular, we propose a framework
that allows us to assess changes in comovement, but also accounting
for the nonlinear nature of the world business cycle. The proposed
model can be described as follows:

yj,t = cj,tft + 4j,t , for j = 1, 2, . . . , N (16)

ft = l̃0 + l̃1s∗
t + et , (17)

where yj,t is the real GDP growth of country j, ft is a common fac-
tor that depends on the state of the world economy, measured by
the latent variable s∗

t . The expected global growth during a reces-
sionary phase, i.e. when s∗

t = 0, is given by E ( ft|s∗
t = 0) = l̃0,

while its growth in an expansionary phase, i.e. when s∗
t = 1, is

given by E ( ft|s∗
t = 1) = l̃0 + l̃1. The vector 4t = [41,t, 42,t, . . . , 4N,t]′

collects the idiosyncratic terms, where 4t ∼ N(0,U) , U is diagonal,
and et ∼ N(0, 1), for identification purposes.

The latent variable s∗
t evolves according to a first-order Markov

chain with transition probabilities

p
(
s∗

t = j∗|s∗
t−1 = i∗

)
= p∗

ij, for i∗, j∗ = 0, 1. (18)

https://sites.google.com/site/daniloleivaleon/global-business-cycles
https://sites.google.com/site/daniloleivaleon/global-business-cycles
https://sites.google.com/site/daniloleivaleon/global-business-cycles
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The factor loadings, cj,t, measure the contemporaneous relationship
between country-specific real activity developments, yj,t, and the
global business cycle, ft. Therefore, to infer significant changes over
time in international business cycle comovement, we follow the line
of Del Negro and Otrok (2008), Koop and Korobilis (2014), among
others, and allow the factor loadings to evolve according to a random
walk, as follows:

cj,t = cj,t−1 + gj,t , (19)

where gj,t ∼ N(0,sg,j), for j = 1, 2, . . . , N. We estimate the model by
relying on the multi-move Gibbs sampler. Further details about the
Bayesian estimation method are reported in Appendix D.

The top chart of Fig. 6 plots the estimated global factor, ft, along
with the IMF world real GDP growth, showing a close relation-
ship between them. The bottom chart of Fig. 6 plots the probability
of global recession. The figure indicates a probability of global
recession higher than 0.8 during the following periods: 1981:Q1–
1983:Q1, 1992:Q2–1993:Q3, 2001:Q3–2003:Q3, 2008:Q3–2009:Q4.
These periods fairly coincide with global recessions as dated by the
IMF, indicating that the proposed global factor is a good indica-
tor of the world economy business cycle. Notice, however, that the
last part of the sample (2011:Q4–2013:Q2) is also associated with a
high probability of recession. This could be mainly attributed to the
recessionary phases that Euro area countries have experienced since
2011 as a result of the European debt crisis.

The main purpose of this section is to identify potential changes
in comovement between each country and the world business cycle,
therefore we now focus on analyzing the evolution over time of the
factor loadings. Fig. 7 plots the loadings for countries in the Anglo-
Saxon and Euro area clusters. The figure shows that the comovement
of countries in the Anglo-Saxon cluster with the world business
cycle, measured by the corresponding factor loadings, has remained
relatively stable. For the case of the Euro area countries there are
mix signals, while Germany and Belgium have experienced signifi-
cant increases in the degree of comovement, France has remained
relatively stable, and the comovement of Italy has decreased. Fig. 8
plots the loadings for countries in the Asian Tigers and emerging
markets clusters. The figure shows that the loadings associated to the
Asian Tiger economies have in general experienced slightly decreas-
ing dynamics. However, the scenario is different for countries in
the emerging markets cluster, since all emerging economies show
a gradual but significantly increasing relationship with the global
factor.

Overall, the results show that there is a considerable variation
over time in the degree of comovement. Significant increments in
comovement can be seen for some countries in the Anglo-Saxon
cluster, such as Sweden and Finland, and for some Euro area coun-
tries, such as Austria and Ireland. Asian Tiger countries, instead seem
to have become less synchronized with the global factor. However,
most of the emerging markets have experienced significant increases
in comovement with the world business cycle. These results cor-
roborate that emerging economies have played a fundamental role
in explaining the increase in global business cycle interdependence
during the last decades.

