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COMPLEX NUMBERS FROM 1600 TO 1840

Diana Willment

ABSTRACT

This thesis uses primary and secondary sources to study advances in
complex number theory during the 17th and 18th Centuries. Some space
is also given to the early 19th Century. Six questions concerning
their rules of operation, usage, symbolism, nature, representation

and attitudes to them are posed in the Introduction. The main part

of the thesis quotes from the works of Descartes, Newton, Wallis,
Saunderson, Maclaurin, d'Alembert, Euler, Waring, Frend, Hutton,
Arbogast, de Missery, Argand, Cauchy, Hamilton, de Morgan, Sylvester
and others, mainly in chronological order, with comment and discussion.
More attention has been given tp algebraists, the originators of most
advances in complex numbers, than to writers in trigonometry, calculus
and analysis, who tended to be users of them. The last chapter sum-
marises the most important points and considers the extent to which
the six questions have been resolved. The most important developments
during the period are identified as follows :

(i) the advance in status of complex numbers from 'useless' to
useful’

(i1) their interpretation by Wallis, Argand and Gauss in arith-
metic, geometric and algebraic ways

(iii) the discovery that they are essential for understanding
polynomials and logarithmic, exponential and trigonometric
functions

(iv) the extension of trigonometry, calculus and analysis into
the complex number field

(v) the discovery that complex numbers are closed under exponent-
iation, and so under all algebraic operations

(vi) partial reform of nomenclature and symbolism

(vii) the eventual extension of complex number theory to n dimen-
sions

In spite of the advances listed above, it is noted that there was a
continued lack of confidence in complex numbers and avoidance of them
by some mathematicians, particularly in England.
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Introduction

The history of the number system does not neatly follow the
modern set diagram for the complex number field, in order of discovery,
acceptance or definition. Natural numbers were discovered first, pro-
bably soon after language started, but defining axioms for them appeared
last (Peano's axioms, 1889). Positive fractions and irrationals were
next in common use, and the difference between them first noticed by the
Pythagoreans about 600 B.C. Fractions could not be defined until
naturals were defined but a working definition was possible which des-
cribed them as the ratio of two naturals. Irrationals were described
by the Greeks in terms of what they were not, that is they were not
commensurable with the naturals. In this is the germ of the 19th Century
idea that all reals except naturals and those dependent on them for
their definition (integers and rationals), are irrationals. The nature
of transcendentals as different from algebraic irrationals was dis-
covered in the 18th Century, but an acceptable definition for irrationals
was not given until the 1870's, by Dedekind and others. Negative and
complex numbers were accepted reluctantly from Renaissance times onwards.
Negative integers can be defined by extending the naturals to zero and
beyond, and modifying Peano's axioms. Imaginary numbers can be defined
once the reals are complete, and complex numbers when both real and
imaginary numbers are defined. A clear picture of the way in which
reals are distributed on the number line depends also on insight into
transfinite numbers. The Greeks left a legacy of evasion of the infinite,
both in number and magnitude, and some mathematicians (Gauss, Cauchy)
denied that an infinite set could exist, while others ignored the-.whole
difficult topic. Cantor was able to give a definition of an infinite
class during the 1870's and was able to use his ideas to describe the

distribution of integers, rationals and irrationals on the real number



line, A similar set of imaginaries with similar properties could be
represented on a perpendicular axis in the manner discovered by Wessel
and Argand, to define the complex plane. Except for the irrationals,
all the number categories depended on definition of the naturals. It
can be said that with Peano's axioms of 1889, the number system was
fully described, and could be represented on a complex plane with
defined properties. The picture of the complex number field as nested
sets could be given at about the same time as the definitions. However
number subsets were being widely used long before these definitions and
descriptions were given, which shows not only a great pioneering spirit
among mathematicians, but great confidence in the structure of mathe-
matics and its procedures.

This work covers two hundred years of development in complex
number theory and traces an important advance in their standing. At
the end of this period the subsets of the complex number field were
known of and the way was clear for 19th Century mathematicians to
clarify and simplify the situation by providing defining axioms and a

general description of the number system.



This investigation was undertaken with the objective of
tracing developments in the use, theory and status of complex

numbers during the 17th and 18th Centuries.

This period in the history of complex numbers is an important
one as it saw great advances in their status and place in mathematics.
The rules for addition, subtraction, multiplication and division of
complex numbers and the behaviour of conjugates were known before the
end of the 16th Century, but they were only being used in the solution
of equations. By the beginning of the 19th Century they were being
integrated into calculus, trigonometry and the theory of logarithmic
and exponential functions, and were known to be closed under exponent-
iation. It is remarkable that, despite the great progress made during
this period, there was a widespread lack of confidence, not only in

complex numbers but in negatives also.

The aspects of complex numbers that will be considered can

be summarised as follows :

(i) the emergence of rules of operation

(ii) ways in which they were used, both in the solution of
problems and as part of the fabric of mathematics

(ii1) /-1 as a symbol and interactions with other symbols
such as D, the differential operator

(iv) the nature of /-1, both in a metaphysical sense (what
kind of entity is it, does it actually exist ?), and in
a mathematical sense (is it algebraic, geometric,
arithmetic ?)

(v) the search for a physical model or geometrical re--
presentation

(vi) their perceived status and attitudes to these numbers



After Bombelli's Algebra (1572), little was added to the rules
for the arithmetic of complex numbers until Euler gave a wvalue for
(~/—1)\/-1 in 1746, and the work of d'Alembert, Euler, Lagrange and
others in proving that (a + -1b)8 * v-1h is a complex number of the
form p + /=1g, so the complex number field is closed under algebraic
operations. As discoveries were made about more advanced concepts
such as the logarithms of negative numbers and complex series, the
rules of behaviour of complex numbers evolved on the basis of con-
sistency with the reals. Complex numbers were being used with much
success to solve problems, particularly theoretical mathematical ones,
and this emphasised the need to clarify the status of complex numbers.
Euler gave thought to the nature of complex numbers, and although it
did not prevent him from making major breakthroughs on such problems
as the logarithms of negative numbers, he felt his own lack of insight.
In the search for models and representations the most successful
mathematician during this period was Wallis, who devised both a prim-
itive form of the Argand diagram. and a definition of /-1 in terms of
mean proportionals. The attitudes of mathematicians can be found not
only in what they wrote, but in what they did not write. It is poss-
ible to divide mathematicians into those who gave complex numbers
some kind of coverage, and those who sometimes or always ignored them.
In the case of Charles Hutton, it has been possible to infer that his
omission of the topic from an otherwise comprehensive text-book was due
to his encountering some misleading information in Euler's Algebra .
The lack of a visual representation for /-1 had a profound influence
on attitudes to it, and comnlex numbers were not widely acceoted until
after the invention of the Argand diagram.

It is clear that acceptance of complex numbers percolated only
slowly through the mathematical world. A mass of comment has been
collected, expressing bewilderment and exasperation with entities that
lent themselves to useful mathematical development, but whose nature
was obscure. The formalist view had not been described at this time,
and mathematicians found the situation so intolerable that some tried
to ignore complex numbers, and others when giving proofs involving

them, gave alternative proofs often much longer.



The period has been divided into sections chronologically. The
first chapter summarises the situation with regard to irrational,
negative and complex numbers at the beginning of the 17th Century.
Negatives have been included because understanding these is es-
sential to understanding complex numbers. Irrationals have been
included not only because they are a part of the number system, but because
attitudes to them passed through similar stages to attitudes to
negative and complex numbers. It may be said that the difficulties
with complex numbers constituted the third crisis of confidence to
occur in the development of the number system. Fractions (rationals)
have not been dealt with as acceptance of these has not caused similar
difficulties to mathematicians.,

Chapter II covers the period from the beginning of the 17th
Century to the work of John Wallis. Primary sources used include
work by Descartes, Newton and Wallis,

Chapter III continues from the time of Wallis to that of
Leonhard Euler, Primary sources include work by Saunderson, d'Alem-
bert, Maclaurin and Euler. ‘

Chapter IV covers the period from Euler to the beginning of
the 19th Century, ending with the Wessel/Argand diagram. The main
primary sources are works by Waring, Frend, Hutton, lLagrange, lLaplace,
Arbogast, de Missery and Argand.

Chapter V describes the position in the early 19th Century. It
refers to work by Cauchy, Hamilton and de Morgan.

The summary includes a consideration of the extent to which the
original points have been answered . Some suggestions for further
research have been put forward in Appendix II.

I have sometimes referred to V-1 as 'i' and used the term
'complex number', although these terms were not in widespread use before
the 19th Century. I have also used such terms as volynomial, field,

operation etc in their modern sense.
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Sources used for this investigation include text-books,
histories, biographies, encyclopaedias, dictionaries, periodicals and
correspondences. Where works were not originally published in Fnglish,
English translations have been used when available, and treated as
primary sources. A question which must be considered concerns the
extent to which the primary sources can be exvected to shed light on
the topic under investigation. Text-books covering complex numbers
generally contain rules of procedure, making it fairly easy to deal
with the first point, although this area has already been well covered.
However, where text-books are the only source of information, the
author's opinions about complex numbers are not often clear, such a
book would not reveal any unusual views held by the author. Where the
topic has been omitted, possible reasons may have to be guessed at.
Encyclopaedias and dictionaries have proved useful in revealing atti-
tudes to complex numbers.

The search for attitudes to complex numbers has focussed at-
tention on algebraic works. It was found that users of complex numbers
in calculus, analysis, trigonometry etc remained just that; tending to
accept them in a formalist way and incorporating them into many branches
of mathematics as entities conforming to known rules. It was the
algebraists who were concerned with their nature and status and who
provided the most interesting insights into the difficulties as they
saw them. For this reason, in this investigation, more attention has
been paid to writings on algebra than to those on analysis etc.

I should like to acknowledge my indebtedness to Mathematical
Thought from Ancient to Modern Times (1972) by Morris Kline, which

was used as a starting point and principal secondary source. Where

sources are not cited, this book has been relied upon for information.
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Chapter 1

Negative, irrational and complex numbers before the early 17th Century

The four basic rules for the arithmetic of complex numbers and
the additive and multiplicative properties of conjugates were available
by 1600. The Algebra of Raphael Bombelli (published 1572, MS earlier)
gave these rules correctly.

The most serious difficulty hindering understanding of complex
numbers at this time, and for long after, was that negative numbers
were not yet accepted nor fully understood. Cardano referred to them
as 'ficticious', Chuquet and Stifel as 'absurd' and even Descartes as
'false', Vieta totally ignored negatives in his algebra book, the
Arithmetica Speciosa of 1590. Girard gave negatives equal treatment

with positives and Bombelli gave definitions of them although he was

more adventurous with imaginaries than with negatives. Harriot experimented
with different rules for '- times +', and '- times -', and explored an
unorthodox algebra arising from taking as axiomatic that '- times - gives
-', with the help of a special symbol to denote the product '- times +'(1).
The difficulty arose from the fact that the first printed version of
Bombelli's Algebra had some vital and misleading inaccuracies, although the
MS version was correct. These errors were rectified later, but mean-
while the statement '- times - gives ~' caused confusion to both Harriot
and Cardano. However Harriot did not accept negatives as roots although

he used negative roots in equations, and sometimes even a negative

quantity alone on one side of an equation. Stevin, by using nega%ive
coefficients in equations, gave a single method for the solution of
quadratics using algebraic methods to prove his solution correct, bhf

gave only real roots. Descartes changed his attitude to negatives when

he discovered that negative roots may be increased by any desired

amount and become positive, by simple real manipulations of the unknown.

(1) Tanner, "The Ordered Regiment of the Minus Sign", Annals of Sc.,
37(1980),127-58, (p.134)
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However this nrocedure was not known in the 16th Century, and if it had
been, might only have increased suspicion of complex roots (as it did
for Descartes), as these roots are not susceptible to same treatment,

In the Arithmetica Integra of 1544, Vieta accepts irrationals
only reluctantly and on the grounds that the results obtained from

using them are valid. This argument has frequently been used by math-
ematicians to justify acceptance of number categories, particularly
complex numbers. Vieta takes the view that irrationals, like infinity,
are not true numbers as they are not exactly expressible as decimals.
Later, Pascal, Barrow and Newton were to accept irrationals as geometric
magnitudes, justifiable by the Fudoxan theory of magnitudes,

Attitudes to complex numbers in the 16th Century were even less
confident. Cardano refers to 'mental tortures' and calls a complex
solution 'as refined as it is useless'. Bombelli, although giving the
four rules correctly and appearing to manipulate complex numbers con-
fidently (especially conjugates), nevertheless refers to them as
'useless' and 'sophistic'. This was not an unusual view, their usefulness
was only recognised later, Bombelli was the first to show that
Cardano's method for the roots of a cubic gave a real root in the
irreducible case, where the roop is a complicated complex expression.
Bombelli used geometrical methods for his proof; Vieta and Girard later
used trigonometry. This did not remove the paradox that a complicated
expression involving the cube roots of complex numbers should reduce to
a real number. It was shown that it did in fact do so, but this still
seemed paradoxical. This demonstration was not the powerful argument
for generating confidence in negative and complex numbers that it
should have been. Bombelli also solved certain quartics, showing
courage in manipulating symbols whose meanings may not be easy to inter-
pret. Cardano was able to manipulate complex numbers to some extent,
but had little confidence in them. Harriot said that every quadratic
'if possible' has two real roots, 'but in case the Equation be impgss-
ible, those two roots are not Real but only Imaginary'(1). Harriot

did not give any complex roots, to him 'imaginary' meant 'non-existent'.

(1)  Wallis, Algebra , p.132
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Girard stated without proof that every polynomial of degree n has n
roots, implying acceptance of negative and complex quantities as roots
to be counted together with positive real ones and taking repeated roots
as separate. Counting these together shows that he thought of them as
the same kind of entity, but he would not necessarily have had any
very sophisticated ideas about only counting together homogeneous
quantities, Magnitudes, areas and volumes had been added in equations
since Greek times, at least. Girard's views do not seem to have had
much impact on mathematical thinking.

The fears and misunderstandings prevalent in the 16th Century
about negative and complex numbers can be attributed only partly
to the fact that the second were being forced upon the attention before
the first had been assimilated. They must be traced back, at least in
part, to the traditional practice of proving real number algebraic
results by geometric Euclidean methods. It was not until the 19th
Century that a partially successful structure was devised to give
algebra a rigour comparable with that attributed to geometry. The
Greek legacy was not only a wealth of ideas for rediscovery, but the
restriction of an algebra based on geometric magnitudes requiring
geometric proofs, rather than oh numbers. Because of the difficulty of
geometric representation, this severely hampered understanding of
negative and complex numbers, and so of full understanding of the
number system. A further serious difficulty was the. proliferation of
algebraic notations. Many of these involved abbreviations of ILatin
words which had not been well-considered, and the number of variations
indicates their unsatisfactoriness. This problem was not resolved
until the publication in 1637 by Descartes of La Geometrie. By then

printing had been developing for about two hundred years and the lucid

notation of Descartes, only partly his own, was taken up and littie
altered from that time., A further obstacle was a lingering tendency to
secrecy about new mathematical discoveries persisting from Medieval
times. This practice was dying out by the end of the 16th Century, but
the founding of learned societies and journals for free exchange of

information did not take place until the second half of the 17th Century.
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Finally, the names 'imaginary' and 'impossible! in use at
this time inevitably give the impression that the writers thought of
them as actually imaginary or impossible, that is non-existent. Un-
fortunately the names reinforced this impression for readers at the
time, in a vicious circle that would have been very difficult to break
out of, If the nomenclature had been thought unsuitable then more
suitable neutral names would have been devised for them. Once such
names become attached to number categories, it is difficult to see
how they could have been thought of in any new, constructive or ab-
stract way. In the case of complex numbers, these would have been
taken as formal solutions to equations which could have been useful in
certain ways, but not as actual answers to problems with any sort of
existence. Even the name 'complex' is not a very great improvement,
it perpetuates the notion that the number system encompasses some very
abstruse ideas. This point is only important if the naturals, say,
are thought to have some ideal Platonistic existence somewhere. It
is only if this view of numbers is taken that it is important whether
complex numbers, say, have that kind of existence. All numbers must
participate in the same kind of existence if they are to be the same
kind of entity. To many mathematicians the existence or otherwise of
numbers depended on whether they were geometrically constructable.
This is one of the reasons why the Argand diagram later became important,
but this was not to come for another two centuries,

The general picture at the beginning of the 17th Century was one
in which irrationals were barely acceptable, negatives were very reluc-
tantly accepted and only because thought useful, but complex numbers, if

they had any existence at all, were considered strange and useless.
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Chapter 1II

The early 17th Century to the Algebra (1685) of John Wallis

This period saw understanding of negative and complex numbers

progress to a point where John Wallis, in his Treatise of Algebra of

1685, was able to give a diagrammatic representation of a complex
number, an explanation of V(-1) in terms of mean proportionals and
attempt a concrete interpretation by means of problems which gave
rise to complex answers. But this point was not attained easily, nor
did these achievements of Wallis have the impact that might have been
hoped for.

Among discussions during this period about negative numbers
was the paradox of Arnauld which questioned the equality -1 : +1 =
+1 ¢ -1; since -1 is less than +1 how can a smaller quantity to a
greater be equal to a greater to a smaller ? No satisfactory answer
to this question was produced, -1 cannot be equal tec +1 and the
paradox is not removed by taking -1 to be greater than +1. Moreover
Wallis, in his Arithmetica Infinitorum (1655) suggests that negatives

must be greater than infinity. Here Wallis argued that since a/0 with
positive a is infinite then when the denominator is negative, a/b with
negative b must be greater than infinity. Considering the following
sequences : A= . . . 1 1 1 1 1 1 1 .« « .
2 1 5 25 0 =25 -5
and B= . . .5 1 2 4 00 -4 =2 . . .

we have the denominators in sequence A progressively decreasing from
positive through zero to negative, and the corresponding values in
sequence B progressively increasing from positive through infinity to
become negative. This was Wallis's argument that negatives must be
greater than infinity. However Wallis seems to have overlooked the
fact that the the first oremise, that the denominators in sequence

A are decreasing, assumes that negative numbers are less than zero.

17



So, by this argument, the premise that negatives are less than zero
leads to the conclusion that they are greater than infinity. Wallis
does not mention this serious paradox, he may not have considered
it a paradox or possibly may not have noticed it. Wwallis simply
concludes that negative numbers are greater than infinity rather
than that the assumption that they are less than zero leads to the
conclusion that they are greater than infinity. This must be a
paradox if not a contradiction. Paradoxes of this kind arise from
. the nature of the discontinuity at 1/0 and the difficulties of recon-
ciling the order and ratio relations, and reinforced the doubts about
negative numbers which continued to hinder the 'acceptance of complex
numbers.,
Descartes considers gquadratic equations with irrational

coefficients (see below), and Wallis, in Chapter XLVII of his Algebra (1)
uses the method of separation of rational and irrational parts when
evaluating a supposed root of a polynomial. This parallels the
separation of real and imaginary parts by later mathematicians such
as Fuler. In Chapter IXVI Wallis takes the method of finding the square
root of a positive quantity by mean proportionals and extends it to
the square roots of negative quantities(z)._ That is, once again, a
method in use for finding an irrational quantity was being used to gain
insight into complex quantities (see below).

References to complex numbers during this period refer mainly
to their part in the solution of the cubic, the modification of quad-
ratics by real number operations, the numbers of roots in equations

and the nature of 'impossible' quantities.

René Descartes 1597-1650

Descartes published la Gébmé%rie in 1637. In it is described

the method for modifying the roots of a guadratic by addition or
multiplication without evaluating them. He points out the unsatis-
factory fact that the manipulations described can make negative roots

positive but cannot eliminate complex roots. He uses real manipulations

(1) Wallis , pp.177-79
(2) Wallis , p.266
18



of the unknown, overlooking the fact that only complex manipulations
can eliminate complex roots. Bearing in mind that the complex roots
of a quadratic equation with integral coefficients must be conjugates,
the procedure is to add or subtract the appropriate imaginary quantity
in such a way as to remove it. Since x2- 2ax + a2+ b2= O has complex roots
o« and [5 where o{ = a + ib and @ = a - ib, we must form the equation
with roots A - ib and ﬂ + ib. This means that, not only must we know
the exact imaginary quantity to add and subtract, but the addition and
subtraction must be done so that « -3 = 2ib and not -2ib. Using
“a13 = a2+ b2 and d.+/6 = 2a, this leads to x2- 2ax + a2= O which is
the equation required, having two equal real roots. This is equivalent
to eliminating from the equation the quantity which prevents it from
being a perfect square. Descartes might not have considered this a
valid expedient, even with the explanation above. The fact that nega-
tive roots can be eliminated from a quadratic equation by real operations
on the unknown, but complex ones cannot, had the dual effect (for
Descartes and for others) of raising confidence in negatives but reducing
confidence in complex numbers.,
Descartes first gives the the number of roots of a polynomial
as the 'number of dimensions of the unknown quantity' in Book 111(1),
He then observes that the degree of an equation can be reduced by
division by x - < where X 1s a known root. His next point is the
so-called 'Rule of Signs' for the numbers of positive and negative roots
but without any proof or explanation (p. 373) :
'"We can determine also the number of true and false roots that
any equation can have, as follows; An equation can have as many
true roots as it contains changes of sign, from + to - or from
- to + ; and as many false roots as the number of times two +
or two - signs are found in succession.'
He then comes to the method of modifying the roots, using as a first
example the polynomial whose roots are 2, 3, 4 and -5. He points out
that it is not necessary to know the roots and gives further examples
in which these are not known. The rule given for modification of roots

would apply equally to real or complex manipulations, although Tescartes

(1) Descartes, Geometry.(1954), p. 372
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is evidently thinking of real ones (p. 373) :

'Tt is also easy to transform an equation so that all the roots
that were false shall become true roots, and all those that
were true shall become false. This is done by changing the
signs of the second, fourth, sixth, and all even terms,

leaving unchanged the signs of the first, third, fifth, and
other odd terms. Thus, if instead of

2
+x4- 4x3- 19x + 106x - 120 = O we write +x4+ 4x3— 19x2- 106x - 120 = 0

we get an equation having one true root, 5, and three false
roots, 2, 3, and 4.