Unlike Kose et al. (2012), who find business cycle convergence
within groups of industrial and emerging market economies but
divergence between both groups, we obtain that the main source of
the significant increase in global business cycle synchronization is
the emerging market economies. The countries in this cluster expe-
rienced independent cyclical patterns until the late 1990s. However,
since the early 2000s, they became more synchronized with each
other and with the rest of clusters. The main difference between the
analysis in Kose et al. (2012) and ours, besides the assumptions about
the dynamics of the models, relies on the sample period considered,
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Fig. 6. Global business cycle factor. Note: Top chart plots the global factor (solid line)
along with the world GDP growth computed by the IMF (dashed line). Bottom chart
plots the probability of a global recession based on the global factor. The sample period
is 1981:Q1–2013:Q2.

since Kose et al. (2012) focus on studying changes in comovement
before and after the Great Moderation, while our study focuses
exclusively on identifying changes in business cycle interdependence
during the post-Great Moderation period.11

2.3. Transmission of business cycle shocks

World economic interlinkages can be viewed as a complex system
comprising a set of elements (countries), in which any pair of ele-
ments is subject to some degree of interdependence that may change
over time. We model world economic interlinkages as a network,
gt, by using the synchronization measures obtained in Section 2.1,
where each country represents a node and where the probability that

11 In contrast to Kose et al. (2012) that rely on a linear framework to asses
synchronization, we consider a nonlinear dynamic factor model. The analysis of Kose
et al. (2012) focuses on the sample period 1960–2008, since they rely on annual data.
Instead, we rely on quarterly data to be able to capture expansions and recessions
more precisely, at the cost of a shortening of our sample, 1982–2013. Therefore, we
focus on the post-Great Moderation period and also include the Great Recession, while
Kose et al. (2012) include the pre-Great Moderation period but exclude the Great
Recession.
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Fig. 7. Time-varying comovement. Note: The figure shows the country-specific time-varying factor loadings for the sample 1981:Q1–2013:Q2. Solid lines refer to the quantile 0.5
of the posterior distribution estimates, while dashed lines refer to the 0.1 and 0.9 quantiles.

two nodes, a and b, are linked at time t is given by da,b
t . Thus, the

more synchronized the countries are, the higher the degree of
connectivity in the network will be. The motivation for adopting
this approach is to provide a better understanding of the
propagation pattern of business cycle shocks across the major world
economies.

We use methods developed for social network analysis to evalu-
ate how a particular economy is simultaneously synchronized with
the rest of the economies in the world and to quantify the relative
importance of each country in the propagation of shocks to other
economies. In particular, we consider the betweenness centrality, Bi,t,
since this measure can be interpreted as the ability of country i to act
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Fig. 8. Time-varying comovement (cont.). Note: The figure shows the country-specific time-varying factor loadings for the sample 1981:Q1–2013:Q2. Solid line refers to the
quantile 0.5 of the posterior distribution estimates, while dashed lines refer to the 0.1 and 0.9 quantiles.

as a channel in the transmission of business cycle shocks between
other countries in the network gt during period t.12 The betweenness
centrality is calculated as

Bi,t =
∑

j�=k:j,k�=i

ti
j,k(gt)

tj,k(gt)
, (20)

12 According to Forni and Gambetti (2010) supply shocks explain most of the GDP
volatility. Thus, the betweenness centrality might capture the relative importance of
each country in the propagation of supply shocks to other economies.

where ti
j,k(gt) is the number of shortest paths between j and k in gt

that pass through country i and tj,k(gt) is the total number of shortest
paths between j and k in gt.13

To assess the evolution of the countries’ centrality over the
business cycle, we define recessionary phases for each economy
as a period where the Markov-switching probability of recession
is higher than 0.7. Both time-varying betweenness centrality and
recessionary episodes for most of the countries are plotted in Fig. 9,

13 A shortest path between two countries a and b in the weighted global business
cycle network, gt , is simply a directed path from a to b with the property that no other
such path has a lower weight.
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Fig. 9. Betweenness centrality of countries. Note: Each chart plots the betweenness centrality for each country in the world business cycle synchronization network. The light
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Fig. 10. Average betweenness centrality. Note: The figure plots the average between-
ness centrality across countries. The light gray bars denote recessions identified by
using the probability of recessions from a Markov-switching model with a cutoff of
0.7, and the dark gray bar denotes the Great Recession of 2007–2009.

showing a close relation between them. For the rest of countries,
the centrality was equal to zero for the entire sample period, and
therefore not reported.

In general, a country’s centrality tends to increase during periods
of national recessions, returning to lower levels during economic
expansions. This is also the case for the Great Recession (2007–
2009) where most of the countries became more central. This finding
suggests that when countries become more globally synchronized,
they are more prone to contractionary phases than to expansionary
phases, which is consistent with the view that economies tend to
become more synchronized during recessions than during expan-
sions. However, notice that the degree of centrality also varies across
nations. In particular, notice that some countries have become more
central since the early 2000s, as is the case of Brazil, Chile, South
Africa, Singapore, Hong Kong, Belgium, Netherlands and Australia,
indicating an increasing importance in the propagation of global
business cycle shocks associated to these economies.

We also compute the average centrality across countries, which
can be interpreted as a global measure of the transmission of
business cycle shocks. We define the global centrality as,

Bt =

∑
i

Bi,t

n
, (21)

where Bi,t is the time-varying betweenness centrality and n is the
number of countries. The global centrality is plotted in Fig. 10 and

Table 2
Harris–Tzavalis unit-root test.

(1) Test statistic (p-value)

Business cycle synchronization 0.7529(0.0433)
Financial openness 0.8566(1.0000)
Human capital index diff. 0.9543(1.0000)
Bilateral trade 0.7623(0.3276)
Liquid liabilities to GDP diff. 0.7231(0.0000)
Financial system deposit to GDP diff. 0.7715(0.7846)
Capital stock per capita diff. 0.9263(1.0000)
Private credit to GDP diff. 0.8458(1.0000)
Urban population diff. (% of total population) 0.9161(1.0000)
Difference of sectoral composition 0.7304(0.0000)
Government expenditure (% of GDP) diff. 0.6627(0.0000)

Time trends are included in all the tests; p-values are presented in parentheses.

provides similar information to the country-specific cases. Accord-
ingly, it tends to increase during periods of global recessions, as
defined by the probabilities of the unified Markov-switching model,
reaching its maximum level during the Great Recession. More-
over, the level of global centrality experiences a significant increase
around the early 2000s, implying a higher international business
cycles connectedness, which increases the likelihood that country-
specific shocks are transmitted to the rest of the economies in the
world. This result is consistent with the findings in the previous
sections related to the increase in global business cycle interdepen-
dence.

3. What does explain changes in synchronization?

In Section 2.1, we document the existence of a gradual increase
in global business cycle synchronization since the beginning of the
21st century. The clustering analysis presented in Section 2.2.1 also
suggests that the increase in global business cycle synchronization
is mainly driven by emerging economies. In this section, we identify
the underlying factors explaining changes in pairwise business cycle
interdependence by using a BMA approach to account for model
uncertainty. Since there are different theories suggesting different
potential determinants of business cycle synchronization, we are
not certain about the true model specification governing business
cycle co-movements. The BMA approach allows us to deal with that
uncertainty. To the best of our knowledge, this is the first study to
address model uncertainty in the identification of the main drivers
of business cycle interdependence over time.

3.1. Data

Previous studies in the literature have obtained different results
depending on the data, methodology, and variables considered.
However, at least three factors are considered in most empirical
studies on business cycle co-movement: international trade, special-
ization, and financial factors. In addition to these standard poten-
tial determinants, we follow Baxter and Kouparitsas (2005) and
include factor endowments into our analysis. We also propose as
a new potential determinant common fiscal policy. We focus on
explaining changes in business cycle interdependence based on
within-variation across time; thus, we consider only time-varying
factors. The data are collected for the 1981–2010 period at an annual
frequency.14 We describe in details the measurement of the potential
determinants as follows:

• International trade. In theory, trade positively affects business
cycle synchronization, as shocks are transmitted between
countries through their trade flows. This positive relationship
between trade and business cycle co-movement is predicted
by a number of theoretical models, such as those of Canova
and Dellas (1993) and Kose and Yi (2001, 2006).15 This trade
channel is captured in our analysis by including the bilateral
trade measure used in Frankel and Rose (1998),

Tab,t =
Ea,b,t + Ia,b,t

GDPa,t + GDPb,t
(22)

where Ea,b,t denotes total exports from country a to country b
in year t, Ia,b,t denotes imports to country a from country b in

14 Definitions for all the variables are provided in Appendix E.
15 Evidence of the positive relationship between trade intensity and business cycle

synchronization is found in Frankel and Rose (1998), Imbs (2004), Baxter and Koupar-
itsas (2005), and Calderon et al. (2007), among others.
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year t, and GDPa,t is the nominal GDP in country a in year t.
Bilateral trade data are taken from the IMF’s Direction of Trade
Statistics.16

• Specialization. Similarity in industrial composition proxies for
the specialization patterns in both countries. We expect two
economies with a similar sectoral composition to have high
business cycle interdependence since sector-specific shocks
could be rapidly transmitted from one economy to the other
(Imbs, 2004).

To capture differences in the sectoral composition between
two countries, we use agriculture, industry, and services real
value added, and following the computation in Imbs (2004):

Sab,t =
n∑

k=1

|Sk
a,t − Sk

b,t|, (23)

where Sk
a,t is the GDP share of sector k in country a during

period t. This index takes a value from 0 (completely similar
structures) to 2 (completely different structures).17

• Financial factors: financial openness, private credit issued by
deposit money banks and other financial institutions to GDP,
financial system deposits to GDP, and liquid liabilities to GDP.
These variables proxy for financial integration.

In theory, the effect of financial integration on busi-
ness cycle synchronization is ambiguous and depends on the
transmission mechanism of the shocks. In periods of high
financial integration, negative shocks to firm productivity in
a particular country will induce banks to decrease lending in
these countries but increase lending in unaffected countries
(Morgan et al., 2004), which may have a negative effect on
the business cycle synchronization of these economies. On
the other hand, a negative shock to the banking sector may
be transferred to the other countries, since banks will reduce
lending globally to shrink their balance sheets because of
their lower net worth, thereby increasing business cycle co-
movement (Morgan et al., 2004), (Kalemli-Ozcan et al., 2013b).