If the roots of an equation are unknown and it be desired to
increase or diminish each of these roots by some known number,
we must substitute for the unknown quantity throughout the
equation, another quantity greater or less by the given number.'

Descartes also notes (p. 375) that by a suitable choice of number to
add to the unknown, a root may be made equal to zero. He next gives two
reasons why he sees these manoeuvres as important,. Firstly it is possible
to eliminate the second term of an equationjy an important step when
solving a cubic by Cardano's method, although Descartes does not mention
this point here. Secondly negative roots can be eliminated by being
rendered positive, though the benefit of this is not clear when, for

instance, a solution to a particular problem is sought (p. 376) :

'"Now this method of transforming the roots of an equation without
determining their values yields two results which will prove use-
ful: First we can always remove the second term of an equation
by diminishing its true roots by the known quantity of the

second term divided by the number of dimensions of the first
term, if these two terms have opposite signs, or, if they have
like signs, by increasing the roots by the same quantity.'

After two illustrative examples (p. 377), he continues :

'Second by increasing the roots by a guantity greater than any
of the false roots we make all the roots true. When this is
done, there will be no two consecutive + or - terms; and
further, the known quantity of the third term will be greater
than the square of half that of the second term. This can be
done even when the false roots are unknown, since approximate
values can always be obtained for them and the roots can then
be increased by a quantity as large or larger than is required.'

Next, equations with irrational coefficients are dealt with, a problem
seldom dealt with by mathematicians. A method for rationalising them
by multiplication or division by successive powers of a suitable

quantity is given, which can also be used to make any coefficient take
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a particular value. Thisvis not the simplest way of achieving the latter.
Descartes next comes to complex roots, and mentions here that

the manipulations described cannot render complex roots real. The

implication is that the manipulations are all real (p. 380) :
'Neither ?he true nor the false roots are always real; sometimes
they are imaginary; that is while we can always conceive of as
many roots for each equation as I have already assigned, yet

there is not always a definite quantity corresponding to each
root so conceived of. Thus, while we may conceive of the

. 2

equation X0- 6x + 13x - 10 = 0 as having three roots, yet there

is only one real root, 2, while the other two, however we may

increase, diminish, or multiply them in accordance with the
rules just laid down, always remain imaginary.!

Later, where Descartes is writing about quartics, there is an
early example of separating a problem impossible of solution, from its
algebraic equation with complex roots (p. 386) :

'Now these two equations have no roots either true or false,

whence we know that the four roots of the original equation are

imaginary; and that the problem whose solution depends on this
equation is plane [constructable using compass and straight
edge only] , but that its construction is impossible, because
the given quantities cannot be united [ combined in the same

problem] o!

There are two further references to a connection between impossible
constructions and complex roots (pp. 393,406), however he also says

- 401)'i have not yet stated my grounds for daring to declare a thing
possible or impossible'’!

So, although impossible constructions are associated with complex roots,

Descartes is not saying that these are the only sources of such roots.

ILater mathematicians have found this association useful.

Descartes' view of complex roots is indicated where they are
described as 'merely imaginary' (p. 400), and we know that he did not
necessarily regard negatives as suitable to be the roots of guadratics
from the earlier omission of a negative root (p. 302). The second re-
mark quoted above (p. 386), states that an equation whose roots are neither
positive nor negative has no roots, although the quartic they were derived
from is said to have roots that are imaginary. Therefore 'imaginary!'

is here another word for non-existent.
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Descartes' rule of signs says that the number of changes between
+ and - in an equation gives the number of positive roots, and the num-
ber of repeats of + or - gives the number of negative roots. Where the
roots are real, this rule is entirely satisfactory, but where they are
complex it continues to give numbers of 'positive! and 'negative'
roots, without distinguishing between real and complex ones. Consider-

ing equations with positive real roots a and b :

Changes Repeats Roots

2
- (x=-a)(x-b) = x"-(a+b)x + ab = O 2 0 both positive
(x-a ) (x+b) = x2-(a-b)x ~-ab =0 s
5 1 1 one positive, one negative
(x+a)(x=b) = x“+(a=b)x - ab = 0
(x+a)(x+b) = x2+(a+b)x +ab=0 0 2 both negative

Considering equations with complex roots

(x=(-141)) (x=(=1-1)) = x°42x42 = 0 O > both negative ?
(x=(1+1)) (x=(1-1)) x2-2x+2 =0 2 0 both positive ?

H

(for clarity I have given specific examples in the complex cases)

An attempt to construct a quadratic equation with complex roots, one
'positive'! and one 'negative', taking h and k positive, gives the choices:
either x2+ hx - k = 0, or x2- hx - k = 0. In each case there is one
change of sign so, by the rule of signs, one root positive and one
negative, and there is no other way of arranging the coefficients to
obtain this result. However, in each case, the discriminant is positive
so neither equation can have complex roots. It is clear that where an
equation has roots of opposite sign, they cannot be complex. Inspection
shows that the Descartes rule, applied to an equation with complex roots
gives correctly the sign of the real part of the root. But the real
parts must be equal so a quadratic with complex roots cannot have just
one change of sign. The rule operates independently of the imaginary
part of the roots giving the sign of the real part when there are no
other factors. However, as Newton noticed later, the introduction of
further factors (and so roots) can change the sign given to existing
complex roots by the rule. Unfortunately this does not always happen so

this interesting property cannot be used to detect complex roots.
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Descartes gives no proof of his rule of signs for real roots and
does not explore how it operates when the roots are complex.

Although Descartes considers irrational coefficients and accepts
negative ones readily, he does not consider complex ones. It seems
that the acceptability of different number categories varies partly
with their context. He only considers irrational coefficients on one
occasion, but many mathematicians never mention them at all.

A remark on page 400 shows that Descartes was familiar with the
association between the cube of a quantity and the volume of a cube, al-
-though, in this case, it is the root of a cubic that is being described
as the side of a given cube. Two solutions to a problem are given, in
the first a geometrical construction is used and the answer given in
terms of arc and chord lengths of a circle, in the second Cardano's
method is applied to the avpropriate cubic equation and the answer given
as the sum of two cube roots. Descartes uses the square root sign
where appropriate in the Geometry., but his remark about the cube root
shows that he may have thought of the square root as the side of a
square of given area. If this is so, it is difficult to see how Descartes
could have acquired any very advanced ideas about complex numbers. He had
eventually followed Girard in stating cautiously that an equation of
degree n could have n roots, but gave no proof. Although this seems to
mean that he was counting complex roots together with real ones, Des-
cartes never fully accepted complex numbers as numbers and had doubts

about negatives.
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Sir Isaac Newton 1642-1727

Newton's interest in algebra seems to have started when,
in about 1670, he came across Algebra Ofte Stel-konst by Gerhard Kinck-
huysen, which members of the Royal Society were having translated from

Dutch into Iatin for publication in England(1). Newton revised the

book and produced a commentary, but it never reached publication. Wallis
also sent him an early draft of his Algebra for comment(z), and the
published version of 1685 includes a number of Newton's ideas.

Newton is known to have read works by Descartes (La Gébmé%rie),

Wallis (Arithmetica Infinitorum), Heurat, de Witte, Hudde, Vieta,

Oughtred (the Clavis ), Huyghens, Fermat, Gregory and Barrow (Euclid's
Flements, Puclid's Data). Of these, La Geometrie had the greatest in-

fluence on Newton in the area of algebra, and Fuclid's work in that of

proof.

(3)

obtaining the cube root of a complex quantity and uses it to evaluate

In Observations on Kinckhuysen Newton gives a method for

the roots in the irreducible case of the cubic. 1In a letter of 1677,
in reply to a query from leibniz, Newton says (erroneously)(4) :
'A possible root is always expressed by a possible series, an
impossible one always by an impossible'
By 'vossible series' Newton means one that is convergent, an 'impossible
series! is divergent. He associates a real root with a convergent
series and a complex root with a divergent series, linking the im-
possibility of the root with the infinite nature of the sum of the series.
No proof is given. Although Newton is content to manipulate complex
numbers and describe some of their properties, he does not discuss their
nature; the example given shows that he had some original ideas on this

point, not necessarily well founded.

(1) Whiteside, Mathematical Papers of Isaac Newton, II, p. 280

(2) Whiteside, II, p. xiii
(3) Uhiteside, II, pp. 377-95
(4) Whiteside, IV, p. 541
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A rule for determining the number of complex roots in an equataon
was given by Newton in lectures given at Cambridge from 1673 to 1683(1).
The method, known as 'Newton's Rule', applies to polynomials of the form

f(x) = 0, and is considerably more complicated than Descartes' rule.

The equation is written in the form x"+ a1xn-1+ azxn-2+ e v . =0,
Above the term in x" © is written the fraction n-r . r

r+1 n-r+1
re1 then underneath is written a

'+! sign, otherwise a '-' sign is written. Then the number of changes of

sign in this row gives the number of complex roots. Newton gave no

s and call-

. . 2
1 1
ing this br s if br - a, > 8L @

proof of this rule, which was not verified until 1865 by Sylvester(2).
The development of Newton's thinking on this problem is seen in his

mamanse - o ! of é;zbuxﬁﬁ@mxg"anarkgm . 1665-6, in which he says(B):

'Thus the signes of this Eq: .x3- pPXx + 3ppx - q3 = 0 shew it to
have three true [positive roots, wherefore if it bee mult-
ivlied by x + 2a = O the resulting equation

+6p3

4 3 3 3_ 4 (4)
X +px'+ ppxx - q°- 2pq°=0 should have three true roots and
a false [negative] one, but the signes shew it to have three
fa%se and one true. I conclude therefore that the two roots

ch™; e .
W  in y one case appeare true, and in the other false are
neither, but imaginary; and that of y other two roots, one is
true y -other false.'

Newton is taking p and q to be positive reals and finds that the intro-
duction of another root -2p has, in this case, changed the signs of
two of the roots in the cubic. These roots he takes to be complex, as this
could not have happened had all the roots been real. After remarking that
finding the number of complex roots by such a rule could be more labor-
ious than solving the equation, he gives these instructions(B) :
'Over ye terms of ye Equation set a series of fractions each
having y dimensions of the_terme under it for its numerator,

& the number denominating y term first, second, third etc for
its denominator. Then in every three terms observe whither the

(1) Mills, "The Controversy between Colin Maclaurin and George
Campbell over Complex Roots", Arch. Hist. Fx. Sc., 28(1983),
149-64

(2) See Appendix I, p.(1)

(3) Whiteside, I, p.520© ';u | zuv , , . 5 oo

(4) Correctly : (x +2p)(x’= PXx"+3p x = q”) =x +px"+p X +
(6p°- @ )x - 2pq°
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square of the middle term multiplied by the fraction above be
greater equall or lesse y factus of the termes before &
after it multiplieg by y  fraction over ye terme before it.
If greater write y sign + underneath; if equall or lesse
write theesign - under=neath y middle terme: and lastly set
+ under y  first terme of y equation. Then observe how many
changes there are from + to - & conclude that there are soe
many paires of imaginary roots. Unlesse all ye roots bee

equall,’
That this rule gives only a lower bound for the number of complex roots

. was known to Newton, as is indicated in the last sentence where he
says(1) :

'Sometimes thgﬁe may bee impossible roots not by this _means
discovered, w ~ if you suspect, augment or diminish y roots
of the Equation a little, not soe much as to make them all
affirmative or all negative, or at most not much more., & try
the rule again., And if there bee any impossible roots twill
rarely happen y they shall not bee discovered at two or three
such tryalls. Nor can there bee an Equation whose impossible
roots may not bee thus discovered.'
So a few 'tryalls' with a modified equation are necessary and, of course,
the modifications must be real ones. Newton does not actually say that
increases or decreases in the unknown are to be real, but would certain-
ly have said so if this were not the intention; it is not possible to
say whether a complex adjustment has augmented or diminished a number.
A more important point is that Newton does not say how we are to know
when sufficient trials have been made to find all the complex roots.
The method must have been considered useful in spite of this defect, and
as Newton says, it is unlikely that the number of complex roots could
not be discovered quite gquickly, particularly with equations of low degree.
In a lecture given in 1681, Newton returns to the problem of
. . I
finding the number of complex roots in an equation without solving 1t( ).
He says that it is possible to find whether the complex roots are
among the positive or the negative roots by examining the signs that

have been written over the terms in the method for finding the total

(1) Whiteside, I, p.526
(2) Whiteside, V, p.351

26



number of complex roots. Then the number of 'vositive' complex roots
(that is with real part positive), is given by the number of changes

in consecutive signs, and the number of 'negative' ones by the number
of repeats.. There is no proof of this very satisfactory discovery, but
a number of examples is given.

An interesting graphical idea is described in & Ykt a1)F o g
foots of equations, written in the late 1670'8(1). In this
Newton says that complex roots may be represented by 'folds' in curves.

~“These are described as dips towards the horizontal axis which are not
sufficient for the curve to intersect the axis. He must have been con-
sidering the question of representation of complex numbers graphically
in the Cartesian plane, itself a fairly new idea. This representation
does not seem to have proved useful. Newton did not take the step of
moving into a third dimension.

Newton's main contribution to complex number theory was his rule
for the number of complex roots in an equation. His descrivtion of the
properties of the discriminant of a quadratic (not discussed here) gave
a useful method for testing whether real roots would be found. Neither
the association of complex roots with divergent series nor the graph-
ical representation were fruitful. Newton was probably as disturbed as
I'escartes to find that real operations on the unknown did not eliminate
complex roots from an equation. In a letter to Collins of 1670(2) he
says

'. . . equations, to what terms soever they are reduced, their

real roots never become imaginary nor their imaginary roots

real, though indeed their true roots may become false and
false ones true.'
Newton was one of many mathematicians who regarded complex answers to
algebraic equations as of use in demonstrating that a problem was un-

(3)

solvable. He wrote in Universal Arithmetick

'But it is just that the Roots of Equations should be often
impossible, lest they should exhibit the cases of Problems
that are impossible, as if they were possible.'

(1) Whiteside, V, p.35
(?) Rigaud , Correspondences , II, p.307
(3) Newton , Universal Arithmetick (1728) , p.193
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Newton regarded complex numbers as useful, although he made
little use of them himself.and they never became central to any of his
main interests, Newton was a practical man and does not appear to
have speculated about the nature of complex numbers. His weight on
the side of acceptance of them as useful entities worthy of note, may

perhaps be regarded as his most positive contribution to their ad-

vancing status.
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John Wallis 1616 - 1703

John Wallis was educated at Cambridge, but spent most of his life
as Savilian professor of geometry at (xford. He was familiar with
Greek mathematics, lectured on the books of Fuclid, Archimedes and
Apollonius, and gave a solution to a well-known locus problem posed
by Pappus. Wallis's book on algebra, A Treatise of Algebra both
Historical and Practical , was published in 1685, but had been

_drafted much earlier, an early version having been sent to Newton for
his comments.

The book starts with a substantial section acknowledging work done
in algebra by the 'Grecians', the Arabs and European mathematicians.
He lists both names and book titles and we may assume that he had at
least a good working knowledge of these works and had probably read
many, if not most of them. Greeks mentioned include Euclid, Pappus,
Archimedes, Apollonius, Diophantus and Ptolemy and acknowledgement is
made of the translation and republishing of their work by Xylander,
Bachet and Fermat. Although mentioning the Arabs, he does not name
any but passes on to Regiomontanus, Stevin, Briggs and Napier. Next
is a list of algebraic works by Pacioli, Pisanus, Scipio, Cardano,
Tartaglia, Bombelli, Ramus, Clavius, Recorde, Vieta (Specious Arithmetick),
Oughtred and Harriot but Tescartes is not included. He summarises
works of Oughtred and Harriot, Cavilieri's indivisibles, his own
Arithmetica Infinitorum and the method of exhaustion which is its

justification, and the work on negative and fractional indices of

Newton. There is a strong historical sense of the way in which Wallis
is building on the ideas of others.

Wallis championed the English mathematician Harriot, and it was
a recurrentﬁﬁﬁ&V“ of his that Descartes took many of his innovative
ideas from Harriot without acknowledgement. In Chapter XXXI of the
Algebra , Wallis sa;ys(1

'He [:Harriot:] takes in also the Negative or Privative Roots
which by some are neglected. Wherein he is followed by Des
Cartes save that what Harriot calls (very proverly) Privative
Roots, Des Cartes (I know not for what reason) is vleased to
call False Roots.'

(1) Wallis, Algebra , p.128
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This despite the fact that Harriot did not usually accept negative roots
whereas Descartes was able to do so. Wallis would admit only TCescartes!
rule of signs as his sole innovation. Collins, in his correspondence
with Wallis, tried to reconcile him to the originality of Descartes. It
has been said that this blind spot of Wallis was because of an over-
partiality for English mathematicians, however, in his Algebra ,
Wallis acknowledges many previous algebraists, rather few of whom were
Fnglish and several of whom were French., Wallis's animosity may have

been more personal, Apart from this one defect, Wallis can be seen as a
| bold and original thinker with a wide knowledge of the mathematical
scene and with a strong historical sense of the development of mathematics
and the main threads of mathematical thought.

Writing about some work of Harriot on the number of real roots

in a polynomial, Wallis says in Chapter XL(1) :

' And having shewed it as to the Affirmative Roots, it may by
like Methods, be shewed as to the Negative also: For (as was
before shewed) by changing all the signs, those Negatives, will
become Affirmatives, and the Affirmatives Negatives. So that
what shall now be the Number and value of the Affirmatives, were
before of the Negatives.' Whereby it will appear how many in
all be Real; and how many but Imaginary.'
Assuming that by 'real' and 'imaginary' Wallis means real and complex
(and not positive and negative), he seems to be under the impression
that taking the total number of roots and subtracting the positive and
negative ones, gives the number of complex roots. He was aware of Des-
cartes rule of signs, but seems not to know of Newton's rule for numbers
of complex roots.

Before coming to the three contributions to complex number
theory by Wallis which I consider to be of most importance, I should
like to deal with some aspects of his thinking as shown in the Algebra .
An interesting insight into his thinking about operations is given in
Chapter I by his categorisation of them. He classifies addition,
multiplication and 'constitution of powers' as synthetic operations or
compositions; and subduction (subtraction), division and extraction of
roots as analytic operations or resolutions. The distinction is that
synthetic operations can always be performed but analytic ones are

only sometimes possible, the former involving a building up and the

(1) Wallis, p.152
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latter a breaking down. The three classified as analytic are those
which lead to the introduction into the number system of, respectively,
negative, fractional and complex numbers and this idea can readily be
incorporated into a modern description of the complex number field. The
analytic operations had long caused difficulties to mathematicians be-
cause the natural numbers are only closed under the synthetic operations.
wallis's point that synthetic operations only can always be performed
shows that, to him, number still meant natural number.

Wallis's view of powers higher than three shows that Greek
influence on him was strong. Although algebra can be applied to any-
thing capable of proportion, he says later that there can be no power
higher than three. From Chapter XXII (p.90) :

' . . algebra extends itself as far as Ration or Proportion may

reach and therefore may be applied to anything that is capable

of proportion. Line, surface, solid, time, weight, strength,

number or whatever else may be esteemed to have Magnitude (as
Euclide calls it), or Quantity (as we now use to speak).'

Referring to 'plano-plane' quantities, he says in Chapter XXX (p.126)

'"That is a Monster in Nature and less possible than a Chimaera

or Centaure. For Length, Breadth and Thickness take up the

whole of Space. Nor can we imagine how there should be a

Fourth local Dimension beyond these Three. But if we consider

a number ., . .'
So there is no meaning to a fourth length dimension but if only numbers
are being considered, there is no difficulty. However he does not
restrict the quantities listed in Chap XXII to one dimension. Time, weight,
surface etc raised to the second or third power would be just as much
of a 'Chimaera' as length raised to the fourth power (more so), and
there can be no meaning attached to a mixed sum of these quantities.

Wallis was well aware of the importance of notation and discusses
it in some detail in the Algebra . He saw the proliferation of notations
as a great handicap to algebraic development. For instance, he says
next, (pp.91-2), that a fifth power of A could be written Agc, AcAg, AqqA
or AAAAA, where q indicates 'quadrato' and ¢ 'cubo'. He says that qc
would mean a fifth power to Diophantus, Vieta and Oughtred, but a sixth
power to the Arabs, Pacioli, Stifel, Bombelli, Tartaglia, Cardano and

Clavius. Wallis advocates the use of aaaa or a4 instead of Aqq etc for
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a fourth power, and makes use of fractional and negative indices, He-
uses Descartes' index notation in spite of his strong antipathy to
Iescartes, but he did not justify the use of these, which was left to
Newton. Wallis used /-1 for the square root of minus one rather

than (-1)é', and did not advocate the use of any single symbol for
this,

Wallis had a high opinion of the Clavis of Oughtred, but
considered it worth mentioning on several occasions in the Algebra
that Oughtred omitted negative and complex roots. Wallis's own view
of these seems to have been similar to that of Descartes in as far as
he describes them both as 'impossible', that is to say, next to non-
existent. Wallis, like Newton, sees their claim to consideration in
their admitted usefulness. In Chapter IXVI about negative squares
and their imaginary sides, he says (pp. 264-65) :

'These Imaginary quantities (as they are commonly called)
arising from the Supposed Root of a Negative Square, (when

they happen, ) are reputed to imply that the Case proposed is
Impossible.