As a measure of financial openness, we use

Fab,t =
Aa,t + La,t

GDPa,t
+

Ab,t + Lb,t

GDPb,t
(24)

where Aa,t is total assets to GDP and La,t is liquid liabilities to
GDP in country a.

For private credit to GDP, financial system deposits to GDP
and liquid liabilities to GDP, we transform the variables to
capture dissimilarities between two countries, a and b, since
we aim to explain de-synchronization among countries, ca,b

t ,
as defined in Eq. (12). In particular, we compute the absolute
value of the difference in financial factor x between country a
and country b.

xab,t =
∣∣xa,t − xb,t

∣∣ (25)

where xa,t is a financial variable in country a at period t and
xb,t is the same financial variable in country b at the same time
period, t.

• Factor endowments. We consider two main factors of pro-
duction: labor, proxied by human capital and the proportion

16 For robustness, we also use the trade intensity measure in Deardorff (1998). The
results of the analysis using this alternative measure of bilateral trade intensity remain
quantitatively unchanged and are available upon request.
17 Agriculture, service, and industrial value added are taken from the World

Development Indicators.

of a country’s population living in urban areas, and capi-
tal, proxied by the per capita capital stock. As Baxter and
Kouparitsas (2005) pointed out, economic theories, including
the standard Heckscher–Ohlin theory and Ricardian theories,
predict a relationship between factor endowments, trade and
business-cycle co-movements.

Human capital proxies for skilled and unskilled labor.
Dellas and Sakellaris (2003) find that schooling is counter-
cyclical owing to higher opportunity cost during expansions.
These higher costs lead to substitution between human cap-
ital investment and competing economic activities. Thus, we
expect similarities in human capital indexes between two
countries to be associated with higher business cycle co-
movement.18 The proportion of a country’s population living in
urban areas also captures different labor skills.19

We use the absolute value of the difference in endowment
factors, z, to capture dissimilarities in factors of production
between country a and country b at period t,

zab,t =
∣∣za,t − zb,t

∣∣ (26)

where za,t is a factor endowment in country a at t and zb,t is the
same factor endowment in country b at the same period t.

• Common fiscal policy. The Eurozone sovereign debt crisis that
started in Greece at the end of 2009 and subsequently spread to
Ireland, Portugal and Spain suggests that two economies with
high level of debts and fiscal deficit are more likely to be in
recession than two economies that diverge in their level of debt
or deficit. Thus, we consider as an additional potential determi-
nant of business cycle synchronization dissimilarities in fiscal
policy. We measure this dissimilarity using the absolute value
of the difference in government expenditure (share of GDP)
between two countries.

In the next section, we briefly present the BMA approach used to
infer the most robust factors correlated with business cycle interde-
pendence.

3.2. Methodology

To address model uncertainty and unobserved time-invariant
pairwise factors, we use a BMA panel data approach. The pairwise
de-synchronization model is defined as

cab,t = x
′k
ab,tb

k + gab + lt + vab,t , (27)

where cab,t is the distance or de-synchronization between the
business cycle of countries a and b, and x

′k
ab,t includes a set of poten-

tial determinants, as described in Section 3.1. The pairwise country
fixed effects, gab, capture time-invariant unobservable factors in both
countries.

We examine the stationary properties of our determinants by
using the Harris and Tzavalis (1999) unit-root test to avoid spurious
inference.20Table 2 shows that our main variable of interest, business
cycle de-synchronization, follows a unit root process, for some pan-
els, at the 1% significance level. Other variables, such as financial

18 We take the log of the human capital index before computing the absolute
difference. The other determinants are expressed in percentages; thus, we use the
direct differences.
19 Urban population is also highly correlated with the level of income of a country

(Bloom et al., 2008). Differences in urban population could also capture different levels
of economic development.
20 This test assumes that the number of periods, T, is small and that the number

of panels, N, is large. The main shortcoming of this test is that it imposes the same
autoregressive parameter on all the panels.
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Table 3
Determinants of business cycle de-synchronization: a BMA approach. Hyper-g-prior. Static panel. Period: 1984–2010.

PI prob. Pt. mean Pt. Std. Sign t-Stat.

Government expenditure (% of GDP) 0.9883 0.0135 0.004 1 3.3461
Human capital index diff. 0.9668 0.1811 0.0723 1 2.5027
Financial openness 0.9493 0.0232 0.0104 1 2.2241
Liquid liabilities to GDP diff. 0.8975 −0.0096 0.0055 0 −1.7501
Bilateral trade 0.8957 −1.0936 0.6289 0 −1.7391
Urban population diff. (% of total population) 0.5919 −0.0325 0.0512 0 −0.6349
Financial system deposit to GDP diff. 0.5184 0.0005 0.002 0.94 0.2346
Capital stock per capita diff. 0.5106 0.0000 0.0000 0.0000 −0.2011
Private credit to GDP diff. 0.5059 0.0000 0.0025 0.9256 0.007
Difference of sectoral composition 0.5047 −0.0011 0.0104 0.0014 −0.1014

Column 1 presents the posterior inclusion probability. Column 2 shows the weighted average posterior mean. Column 3 reports the weighted average posterior standard deviation.
Column 4 shows changes in the sign of the determinant across specifications; it is equal to 1 if the sign of the determinant is positive in all specifications and 0 if it is negative
in all specifications, and values between 0 and 1 indicate that the sign of the determinant changes across the candidate models. Column 5 presents the ratio of the weighted
posterior mean to the weighted posterior standard deviation. The results are obtained by using 30 developed and developing countries. The dependent variable is distance or
de-synchronization of the business cycles of two countries. Most of the regressors capture differences between the countries, except bilateral trade and financial openness. The
results are obtained by using a beta-binomial prior for the prior model probability and a hyper-g-prior on g, the hyperparameter that measures the degree of prior uncertainty on
coefficients.

openness, bilateral trade, differences in human capital, capital stock
per capita, financial deposit to GDP, private credit to GDP, and urban
population, also present a unit root. Therefore, we use the first-
difference transformation to eliminate the pairwise country fixed
effects. Unobserved common factors are captured in lt and are
eliminated by cross-sectionally demeaning the data.

The key question is as follows: Which variables x
′k
ab,t should be

incorporated into the model? BMA addresses model uncertainty by
estimating models for all possible combinations of the regressors and
by taking a weighted average over all the candidate models, where
the weights are determined by Bayes’ rule. The probability that
model j, Mj, is the “true” model given the data, y, i.e., the posterior
model distribution given a prior model probability, is defined as

P(Mj|y) =
P( y|Mj)P(Mj)

2k∑
i=1

P( y|Mi)P(Mi)

, (28)

where P(y|Mj) is the marginal likelihood of model j, P(Mi) is the
prior model probability, and

∑2k

i=1 P( y|Mi)P(Mi) is the integrated
likelihood of model j. We consider an estimation framework with a
Bayesian linear regression and a Zellner’s g-prior structure for the
regression coefficients. In particular, we assume a hyper-g-prior on
g, the hyperparameter that measures the degree of prior uncertainty
on coefficients.21 The advantage of using a mixture of g-priors, such
as the hyper-g prior, is that the hyperparameter g is not fixed across
all the candidate models, but it is adjusted by using Bayesian updat-
ing. Recently, Ley and Steel (2012) have shown that hyper-g-prior
outperforms fixed g-priors. We also need to specify a prior on the
model space, P(M). Following Ley and Steel (2009), we used the
beta-binomial prior for the prior model probability, as it reduces
the effect of imposing a particular prior model size on the poste-
rior probabilities. This prior only requires the selection of the prior
expected model size.22

21 For a detailed discussion of the use of Zellner’s g-prior and the hyper-g-prior, see
Ley and Steel (2012).
22 For robustness, we consider two additional priors for the model space: the

binomial and uniform priors. Furthermore, we present robustness check for differ-
ent forms of the hyperparameter g. In particular, we use the unit information prior
(UIP), which set g equal to the number of observations for all models. Results available
in Fig. 1 of Appendix F, show that the determinants are robust to the model prior
specification and to the hyperparameter g form.

We are interested in the posterior inclusion probability (PIP) of a
variable h, which is defined as

P(hh �= 0|y) =
∑
hh �=0

P(Mk|y), (29)

where hh contains the coefficients of the regressor set that defines
model h according to Eq. (27). The PIP is interpreted as the probability
that a particular variable h belongs to the true pairwise business
cycle de-synchronization model.

3.3. Results

Because of data limitations regarding the factors described in
Section 3.1, we restrict our analysis to a smaller set of countries.
Table 3 reports the main determinants of changes in business cycle
de-synchronization obtained by using the BMA panel approach over
the 1984–2010 period for 30 developed and developing countries.23

Column 1 presents the posterior inclusion probability of each poten-
tial time-varying determinant of business cycle de-synchronization.
We find that the most robust determinants are differences in gov-
ernment expenditure shares, differences in human capital, financial
openness, differences in liquid liabilities shares and bilateral trade.

Although we cannot claim any causal relationship between these
determinants and business cycle de-synchronization, because of
simultaneity bias and reverse causality, we find that all these deter-
minants affect business cycle de-synchronization with the expected
sign (see the posterior mean in column 2 of Table 3). Financial inte-
gration is positively related to business cycle de-synchronization.
This result is consistent with the recent empirical findings by Kalem-
li-Ozcan et al. (2013a) showing that cross-border banking integration
between two countries is negatively related to co-movement of out-
put. Negative shocks to the real sector of one economy decrease
bank lending in the affected countries and increase lending in the
unaffected economies, increasing the divergence in business cycles

23 Some of the determinants were not available over the whole sample period
for some countries. To avoid losing other determinants, we excluded the countries
for which the determinant was missing for a particular period from the sample.
These countries are Hong Kong, Taiwan, Luxembourg, Germany, Greece, Belgium, Iraq,
Romania, Venezuela, Chile, Bulgaria, China, and the United Kingdom. We lost years
1981, 1982, and 1983 because of the first differences transformation to get rid of the
pairwise fixed effects and the inclusion of two lags of the dependent variable in the
dynamic panel model.
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Table 4
Determinants of business cycle de-synchronization: a BMA approach. Hyper-g-prior. Dynamic panel. Period: 1984–2010.