And so indeed it is, as to the first and strict notion of what

is proposed. For it is not possible, that any Number (Negative
or Affirmative) Multiplied into itself, can produce (for in-
stance) -4. Since that Like Signs (whether + or -) will,
produce + ; and therefore not -4,

But it is also Impossible, that any Quantity (although not a
Supposed Square) can be Negative. Since that it is not possible
that any Magnitude can be less than Nothing, or any Number
Fewer than None.

Yet is not that Supposition (of Negative Cuantities) either
unuseful or Absurd : when it is rightly understood.'

Some imaginative and useful examples are then given, using, for in-
stance, a man advancing and retreating for negative distances, and the
sea advancing and retre&k&g&yﬁor ne %tive areas.

Wallis rediscoveredACardano's method for the roots of a cubic
and says in Chapters XXVIIT and XXXVII (p.121, p.142) :

'T did before suspect that in superior equations, there might

be more than two roots'

'. . . how many Roots (Real or Imaginary,) every Equation contains
(viz. so many as are the Dimensions of the Highest Term:)!
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This was one of the first clear statements of the fundamental theorem of
algebra, which was becoming more widely recognised. The methods for -
dealing with the irreducible case either by geometry or trigonometry
were fairly widely known by this time, and Wallis says in Chapter XLVIII(1) :

'these equations which have been reputed desparate, are as
truly solved as the others'
The desparation was caused by the fact that, where the roots are all real,
two of them are given by an expression containing the cube roots of
complex numbers. In this remark Wallis seems tJf%aking a very positive
~attitude to complex numbers where they arise in an intermediate step.

The correspondence between Wallis, Collins, Gregory and Newton took
place from about 1673 to 1675 during the period when Wallis was drafting
his Algebra . Among the topics covered were the solution of polynomials
and the nature of roots, notations and meanings of complex roots, all of
which were included in the Algebra . In a letter to Collins of 1673
about Cardano's rule, Wallis describes the imaginary parts as 'extinguished'
by addition. The fact that these awkward quantities can be described as
extinguished relieves the mathematician of the obligation to define them.

In the same letter he says that all cubics are susceptible to Cardano's
rule as(z) :

'« « . the impossibility of[@he square roots of negative quantitieq]
hinders it not, unless where the binomial cube will not admit of
an extraction of its root '
The second part of this remark seems to contradict the first as the rule
always produces an answer, and by admitting complex numbers the roots
can always be extracted. Although Wallis may have been thinking of the
difficulties if irrationals are involved, he seems to be exhibiting a
very ambivalent attitude to complex numbers) they produce impossibilities
at the same time as being entirely acceptable. This appears to be a
lapse of logic although it is not entirely clear what is meant by
'binomial cube'.

It was in another letter to Collins of 1673(3) that Wallis first
gave one of his most important contributions to complex number theory.
This is that the square root of a negative quantity (impossible as both
of these are) can be regarded arithmetically as a mean proportional be-

tween a positive and a negative. He is still thinking in terms of

(1) Wallis, Algebra, v.181
(?) Rigaud, Corresnondences , II, n.55%¢
(3) Rigaud, II, n.576
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length and areas and says :

'. . . a'negative plane may as well be admitted in algebra as
a negative length, both being in nature equally impossible .

and if we suppose such a negative square, we may as well sup-
pose it to have a side, not indeed an affirmative or negative
length, but a supposed mean proportional betgeen a negative and

positive thus designable y-n or rather /-n", that is /(+n x -n)
a mean proportional between +n and -n.'

In the same letter he introduces rather diffidently the use of 2 V3 for
_ V12 etc which he found most useful. In the Algebra Wallis seems to
be thinking of the symbol '\/' almost as an operator, in the sense

that did not become widespread until the 19th Century. 1In Chapter

LXVI he writes of V-1 (p.266) :

'. « . V implies a mean proportional between a Positive and a

Negative Quantity. For as vbc signifies a Mean Proportional

between +b and +c; or between -b and -c; . . . . So doth -bc

signify a Mean Proportional between +b and -c or between -b

and +c; either of which being Multiplied, makes -bc. And this

as to Algebraick consideration; is the true notion of such

Imaginary Root, -bc'.

Wallis later gives the example V2 as a mean proportional between 1 and
2. The use of mean proportionals was well accepted, being firmly
founded in Fuclid's Elements , and its introduction into complex
number theory should have vroduced a considerable increase in their
acceptability.

Wallis's second important contribution was his suggestion that
an imaginary number can be 'found' not on the real number line, but
labove! it. He first uses a triangle problem to establish that square
roots may be taken as either positive or negative.

He considers the ambiguous case in
which it is required to solve a
triangle given two sides and the

1
included altitude (see figure)( ).

a, b and h are known and ¢ is ob-

tained from two applications of

(1) Wallis, Algebra , p.266 (adapted)
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) .
Pythagoras' theorem : ¢ = (a“ - h2) + \/(bz- h2). However, taking

the second squafe root as negative gives a solution which is equally

valid. He then gives the following example (see figure taken from
P.267)

With AP = 20, PB = 12 and PC = 15, Wallis says that AC = /175 and
CB = (144-225) = /-81. The diagram cannot be drawn with B on AC
as required, but it is possible if B is placed above the line as in
the diagram. The description is not that of Argand; Wallis is thinking
in Fuclidean terms and not in terms of Cartesian coordinates or rotations.
However he clearly describes -an arrangement in which negatives and
positives lie on a line, and an imaginary is placed off the line. He
says in Chapter LXVII (p.267-68) :
'Yet are there Two Points designed (out of that Line, but) in
the same Plain; to either of which; if we draw the Lines AB,
BP, we have a Triangle; . . . as were required: . . . .
The greatest difference is this; That in the first Case, the
Points B, B, lying in the Iine AC, the Lines AB, AB, are the

same with their Ground-lines, but not so in this last case, where
BB are so raised above g (the respective Points in their

Ground-ILines, over which they stand,) as to make the case feasible;. .

So that, whereas in case of Negative Roots, we are to say, The
Point B cannot be found, so as is supposed in AC forward, but
Backward from A it may in the same Line : we must here say, in
case of a Negative Square, the Point B cannot be found so as was
supposed, in the Line AC; but Above that ILine it may in the same
Plain.'
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Wallis goes on to indicate that he sees this kind of representation as
one for complex roots; it is only as roots of equations that he would
have encountered such numbers, There is no question of any general -

concept of a number plane or full number status for complex numbers.

(1) |

He says

'"What has been already said of /-bc in Algebra, (as a Mean
Proportional between a Positive and a Negative Quantity:)
may be thus Exemplified in Geometry . . . .'

'This T have the more largely insisted on, because the Notion
(I think) is new; and this, the plainest Declaration that at
present I can think of, to explicate what we commonly call the
Imaginary Roots of Quadratick Equations. For such are these,'

Wallis is trying to give a geometrical interpretation to complex numbers
which will parallel the arithmetical mean provortional one.

Wallis goes even further. Several mathematicians had said that
complex numbers are useful to indicate an unsolvable problem, both Wallis
and Newton held this view. Collins had written to Wallis in an undated
letter, that %g?plex roots should be given as well as positive and

negative ones :

\

'. « « their use being to shew how much the data must be mended
to make the roots possible, and give points or bounds in
delineations, shewing how much a curve must pass beneath or
beyond a given right line, by aid whereof the roots are found'

Collins attributes the idea to 'Dr Pell'. Wallis tries to pursue this
idea a little further by showing how the degree of impossibility might
be quantified. He says of the distance /gB (see diagram on previous

3) |

page )

'"This Construction shows that Case (so understood) to be Im-
possible; but how it may be qualified, so as to become possible.'

So the distance {SB can be used to discover how the problem must be ad-

justed to make it solvable. He says in Chapter LXVIII,of complex roots(4):

(1) Wallis , Algebra , Pp.268
(2) Rigaud , Correspondences II , p.481

(3) Wallis , Algebra , p.269
(4) Wallis , p.272
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' « « which beside declaring the case in Rigour to be impossible,
shew the measure of the impossibility; which if removed, the

case will become possible. And they direct to such succedaneous
operations in lieu of what is oroposed, as may afford useful
discoveries of somewhat which at the first Provosal was not

thought of.'

Wallis is not able to give a quantitative relationship between the com-
plexness of the roots and the impossibility of the problem in any part-
icular case, He passes on the interesting idea of Pell and hints that

even more useful discoveries may be made.

Wallis's third achievement is closely linked with the second. He
gives a picture of the nature of complex numbers by producing a set of
problems (mostly geometrical), that are impossible of solution. When
treated algebraically they lead to complex roots. A rationalisation is
given in each case, usually in terms of a geometrical adjustment in the
problem. The effect is to show how geometrical alterations can render
the answer to a problem possible or impossible. This is the closest
Wallis comes to a concrete interpretation for a complex quantity. In
one problem an attempt is made to find the third side of a right-angled
triangle having misunderstood which is the right angle, in another a
construction which only apolies to a point in a line is used for a point
not in the line. All these lead to the necessity to construct complex
lengths., Wallis says in Chapter LXVIII (p.272) :

'The solution amounts to this: that the case proposed, as to

the rigour of it, is impossible: But with such mitigations,

it may be thus, and thus constructed.'

Among others, he lists the following faults which may need correction,
some of which are equivalent to each other (pp.272-73) :
Use of 1. points not on the line proposed
2. tangent and secant instead of sine and cosine
. a point above instead of in the line proposed
. an inclined instead of a horizontal plane

3

4

5e an ellipse instead of a circle
6. a hyperbola instead of a circle
7

. incorrect signs
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In the chapters on the relationship between geometric oroblems'and
algebra, Wallis refers to the problems rather than the solutions as 'im-
possible'., In the preface and elsewhere, he refers to the 'Imaginary
Roots of Impossible Equations'(1). Unfortunately he is not consistent
in his nomenclature, sometimes referring to complex numbers as 'im-
possible' and sometimes as 'imaginary'. There is an adverse side to
the proposition that complex roots correspond to impossible problems.

It emphasises the impossibility of giving an actual solution in these
"“cases and so adds weight to the suitability of the word 'impossible'
to describe the numerical answers,

The new arithmetical and geometrical interpretations of complex
numbers put forward by Wallis represent a valuable contribution to
their study, and show his skill in tackling an obscure and difficult
concept. His ideas, well founded in Greek methods, should have enabled
mathematicians to take up and use complex numbers with increased con-
fidence. However, although Wallis's work was widely read, the next

hundred years saw little change in their acceptability.

(1) Wallis, p.[v] , Preface
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Chapter III

The Algebra (1685) of John Wallis to the Algebra (1769) of leonhard Euler

The period from the Algebra of Wallis té6 the Algebra of

Euler saw great strides made in the results obtained from manipulating

complex numbers, but no increase in insight into their nature. As the
--insights of Wallis do not appear to have had an influence on later

mathematicians, it may be said that progress in this direction was

retrograde. Leibniz said in 1702 that complex numbers are 'a fine and

wonderful refuge of the divine spirit - almost an amphibian between

being and non-being', and Euler, in more prosaic terms, gave his reasons

for considering them impossible (see below). But by Euler's time,

connectionsﬂhad been made between complex numbers and logarithmic,

trigonometric and exponential functions. Cotes had the result

i¢ = 1n(cos¢ + isin¢) in 1714, and de Moivre's theorem was essentially known

to him by 1722. Implicit in Cotes' result is the relationship

eiII+ 1 = 0, actually due to Euler, which can be regarded as the crown-
ing achievement of the 18th Century, connecting as it does five funda-
mentally important natural, imaginary and transcendental quantities
(one newly discovered), and the two operations addition and multiplication
by means of the equality relation. These connections all became explicit
after the discovery of the inverse relationship between exponential and
logarithmic functions (published by Wi}liam Jones in 1742) (1). By 1743

Fuler had the formulae cos s = eis+ e-ls and sin s = eis- e-is and in
. 2i

1749 he wrore dm arhole 2

o R oAU between Leibniz and Jean Bernoulli

about the logarithms of negative and complex quantities(z). In 1747

d'Alembert gave the first demonstration that all algebraic operations
on complex numbers, including raising to powers, gave complex numbers of
the form a + ib and not a hierarchy of new number species, as had

been feared (see below).

(1) Kline, p.258
(?) Kline, p.409
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An important history of mathematics produced in France during
this period was Histoire des Mathéhatiques by Etienne Montucla, pub-

lished in 1758. It is detailed and scholarly and was widely known.
Montucla does not dwell long on complex numbers, but gives the pro-
perties of conjugates in connection with those of the roots of quad-
ratic equations. He uses the word 'imaginaire' to mean 'imaginary'(1).
There is no description of their general properties, no estimate of

their usefulness and no discussion of their nature.

Nicholas Saunderson 1682-1739 , Abraham de Moivre 1667-1754

A mathematician working in England in the early 18th Century was
Nicholas Saunderson. He lost his sight as a baby and later learned
mathematics from hearing the works of Fuclid, Archimedes and Diophantus
read to him in Greek. He went to Cambridge and in 1711 followed Newton
as Iucasian professor, later becoming, like Newton, a Fellow of the

Royal Society. Saunderson's text-book The Elements of Algebra in ten

books , was published in 1740, in two volumes. 1In it are covered

such topics as the arithmetic of negatives, square roots of fractions,
quadratic equations, indices, Newton's binomial theorem, logarithms,
surds and the theory of equations. His method of obtaining the rules
for multiplication of negatives with positives or negatives uses
arithmetic progressions to get the correct results., All sections
include many worked examples with detailed explanations., Complex
numbers are dealt with a number of times, and are referred to as 'im-
possible!. It is clear that Saunderson does not think of them as num-
bers on a par with reals and that he thought of them not only in algebraic,
but apparently also in near spatial terms, which is quite unexpected.

Saunderson devised a system as an aid to the blind which he called

(1) Montucla, Histoire , p.80
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'palpable arithmetic', in which he used a pin-board to represent
certain arithmetical ideas. Apparently he did not extend this to

cover complex quantities,

Saunderson's view of complex numbers was that they are impossible
in the non-existent sense, but can be treated mathematically. He

says in the Algebra (1) :

'« « . =16 1is no square number, since there is no root either

affirmative or negative, which multiplied into itself will
produce -16"

. and later (p.184) :

' /(-2) is not only an inexpressible quantity but also an im-
possible one; and consequently . . . the two values of x in this
equation [_x2_ Ax + 6 = O] 2+/(-2) and 27 v (-2) will both be
impossible.
N.B. Though the roots of this last equation be impossible in
their own natures, yet they may be abstractly demonstrated to
be juste . +by making s = V(-2) and consequently ss = -2.'
On the same page, Saunderson describes complex roots in terms of a
limit. Roots pass between real and complex via a limiting value where
they are equal (p.184) :
'« « o it appears that one root of a quadratic can never be
impossible alone, but that they must either be both possible
or both impossible : for. . .the impossibility of the roots
flows from the impossibility of the quantity s or of the
square root of ss when it is negative . . . the two unequal
roots of a quadratic equation grow nearer and nearer to a state
of equality as they grow nearer and nearer to a state of im-
possibility but do not come to be equal till they cease to be
real, or at least, till they come to the limit between
possibility and impossibility.'’
He is thinking in dynamical, almost visual terms, and there are
interesting implications for gravhical representation in his remarks
about the roots verging together. This kind of thinking was not usual
at the time, although it is reminiscent of Newton's idea for graphical
representation of complex roots (see above). Saunderson shows a very
clear understanding of the behaviour of the roots of a quadratic.
That Saunderson's clarity of thought extends beyond the second
degree is shown in some later remarks. He does not quite give the
fundamental theorem of algebra in the terms of Gauss, and there is no

proof, but he comes near to this later when he writes (p.679)
(1) Saunderson, Algebra , p.83
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'« « . in every equation the number of impossible roots is always
even because the roots of a quadratic equation must always be
both possible or both impossble . . .but if the index of the
highest term of an equation be an odd number, it must have at
least one root possible.'
Again Saunderson gives no proof of these observations, but they illus-
trate how advanced were many of his ideas.
Appended to Saunderson's book is a letter from Abraham de
Moivre in answer to a query from Saunderson about the cube root of a
~_complex number. He uses a primitive version of what is now known as
'de Moivre's theorem' in which an expression involving trigonometric
functions is substituted for the quantity whose root is required. Saunder-
son has expressed himself as dissatisfied with Wallis's method, based on
Cardano's method, which de Moivre describes as merely a trial. De
Moivre finds the cube root by cubing an assumed root and equating real
and imaginary parts of this with those of the original. There is no
diagram, but the equation is expressed in terms of the sine and cosine
of an angle. ?hi cube root can be found by dividing the angle by three.
1

de Moivre says

', . . if the original equation had been such as to have its
roots irrational, his trial would never have succeeded. But
farther I shall prove, that the extracting the cube root . ...
is of the same degree of difficulty as that of extracting the
root of the original equation . . .and that both require the
trisection of an angle for a perfect solution.'

There follows an explanation with examples, running to about three pages.

(1) Saunderson , p. 745
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Colin Maclaurin 1698-1746

The able Scottish mathematician Colin Maclaurin, who spent
most of his working life as Professor of Mathematics at Edinburgh
University, took up some of Newton's ideas, in particular the determin-
ation of the number of roots of a polynomial. In a letter to Stirling
of 1728 he stated that if a polynomial of degree n has at least one
pair of complex roots, then so has the quadratic obtained from its
(n=2 )th derivative.61) This led to a plagiarism controversy with George
Campbell who was also working on the number of complex roots of a poly-
nomial. Campbell had noticed that if a polynomial has only real roots,
then so will its derivatives, but he did not then infer Maclaurin's
result about the number of complex roots. Maclaurin showed that Newton's
rule is not reliable in the sense that it does not infallibly detect
complex roots, although Newton himself knew this. It gives only a
lower bound for these roots. He considered the polynomial
xS- 1Ox4+ 30x3- 44x2+ 32x = 9 = Q which has complex roots, which Maclaurin
says are not detected by Newton's rule. However, applying Maclaurin's
differentiation method, the complex roots are still not found as with
f(x) = - 10t s 30x0- 44x°+ 32x - 9 , £r1r(x) = 60x°— 240x + 180 and
f''1'(x) = O has two real roots. This method also only gives a lower
bound for the number of complex roots. The polynomial actually has
three real roots, two between O and 1 and one between 6 and 7, and two
complex ones.

Maclaurin's A Treatise of Algebra in Three Parts , an algebra
text-book, was published posthumously in 1748, although he had intended

to publish it many years earlier. It was assembled from his notes,

with direct quotations from Maclaurin's writings given in double
quotation marks. It is mainly concerned with the roots and general
properties of polynomials and the inter-relation between algebra and
geometry. His explanation of what is meant by an 'imaginary' quantity

(1) Mills , "The Controversy . . . ", Arch, Hist. Ex. Sc., 28(1983),
149-64
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is given and complex quantities used freely where appropriate.
There is no discussion of a philosophical nature about V-1 or complex
numbers, but his views can be inferred even though Maclaurin did not
write the book himself.

Maclaurin thinks of imaginary quantities as non-existent, he
says that quadratics sometimes cannot be solved, but does not dis-

tinguish between a problem and its algebraic solution. From the
Algebra , Part I, Chapter 13(1) :

'Since the squares of all quantities are positive, it is plain
that "The square root of a negative quantity is imaginary, and
cannot be assigned." Therefore there are some quadratic
equations that cannot have any solution.'

The word 'impossible'! is not used here but does occur later in the book.

He gives a rather free definition of rationals and irrationals
using commensurability, defining them relative to an unspecified start-
ing quantity. From Chapter 14 (n.95) :

'. . + if any one quantity be called rational, all others that

have any common measure with it, are also called rational: But

those that have no common measure with it, are called irrational
quantities,'
It may be said that what is being defined is relative rationality and
relative irrationality. Maclaurin shows that the sguare roots of
naturals (with the exception of 1, 4, 9 . . .) are incommensurable with
naturals, and gives the method for rationalising denominators of the
form V5 - V3.

In a supplement to Chapter 14, Maclaurin shows how to find al-
gebraically the cube root of a gquantity of the form a + b,/-1, which
arises in Cardano's method, and also obtains the cube roots of 1. How-
ever, he does not consider this the best way and reiterates Saunderson's
view that de Moivre's trigonometric method is to be preferred. De

Moivre's theorem must indeed have seemed an elegant way of overcoming
the difficulty. Maclaurin says (p.127) :

(1) Maclaurin , Algebra (1748), Part I , p.87
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'But for a general and elegant solution, recourse must be had
to Mr. de Moivre's Appendix to Dr. Saunderson's Algebra . .
what has-been explained above may serve, for the present, to
give the Learner some notion of the composition and resolution
of those cubes; that he need not hereufter be surprised to

meet with expressions of real quantities which involve imag-
inary roots.'