PI prob. Pt. mean Pt. Std. Sign t-Stat.

De-synchronizationt−1 1 0.1779 0.0095 1 18.8249
De-synchronizationt−2 1 −0.2078 0.0096 0 −21.5438
Government expenditure (% of GDP) 0.9906 0.0148 0.0042 1 3.5641
Human capital index diff. 0.9836 0.2441 0.0745 1 3.274
Financial openness 0.8231 0.0223 0.0135 1 1.6505
Liquid liabilities to GDP diff. 0.7041 −0.0083 0.0067 0 −1.2493
Bilateral trade 0.4322 −0.4747 0.6568 0 −0.7227
Urban population diff. (% of total population) 0.1911 −0.0124 0.0365 0 −0.3402
Difference of sectoral composition 0.143 −0.0014 0.0068 0.001 −0.2069
Private credit to GDP diff. 0.1365 −0.0002 0.0015 0.0002 −0.1464
Financial system deposit to GDP diff. 0.1322 0.0000 0.0011 0.7464 −0.0358
Capital stock per capita diff. 0.1225 0.0000 0.0000 0.0000 −0.0294

Column 1 presents the posterior inclusion probability. Column 2 shows the weighted average posterior mean. Column 3 reports the weighted average posterior standard deviation.
Column 4 shows changes in the sign of the determinant across specifications; it is equal to 1 if the sign of the determinant is positive in all specifications and 0 if it is negative
in all specifications, and values between 0 and 1 indicate that the sign of the determinant changes across the candidate models. Column 5 presents the ratio of the weighted
posterior mean to the weighted posterior standard deviation. The results are obtained by using 30 developed and developing countries. The dependent variable is distance or
de-synchronization of the business cycles of two countries. Most of the regressors capture differences between the countries, except bilateral trade and financial openness. The
results are obtained by using a beta-binomial prior for the prior model probability and a hyper-g-prior on g, the hyperparameter that measures the degree of prior uncertainty on
coefficients.

between affected and unaffected countries. This result suggests that
during our period of analysis, negative shocks to firm productivity
dominate shocks to the banking sector, which is plausible since a
major banking crisis only occurred during the last few years of our
sample, from 2007 to 2009. Human capital index is a factor endow-
ment considered by Baxter and Kouparitsas (2005), who found that
schooling is not a robust factor of business cycle co-movement. In
contrast to their study, we find that countries with different levels of
schooling are more likely to be in different business cycle phases. Our
human capital indexes mainly measure the number of enrollments in
high school and tertiary education. In periods of expansion, individu-
als tend to substitute human capital investment with other economic
activities because of the higher opportunity costs of schooling. There-
fore, countries with different levels of schooling are more likely to
be in different business cycle phases. Human capital can also cap-
ture different levels of economic development. The high posterior
inclusion probability of bilateral trade is consistent with previous
studies in the literature showing how productivity, fiscal, and other
real shocks are transmitted through trade; increasing the synchro-
nization of economies across borders (Baxter and Kouparitsas (2005),
Frankel and Rose (1998), Imbs (2004), among many others). Finally,
our study is the first to document the importance of common fiscal
policy (government expenditure share of GDP) as a robust deter-
minant of changes in business cycle synchronization. If countries
experience similar increases in government purchases or decrease
in taxes, they tend to be associated with similar business cycle
fluctuations.

Table 4 presents the results of the BMA in a dynamic panel setting
that includes two lags of the de-synchronization index as regressors.
The number of lags was selected according to the posterior inclusion
probability criteria.24 The results show that the main determinants
of business cycle interdependence are robust to the inclusion of a
lagged dependent variable. The exceptions are liquid liabilities and
bilateral trade, both have a lower posterior inclusion probability, 0.70
and 0.43, respectively.

As we show in Fig. 6, global business cycle interdependence has
experienced a significant but gradual increase since the beginning
of recent globalization era, early 2000s. To assess if the main deter-
minants of business cycle interdependence have changed over time
we split the sample into three periods, based on the occurrences of
the global recessions as dated by the IMF. In particular, the three

24 We also consider specifications with a different number of lags of the de-
synchronization index, but the posterior inclusion probability of any additional lag
was low.

periods are: 1984–1993, 1994–2003 and 2004–2010.25 In column 1
of Table 5, we report the posterior inclusion probability obtained
using the BMA panel analysis for the period 1984–1993. We find that
the most robust determinants of business cycle synchronization dur-
ing this period are liquid liabilities, bilateral trade, and differences
in human capital indexes between the two countries. These results
are very similar to those obtained by using the full sample period,
1984–2010. In the period 1994–2003 (see column 2, Table 5), we
find that besides bilateral trade, differences in sectoral composition,
differences in capital stock per capita, differences in government
expenditure shares and financial openness become important robust
correlated factors of business cycle synchronization.

Surprisingly, we find that during the recent globalization era (see
column 3 of table 5), the only robust determinant is similarity in sec-
toral composition. Acemoglu et al. (2012) study the importance of
sectoral composition in the formation of business cycles and show
that in the presence of intersectoral input–output linkages, microe-
conomics idiosyncratic shocks may lead to aggregate fluctuations. In
addition, Camacho and Leiva-Leon (2014) find evidence of a cascade
effect in the transmission of sectoral business cycle shocks. At the
aggregate level, if similarity in the sectoral composition of countries
in the major world economies increases, business cycle shocks can
be more rapidly transmitted from one country to another, increasing
global business cycle interdependence. Overall, these results suggest
that the gradual increase in global economic cycle interdependence
since the early 2000s is highly associated with larger similarity in the
sectoral composition of the main world economies.

3.4. Robustness

In this subsection, we check the robustness of the results obtained
with the BMA to the assumptions made in the identification of the
main drivers of business cycle interdependence. First, we present
results for an analysis using different priors for the model prob-
ability and for the hyperparameter g; for the latter purpose, we
adopt the BRIC prior introduced by Fernandez et al. (2001), which
sets g = max(N, K2). The results, presented in Fig. 1 of Appendix F,
show that although the probabilities of inclusion are less conserva-
tive for the binomial model prior and for the beta binomial with the
BRIC prior for the hyperparameter g, the main findings are robust to
the specification of the model and hyperparameter priors. The most

25 The last four global recession are dated by the IMF as follows: 1980–1983, 1990–
1993, 2001–2002, and 2008–2009.
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Table 5
Determinants of business cycle de-synchronization across decades: a BMA approach. Hyper-g-prior. Dynamic panel. Bold data indicates robust determinants are associatied with
a posterior inclusion probability higher than 0.8.

PI prob. 84–93 PI prob. 94–03 PI prob. 04–10

De-synchronizationt−1 1 1 1
De-synchronizationt−2 1 1 1
Bilateral trade 0.9340 0.8174 0.4651
Human capital index diff. 0.9231 0.4296 0.5359
Liquid liabilities to GDP diff. 0.8272 0.4475 0.1614
Financial openness 0.3647 0.9980 0.2383
Private credit to GDP diff. 0.2533 0.4904 0.1617
Financial system deposit to GDP diff. 0.1986 0.3603 0.1735
Government expenditure (% of GDP) 0.1771 1 0.2312
Capital stock per capita diff. 0.1484 0.8740 0.1965
Difference of sectoral composition 0.1474 0.9704 0.9701
Urban population diff. (% of total population) 0.1415 0.5234 0.1950

Column 1 presents the posterior inclusion probability using a sample period from 1984 to 1993. Column 2 shows the posterior inclusion probability for the sample 1994–2003.
Column 3 reports the posterior inclusion probability for the sample period 2004–2010. The results are obtained by using 30 developed and developing countries. The dependent
variable is distance or de-synchronization of the business cycles of two countries. Most of the regressors capture differences between the countries, except bilateral trade and
financial openness. The results are obtained by using a beta-binomial prior for the prior model probability and a hyper-g-prior on g, the hyperparameter that measures the degree
of prior uncertainty on coefficients.

robust determinants of fluctuations in business cycle synchroniza-
tion, in the dynamic model, are the same regardless of the model
and hyperparameter priors. The only exception is that the posterior
inclusion probabilities of financial openness are significantly lower
for the binomial probability model prior and for the beta binomial
model prior assuming BRIC prior for the hyperparameter g.

Second, we also check the robustness of our results to use of the
Bayesian model averaging technique adopted in the main analysis.
In particular, to identify the main determinants of changes in busi-
ness cycle interdependence, we consider a Bayesian combination of
frequentist estimators, the weighted-average least squares (WALS)
method introduced by Magnus et al. (2010). The WALS estima-
tor relies on an orthogonalization of the regressors such that they
are independent from one another. This orthogonal transformation
allows us to consider prior distributions that are more consistent
with our ignorance regarding the importance of each potential
determinant in explaining business cycle interdependence and sub-
stantially reduces the computational time of this model-averaging
technique. The results presented in Table I and Table II of Appendix F
show that the main determinants found using the WALS method are
the same as the determinants obtained by using the BMA approach.
As a rule of thumb, a determinant is considered robust using the
WALS estimator if the t-statistics is above 2 in absolute value.
Therefore, our results are robust to the use of different model and
hyperparameter g priors and to the model averaging technique.

3.5. Sectoral composition and global interdependence

The findings of the BMA reported in Table 5 show that the
determinants of business cycle interdependence vary across time.
In particular, we find that during the period 2000–2010, the only
robust factor explaining variation in business cycle interdependence
is common sectoral composition.