Maclaurin points out the fact that the resolution of the irreducible

case shows that real quantities may be expressed using imaginary

elements. The implication of accepting this is to raise the accept-

ability of complex numbers,

Maclaurin takes a broad view of polynomials, considering in Part
II, those with either coefficients or powers that are fractional or
irrational. The numbers of positive and negative roots of a polynomial

are discussed, and the limits of their values. The rule given for

the number of complex roots is the same as Newton's. No proof is

attempted, reliance being placed on careful instructions and many

examples. From Part II Chapter 11 (1) :

'The number of impossible roots in an equation may, for most part,

be found by this ‘
RULE

"Write down a series of fractions whose denominators are the
numbers in this progression 1, 2, 3, 4, 5 etc continued to the
number which expresses the dimension of the equation. Divide
every fraction in the series by that which precedes it, and
place the quotients in order over the middle terms of the
equation. And if the square of any term multiplied into the
fraction that stands over it gives a product greater than the
rectangle of the two adjacent terms, write under the term the
sign +, but if the product is not greater than the rectangle,
write -; and the signs under the extreme terms being +, there
will be as many imaginary roots as there are changes of the
signs from + to -, and from - to 3+. 5

Thus the given equation being x“+ px + 3p x - q = 0, I divide
the second fraction of the series 3, 2,

over the middle terms in this manner, 1 %L 3
3 "
x3+ px2+ 3p2x -q=0.
+ - + 4+

Then because the square of the second terg Eultiplied into t5e4
fraction that stands over it, that is %.p x 1is less than 3p x
the rectangle under the first and thirg terms4 g place under the
second term the sign - : but as %.90 x“~ (= 3p'x~) the square of
the third term multiplied into its fraction is ggeater than
nothing, and consequently much greater than -pgx“ the negative

(1) Maclaurin , II , pp. 275-79
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product of the adjoining terms, I write + likewise under x3 and
-q the first and last terms; and finding in the signs thus marked
two changes, one from + to -, and the other from - to +, I
conclude the esuatiog has two impossible roots. In like manner
the equation x7 - 4x"- 4x - 6 = 0 has two impossible roots;

1 2
3 o 3 4 >
x’=- 4x - 4x - 6 = 0 and the equation x ' * = 6x°= 3x = 2 = O
A
4 8 9 8
the same number x' * - 6x“-3x -2=0 ., . . ™
+ o+ + - o+

"~ There follow examples, some with terms missing, up to the seventh power.
Next, by comparison of the signs of the coefficients with those written
below, the method given by Newton, Maclaurin shows how to determine
whether the complex roots are among the positive or negative ones. He
does not mention the difficulty observed by Newton, that the introduction
of certain factors changes the signs of COﬁflex roots,

Maclaurin concludes this section

'"This always holds good unless, which sometimes may happen,
that there are more impossible roots in the equation than are
discoverable by the Rule." This rule hath been investigated by
several eminent Mathematicians in various ways; and others,
similar to it, invented and published . . .'

He is aware of the fact that this procedure is not entirely rigorous.
Maclaurin reiterates some of the ideas of Wallis about the relation-

ship between geometrical problems and their algebraic solutions. He

makes the point that there are problems whose solution cannot be illus=

trated geometrically for which algebraic solutions of a sort can be

given, From Part III Chapter 1(2) :

'In Algebra, the root of an equation, when it is an impossible
quantity, has its expression; but in Geometry, it has none. In
Algebra you obtain a general solution, and there is an express-
ion, in all cases, of the thing required; only, within certain
bounds, that expression represents an imaginary quantity, or
rather, "is the symbol of an operation which, in that case, can-
not be performed;" and serves only to show the genesis of the
quantity, and the limits within which it is possible.

In the geometrical resolution of a question, the thing re-
quired is exhibited only in those cases when the question admits
of a real solution; and beyond those limits, no solution ap-
pears.'

(1) Maclaurin , II , p.279
(2) Maclaurin , III , p.299
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This is followed by a number of examples similar to those given by
Wallis in his Algebra . For instance, it is possible to calculate
a value for the distance from the centre of a circle to its inter-
sections with a straight line, but a drawing can only be made when
this distance is less than the radius. Thus, in spite of the en-
trenched position of geometry, algebra is more powerful.

It is not possible to infer from this book alone, without Mac-
laurin's own notes, his usage of the words 'impossible' and 'imaginary'.
In the book no distinction is made between their applications to
problems or to numbers, but in the quotations from his actual writings
both words are used to refer to solutions of equations. The importance
of Cardano's method for acceptance of complex numbers comes out clearly
in the book, and also the impetus from the algebra of polynomials
towards a closer understanding of the number system. In the section on
the links between algebra and geometry complex numbers are treated as
quantities obeying certain rules and no observations made about their
nature, although this would be the natural place for them.

It is noticeable, particu}arly where he gives his 'Rule', that
Maclaurin takes a narrow view of unspecified numbers. Although at
various points he considers irrational and fractional coefficients and
powers, undoubtedly his coefficients 'p!' and 'q' are positive, and
possibly also naturals. He does not assume the freedom to assign to
p and g any number value. An irrational coefficient, for instance, is
specified if intended. Unfortunately this restriction weakens Maclaurin's
demonstration of the rule's validity. He does not consider complex
numbers as coefficients or powers. He is one of many mathematicians
who have been obliged to widen their view of numbers that can be roots,
without allowing this wider view to percolate to numbers in certain

other situations.
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Jean d'Alembert 1717-1783

D'Alembert was a mathematician working in France during this
period. He was interested in developing mathematical techniques that
could be applied to particular problems, and was able to make an import-
ant contribution to complex number theory. He became science editor
to the Encyclopéﬂie under the principal editorship of Denis Diderot,
and contributed a number of articles. Although he was familiar with

current ideas about complex numbers, he made only brief reference to them

in this work(1). His prize-winning essay Rg}lexions sur la cause genérale
des Vents was published in 1747 and in it d'Alembert gave the first
demonstration that a complex number raised to a complex power produced
another complex number. His main difficulty was to determine a value

for \/-1'/-1; the method used was to consider variations in the real

and imaginary parts of a complex function. The following is taken
from Article 79 @) ,

'Car il est certain qu'ure quantité; algébrique quelconque,
composéé de tant d'imaginaires qu'on voudra, peut toujours se
rgduirejé A+BV/-1, A & B etant des quantitéé réélles; d'ou il

- ~
s'ensuit, que si la quantiﬁg proposee doit etre fgélle, on aura

B = Oo

-
Pour demonstrer cette verite, il faut remarquer, -
1°. OQue a+b V-1 = A+B /-1, puisque a = gA-hB; b= Ah+gB; d'ou

g+h V-1 l'on tire A = bh+ag; et B = bg-ah,
hh4gg hh+gg
2%, Que [a + b\/-{] gthv=1_ 4, By~1. Car faisant varier
7
A & B, aussi-bien que a & b, et prenant les differentielles

Iogarithmiques, on a (g + h) vV-1"x da + db -1 = dA + dBV-1 ;
a + b=-1 A + BV/-1

c'estlg-dire
AdA+BdB+(AdB~BdA) V-1 = gada+gbdb-ahdb+bhda + (hada+hbdb+gadb-gbda) v/-

AA + BB aa + bb aa + bb
h adb-bda
- aa+bb
donc AA + BB = [aa + bﬁ] g X C

} /
(1) Diderot and d'Alembert , Encyclopedie VIII , p.560
(2) d'Alembert , Réflexions sur la cause générale des Vents , p.141

%  Correctly : (g +hv-1)
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et [AdB - BdA = h log\/[aa+bb] + g |adb-bda .
AA + BB Taa+bb

Or [adb - bda , et (AdB - BJA sont des expressions des
aa + bb AA + BB

angles dont les tangentes sont b et B : donc B et A sont les
a A

sinus et cosinus d'un angle dont le rayon est

ﬁdb-bda
V/[:aa + bb & x aa+bb et dont 1a valeur est

h logv [aa+ bb] + g agz 22 - s gga .

3°, 11 est evident, que a+b v=1¥ (g+h/=1) = A + B /-1 ; et
que (a +b/-1) x (g + h/-1) = A + B /-1 .

40. Par le moyen de ces trois propositions, il sera facile de
reduire toujours ;.la forme A + BV/-1, une quantitg.composge de
tant et de telles fortes d'imaginaires q'on voudra. Car en
allant de la droite vers la gauche, on sera'€§anouir 1'une
apfés l'autre toutes les quantiﬁ;; imaginaires, excepﬁg‘une
seule : la quantité’proposgé se reduire donc\a A + BJ/-1; et

si elle doit etre une quantiﬂg fgelle, B sera necessairement

= 0.!

D'Alembert dismisses the sum, difference and product of two
complex numbers in his third point and deals briefly with the quotient
in point one. In point two he considers raising a complex number to a
complex power. The method is to assume the result he is seeking, that
it is of the form A + B/-1, and show that this assumption leads to no
contradiction. The first step is to apply logarithmic differentiation.
The use of the letters a, b, A and B as variables makes his work diffi-
cult to follow, and he uses differentials throughout. He treats -1 as
a constant} for instance, in d(b/-1), written db /-1, /-1 is removed
in the next step as a factor. After differentiation, he separates real
and imaginary parts to obtain two differential equations which are
solved by standard methods using an integrating factor. He shows that
A and B are the sine and cosine of the same angle, so there is no incon-

sistency in the original assumption. Other mathematicians, notably Euler,

later supplied more rigorous vroofs.
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A value for /-1 V=1 may be determined more easily using the
relationship eie = cos O + isinB, with 6 put equal to 11/2, say.
This gives eiH/2 = i, the ith power of which gives ii = e_IIAZ,
approximately 0-208 . . . , a real number. The general result
(a +3ib)8 * D _ 4 4+ 1B can readily be obtained using de Moivre's
theorem and the relationships cos 6 = (eie+ e-ie)/2 and sin © = (eie- e—ie)/Zi.
These relationships were known by the time of d'Alembert. Cotes had
given the equivalent of i8 = ln(cos 6 + isin 6) in 1714 and Euler knew
"~ that cos 6 = (eie+ e-ie)/Q by 1740. In 1743 he published this discovery
with the corresponding result for sin 6, and later rediscovered Cotes'
result(1).

D'Alembert later, in connection with his work of 1752 on fluids,
took the first steps in complex function theory. He found that

ég.z d and Op = - (now known as the Cauchy-Riemann equations),
X éﬁ% E%% éé%

dg = Mdx + Ndy and dp

define two functions p and q, such that

Ndx - Mdy. qdx and pdy are exact differentials
. (2

with p and q the real and imaginary parts of a complex functlon( )

Fuler later developed this method to evaluate real integrals using

complex functions. The details of complex function theory are outside
the scope of this thesis.

(1) Kline , p.409
(2) Kline , pp.626-27
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Leonhard Fuler 1707-1783

The Swiss mathematician Leonhard Euler, a student under Jean Bernoulli
at Basle University, spent mach of his working life as professor in the
Academy of Sciences of St Petersburg, with a period of twenty-five years
at the Academy of Sciences of Berlin. From about 1766 he became in-
creasingly, and then totally, blind. Through his pupil, secretary and
friend Nicolaus Fuss (1755-1826), he was able to continue his prodigious

._mathematical output.

Euler had real difficulties with the nature of complex numbers;
he was quite open about his strong feeling that he was failing to grasp
or understand their essential nature, He was well able to msnipulate
them according to certain rules of behaviour, but his intellectual bewild-
erment about them is clearly expressed in his Algebra . He is trying to
get a clear picture of what he is discussing and is not content with the
formalist view that /-1 is an entity which obeys a given set of rules.
This difficulty seems to have been of much more importance to Fuler than
to other mathematicians such as Wallis, who also made important discov-
eries about complex numbers. I have not found an instance of Wallis
expressing anxiety over the nature of complex numbers, either in his

Algebra or his correspondence. I have also not been able to find that
Fuler was aware of Wallis' ideas about mean provportionals or his dia-
grammatic representation for complex numbers. It is difficult to believe
that he was unaware of this material as Wallis' book was published in
1685 in English, and in 1693 in Latin; Fuler could read both English and
Latin. If Euler had been aware of it, we must conjecture that he would
have mentioned it at the point where he discusses the nature of complex
numbefs in his own book. Elsewhere Fulet mentions some of Wallis's
ideas relating to infinite series, so must have been familiar with -
Arithmetica Infinitorum.

Euler had, at one time, views on negative numbers similar to

those of Wallis. He discussed the behaviour of certain functions and

-1
their expansions in series.(1) Fxpanding (1 - x) by the binomial

(1) FEuler, Opera Qmnia, Ser.I, Vol.XIV, p.591; Vol.X, pp.78-81
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theorem gives 1 + x + x2+ x3 + .« « « and by putting

x = =1 he obtained 4 =1-1+1-1+ . ., . (a)
with x = =2, £=1-2 + 22- 23+ . o e (b)
and with x = 2, -1 =1+2 +4 +8+ ., ., . (c)

From (1 + x)°2, VD =1+2 +3 +4+ ..., with x = -1, (d)
Comparing the last two, Euler argued that (c¢) must be greater than (d4)
on the basis of a term by term comparison. Therefore -1 is greater than
infinity. It might as easily be argued that (c) lacks terms that are
present in (d) and so -1 is less than infinity., It is difficult to see

how Euler could have accepted the result (c), especially when he later

obtained the result -1 =1 +1 +2 +3 4+ .

« « o FEuler did not realise
the importance of convergence, although he was aware of the concept, and
obtained many baffling results. He regarded infinity as a limiting
value between positives and negatives, similar to zero. As with Wallis,
the discontinuity was being dealt with inadequately and divergence
ignored.

In Chapter V of his Algebra Euler covers series derived from
fractions with more care. He still does not mention convergence, but
pays close attention to the remainder after summing the first few terms
of a series. In most cases thes; series are geometric progressions of
increasing terms and the remainders are found by application of the
formula, which is only acceptable when the terms are decreasing., Because
of the way this is done, these results seem to confirm the strange results
above. For instance, taking -1 = 1 +2 + 4 + 8 + 16 + 32 + 64, the
remainder is 128/(1-2) or -128. This gives a total of 127 - 128, which
is -1. Fuler does not seem to have subscribed to Newton's mistaken idea
which associated divergent series with complex sums, but his unusual
view of negatives did not provide a sound foundation for a study of
complex numbers.

Fuler's Elements of Algebra (1769) was written after he became

blind, with the help of a tailor's unnamed young apprentice, who was com-
pletely ignorant of mathematics but who had been recommended by Bern-

oulli(1). It was written as a beginner's text-book and the student

(1) Fuler, Algebra (1840), p.xix (Memoir by Francis Horner);
Hutton, Dictionary (1796), I, p.451
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learned algebra as he went along; this ensured that the treatment was
clear and easy for a novice to follow. Attached are the "Critical and
Historical notes of M. Nicholas Bernoulli to which are added the -
additions of M, de 1la Grange™. After its original appearance in Russia,
a German edition was published in 1770 and English translations in

1797 and 1840. It was very popular and was reorinted and reissued a
great many times(1). It is noteworthy that although complex numbers are
frequently mentioned, and the remarks about the nature of V-1 much the
most contentious part of the book, the "Additions" contain only a
passing reference to the topic. Furthermore, neither Bernoulli nor
Lagrange seem to have noticed the errors in Euler's text (see below),
and these remained uncorrected in the 1840 English edition.

Fuler tried to give a definition of complex numbers by starting
with a global concept of number, then eliminating all those number cat-
egories which do not have their properties. If complex numbers are
numbers, then whatever remains must constitute a definition, or at
least a description, of them. Unfortunately, his initial concept of
what constitutes a number was too narrow, only encompassing reals on a
one-dimensional model, so that after the elimination process nothing
remained. This is given as a reason for calling the numbers 'imaginary!
and 'impossible'. This elimination process could have brought Euler
close to a working definition of complex numbers if his starting premises

had been wider, in this sense he came close to a useful definition. Euler

says in paras 141 to 144 of the Algebra @) :

'. « . the root in question must belong to an entirely distinct
species of number; since it cannot be ranked either among the
positive or among negative numbers.

« « o« positive numbers are all greater than nothing, or nothing,

and « . .negative numbers are all less than nothing or nothing; so

that whatever exceeds nothing, is expressed by positive numbers,
and whatever is less than nothing, is expressed by negative
numbers. The square roots of negative numbers, therefore, are
neither greater nor less than nothing. We cannot say however
that they are nothing; for nothing multiplied by nothing pro-
duces nothing, and consequently does not give a negative number,
. . . we cannot rank the square root of a negative number amongst
possible numbers, and we must therefore say that it is an imposs-
ible quantity. In this manner we are led to the idea of numbers

(1) It is shortly to be reissued (1985)

(2) Euler, Algebra (1797), p.64
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which from their nature are impossible. Those numbers are usually
called imaginary quantities, because they exist merely in the

imagination.'
Complex numbers have been excluded completely from the number system,
and are 'merely' imaginary, or non-existent.
Euler then says that as we can imagine these numbers and describe
their behaviour, we can make use of them. From para 145 (p.66) :

'« + « nothing prevents us from making use of these imaginary

numbers, and employing them in calculation.'

He expands on this point in para 151, where he stresses their usefulness
in showing that a problem is impossible (p.68) :

'Tt remains for us to remove any doubt which may be entertained

concerning the utility of the numbers of which we have been

speaking; for those numbers being impossible it would not be
surprising if they were thought entirely useless, and the object
only of unfounded speculation. This however would be a mistake.

The calculation of imaginary quantities is of the greatest import-

ance: questions frequently arise, of which we cannot immediately

say, whether they include anything real and possible or not. Now,
when the solution of such a question leads to imaginary numbers,
we are certain that what is required is impossible.'
Much later, in para 700, the same point is reiterated, when a problem is
attempted which leads to a quadratic equation with complex roots. Euler's
next point is to show how the discriminant of a quadratic can be used to
test for complex roots, so that the roots do not actually have to be
determined.

It is in this section that Fuler mentions irrational roots. He
says that these can be found approximately but that complex ones cannot.
He does not consider roots that are both complex and irrational.

In para 703 Fuler makes a firm statement that quadratic equations
have two roots, having mentioned in para 700 that the roots may be
imaginary or impossible, and no value may oe assignable to the unknown.
He is thinking of impossible numbers as proper numbers, to be counted
among roots together with reals, in spite of his feeling that they are
non-existent. He does not give a general statement about the number of
roots in a polynomial, but does give some examples of cubics. He solves
the cubic x- 8 = 0, obtaining as roots 2, and -1X/(~3) and verifies

that these, when cubed give 8.
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Fuler says in para 703 (pp. 391, 393, 396) :

'It is true that these values are imaginary or impossible; but
yet they deserve attention . « « ‘every cube root has three diff-
erent values; but that only one is real, or possible, the two
others being imvossible. This is the more remarkable, since
every sauare root has two values, and since . . . a biquadratic
has four different values, that a fifth root has five values

and so on. In ordinary calculations, indeed, we employ only

the first of those values because the other two are imaginary

e .+ o there is no doubt but that such an equation[:the general
cubic] has three roots after it has been seen . . . that this is

true with regard to pure equations [of the type x"- a"= O:]of
the same degree.'

These extracts show the state of Euler's thinking about complex
numbers. The algebra of polynomials forced the conclusion that they are
numbers, but he could find no logical place for them in the number
system as he saw it. They cannot be approximated as can irrationals,
and are founded upon negatives about which he was also somewhat confused.
The claim for notice of this 'new species' lay in its admitted usefulness
in allowing the mathematical treatment of problems that have no possible
solution. None of Wallis's ideas are mentioned; had he known of it, he
would surely have found the diagram helpful. He does not seem to have
been thinking visually and may have thought a diagram neither possible
nor desirable. He does not observe a narrow restriction of complex
numbers to unsolvable problems; elsewhere he uses them freely in far more
sophisticated ways, for the logarithms of negative numbers, for instance.
His lack of confidence about their nature fortunately did not hinder him
from making numerous extremely important discoveries about their be-
havioug particularly their interactions with many branches of mathematics.

Fuler's ideas about the nature of complex numbers show no advance
beyond those of Wallis, on the contrary. In Euler's time it would be
assumed, without the recognition that it was an assumption, that complex
numbers can be ordered and described as positive or negative, as can
reals. Some inkling of the fact that this is not so can be seen in the
working of Descartes' rule of signs. The roots are distinguished as
positive or negative with respect to the real part only and not with
respect to the whole, and the rule can give contradictory information
in the presence of different factors. Fuler was familiar with the two-
valued square root function Va (a positive), where the two values are

different and easily distinguishable. He would then have assumed that
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V-1 was of the same kind. However, because of the automorphism
i—> -1 in the complex number field, there is no relation which will
distinguish between them. A distinction between i and -i can only be
made if the restriction that it is the same i in each case is imposed.
To Euler i would have had only one value, although it could have been
positive or negative, and in the discussion of the errors in his
Algebra, this is the assumption that has been made.

These errors had far-reaching consequences, particularly in
England, and constitute a most important aspect of Euler's Algebra.
.. It has been suggested that, as Euler was totally blind when the book
was written, it may be that the mistakes were not his own, but those of
his secretary or of his publisher. However this is not likely as the
same error is repeated several times in different guises, and the
erroneous idea carefully described. Slips are rarely found in Euler's
work, but this error is particularly difficult to detect and he could
not have done any proof-reading. It is most difficult to be sure that
they do not originate with the 'apprentice', this depends on the extent
to which Fuler kept tight personal control over what was written in his
name. The name of the apprentice was not given but it was evidently
not Fuss (also recommended by Bernoulli) who did not arrive in St.
Petersburg, where the book was written, until 1773(1). In view of the
consistency with which the errors occur, I think that it is likely that
they are Buler's own. They were not corrected and caused much wavering
of confidence in complex numbers among later mathematicians, some of
whom were under the impression that the arithmetic of complex numbers
was either ambiguous or not yet agreed upon. The accuracy of Euler
does not seem to have been questioned.

Euler says in paras 148 and 149 of the Algebra (p.67) :

"Moreover as a multiplied by Vb makes /ab, we shall have

/6 for the value of /(-2) multiplied by v (-3) and /4 or

2 for the product of (-1) by (-4). We see, therefore,

that two imaginary numbers, multiplied together, produce a

real, or possible one.

. . . it is evident . . . that /(+3) divided by V(<3) will
give /(-1) and that 1 divided by J(-1) gives /+1 or V(-1).!

=
With the proviso mentioned above, J(=2) x V(=3) should be -6 ,
J(=1) x J(-4) is -2 , V($3) = V(-3) is -/(-1) and %is - V(-1).

(1) Poggendorff, I, pp.821-23, (p.821)
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In every case of multiplication and division Fuler's text
makes the same assumption. This is that va x b = /(a x b) and
Ja f Jb = /(a % b) in every case. These assumptions are true in
every case except the one where a and b are both negative in multipli-
cation. Subject to the proviso described above, the result should be
iVa times i /b giving - Vab, and not +/ab. When dividing, it is
possible to obtain the correct result because the errors eliminate
each other. Taking Fuler's examole, ./(-4) < JU=1) =24 -i=2,
also,v/E%- = 2 so his answer is correct. We know that Tuler was ob-
taining his answers by the second method as this is how it is described
when he finds 1 - /(~1),

Fresent-day usage is that the symbol  indicates the positive
square root so Fuler's V6 means today + 6, without ambiguity. lis
use of,f Y in paras 700 and 703 shows that his vractice was the same
in these cases, although each has a preceeding number., Whatever Euler's
usage, it is not possible to omit the '-' in -/ if the negative value
is meant, there seems to be no alternative to attributing the error
to Fuler himself,

Some of the ideas current at this time first appeared in the
correspondences between Euler, Goldbach, Daniel Bernoulli and Nicholas
Bernoulli(1). Goldbach and Euler corresponded on number theory in 1742.
Functions having -1 as an index such as (2p‘/"1 + 2-p‘/-1)/ 2 and
series for expressions involving trigonometric functions were also
discussed. Complex roots of quartics are mentioned several times and,
in 1752, functions involving /-1 which generate reals, such as the
sine and cosine. Daniel Bernoulli wrote to Goldbach in 1730, and to
Fuler in 1745, about integration by substitutions using \/-1, but )

where the functions being integrated and the integrals were both real
In 1731 Daniel Bernoulli and EFuler corresponded on the complex formula
for the area of a circle sector obtained by integration. In 1742
Fuler was in correspondence with Nicholas Bernoulli and Goldbach on

complex expressions for trigonometric functions such as, for sin B,

(1) Fuss, Correspondance, I, pp. 112, 113, 124-26, 133, 170, 201
(?) Fuss, II, pp. 376, 591
(3) Fuss, II, pp. 683, 687
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'sinus arcus B = (n -n-1)/2 v-1'; and series for trigonometric functions.

Nicholas Bernoulli discussed the roots of the quartic x4- 4x3+ 2x2+ 4x + 4
in 1742 and 1743, giving the four complex roots 1% /2 X /=% (1)
Some of these ideas were included in the Algebra . There is nothing

in these correspondences about the nature of complex numbers, they are
treated only as entities with rules of behaviour that are being explored.

In 1749 Euler published his resolution of the controversy be-
tween Jean Bernoulli and leibniz about the logarithms of negative and
imaginary numbers(z). Bernoulli, supported by d'Alembert, held that
log(-x) = log(x), whereas lLeibniz, with whom Fuler agreed, gave argu-
ments showing that this could not be so. Bernoulli advanced several
fallacious arguments to show that log(-x) = log(x), that is that log(-1)
= O, one of which was that they must be equal as their differentials
are equal, D'Alembert subscribed to the same error and de Missery
corrected him with some forcefulness (see below). ILeibniz objected

of legoi o

that differentiatioq«only applied to positives and Fuler pointed out
that it would be disastrous if differentiation were not universal.
Fuler's argument was that the equality of the differentials meant only
that the functions differed by a constant and not that they were equal.
As log(-x) # log(x), log(-1) # 0, and Fuler went on to show that
log(\/~1) #+ O using a result discovered in 1702 by Bernoulli himself.
By integrating dx/(1+ x2) in two ways, Bernoulli had shown that

V-1log (/=1 = x) = tan-1x , from which logv-1 = II1v-1 . So lo V=1)
2 2

(/=1 +x) o
is the ratio of a quarter of the circumference of a circle to its radius
and log V-1 cannot be zero. One of leibniz' arguments in favour of an
imaginary value for log(-1) being imaginary depended upon the series
log(1 + x) =x - x2/2 + x3/3 - x4/4 4 o+ » o with x = =2, and Euler
counters this with some examples showing that arguments depending on
the properties of divergent series are unreliable. Although Euler does

not support Leibniz' arguments, he agrees with his conclusion. Euler

(1) Fuss, II, pp. 691, 702

(2) Kline, p.409;
Fuler, Opera Omnia, Ser.I, Vol.XVII, pp.195-232; (not seen);
Tahta, Imaginary logarithms, pp.4-18
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produced proofs that all logarithms are multi-valued, which removed
the apparent contradictions. His first (unpublished) proof used Cotes'
formula which can be seen to be periodic.

In his work on logarithms Fuler manipulates \/-1 confidently,
according to its rules of behaviour. He used complex functions in
other ways such as the evaluation of real integrals by separation of
real and imaginary parts. He improved d'Alembert's demonstration that
complex numbers are closed under exponentiation, and called this the
fundamental theorem of complex numbers. Fuler was able to advance
complex number theory in many directions although it can be seen in

his Algebra that he was fundamentally unsure about their nature.
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Chapter IV

The Algebra (1769) of John Wallis to the Argand diagram (1806)

During this period the links between trigonometric, logarithmic
and exponential functions were further explored and consolidated.
"Analysis gathered momentum, and problems in pure mathematics, physics
and mechanics were being solved by means of the calculus with marked
success, Complex function theory was being developed, Gauss gave
proofs of the fundamental theorem of algebra and Wessel and Argand
produced their diagrammatic representations for complex numbers. Math-
ematicians such as de Missery were confidently demonstrating the useful-
ness of complex numbers, while in England doubt and confusion about these
and about negatives are discernible in the writings of Frend, Hutton
and Playfair, It is easy to justify the claim that continental
mathematicians were forging ahead more rapidly than British ones, particu-
lafly as far as complex numbers ére concerned.

A French mathematical history written during this period was
the General History of Mathematics of Charles (John) Bossut, which was
published in French in 1802 and in English translation in 1803, It is a
wordy account, almost totally devoid of mathematical symbolism. Bossut,

who had the same teacher as Montucla and was also a pupil of d'Alembert,
writes broadly on astrenomy, optics, accoustics etc and their mathematical

treatment, but with little detail, He mentions ' )
of the cubic as having been paradoxical until Bombelli resolved the

the irreducible case

problem geometrically and compares Bombelli's demonstration with Plato's
mean proportional method for the duplication of the cube. The imaginary

parts of conjugates are described as destroying each other. Of arith-

(2)

metic and algebra, Bossut says in Chapter I
'. . « they are fundamentally one and the same science. Arith-

metic operates immediately on numbers, and algebra operates in
a similar manner on magnitudes in general.'

(1) Bossut, History, p.208
(?) Bossut, p.206 '
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As there is virtually no mathematical symbolism in the book, it is
difficult to tell whether Bossut is adhering to the Greek idea of the
unknown as a magnitude, to the extent of excluding powers higher than
three from algebra. Although he says that arithmetic and algebra are
fundamentally the same, that is they have the same rules, he seems to
be making the distinction that algebra does not apply to number. If
this is not just an accident of expression or translation, this is a
primitive attitude to find in a book of this date.

Bossut's attitude to complex numbers is similar to that of
Montucla, Neither writer gave them much space in their histories,
and neither makes any philosophical observations about their nature
or their place in mathematics. The information given is elementary,

more recent developments are ignored.
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Edward Waring 1736-1798

Fdward Waring was a mathematician working in England during
this period. He became sixth Lucasian professor of mathematics at
Cambridge while still in his twenties, and wrote a number of works
on algebra. His work seems old-fashioned partly because, although
written in the second half of the 18th Century, it was in Iatin.
Waring followed the ideas, notation and methods of Newton at a time
when continental mathematicians were making great progress in the
calculus along lines started by ILeibniz. Lagrange, Fuler and d'Alembert
thought highly of him, but Hutton described some of his work as
'abstruse'(1). Waring's writings have been considered to be poorly
presented, confused, difficult to follow and full of typographical
errors. He was a shy and modest man of high integrity, but lacked
orderliness of thought. He suffered from severe myopia(1).

Waring's Meditationes Algebraicae was published in 1770. This

is a detailed text-book of algebra at a non-trivial level, containing

a number of interesting innovations. After some standard material

about complex roots of a cuadratic, the number of roots in a polynomial
and Descartes' rule of signs, Waring gives the rule that if substit-
ution of two values in a polynomial give positive and negative totals,
then between them must lie a value giving zero (a root). In Chapter

I he gives a method for finding greatest and least roots of a poly-
nomial using multiplication by the terms of a series, which he says
operates whether the roots are real or complex. In Chapter II he uses
his series method to find the limiting numbers of positive, negative and
complex roots, the limiting values between these roots and new equations
with these limiting values as roots, from which Newton's and other rules
can be deduced. Waring finds the number of complex roots in a poly-
nomial by multiplying it by another having only real roots, and finds
whether complex roots are positive or negative by multiplying the
polynomial by x + a and x - a . This a development of the property
noted by Newton, that multiplication by another factor can change the

(1) Hutton, Dictionary (1815), 1I, p.584
("Waring, Edward")
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signs of complex roots. He gives a general rule for finding the
mumber of complex roots using successive quadruples of terms instead cf
successive triplés, as in Newton' rule. VWaring then shows how to find
the number of complex roots in an equation whose roots bear an al-
gebraic relation to those of a given equation, such as where they are the
squares or the squares of differences etc., He also deals with the
number of complex roots in an equation in two or more unknowns. In
the last two cases, Waring claims to obtain the exact number of roots,
and not a limiting value for the number. He solves a cubic using de
Moivre's theorem and says that Cardano's method involves three cubics,
that is a resolution of nine dimensions. He shows how to rationalise
irrational unknowns in an equation and considers one with imaginary
coefficients. He multiplies together two quadratics with some imag-
inary coefficients to obtain a quartic with real coefficients and
refactorises this into quadratics with real coefficients. This is to
demonstrate that every algebraic equation with real coefficients can
be factorised into quadratic and linear factors with real coefficients.
Waring then gives an iterative method for improving approximations
for roots, whether real or complex. If the approximate root is a + b v-1,
substitute x = a + a' + (b + b') /-1, and reject higher powers of a!
and b'. Equating real and imaginary parts gives values for a' and b!'.
Waring considers only the algebra of polynomials in this book.
He does not use geometrical methods, but demonstrates the power of
the arithmetic series approach. He gives no discussion about the
nature of complex numbers, but uses them to great effect. He gives no
graphical representations of any sort. His use of words is confusing,
both 'irrationalibus' and 'impossibilibus' are used to mean imaginary.
This Algebra represents a real advance in the algebra of polynomials
and it is unfortunate that it was not easier to read.

In the Meditationes Analyticae of 1773, Waring covers Newtonian

fluxions, giving some rules for differentiation and a number of inte-
grals, Some of the examples include complex numbers, for instance he )

. . 2
gives the integral of a2x as the complex quantity +/-a"log x +/-a" .

2
a2+ x? 2 x - /-a
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He makes use of complex numbers several times, referring to them as
'imaginaria quantitas', but gives no discussion of their nature or
his views of them,

Waring's most important contributions to mathematics were in
number theory in which he made several useful conjectures and deductions,
and in the treatment of sequences, as he was one of the first mathe-
maticians to recognise that the convergence of these needs consideration
when manipulating or summing them. He uses series with polynomials to
great effect., He took a broader view of coefficients and unknowns in
polynomials than many mathematicians and his use of complex numbers
shows that he was able to accept them as numbers., He does not deal
with problems in his Algebra , but builds up the subject as a dis-
cipline in itself, which did not require 'usefulness' as a justifi-
cation. This represents a much more advanced view of algebra, and of

complex numbers, than was exhibited by many mathematicians of his
time.
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i

William Frend 1757-1841 , Baron Francis Maééres

William Frend, whose daughter Sophia Flizabeth married Augustus

de Morgan, was outspoken in condemnation of the use of negatives in algebra,

Frend's reading of the Bible had led him to believe that he had been
hoodwinked by the Church into an acceptance of the Trinity, and this
discovery led him to question other beliefs, particularly in mathema-
tics(1). He came to think of algebra containing negatives as an art
rather than a science, and advocated the elimination of negatives from
algebra in order to restore to it the status of a science. Similar
views were expressed in similar language by de Morgan, and the two
must have discussed these matters. The line taken by Frend was that
there was no prover definition of negatives, however this argument
cannot be regarded as carrying any weight as no part of the number
system had been defined at the time.

Frend's algebra text-book Principles of Algebra was published in
1796 and he sets out his philosophy of numbers in the preface. His

views are very decided, '-' means a subtraction and can only be applied

when the result would not be negative, His extraordinary aim was to
write an algebra of non-negative numbers., Frend uses the word 'im-
possible! for complex and imaginary numbers, but of course, under his

system they can never arise, From the preface (2) :

'. « . to attempt to take [g numbef] away from a number less
than itself is ridiculous.

Now when a person cannot explain the principles of a science
without reference to metaphor, the probability is, that he has
never thought accurately upon the subject.

« « o algebraists, who talk of a number less than nothing, of
multiplying a negative number into a negative number and thus
producing a positive number, of a number being imaginary . . .
they talk of two roots to every equation of the second order,
and the learner is to try which will succeed in a given equation:
they talk of solving an equation, which requires two impossible
roots to make it solvible: they can find out some impossible
numbers, which, being multiplied together, produce unity. This
is all jargon, at which common sense recoils; but from its
having been once adopted, like many other figments, it finds

(1) Pycior , Historia Mathematica, 9(1982),393
(?) Frend , Algebra, preface, p.x
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the most strenuous supporters among those who love to take
things uoon trust, and hate the labour of serious thought.
Complex answers are attributable to] either an error in the
mode of reasoning, or to false premisses.'
The 'metaphors' complained of are those of book-debts, receding tides
etc in Maclaurin's Algebra , described above., These remarks are
cuite uncompromising, at least three centuries of progress in the number
system are rejected and the writing of an algebra book under the re-
strictions described seems a considerable achievement.,
. Frend gives methods for solving simple equations, but his determin-
ation to eliminate negative numbers leads to cumbersomeness and much
multiplicity of methods. Negatives do not arise either in equations or
as roots, and they are also avoided in the calculations.
Frend takes the cubic x3- gx + r = 0, and shows how to solve it
by letting x = a + b with 3ab = q. This gives a3+ b3+ r = 0 leading to
N q3/27 + rad= 0, a quadratic in a’. The solution is

X = 3/47r2; 92.‘ r o+ 3/4; “2/? - P
Vi 5 Vi &

(1

Frend says \
'1. Let the equation be x3+ 27x - 28 = 0, in which x is equal
to one, and consequently a and b must each be less than one,
and 3ab cannot be equal to 27. Hence it is evident that this
method cannot be applied to a vast variety of equations, in
which the unknown number is incapable of being divided into
two parts, so that three times their product should be equal

to q.
2. After having made the supposition that 3ab = q, an equation
is formed a3+ b3+ r = O, Now this is absurd; for three numbers

added together cannot be equal to nothing.
3. From absurd premisses, an absurd conclusion is most likely

to follow, and this is seen in the expression b =

3/-{_— 2; z?— gz., an expression which has no meaning.'
2 4 27

The three numbers in para 2 cannot sum to zero because none can be neg-

tive; in para 3, if r ané the square root in b are both positive, then

the quantity whose cube root is required and the root itself are both

negative, and so inadmissable.

(1) Frend , p. 211
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Frend's Algebra has a comprehensive appendix by Baron Francis
Maséres, who also contributed to Hutton's Dictionary. Masgres was
considered for the sixth Iucasian professorship of mathematics at
Cambridge in competition with Waring, but was not successful (1).
Maséres takes every case of the cubic, giving for each a solution
which does not introduce negatives, with an example. This circumvents
Frend's difficulties with the cubic. For the irreducible case Maseres
recommends the Newton-Raphson method, in which an approximate root is
required as a first estimate and improved iteratively (2). Considering
bx - x3 = ¢ , using a small increment in x, he shows that

c<2byb and if ¢ = 2bvb or cc = b » the equation will have one
33 373 4 27

root /b , if ¢ is less then there will be two roots « and/g s where
3

X < vb and Vb . sz« b . He takes a first estimate close to one
/3 V3 F

of these limits and uses the Newton-Raphson method to improve it, giving
a great many examples. In Part II of the book, Frend describes the rule
of double false position for finding roots. 1In this method the first
estimate does not need to be so close to the root.

The book is necessarily long and tedious, it goes against the

usual trend in mathematics towards generalisation and simplification

of procedures. No rigorous demonstration of the behaviour of negatives
under, for instance, multiplication was available at the time and one
must have a certain sympathy for Frend's attitude. He has been des-
cribed as eccentric, but there is a sense in which he was right. Frend
has overlooked the fact that no rigorous demonstrations had been given
for positives either, if negatives need rigour so do all numbers. The
methods used to avoid negatives are ingenious if lengthy, but the
elimination of these neatly solves the problem of how to deal with
imaginaries. Frend lived for many years after the publication of the

Algebra ; I have not been able to establish whether he ever changed

his views about negatives in algebra.

(1) Hutton (1815), II, p. 584
(2) Frend, p. 292
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Charles Hutton 1737-1823 , John Playfair 1748-1819

The far-reaching consequences of the 'errors' in Fuler's
Algebra referred to above are well exemplified in some of the writings
of Charles Hutton., Hutton was a competent mathematician who rose from
humble beginnings as the self-educated son of a Northumberland colliery
worker, to become Professor of Mathematics at the Royal Military Academy
Woolwich, a position which he won in open competition. On retirement
" from this post, he was awarded a pension of £500 p.a. by the Board of
Ordnance, an indication of how highly his services had been valued. In
1798 he published A course of Mathematics composed and more especially

designed for the use of the gentleman cadets , in two volumes. Each

volume consists of three parts. Volume I has sections entitled 'Arith-
metic', 'Logarithms and Algebra' and 'Geometry'; volume II has sections
entitled 'Trigonometry', 'Conics' and 'Mechanics'. There is a substan-
tial treatment of the Newtonian 'Doctrine of Fluxions' in the mechanics
section, in which the language and notation are those of Newton. This
is an excellent, comprehensive and easily-followed exposition of the
mathematics then avallable , and at a suitable level for military cadets.
The arithmetic section gives computational methods for nth roots, but
there is no mention of the even roots of negative numbers, either at
any point in the text, or in the introduction. If there were no other
evidence, we should have to speculate about this omission. Hutton
could not have been unaware of the existence of complex numbers and
the level of the work, and its breadth, were such that a treatment of
complex quantities would have made a very satisfactory completion to
the picture given of mathematics. But the aim of the book was neither
to give a picture of mathematics nor a comorehensive mathematical ed-
ucation, but to equip cadets with an adequate knowledge of mathematics
for military needs. It might be supposed that Hutton had considered this
point and decided that a knowledge of complex numbers was unlikely
to be useful to an army officer.

However in 1806 a third volume was produced by Hutton and 'Dr
Gregory', also of the Royal Military Academy. The new chapters are to
be interposed between those in Volumes I and II. Chaoter VIII is
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entitled 'On the nature and solution of equations in general', and

covers methods of solving quadratics and cubics including trigonometrical

methods, with acknowledgement of Cardano and Euler. From article 5 (1)

'It sometimes happens that an equation contains imaginary roots

« « o This class of roots always enters an equation by pairs:
because they may be considered as containing, in their expression
at least, one even radical before a negative quantity, and
because an even radical is necessarily preceded by the double sign

+ .

There follow remarks about numbers of roots, conjugates, determination

of roots etc. There is no mention of uncertainties in the arithmetic

of complex numbers, and nothing about their nature. The word 'real!

is used in the modern sense.

There is no indication as to which parts

of Volume IIT were written by Hutton and which by Gregory, but in

view of Hutton's doubts about complex numbers as revealed in his Diction-

ary , this chapter was probably contributed by Gregory.

A somewhat unfortunate post-script to this book appears in

Daniel Dowling's Key to Hutton's Course of Mathematics of 1818. The

‘Key consists of solutions to problems in the Course and Dowling's

only observations concern the frequency with which his answers differ

from those of Hutton.

Hutton's Mathematical and Philosophical Dictionary of 1796 gives

a clear picture of his views on negative and complex numbers, and on

mathematics generally.

The format of the Dictionary is two columns

to a page, which is of approximately A4 size. OSome of the entries are

as follows, more general entries being given for comparison :

Complex
Impossible
Negative
Root
Imaginary
Equation
Algebra

Zero
Integers
Irrational
Limit
Variable
Fuclid

Geometrical, Geometry

No entry

'. + » same as Imaginary . . . which see!
1% columns

3 columns

34 columns

11 columns

68 columns

No entry
4 lines
'« « « see surds'
i column
column
1 column
4,3 columns

(1) Hutton, Course of Mathematics, III, p. 175
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Surd 32 columns

Number 4 columns
Triangle 5 columns
Trigonometry 14 columns

Hutton's difficulties started with negative numbers; he shared

Frend's scepticism about these to some extent. He says under 'Negative!' (1):

'The use of the negative sign in algebra; is attended with

several consequences that at first sight are admitted with some
difficulty and has sometimes given occasion to notions that

seem to have no real foundation. . . , The theorems that are some-
times briefly discovered by the use of this symbol may be demon-
strated without it by the inverse operation, or some other way;
and though such symbols are of some use in the computations in

the method of fluxions etc. its evidence cannot be said to

depend upon any arts of this kind.'

The fact that results can be proved another way does not give Hutton
confidence in the reliability of negatives any more than than it gave
other mathematicians confidence in complex numbers.