To understand which is the sector that contributed the most
to explain variation in business cycle synchronization, we divide
dissimilarity of sectoral composition into three different subcompo-
nents: difference in agriculture share, difference in industry share,
and difference in service share. Furthermore, we separate pairs of
countries that experienced an increasing synchronization from pairs
of countries that presented a relatively time invariant business cycle
synchronization over the full sample period. In order to group pairs
of countries based on common temporal patterns in business cycle
synchronization we use the K-Spectral Centroid (K-SC) clustering
algorithm (Yang and Leskovec, 2011), which is designed to cluster
time series by their shape. The top panels of Fig. 11 present the
pairwise business cycle synchronizations, da,b

t , for the two different

groups identified with the K-SC algorithm, i.e. the “Increasing Sync”
group and “Stable Sync” group.26 One third of all the pairs of coun-
tries was allocated to the Increasing Sync group, while the rest of
pairs were assigned to the Stable Sync group. The increase in busi-
ness cycle synchronization since 2000 in the Increasing Sync group
confirms the gradual increase in global business interdependence
found in Section 2.1 (see Fig. 11a). The bottom panels of Fig. 11 show
the differences in the disaggregated sectoral composition, i.e. agri-
cultural, industrial, and services, only for the pairs of countries in the
Increasing Sync group. The results show that differences in agricul-
tural composition (see Fig. 11c) decreased significantly since the late
90s. This decrease has been accompanied by an increased in global
business cycle synchronization. On the other hand, the differences in
the industrial composition have slightly increased from 1995 to 2003
while the differences in services composition remained relatively
stable over the sample period, 1981–2010.27

Overall, the empirical analysis shows: i) the existence of a grad-
ual increase in global business cycle synchronization lead by a third
of all the pairs of countries considered in our sample; ii) the increase
of the global business cycle synchronization is mainly associated to
emerging market economies, since they became more synchronized
with the rest of the world; and iii) the main robust factor explain-
ing variation in business cycle synchronization during 2004–2010,
the period of highest increase in business cycle synchronization, is
sectoral composition differences between countries.

4. Conclusion

The first part of this paper provides a comprehensive examination
of the evolution of business cycle co-movement across 43 developed
and developing countries over the period from 1981 to 2013. We
apply a novel Markov-switching model to infer the probability that
two countries are in the same business cycle phase. This approach
accounts for the non-linearity inherent to the dynamics of business
cycles. The results show that most of the economies have become
more synchronized since the recent globalization era (i.e., from 2000
onward), suggesting that systemic risk has increased during the last
decade. This result is also validated under an integrated perspective
with a proposed nonlinear dynamic factor model.

26 In Fig. 11 the time series are stacked showing the relative contribution of each
element at time t.
27 Providing an explanation about the mechanism by which sectoral composition, in

particular agricultural, strongly influences synchronization of cycles would require a
more structural analysis, such as a DSGE modeling approach, which is out of the scope
of this paper and therefore left for further research.
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Fig. 11. Increasing versus stable synchronization in pairs of countries. Note: Charts (a) and (b) show the synchronizations for the two groups of countries identified with the
K-Spectral Centroid algorithm. Charts (c), (d) and (e) show the differences in agriculture, industry and services, respectively, as shares of GDP for increasing sync. countries.

Next, we consider a clustering analysis to evaluate whether there
are groups of countries with similar patterns in business cycle co-
movement. The clustering analysis reveals at least four groups of
countries that are relatively stable over time: the Euro area cluster,
the Anglo-Saxon cluster, the Asian Tigers cluster, and the emerg-
ing markets cluster. Moreover, the increase in synchronization after
2000 seems to be mainly attributed to the increased synchroniza-
tion of the emerging markets cluster with the rest of the major world
economies. We also consider network measures to quantify the
degree of synchronization of one economy with the other economies
in the world. The network analysis shows that the degree of connect-
edness of a country with the other countries in the world tends to
increase in periods prior to recessions. These findings have important
implications for policy makers, who could use the proposed frame-
work to evaluate the degree of exposure that a given country has to
external shocks.

The second part of the paper focuses on identifying the most
important factors explaining variation in business cycle comove-
ment. As there is no agreement in the business cycle literature
about the potential determinants of business cycle synchronization,
we rely on a Bayesian model averaging approach to account for
model uncertainty. The results suggest that the most robust determi-
nants are financial openness, government expenditure, and human
capital. Other important factors that explain changes in business
cycle co-movement are bilateral trade and liquid liabilities. However,
the importance of these determinants, measured by their inclusion
probability, varies across time. In particular, we find that the only
robust determinant after the increase in global business cycle
interdependence (2004–2010) is similarity in countries’ industrial
composition.

Appendix A. Supplementary data

Supplementary data related to this article can be found online at
http://dx.doi.org/10.1016/j.jinteco.2016.07.003.
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