Under 'Root' Hutton describes square, cube roots etc., as mean
proportionals between one and the given number. In a subsection on
'Real and imaginary roots' he describes how 'imaginary or impossible!
roots arise as the even roots of negative quantities.

It is in the entry under 'Imaginary' that Hutton gives what
must have been the true reason for omitting complex numbers from the

Course . Here he lays out the ;arious versions of complex arithmetic
of which he knows. It does not seem to have occurred to him that any
of the mathematicians mentioned might have made a slip. Perhaps his
doubts about negatives prepared him to expect ambiguities in complex
number arithmetic. Under 'Imaginary' (pp.625-26) :

'The arithmetic of these imaginary quantities has not yet been
generally agreed upon; viz as to the operations of multipli-
cation, division and involution; some authors give results with
+ , others on the contrary with the negative sign - . Thus
Euler in his Algebra . .. makes the product of two impossibles
when they are unequal to be possible and real as V/(-2) x V(-3)
= V6 and V(-1) x V(=4) = V4 or 2. But how can the equality
or inequality of the factors cause any difference to the signs
of the products ? If (-2) x V/(-3) be = V(+6) how can
J(E3)x J(-3) «..be =3 ? ... Also in division he makes
V(=4)+ /(1) to be = V(+4) or 2 and V(+3) + V(-3) = V(-1)
also that 1 or V(+1) = J(-1) =\//il = /(-1) consequently
miltiplying the quotient root -1 v (=1) by the
divisor /(-1), must give the dividend \/(+1) and yet by
squaring he makes the square of «/(-1) or the product
Vi{-1)x J(-1) = -1,

But Emerson makes the product of imaginaries to be imaginary;
and for this reason, that "otherwise a real oroduct would be

(1) Hutton , Dictionary (1796), II, p. 147
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raised from impossible factors which is absurd. Thus
J(-a) x /(-b) = /(-ab) and V(-a) x V/(-b) = -/(-ab) etc.
also /(<a) x V(-a) = -a and /(-a) x -/(-a) = + g ete."
And thus most of the writers on this part of Algebra, are
pretty equally divided, some taking the product of impossibles
real, and others imaginary.
» « + Mr Playfair. . . makes the product of /(-1) by (~1)
or the square of /(-1) to be -1; and ye} in another place he
makes the product of /(-1) and /(1 - 2°) to be /(-1 + 22).(1)
Mr Playfair concludes "that Imaginary expressions are never of
use in investigations, but when the subject is a property
common to the measures both of ratios and of angles; but they
never lead to any consequence which might not be drawn from
the affinity between those measures and that they are indeed no
more than a particular method of tracing that affinity. . . .
the arithmetic of impossible quantities will always remain an
useful instrument in the discovery of truth and may be of
service when a more rigid analysis can hardly be applied. =« - .
M. Bernoulli has found, for example, that if r be the radius
of a circle, the circumference is = 4logv/(-1)r . Considered
as a quadrature of the circle, Vi=1)
this imaginary theorem is wholly insignificant, and would de-
servedly pass for an abuse of calculation; at the same time
learn from it, that if in any equation the quantity 105?1(-1)
should occur, it may be made to disappear, by -1
the substitution of a circular arch . . . The same is to be
observed of the rules which have been invented for the trans-
formation and reduction of impossible quantities; they fac-
ilitate the operations of this imaginary arithmetic; and thereby
lead to the knowledge of the most beautiful and extensive
analogy which the doctrine of quantity has yet exhibited. . . .
The real and Imaginary roots of equations may be found from
the method of fluxions applied to the doctrine of maxima and
minima ., , . but when the equation is above three dimensions,
the computation is very laborious.'

The last remark refers to Newton's rule for the number of complex roots

in an equation.

Summarising the methods Hutton has collected for multiplying

imaginaries and including Bombelli's version, he has (in modern notation) :

J(-a) x J/(~b) = =/ (ab) Bombelli

i

J(ab) and (-a) x /(-a) = -a  Euler
J/(-ab) and -\/(-ab) Emerson

The product /(-a) x \/(-b) has been given as real and positive, real and

negative, imaginary and positive and imaginary and negative by various

writers known to Hutton. He clearly considers that these versions show

that the algebra of complex numbers 'has not yet been generally agreed

(1) Playfair, Works III, p. 8
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upon'. This seems to imply that he thinks that the problem may be
resolved by agreement rather than rigorous mathematical processes, and
has an optional quality. It is difficult to believe that this was
really his view, this impression may simply be the result of an un-
fortunate choice of words. It is necessary to decide on the convention
in which /-2 = i /2 and /-3 = i V3 involves the same i, but this is
the only optional element., Once chosen, the pattern of the algebra of
V-1 is fixed. The automorphism in question would mean little to
Hutton who would be thinking in terms of a single fixed value for

v/-1. The quoted remark by Emerson shows that he at least was unaware
of the property of conjugates, that their product is real, a fact
well-known from at least the time of Bombelli. Hutton's quotation of
this remark shows that he too was open to doubt on this point., Emerson
was evdently not a reliable algebraist and it is unfortunate that Hut-
ton should take his opinion seriously enough to quote in the Dictionary.

The quoted remark of Playfair that Bernoulli's result is
'wholly insignificant', is also unfortunate, although he does say in
relation to the quadrature of the circle. It shows Playfair's limit-
ations as, implicit in it, is the relation eiII+ 1 = 0, obtainable if
the inverse nature of the exponential and logarithmic functions is
understood.

John Playfair, whose main interest was geology, was Professor
of Natural Philosophy at the University of Edinburgh(1)'and he expresses
somewhat philosophical views of negative and complex numbers., He sees
the fact that algebra can deal with quantities that cannot be repre-
sented in geometry as a weakness rather than a strength in algebra.

He finds it a paradox that results obtained using such algebra are
borne out by geometry, so it is not as useless as it ought to be. He
is undecided whether algebra is an art or a science. He says symbols
cannot form part of a science nor manipulation of them part of an art.
He finally finds algebra acceptable for the usual reason, that it is

. R 2
useful. Playfair says, in On The Arithmetic of Impossible Quantltles( ):

(1) Playfair, Works, title page
(2) Playfair, pp. 1-8
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'The paradoxes which have been introduced into algebra, and
remain unknown in geometry, point out a very remarkable diff-
erence in the nature of those sciences. The propositions of
geometry have never given rise to controversy?13, nor needed the
support of metaphysical discussion. In algebra . . . the doctrine
of negative quantities and its consequences have often perplexed
the analyst . . .the geometer is never permitted to reason
about the relations of things which do not exist, or cannot be
exhibited. 1In algebra again every magnitude being denoted by an
artificial symbol, to which it has no resemblance . . . the ana-
lyst continues to reason about the characters after nothing is
left which they can possibly express: if then, in the end, the
conclusions which hold only of the characters be transferred to
the quantities themselves, obscurity and paradox must of nec-
essity ensue. . . . they have been made the subjects of
arithmetical operations . . .and, what may seem strange, just
conclusions have in that way been deduced. . . . the arithmetic
of mere characters can have no place in a science. . . . 1Is
investigation an art so mechanical, that it may be conducted by
certain manual operations ? Or is truth so easily discovered,
that intelligence is not necessary to give success to our re-
searches ?' (Trans.,Roy.Soc.,london 1779)

To Playfair, algebra must represent the arithmetic of real positive
numbers to be valid. He cannot accept the move towards symbolism that

has begun to take place. To him.complex and negative numbers are baffling
because non-existent but he does not consider the existence or otherwise
of, for instance, the naturals. The acceptable number categories are
those that are geometrically constructable, and no doubt Playfair

would use this property in demonstrating their existence.

Hutton's position is more advanced and open-minded than that of
Playfair. Hutton's Dictionary shows the beginning of the transition in
the use of the word 'impossible' from numbers to problems. At some
points numbers are referred to as 'imaginary' and problems as 'imposs-
ible', but these usages are not yet fixed and there is still a certain
amount of interchange.

Perhaps the most important factor in the inability of some math-
ematicians to resolve the confusion about complex numbers was the fact
that a symbol for /-1 was not yet in general use, although '1' had
been used by Buler from the mid-18th Century. By writing Vi(-a) x V(-b)
as iva x 1 b , it is easier to see that the result should be ii Va Vb

or - Vab., The associative and commtative laws would have been used

intuitively.

(1) Open to question (DW)
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Waring had made useful contributions in algebra but, because of
their obscurity, these insights did not become widely known. The
picture emerging'in Britain at the end of the 18th Century is one of
serious confusion in the minds of some mathematicians about complex
numbers. It was most unfortunate that the reliable summary given by
Bombelli was overtaken by errors made by Euler, usually also entirely
reliable. This left the way clear for others to express opinions.
Hutton does not say anywhere that writers he quotes may have been mis-
taken. We might not expect Fuler to have been wrong, such was his
reputation, but with hindsight we would want to examine closely any
unsubstantiated remarks made by Emerson. Having identified a dilemma,
Hutton does not seem able to make a decision between the supposed
alternatives. His hint that it might be a matter of choice can easily
be seen as lack of confidence in the structure of algebra. EFuler's

Algebra was widely read both on the Continent and in England, but it
does not seem to have caused the problems in Europe that it did in
England. It may be that on the Continent the errors were recognised

as simple slips, or possibly, were just not noticed.
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Joseph-Louis lagrange 1736-1813 ,  Pierre-Simon laplace 1749-1827

. Lagrange and laplace both gave lectures at the short-lived
Fcole Normale in Paris during 1795. The lectures in the mathematics
faculty were of a high standard and provide a useful guide to the
status of complex numbers in France at the end of the 18th Century.
Neither mathematician made innovations in complex number theory, but
both made bold use of them. As with many mathematicians, although
they thought complex numbers baffling and to be avoided if possible,
both felt obliged to accept them on the basis of their usefulness.
Lagrange discusses complex numbers as roots of the cubic and
the paradox of the irreducible case. To him 'number' is synonymous
with 'real number' and the test of existence for a number is whether
it can be constructed geometrically. The paradox of the irreducible

case is that, as the complex expression represents a real number, it

can be constructed geometrically which means that it is also valid in

algebra. Unfortunately he does not discuss here the problem of re-
presenting negatives geometrically, his attitude to this would make

an interesting comparison. Lagrange says of the irreducible case(1):

'But how is this value of x to be assigned ? It would seem

they

that it can be represented only by an imaginary expression or
by a series which is the development of an imaginary expression.

Are we to regard this class of imaginary expressions, which
correspond to real values as constituting a new species of

algebraic expressions which although they are not, like other

expressions susceptible of being numerically evaluated in the

form in which they exist, yet possess the indisputable advan-

tage - and this is the chief requisite - that they can be em-

ployed in the operations of algebra exactly as if they did not

contain imaginary expressions [?] They further enjoy the ad-
vantage of having a wide range of usefulness in geometrical

constructions as we shall see in the theory of angular sections

so that they can always be exactly represented by lines; while

as to their numerical value, we can always find it approximately
to any degree of exactness that we desire . . . . We may regard it
as a demonstrated truth that the general expression of the roots
of an equation of the third degree in the irreducible case can-

not be rendered indevendent of imaginary gquantities.'

(1)  Lagrange, Iectures , pp.54-95 (p.79)
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Lagrange shares the general uncertainty as to whether the roots in

the irreducible case are a new species of number. In a sense they are

a species different from reals, that is complex, but this difference

is more apparent than genuine as they reduce to reals. Lagrange does
not take these properties as vindication of the case for complex num-
bers. Lagrange attempted to prove the fundamental theorem of algebra
but, as he says later in this lecture, he could devise no proof that

did not lead to a circular argument.

Laplace's attitude to complex numbers was similar to that of
Lagrange., He defines imaginary numbers and describes the form taken
by roots. He gives the properties of conjugates and of the roots in
the irreducible case. He stresses the usefulness of complex numbers,
especially the equating of real and imaginary parts in analysis. In
the Quatriéme Sé&nce of the 1795 lectures(1) Laplace solves the equation
3x - x2= 2, and obtains the roots x = 2t Y3 . He then talks about

) -2 2
real and imaginary quantities :

-~
'La quantite /-3 est impossible; car un nombre rgel, vositif
ou ﬁggatif, ne peut avoir pour carre un nombre ngéatif; le
N
probiéme qui conduit a ces valeurs est donc impossible. Ces

valeurs se nomment imaginaire; on peut les mettres sous la

forme d'une quantitg réélle, augmentgé ou diminnée d'dne autre
quantitg'fgélle multiplige par v-1; . . .

Quoique les quantif;é imaginaires soient impossibles, ce-
pendent leur considg}ation est du plus grand usage dans 1'
Analyse. Souvent les grandeurs reelles se presentent sous la
forme de plusiers imaginaires, dans lesquelles tout ce qu'il
y a d'imaginaire se detruit mutuellement quoiqu'il soit
difficile de le reconné;treQQ 1'inspection des formules. On
verra bientat que 1l'expression des racines des gquations du
troisieme degfg est dans ce cas, lorsque toutes les racines
sont fgélles; d'ailleurs, la comparison des grandeurs fgelles
entre elles, et des imaginaires avec les imaginaires, est un

V4
moyen fg;ond de 1'Analyse, pour determiner les grandeurs, '

(1) Iaplace, Oeuvres , XIV, pp. 10-178
(2) ZILaplace, p. 45
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To Laplace an imaginary consists of a real and an imaginary
part, either of which may be positive or negative, He describes in
this section the properties of conjugates. In the CinquiEme Scéance
he discusses the nature of roots, the form taken by complex roots and

says that there can be no roots that are not either real or complex,

the eguivalent of d'Alembert's result(1). In this session he acknow-

ledges Waring's Meditationes Algebraicae and some of Gauss's ideas.

The separation and equating of real and imaginary parts is covered in
the Sixieme Séénce(z)

useful substitutions. The problem under discussion is the division

, and in the Huitiéme Séénce(B) he gives some

of angles into equal parts, and Laplace uses de Moivre's theorem with
the substitutions #(cosx + /-1sinx) + %(cosx - /-1sinx) for cosx, and

1 (cosx + J-1sinx) - 1 (cosx - /~1sinx) for sinx. De Moivre's
2:;-1 2:7-1

theorem is'élso used to find the factors of x"~ a" and X+ a”.

Both Lagrange and laplace were interested in the applications
of mathematics, they saw it as a useful tool for solving difficult
problems in mechanics and physics. Both saw the value of complex
numbers as residing in their usefulness, and stressed this point in

their lectures.

(1) Dhombres, Rev.Hist.Sci., 33(1980), 314-48 (p.336)
(2) laplace, pp. 66~77 (p.76)
(3) Laplace, pp.101-132 (p.106)
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Iouis Arbogast 1759-1803

Louis Arbogast was professor of mathematics at Strasbourg, and

his book Du Calcul des Derivations was published there in the year VIII,

that is 1800. He makes frequent use of the symbol 'D' which he calls a
'signe des derivations', of which the modern 'd ' is a particular case,
Waring had previously used D to mean d_ (see dx above ), although
"~ other writers had used it to dx represent a finite difference.
On page xxj of the preface Arbogast gives a 'Tableau des notations
principales!' in which D, D, 0, oy, 270, 3N, X, é s f s
d and 8 are given, sometimes in conjunction with various prefixes and
suffixes. The relationships ,[; ' and [P d™ are also given.
Arbogast says that he is generalising Lagrange's analysis, of which
differential calculus methods are only a particular case, and claims
his ideas as a great simplification. He has a simplified notation and
says that the secret of the strength of analysis lies in the happy
choice of 'signs' (that is, notation). He says in the preface that the
rules for deriving the quantities which depend on the function are the
same as those of the differential calculus for taking successive
differentials of a function. The differential of the variable is
constant and equal to unity, which means that it can always form part
of these quantities. That is, since dx = 1, then D(x)2 can be taken as
ox.dx or simply 2x. Iater d_', d™2, etc and D', D° etc are described
as meaning respectively 'differentiales inverses' and 'derivées inverses'.
This seems to contradict the relationship ‘jp= g
be taken thatyjﬁd = 1, with no arbitrary constant.
Arbogast emphasises what he describes as the simplicity of his

etc, unless it can

methods acknowledging many previous writings, such as the Meditationes

Analyticae of Waring and his series methods, and the method of exhaustion

of the 'Ancients'. In a footnote, referring to his paper of 1789, he
shows how to obtain any function of x as a power series in AX, follow-~

ing Lagrange's method. Arbogast's book is divided into six Articles.

2
In the first he sets up a series assuming that F(oK + x) = a + bx + cx  + etc

s T 1.2
finding a, b, c etc by differentiating and setting x = O.
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Articles two to five are about expanding volynomials in series, and
article three shows that the product of two series is another series.
Article six is about differentiation and begins to show the point of
expanding functions in series when they are to undergo further mani-
pulations such as integration.

Arbogast is meticulous in acknowledging the work of other
mathematicians and, among others, mentions Leibniz, Waring, Lagrange
and Laplace. This book shows his great skill, not only in manipulating
series, but in devising and operating with new notations. His use of
D, d etc is a very early example of the separation of operator and
operand in the differential calculus. This method was new, and proved
very fruitful when developed in the early 19th Century. Arbogast
stresses repeatedly the simplicity of his methods, but it would be
fair to say that this simplicity was bought at the expense of great
proliferatién of symbols, In this book he lays down a simple system
for real analysis, so unfortunately complex numbers are not brought into
the discussion at any point. This is a pity as Arbogast was an ad-
venturous innovator of symbolism .and an interesting operational treat-
ment of complex numbers might have been hoped for. Further research

might prove rewarding.
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Antoine Suremain de Missery 1767-1840

An illuminating summary of the state of the algebra of complex
numbers in France at the end of this period is given by Antoine Sure-
main de Missery in Theorie Purement Algébrique des Quantités Imaginaires

et des fonctions qui en rééultent, published in Paris in 1801. The

author is described on the title page as 'ci-devant Officier d'Artill-
erie, de la Societe des Sciences de Paris et de celle de Dijon'.

In this work de Missery starts by claiming that he will use
only simple algebra, that is, he will not be using either geometry or
infinitesimals (calculus), with the implication that algebra is easier
and superior. In this he is taking a similar line to Arbogast, who
was also trying to simplify the analysis of Lagrange. De Missery dis-
cusses the controversy between Leibniz and 'l'un des Bernoulli'(1) (Jean
1667-1748), on the nature of the logarithms of negative quantities
which the former, supported by Fuler, considered imaginary and the
latter, supported by d'Alembert, thought real. He describes the uncer-
tainty of 'vulgar' mathematicians and says that he agrees with Fuler who
takes the view that positive réals each have an infinite number of
logarithms all imaginary except one, and negative reals an infinite
number all imaginary. He proposes to raise some extraordinary mistakes
of d'Alembert, whose hypotheses that log(-x) = log x and log(-1) = O,
are inadmissible. De Missery seems to be taking pleasure in pointing
out d'Alembert's errors. He then talks about imaginary exponents and
the functions that might result. These functions, when applied to the
arc of a circle of radius one, give the sine, cosine, tangent, cotangent,
secant and cosecant of the arc and other proverties of circles, soheres
and triangles both rectilinear and spherical, and formulae in both trig-
onometries very 'elegantly'. He says he will obtain the logarithm of
an imaginary quantity such as A + V-1B using only ordinary algebra,
whereas d'Alembert and Fuler had used calculus and geometry, and Fon-

cenex had used algebra and geometry. D'Alemoert thought that algebra alone

(1) De Missery, Thgbrie, pp.1-3
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would be insufficient without geometry, but de Missery's method involves
expressing arcs of circles in terms of imaginary logarithms (Jean
Bernoulli's result, quoted by Hutton in his Dictionagz from Playfair,
see above). The use made of this result by de Missery is in marked
contrast to the dismissive remarks of Playfair., The 'ordinary' algebra
required includes some series and their inverses. These are (p. 12)

log(x +s) = log x +5 - 15° +1s0 - 15 + etc

X 2x2 3x3 4x4

z 2
e =1+2+32 + 23 + 2% + etc, e being the base,

2 2.3 2.3.4

or, more generally

2 3

log(x + s) = log x + A( s - 1s° + 1s_ - etc ) A being the modulus
2 3
X 2x 3x
c? =1+ zZ + z2 + z3 + etc c being the base
A 2A2 2.3.A3
z V-1

After expansion of eyj: » de Missery shows that if log x = y, then
log(-x) = yt IIV-1 belongs to the same system as &= X, so y is not
now the logarithm of the two different quantities log x and log(-x) (pp.23-25).
Similarly if log(-x) is taken as y, then log x = vyt I1/-1. An ob-

jection is anticipated, for

log(a) = log(real a) where 'real' means positive
log(-a) = log(real a) + log(-1) taking -a = a x (-1), a positive
log(é) = log(real a) + log(-1) + log(-1) taking -a = (-a) x (-1)
= log(real a) + 2log(-1) from which can be obtained the result
2log(a) = 2log(-a) so 1log(a) = log(-a).

However this does not indicate that log(a) = log(-a), but only that the
sum of two particular values of log(a) is the double of log(-a). The
same result is obtained starting with log(-a)2 = log(real a)2. So de
Missery holds with Leibniz and Euler against Bernoulli and d'Alembert,
that the logarithm of a negative is imaginary, and that log(x) # log(-x).

He notes also that it is possible to have, in an infinite number of

ways (p. 27), the sum of
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2 different logs of -a = that of two different logs of a

or 2 W -a = the double of log a
or 2 " a= u a
or 2 " a = u -a .

He further labours the point about the error in d'Alembert's calculus
method as follows (p. 28) :

d'Alembert takes d(log x) = dx and d(log(-x)) = -dx = dx
~X

>

X
so that d(log x) = d(log(-x)) and log x = log(-x) by integration.
'But he knows better than I do that the complete integral is log(-x) =

log x + constant! and the constant is log(-1), which d'Alembert knows
is +II /-1,
In the next section (pp. 33-46) de Missery shows that :
log(x + sV/-1) = %log(x? + 32) + (@ + 2kII) /-1 where x > O
= %1og(x2 + 52) + (.g + (1* 2kII)) /-1 where x < O,
using the series noted earlier as essential; the convergence is also

discussed.

Using log(x + sv/-1) = log x + log(1 + sy/-1) and
x

]

log(x + sv/=1) = log sV~-1 + log(1 + _Xx ) he obtains

s V-1

log(-1) = 2(p + q)/~1 where q=§_-_§_z+ etc
x 3x3
and p:)__c_—1_3£+ etc
s 3s
and if x=s, g=p=1=-1+1-1+ ete
3 5 7
so log(-1) =4(1 =1 +1-1+ etc)V-1
5 7
If x is taken = O, o-=oo-;_w3+%_005- etc and p =0
from this log(-1) = 2(<;o--1_003 +_‘15_005- ete ) /-1 thus giving

two different values for log(-1 ). The following results are eventually
obtained (p.46) :

log(v~1) = 3II /-1 and log(-v-1) = 311 /-1 = =log(V-1)
but log(~/-1) = log(-1) + %log (-1) = %1og (-1) and log(v-1) = 3log(-1)

s0 zlog (-1) -3log(-1) and this gives log(-1) = O.

2
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The flaw in this argument, says the author, is that log(~ v-1)
should be taken as log( v-1) - log(~1) and not as log( v-1) + log(=1).
If this alteration is made, then the result obtained is ~klog(-1) =
-*log(-1), a correct identity. The formulae for imaginary logarithms

are then used to find a value for II or 1o (;1) . The next point is

that it is possible to deduce from log(-1) = II /-1 that log(-1) =
(@k + 1)IT V-1 or II v=1/(?k + 1), but there is also an 'infinity of
others', Iikewise it is possible to deduce that log(~-1) =
2ITV-1/X (°k + 1), where k is an integer (pp.46-49).

The adventurous and ingenious use made of the result log(-1) =
1T V-1 by de Missery is Jjust one examnle of the way in which continental
mathematicians had taken the lead over British ones at this time. De
Missery was able to make use of it, whereas Playfair referred to it
as 'wholly insignificant'. However, in his work on series and mani-
pulation of «0, de Missery seems to show no knowledge of convergence
or concern over meaning. In this he was less advanced than varing.

2 /-1 (p.50),
which he says is to be developed .as a series. The function he starts
z V-1 fz + V/-1f'2z , and he states in a footnote (p.69) that he

intends fz and f'z to be cos 7z and sin z. Here he says that in another

De Missery next explores the exponential function e
with is e

memoir he shows that if z is the arc of a circle of raduis one, II is
the demicircumference, fz is the cosine, f'z the sine, f''z the cotan-
gent, f£'!''z the tangent, f'Yz the secant and fVYz the cosecant. This is
difficult to follow on the basis that f''z = (f'z)', f'''z = (f''z)"'
etc, which is evidently not the case. Te Missery's own result

(£2)%+ (£12)°
for his results f''z = fz/f'z and f'''z = f'2/fz etc (pp.50-53). These

are obtained by inspection of the results given above. It apnears that

= 1 is not applicable to f'z and f''z etc, and similarly

fz, f'z, f''z etc are unrelated defined functions, and would be better
designated fz, gz, hz etc. f'z is not the derivative of fz, if
this were the case, f'z, f''z etc would be -sin z, -cos z etc. De
“issery's whole thesis is that he is not going to introduce differenti-

ation. However, if f'z is meant to be the derivative of fz, introduced
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as a defined function, the lack of the '-! sign is an error. If
differentiation was intended, the starting point should have been
e’ V-1 = fz - V-1f'z, and had this been used no doubt many useful
results would have been verified. The results obtained appear to be
inconsistent, but to be sure of the line being taken it wéuld be
necessary to trace the 'other memoir', If the functions are unrelated

this is a weaker line of thought than it abpears. There is at least

s

a lack of clarity, if not an inconsistency. The use of " ' " at the

end of the 18th Century for any function, 'derived' or otherwise,

causes much confusion for modern readers.

z /=1

De Missery takes e = fz + V=1f1z
and 2V gy v-1f'z , and solving them
together obtains fz = (e V-1 + e ? VL1)/2
and £z = 2V 2 eV 2y (op.50-52).

He then obtains the relationship (fz)2 + (f'z)2 = 1, and calculates

values for fz, f'z etc when z = O, II, 2II, II/2, + 2kII, *t(°k + 1)II
etc, and other properties, such as their signs in various ranges. fle
next takes f''z = fz/f'z and f'''z2 = f'2/fz giving no reasons. These
assumptions are based on the values of fz, f'z etc which lead in-
evitably back to the same results previously given for f''z etc.

The most important aspect of this work is not the possible
inconsistency of some of the results, but the confidence with
which the manipulation of complex numbers was undertaken, It is
assumed that complex numbers behave in the same way as reals. This
assumption was being stated as a rule by which to explore the pro-
perties of complex numbers from this time, particularly by Peacock
and de Morgan., De Missery helped to raise their status to that of
numbers subject to the usual algebraic manipulations, De Missery's
book exemplifies the sophisticated level which had been reached by the

beginning of the 19th Century in the assimilation of complex numbers
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into mathematics, The rules are known and their nature is not guestioned
or discussed. The interconnections that had now been made with

logarithmic, trigonometric and exponential functions and with the

calculus were becoming widely known and increasingly used.
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Jean-Robert Argand 1768-1822

The single most important and innovative contribution to
complex number theory during the whole of the period under consideration
was undoubtedly Argand's Essal sur une maniere de reprééenter les
quantitgs imaginaires, published initially as a pamphlet in 1806, and
later in Gergonne's Annales de Mathghatiques Pures et Appliqugés ’
Paris in 1814. The paper of 1797 (published 1799) by the Norwegian
born Caspar Wessel, contained a similar idea for the geometrical repre-
sentation of complex numbers, but because it remained in obscurity for
a century its influence was small, ILittle information is available

about Argand. He lived in Paris, working as a book seller,. and

the Essal and some related papers were almost his only contribution

to mathematics. Neither Wessel nor Argand were professional mathe-
maticians (Wessel was certainly self-taught), and it is salutory that it
took the amateur Argand to point out in clear terms the woolly thinking
enshrined in the number system nomenclature of his time. Argand's
paper was not immediately influential, but his ideas were taken up by
Gauss, Cauchy and Hamilton, and are still of great importance today.
Gauss and Argand, working at about the same time, appear to have been
the first mathematicians to have made serious criticisms of the names
in use for certain number categories. Gauss introduced the word
'complex', Argand produced his diagram and a new and logical notation.

The pamphlet of 1806, and its authorship, were almost overlooked
by the mathematical establishment. The preface by J. Houel in the

Fnglish translation of the Essai describes what happened (1) :

'Frangais, an artillery officer at Metz, sent to the Fditor of
the Annales [Joseph Diaz Gergonné] the outline of a theory whose
germ he had found in a letter written to his brother by Le-
gendre, the latter having obtained it from another author whose
name he did not give. This article came to the notice of
Argand, who immediately wrote Gergonne a note in which he made
himself known as the author of the work cited in Legendre's
letter, and in which he gave a complete summary of his pamphlet
of 1806. This double publication gave rise to a discussion in
the Annales, in which Francais,Gergonne and Servois took part,
closing with a remarkable article, in which Argand explained
more satisfactorily certain points in his theory.'

(1) Argand, Imaginary Quantities , p.v (preface)
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The Essai begins with a model for negative numbers, which must

be extended beyond zero on the number line . This model had not been

obvious to all mathematicians (see Wallis and Euler above). Argand

gives an example in which objects are weighed using a balance; the
principle of moments is used in which distance is separate from dir-

ection. He defines /-1 in terms of the geometric mean between -1 and

+1 in the relationship +1: x :: x: -1. He says (pp.23-24) :

'« + o as the quantity which was imaginary [pegativq] when applied
to certain magnitudes, became real when to the idea of absolute

number we added that of direction, may it not be possible to _
treat this quantity, which is regarded as imaginary [imaginar&],
because we cannot assign it a place in the scale of positive and
negative quantities, with the same success ? On reflection this
has seemed possible, provided we can devise a kind of quantity
to which we may apply the idea of direction, so that having
chosen two opposite directions, one for positive and one for
negative values, there shall exist a third - such that the posi-

tive direction shall stand in the same relation to it that the
latter does to the negative.'

Argand gives the diagram shown, and his description uses the vector

concept although the word 'vector' is not used (pp.24-25) :

'For the direction of KA to that of KE, is as the latter to that
of KI. Moreover we see that this same condition is equally met
by Kﬁ; as well as KE, these two last quantities being related

to each other as +1 and -1. They are, therefore, what is
ordinarily expressed by + /-1 and -/-1. In an analogous manner
we may insert other mean proportionals between the quantities
just considered . . . Similarly we might insert a greater number
of mean proportionals between two given guantities . . . !
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Argand compares KA and AK with two equal and opposite forces
eliminating each other, a concept well-known to mathematicians. He
refers to vectors as 'directed lines' and scalars as 'absolute lines'.
The diagram emphasises strongly the uniformity in the nature of
numbers, whether real or complex, positve or negative. This was the
first time such a clear demonstration had been given., Numbers are all
represented by lines, and the only difference between those for reals
and those for imaginaries lies in their directions. The circular form
._of the diagram and the method of finding further mean proportionals
between two numbers by equal sub-divisions of the angle between the two
lines representing them, gives a direct illustration of de Moivre's
theorem (with which Argand was familiar). He says he got his initial
ideas for representing numbers in a meaningful way from consideration
of the inappropriate and illogical names in ¢ommon use for certain
number categories. The numbers themselves are not actually absurd, im-
possible or imaginary since meaningful results can be obtained from
their use, Argand does not use Gauss's word 'complex' which became
widely used somewhat later. Argand's point is that mathematicians
should take a more mature and realistic view of the number system,

both in nature and in nomenclature. He says (pp.31-32) :

'... . every line parallel to the primitive direction is expressed
by a real number, those perpendicular to it are expressed by
imaginaries of the form *a v-1, and those having other directions
are of the form*t at b./-1, and are composed of a real and
imaginary part. But these lines are quantities just as real as
the positive unit; they are derived from it by the association of
the idea of direction with that of magnitude, and are in this
respect like the negative line, which has no imaginary signifi-
cation. The terms real and imaginary do not therefore accord
with the above exposition. It is needless to remark that the
expressions impossible and absurd, sometimes met with, are

still less appropriate. The use of these terms in the exact
sciences in any other sense than that of not true is perhaps
surprising. An absurd quantity would be one whose existence
involved the truth of a false proposition . « .but the results
obtained from the use of the so-called imaginaries are in all
respects conformable to those derived from reasonings in which
only real quantities appear. We might thus foresee the improvoriety
of a nomenclature which classifies truly absurd quantities and
the even roots of negative quantities together, and it was a con-
sciousness of this impropriety which first gave rise to the ideas
developed in this essay. It is thus that we are led to a new

nomenclature.!
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These remarks are very scathing but eminently sensible. Argand
does not put forward any new names in place of the unsatisfactory ones
but shows much fiexibility in his use of, for instance, 'imaginary!',
which can mean negative, complex or imaginary. However he makes an-
other fundamental advance towards unification of the number system with
his suggestions (pp.35-36) for a new notation and an operational ap-
proach. He assigns numbers to the four operators as follows
V-1torn/=1, ==2, =/-1or V=3, +=4; a straight line counts

as two and a curved one as one. To find the symbol for any product, add
the numbers corresponding to the signs and subtract fours to obtain a
number from 1 to 4. This is the number corresponding to the correct
sign. For division the numbers are subtracted. This operational alge-
braic notation for treating /-1 parallels the operational geometric ap-
proach of the diagram. Unfortunately this new system was never taken
up, it might have helped Hutton to clarify his ideas, if he could have
accepted it(1).

Usingctggxﬁiicular diagram, Argand gives the construction for
multiplying two Irneg and note§ that division is the inverse process
(p. 36). Other rules and consequences are given, including the product
of vectors not measured from the origin, and factorisation of the bin-
omials x™+ 1 and x"- 1 in terms of cosines. He uses cos na ~/ sin na =

(cosa nJ sina)” (de Moivre's theorem), to obtain the series

cos x =1 - §E_+ x4 - x6 + ¢ o o g 8inx =x - x3 + x5 - ... and
21 47 & 3T 5T
x = tan x - tansx + tan5x + e e o o The new notation and the vector
3 5

method are combined to obtain the standard trigonometrical relationships,
and the diagram, with suitable arcs, is used (pp.50-52) to obtain series
for log(1 + x) and log(1 + z)/(1 - z). About polynomials he says (p.79) :
A n- n-2

', . . every polynomial of the form 4 ax” 1+ bx T+ . .

+ fx + g is decomposable into factors x + o of the first degree.

It is to be noticed that a, b, . . . g are not necessarily

reals . . o'
Argand obtains this result from the addition and multiplication of
directed lines and is one of only a few writers to consider polynomials

with non-integral coefficients.

(1) Hutton's Dictionary (1815) contains no entry under "Argand",
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Argand concludes his Essai with these remarks (p.82) :
' . . the method of directed lines as an in

strument of re
whose use is advantageous in certain cases, because geometiiirCh
cogstructions offer, as it were, a picture to the eye which fac-
ilitates purely intellectual operations. Moreover it is al-
ways possible to translate the demonstrations founded on this

method into ordinary language.'!

Argand is suggesting, quite rightly, that a visual representation of
the kind he has given is of help when seeking new developments. He has
demonstrated its versatility by using his methods to derive many known
series and theorems, although no new results are obtained. In this
Essai , Argand is the first to treat complex numbers on a truly equal
footing with reals.

Frangais had written in the Annales describing the new 'geo-
metry of position' and giving a notation in which 1. T represents one
unit in a direction perpendicular to the real number iine(1). Among other
ideas, he suggests that this system makes sense of the 'symbolic and
mysterious equation' ll-./-1 = log(v~1), has applications to circular
arcs and the roots of unity, uniting them all in one theory. Argand
had responded to this letter, reveallng his identity(z)and his work was re-
oprinted in the Annales in 1814. He says that 'direction' is to be
preferred to 'position', because AB f EZ, and uses the word 'module'
(modulus), for the first time . Argand also introduces yet another
notation, an index notation in which 1%'means V-1, that is one unit
at % of a complete revolution from +1.

Using this notation Argand tries to place numbers such as
( VL1)°°sP + vﬁdsinp on the diagram, concluding that these vectors
must be perpendicular to KA. He says that these numbers are represented
round a circle centre K perpendicular to IA(3), with the modulus determin-
ing the distance from K and p the direction. He admits that there have

1y n J-1

been demonstrations tending to show that (a2 + bV- can be

reduced to the form p + q -1, so they should be represented in the
original plane. But these demonstrations involve development in series
and p and q have not been shown to be finite. Argand says that they are
infinite when they represent imaginaries, an jidea first suggested by
Newton. He says that a number p + qv-1 or a, can become infinite if

(1) Francais, Annales , 4(1813-14), 65
(2) Argand, Annales , 4(1813-14), 133-147

(3) Argand, Annales , 4(1813=14), 1 . this new circle takes these
numbers into a third d1mens1on
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it can be expressed in the form 8, » and stresses the need to verify the
existence of a he?rarchy'such as © 8, &, &, etc. Argand expresses
himself uncertain about the nature of the ¢ logarithms of imagin-
aries, he says there is 'a cloud on the spirit'.
Frangais then wrote to say that as real angles are found in the

X,y plane, it is reasonable to expect imaginary angles in the perpendic-
ular plane, but he is not satisfied that two dimensions are insufficient
and points out that three dimensions require three coordinates(1). This
"point is not the same as that of Argand, who was taking an imag-

ary modulus and a real angle, Frangais says that it has been shown that

numbers like (a+ bv/-1)"* nv-1 reduce to p + q /-1, and so must lie in

the x,y plane,

Argand questions the rigour of his system(z), moreover it should not
only be right, but simple and brief. He also questions the rigour of
Fuler's proof that ( /-1) V-1 is real, and his work on series for e’ and
the formula e’ = cosz + v-1sinz, where z is complex. Argand is not
claiming that his own work is any more correct than that of Euler, only
that neither have been proved rigorously, each has only been shown to
lead to no inconsistency. He makés the very interesting point that if
all the numbers lie in the x,y plane, what can there be that is represented
on the perpendicular plane ? He then discusses the relationship
1 ¢ V-1 ¢ /=1 ¢ =1. Servois has expressed scepticism about the mean
proportional method, and doubt about the usefulness of directed lines
on the grounds that not everyone is able to use them,

For his ideas Argand claims simplicity and ease of application
He describes the proofs for the fundamental theorem of algebra as elther
relying on complex numbers or on development in series which are non-
rigorous as they have not been shown to involve only real quantities.

The problem is not that the theorem is not true, the problem is the
proof. He says that concrete quantities can always represent abstract
numbers, but abstract numbers, such as infinitesimals and complex numbers,
cannot always represent concrete quantities. This is an argument

against Argand's system and he defends infinitesimals by the definition
of a 1limiting value. However Argand returns to the simplicity of his

methods and describes in some detail how he obtains sums, products, etc

(1) Francais, Annales , 4(1813-14), 222-27
(?) Argand, Annales , 5(1814-15), 197-209
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of complex numbers, in terms of their moduli and angles., He claims that

his simpler methods must constitute a gain, and compares his directed
lines favourably with Lagrangian analysis.
Argand made several other minor contributions to the Annales ,

mostly solutions to geometrical problems. Apart from the brilliant

Essai , he made no other original contribution to mathematics., Al-

though he was mistaken about the need for a third dimension to his
diagram, this work constituted a great reform and simplification of
-- the number system. The work of Gauss and Argand marks the beginning of

the clear understanding and proper description of the number system,
and the place of complex numbers in it.
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Chapter V

The Early 19th Century

The picture of the number system at the beginning of the 19th
Century was one in which irrationals were acceptable, negatives were
accepted by most mathematicians and complex numbers accepted on the
basis of their usefulness and consistency with the reals. The most marked
change during the previous two centuries was the advancement of
complex numbers from 'useless' to 'useful'. Results, such as the
number of roots in a polynomial, had been obtained using them, which
could be verified by other means. A powerful visual representation had
been given which enabled complex numbers to be constructed geometrically,
and which demonstrated graphically their behaviour under algebraic
operations. Argand took an operational approach in which '-!' is repre-
sented by an anticlockwise rotation of 180° and ' /-! by one of 90°,
applied to directed lines. Wessel's representation was similar, but of
a more static Fuclidean kind. In his paper of 1797 he used vectors and
the triangle rule for vector addition, but his ideas were not influential
during the 19th Century as his work was overlooked until published in
French in 1897. Cotes, de Moivre and Euler were among many who already
thought of complex numbers as points in the (Cartesian) plane, but at
an intuitive rather than rigorous level.

At this time Gauss was starting to use a number couple notation
(a,b), for complex numbers. He used complex numbers in proofs of the
fundamental theorem of algebra, seeing them as represented by points
in the Cartesian plane. In 1811 he described his idea in a letter to
Bessel, in which he says that a +V-1b can be represented by (a,b) (1).
The two elements are real numbers taken as an ordered pair, with al-

gebraic rules of combination, from which has been eliminated the symbol

V-1, By 1831 Gauss had published his description of complex numbers as
(1) Kline, p. 631
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number pairs, that is points rather than vectors, with geometric
demonstrations for addition and multiplication. Like Argand, he saw
the need for new names for number categories, and advocated the words
direct, inverse and lateral for positive, negative and imaginary.
These excellent suggestions were not taken up, but his less satisfactory
'complex' eventually became universal. In spite of his apparently
enlightened attitude, Gauss did not take easily to complex numbers.
He regards negatives as validated by the success of results obtained
by using them over a long period, and complex numbers as 'still
rather tolerated than fully naturalised . . .an empty play upon symbols'(1).
Gauss .made many remarks showing his lack of confidence in complex
numbers, his diffidence contrasts strongly with the certainty of
Argand.

The innovations of Argand and Gauss constituted important steps
towards clear understanding and definition of the number system later
in the 19th Century. The geometrical basis for the revolutionary ideas
of Argand may account for the slowness with which they were taken up;
although Gauss's contribution with its algebraic emphasis came consider-
ably later than that of Argand, &he complex plane has been known as
the Gaussian plane. Both interpretations paralleled the Cartesian
co~ordinate system, confirming the logicality of extending the axes in
the negative directions. The most obvious benefit of the Argand diagram
was that it gave a simple visual means of modelling the number system,
but, equally important, was Argand's use of it to verify and demonstrate
the rules for adding and multiplying complex numbers. This, therefore,
was the point when the supposed ambiguities in their behaviour were
removed, and the rules of combination seen to be certain and consistent.
Gauss's number couple notation can be used in many ways, for instance to
eliminate negatives, rationals or irrationals from the number system.
Apparently no writers except Hamilton took such a step. This idea
might have enabled Frend, de Morgan etc to overcome their scruples
about negatives. It was a fortunate coincidence for the status of

complex numbers, that the algebraic interpretation became available as

confidence in Euclidean rigour declined.

(1) Tahta , Complex Numbers , p.[8]
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The step from the one-dimensionality of the reals to the two
dimensions of cohplex numbers was, in each of the new definitions, the
essential innovation, and gave rise inevitably to attempts to generalise
to three and more dimensions. The success of new theory and notation
is measured not only by whether it is easy to understand and manipulate,
but also on whether it facilitates new ways of thinking. In this
sense the two dimensional approach to complex numbers was highly suc-
cessful, as it led Hamilton to generalise to quadruples, and Grassman
to n-tuples. These discoveries played an important part in the 19th
Century reorientation of ideas about mathematics.

As the ideas of Argand, Gauss and others became better known,
the potential acceptability of complex numbers increased. To invest-
igate this it was decided to examine briefly work of three early 19th
Century mathematicians, Cauchy, Hamilton and de Morgan.

Cauchy laid the foundations of complex function theory. Although
in 1821 he described results obtained using /-1 as not making sense
unless real and imaginary parts are separately equated, in the same
work he was using -1 to get résults without employing this technique(1).
An example from number theory (not original with Cauchy) is given
below. In 1822 he gave a method for integration round a rectangle show-
ing that the integral is independent of the path, in 1825 he considered
integration of real functions using complex limits(Z)- He used complex
numbers in many novel ways but his treatment was algebraic. Not only
did he noi make use of the Argand diagram or complex plane, he does not

appear to have used Gauss's number pair method either.

(1) Cauchy, Qeuvres, (2),3,154; (Cours d'Analyse)
(2) Kline, p. 635-36
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Cauchy did not see complex numbers as having any other than an

abstract meaning. In the Cours d'Analyse of 1821 he considers the

expressions cosa + V/-1sina and cosb + ~/-151nb and their product

1
cos(a+b) + \ﬁ-1sin(a+b)( ) He describes them as svmbolic expressions

which do not represent anything real, but does not suggest anything that

they might represent. He finds it strange that the first two can be

rmultiplied to obtain the third. He sees complex expressions as having

an important role in containing two pieces of information simultaneously,
one in the real part and one in the imaginary. He refers to /-1 as a
coefficient and to the equating of real and imaginary parts. What is
being equated in these methods is actually two pairs of real quantities,
one pair having each the coefficient /-1, A few pages further on he
demonstrates the power of complex numbers to produce results in
number theory, when he uses them to prove that the product of two numbers,
each of which is the sum of two squares, is itself the sum of two
squares in two different ways. For instance (2 +1 )(3 2? ) = 4 + 7
124 82, (5 x 13 = 65). The proof is as follows @)

(a + ib)(p + iq) = ap - bq + i(aq + pb) and

(a - ib)(p - iq) = ap - bq - 1(ag + pb)
Multiplying gives :

(824 b2) (p2+ ¢°) = (ap - bq)® + (aq + bp)° (1)
in which p and q,are interchangeable on the left. Interchanging them

on the right gives :

(%4 2)(p%+ o©) = (aq - bp)2 + (ap + bg)° (i1)
Equations (i) and (ii) are two different ways of decomposing
(a2+ bz)(p2+‘q2) into the sum of two squares.

Cauchy expresses the view that complex numbers are extremely
useful in algebra and analysis as well as in number theory. He covers
de Moivre's theorem, series for trigonometric functions of complex
numbers, roots of complex numbers and other similar topics. He des-
crlbes symbolic algebra, which may contain imaginaries, as one in which
a fixed set of rules are obeyed, but says that that the expressions
obtained may be entirely abstract, that is, devoid of meaning.

(1) Cauchy, Oeuvres, (2),3,154
(2) Cauchy, p.159
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Although Cauchy had little confidence that complex numbers
represented anything meaningful, he made good use of them to obtain
important new results, He continued the fruitful work of continental
mathematicians on the involvements between complex numbers, the
calculus and mathematical functions. British mathematicians who, at
this time, were not in the forefront of developments in the calculus,
were turning to algebra; in this area is found their main contribution
to complex number theory.

The English mathematician George Peacock published the 'principle

of the permanence of equivalent forms' in his Treatise on Algebra of
1)
1830, He wrote

'Whatever form is Algebraically equivalent to another, when

expressed in general symbols, must be true, whatever these
symbols denote.' -

Peacock had formulated the commutative, associative and distributive
laws, as they applied to numbers and to polynomials. His Algebra
contained an attempt to describe a formal algebra in abstract terms,
tied implicitly to number as it conformed to the rules of number.
Peacock's Principle was shatterea by Hamilton's non-commutative algebra
of quaternions published in 1843, and by the doubly distributive
algebraic system of George Boole of 1854, and by other work. The
Principle was discredited so soon after its formulation that one must
speculate whether the commutative law, for instance, could have been
discarded by Hamilton had it not first ?Sgn pointed out by Peacock.

Alexander Macfarlane wrote in 1916

"When algebra is based on any unidimensional subject, such as

time, or a straight line, a difficulty arises in explaining the

roots of a quadratic equation when they are imaginary. To get

over this difficulty Hamilton invented a theory of algebraic

couplets . . . '

Hamilton extended Gauss's work on number pairs. He thought that
space and time were indissolubly connepted, with geometry being the

science of space and algebra that of time. The algebra of quaternions

(1) Peacock, Algebra , p.104
(2) Macfarlane , lLectures , p.42
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can be used to transform a three-dimensional vector, but is free of
geometrical ideas, depending for its validity on tne consistency of

the number systeh.

Hamilton's paper Theory of conjugate functions . . Algebra as
the Science of Pure Time was given in 1833 and 1835, Even he could

entertain doubts about negatives, he says(1)

'But it requires no peculiar scepticism to doubt, or even to dis-
believe , the doctrine of Negatives and Imaginaries . !

He debates whether algebra is a science like geometry, with a system

of rules, or an art like a language, a system of expression. It seems
to be useful only so far as it is applicable. In the discussion he uses
the word 'magnitude' as well as 'number', and later refers to 'step-
couples' and 'moment-couples', that is locations and vectors. Most of
what follows refers to numbers, but evidently Hamilton is bearing in
mind both geometric and algebraic approaches.

Ha?i%ton justfies abandonment of /-1 in favour of number couples
2

as follows

'In the THEORY OF SINGLE' NUMBERS, the symbol -1 is absurd,
and denotes an IMPOSSIBLE EXTRACTION, or a merely IMAGINARY
NUMBER; but in the THEORY OF COUPLES, the same symbol /-1
is significant, and denotes a POSSIBLE EXTRACTION, or a REAL
COUPLE, namely . . . the principal square root of the couple
(-1,0). In the latter theory, therefore, though not in the
former, this sign -1 may properly be employed; and we may
write, if we choose, for any couple (a1,a2) whatever,

(a1,32) = a,+ a2\/-1.'

This seems to bring Hamilton back to the 'absurd' symbol /-1, the
difference is that the symbol is not to be used in number manipulations,
but only as an alternative way of expressing a number pair. He does
not say that imaginary numbers are absurd, only the symbol /-1, but

an imaginary number can be represented by any symbolism one chooses,

and the symbol cannot be amy more or amy less absurd than the concept
it represents. Hamilton is not as whole-hearted as Argand in rejecting

such words as 'absurd' when dealing with the number system.

(1) Hamilton, Mathematical Papers , III, p.4
(?) Hamilton, p.93
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Hamilton tried to make the case that his algebra related to
time. The view that there can be many algebras, that they are abstract

and can relate to many systems but need not be tied to any one, was

rapidly gaining ground. In this sense it was not significant that

Hamilton related his algebra specifically to time, this would soon be

disregarded. A mathematician who was prominent in the move towards

the formalisation of algebra as sets of rules was de Morgan, whose

views on negative and complex numbers were, in many ways, similar to
those of Hamilton.
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Augustus de Morgan, Professor of Mathematics at University
College london, was an algebraist in the forefront of his field in the
1830's and 1840'5. He was son-in-law to William Frend and shared some of
Frend's views on negative and complex numbers, although he was not as extreme
as'Frend. De Morgan was a prolific writer of articles on many subjects
and contributed to the Penny Cyclopaedia, which was published in weekly
parts by the Society for the Diffusion of Useful Knowledge. It appeared
from 1833 to 1837, amounting .eventually to twenty-seven volumes. His
articles on mathematical topics in this publication refer to recent
papers and provide an up-to-date description of the state of algebra
in the late 1830's. It can be seen that de Morgan did not have great

confidence in his subject, although he went on to develop many new ideas

in symbolic algebra. It is appropriate to conclude this study with some
extracts from these articles.,

There is no entry under 'Complex' but entries under 'Negative
and impossible quantities' and 'Operation' consist of the two parts of
a single long article and give the writer's views on negative and complex
numbers. Like Frend, he calls the arithmetic of negatives an art, but
never took the step of eliminatihg them irgm algebra., He distinguishes
1

between their use and meaning as follows

', . . a modification of quantity unknown in arithmetic called
negative quantity, as distinguished from positive . . . a general-
isation of which the use was obvious, but not the meaning . . .
[}here being aﬁ]obvious deficiency of rational explanation which
characterised every attempt at their theory.'
He says that algebra is learnt by rules rather than understanding, and
verified by the correctness of results, a view that would be unpopular
today. He regards positives and negatives as inhabiting two separate
worlds, he makes no reference to their continuity or to a number line.
To de Morgan, the inclusion of negatives represents the step from arith-
metic (a science) to algebra (an art). This has to be done using a set of

rules teo keep: the results obtained for negatives consistent with those
for positives. He says (p. 122)

(1) De Morgan, "Negative and impossible quantities”, Penny
Cyclopaedia , Vol.16, pp.130-37, (p.130)
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'The first step from arithmetic to algebra is mad
ing definitions : - & made by the follow-

1. Quantities are distinguished into positive and ne
ative which
are to be considered of diametrically opposite kinds;gand commog

arithmetical quantities (abstract numbers without
be considered as positive, out signs) are to

2. The rules of arithmetical algebra are to be applied to the
extended algebra, and in all cases in which the latter presents
a case unknown in the former, the rule of signs alreadynknown

in the former must be applied.'!
Addition and subtraction are described as 'operations!, signed number
notation is not used., This limited view taken of negatives contrasts
with the sophisticated idea that algebra may be abstract in the sense of
being independent of the meanings of quantities involved. But de Morgan
seems to have been influenced towards the idea of a symbolic algebra by
the symbol /-1, a symbol that he regards as virtually meaningless. He
says (p. 134)

'In such a case where the meaning of a symbol E/;{} is left

undetermined. . .if such meaning cannot be given, then the

symbol is properly called impossible; if it can be given in more

ways than one, it is usually called ambiguous.'
He does not give an example of an ambiguous symbol, he may have been
thinking of a square root.

De Morgan's view of negative numbers is not a good foundation
for a clear understanding of complex numbers. He says (p. 136) :

', . . no result was fit for actual application until the im-

possible quantities had disappeared.'
In spite of this remark de Morgan goes on to obtain de Moivre's theorenm,
he deduces expressions for sine and cosine using series, and for the
binomial theorem, and demonstrates that any algebraic function of V-1
can be reduced to the form A + By-1, so that algebra leads to no more
impossibles. He shows that reals have an infinite number of logarithms,
covers the roots of unity and uses trigonometric functions to deal with
the irreducible case of the cubic. He gives Wallis's mean proportional

definition for V-1 and describes the Argand diagram. He gives the
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rotational justification and uses eie = €086 + 1sind to define a unit line

at angle 6. He emphasises that numbers on the real axis are only a
special case of numbers on the Argand diagram (p, 136) :

'For lines measured in that unit line, the extended definiti
coincide with the ordinary ones.' > efinitions

Although de Morgan does not regard y/-1 as representing anything that

exists, and in spite of his serious reservations about negatives, he uses them
in deriving many important results., In the same article he makes it

clear that it is their usefulness that gives complex numbers their place

in mathematics. About Cauchy and Hamilton he says (p. 137) :

'Mr, Cauchy and others had previously considered it as merely a
symbolical contrivance to express the coexistence of two equations
thus a + byV(~1) = ¢ + d V/(-1) is a well-known method of imply-
ing a = ¢ and b = d, both in one equation., The manner in which
Sir William Rowan Hamilton has connected this symbol with his
system would justify us in saying that, if his science of time
were retranslated into a science of magnitude, his explanation

of impossible quantities would fall back into the one I have
just alluded to.

We are inclined to think that this explanation of algebra with
reference to time may finally be admitted as one method of sup-
plying the foundations of the purely symbolical science : but
we must confess ourselves not yet sufficiently clear upon the
matter in which the symbol /(-1) is connected with its defin-
jtion, to hazard a positive opinion.'

Although the last remark is somewhat ambiguous, de Morgan seems to be
saying that he does not fully understand Hamilton's system, but suggests
that his algebra does not only apply to time, but also to magnitude and
number,

Similar views are expressed in the second part of this article,
under 'Operation' (1). He continues with his ideas for a symbolic system,
attributing the first use of symbolism to represent 'directions how to
proceed with magnitudes' to Newton and Leibniz in the calculus. Nega-
tives and their square roots are both used as possible elements of a
symbolic algebra in which specific meanings need not be attached to all

symbols. This is an early algebra that is truly symbolic.

(1) De Morgan, "Operation', Penny Cyclopaedia , Vol.16, op.442-46
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De Morgan still held the same views about negatives and imagin-
aries, and about algebra as a 'useless' art in 1849, when he published
Trigonometry and Double Algebra(1). 'Double' algebra was that of complex

numbers, 'single' algebra involved negatives, and the algebra of positive
reals was 'universal arithmetic’.

In this book he speaks of the experi-
mental use of the unexplained symbol /-1, and 'intelligible results

when such things occur', showing that his doubts about complex numbers
were, if anything, becoming more serious.

During the period under consideration some mathematicians ex-
pressed the view that complex numbers did not represent anything real in
the sense that they did not represent anything at all. By the early
19th Century it was generally thought that complex numbers were useful
as there was no doubt that they gave valid results, It is surprising
that there was still so much uneasiness about negatives. This uneasiness
seems particularly to have afflicted English mathematicians, though even
Hamilton was sceptical, It was also English mathematicians who, follow-
ing Frend, were concerned over the status of algebra, wishing to cate-
gorise it as either a science or an art. It was more desirable that it
should be counted a science, but to some it was debarred by containing

complex numbers and to others by containing negatives.

(1) Smith, "De Morgan and the foundations of algebra", pp.9-13
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Chapter VI

Summary and conclusion

Absurd

Irrational

: Positive
Chimaera Irreducible Rational
Complex Monster Real
Desperate Negative True
False Ridiculous Useful
Ficticious Sophistic

Figment Tortures

Imaginary Useless

Impossible

Collected above are some of the extraordinary terms encountered
while researching this study, as having been applied to number subsets
or to polynomials or equations, during this period. It can be seen
that adverse names considerably outnumber favourable ones. This was the
position reached by neglecting to allow nomenclature arising as reluctant
steps were taken into new number subsets, to be superceded. The obscure
mathematician Argand, with commendable commonsense pointed out the
1llogicality of some of these adverse terms and proposed a useful new
symbolism for V-1 etc, which unfortunately was not taken up. It is
inevitable that words change their meanings and associations and, to
begin with, many of these words would have been merely descriptive
without a well-defined technical meaning. Where they were used semi-
technically (for instance 'impossible'), the meanihgs were not particu-
larly precise, and some cases have been mentioned of words having been
used with different meanings on different occasions. But the number
system is an important and sophisticated structure, and it is very de-
sirable that suitable names should be devised for its subsets.

An attempt has been made to identify a point at which mathe-
maticians ceased to refer to roots as 'impossible' and started to use

this word for the problems whose solutions the roots represented. In
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other words to separate the problem and its properties from the number

system and its properties. This attempt has not been notably successful

Saunderson thought of the numbers as impossible, Wallis refers to 'the
imaginary roots of impossible equations'(1)and, when giving examples
leading to complex answers, refers to the problems rather than the
solutions as impossible. Wallis seems to have been ahead of his time
in this, Fuler reverts to using both 'impossible' and 'imaginary' for
numbers, stating in somewhat reluctant terms that complex numbers must
be impossible but elsewhere referring to the problems as impossible(z).
One of the confusing things about Waring's Meditationes Analyticae is

the language used, but he does not use words meaning 'imaginary'. 1In
Hutton's Dictionary 'Impossible' is entered, but the reader is referred
to 'Imaginary', Under 'Root' he says 'impossible or imaginary' in-

dicating that 'imaginary' is preferable, 'impossible' having been added
merely for clarity. Under 'Imaginary' Hutton sometimes uses this word
and sometimes 'impossible', but he is evidently moving away from the

use of 'impossible' for complex numbers. Gauss, who introduced the term
complex, did not use the word 'impossible', but de Morgan reverts to it(a) in
the Penny Cyclopaedia. Argand points out the general unsatisfactoriness

of current nomenclature and uses the word 'imaginary' with the modern
meaning; Maclaurin had also usually used this word in the same way. Some
caution must be exercised here as neither Waring, Euler, Gauss nor
Argand was writing in English, and much of Maclaurin's Algebra was
compiled posthumously. There is no clear-cut point after which the

word 'impossible! was dropped for a complex or imaginary quantity, but
it may be said that its use declined during the early 19th Century.

(1) Wallis, Algebra , p.[?], (preface)

(2) Euler, Algebra (1797), p.64

(3) De Morgan, "Negative and impossible quantities", Penny
Cyclopaedia , Vol.16, pp.130-37
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This study is in no sense comprehensive, a selection has been

made among available sources. Most use has been made of works on

algebra as these have been most heloful in providing information on the

points being considered (listed in the Introduction). Complex numbers

appeared first in algebraic works, it was the algebraists who discovered
and described them, and had most to say about their nature.

metry, calculus and analysis were first

Trigono-
developed in the real number

field, thelr extension into the complex number field was a subsequent

step. Algebraists may be thought of as originators or constructors
while writers in trigonometry, calculus and analysis were users and
applyers, who accepted and used complex numbers and their rules as
described by the algebraists., This division is not clear cut as Fuler,
for instance, can be placed in both categories.

The fundamental theorem of algebra was widely accepted, though
not rigorously proved until after the end of the 18th Century. If the
Argand diagram represents geometrical clarification of complex numbers,
then Gauss's proofs of the fundamental theorem represent their
vindication from an algebraic sténd-point. The consequence of this
theorem is that roots of all kinds, negative, irrational and complex
included, must be summed together. This must imply that these are all
entities of the same kind, and that complex numbers are, in fact,
numbers. Any mathematician with a sense of pattern in mathematics
must have recognised the desirability of this simplification.

Few mathematicians considered polynomials having coefficients
that were other than natural numbers. The nature of roots was studied,
but the normal assumption is that coefficients (and powers) are not
irrational or complex, and in some cases, not even negative., Descartes
briefly considered irrational coefficients, mainly as entities to be
eliminated, Frend does not even entertain negative ones. Other
mathematicians, Fuler and Newton for instance, were more interested in
non-integral powers than in non-integral multipliers in polynomials.
Before their integration into trigonometry etc, complex numbers passed:

through a phase of being acceptable as roots of equations but not

elsewhere.
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A recurrent theme has been that number categories have been
accepted because-they were useful and produced desired results, and not
because their introduction was based on any sound theoretical foundation.
Girard and Gauss expressed this view about negatives, Vieta about
irrationals and Newton, Hutton, laplace, Lagrange and de Morgan about
complex numbers. Pell, Collins and Wallis all expressed the view that
complex solutions could be used as an indication or measure of the
impossibility of a problem, although there seems to have been no useful
attempt to quantify this. Euler and Newton both said that complex
answers are needed to cover cases where a problem has no answer, that
is, no real answer. It has been mentioned that it was during the
period being studied that complex numbers advanced in status from
'useless' to 'useful'. I suggest that this is the single most important
factor that has been identified. The new discoveries made about them
enhanced and emphasised their usefulness, and the increasingly favour-
able view of their usefulness gave point and purpose to further invest-
igation of their properties,

It is not uncommon for mathematicians to evade aspects of their
subject that they have not understood, Fuler being a notable exception.
Many mathematicians ignored complex numbers, some avoided them where
possible or recommended their avoidance. One reason for avoidance -of
complex numbers was the occasional published error. Mistakes published
by Bombelli and Euler have been mentioned as having had important re-
percussions. Among writers who have consistently or occasionally avoided
negative and complex numbers are Vieta (avoids negative and complex
numbers in Arithmetica Speciosa), Oughtred (avoids both in the Clavis),
d'Alembert (avoids complex numbers in the Encyclopgaie), Hutton (avoids
complex numbers in the Course of Mathematics and says in the Dictionary
that they should be avoided), Frend (eliminates both from algebra),

Gauss (avoids complex numbers as long as possible in his proofs of the
fundamental theorem of algebra). Lagrange hardly mentions complex

numbers in his Additions to Euler's Algebra 1in spite of the prominence
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given them by Euler; and in one of his lectures, when he says that

certain roots cannot be rendered independent of imaginary quantities,

implies that this would have been desirable(1). It is not unknown for
mathematical discoveries that have been made in one way to have a
totally different proof devised for them, the usual reason being that

the original oroof or discovery method was thought to lack credibility.
Hutton wrote @) :

'« .« . the theorems that are sometimes discovered by the use of

this symbol [vCJJ may be demonstrated without it by the inverse
operation, or some other way!'

(3)

Laplace is among other mathematicians who make similar observations.

With hindsight much of the work of 18th and early 19th Century
mathematicians on matters related to the number system can be seen as
filling in details in a structure that was broadly known. Although it
was not realised at the time, all the subsets of the complex number field
and their behaviour, were essentially known by the mid-18th Century.
When d'Alembert and Euler showed that a complex number raised to a
complex power gives another complex number, this meant that the complex
number field was known to be closed under the five algebraic operations.
There was therefore no need to seek a larger number set, there were no
unresolved gaps to fill. ,

In conclusion, it is necessary to summarise the extent to which

the points listed in the Introduction have been resolved.

(1) lagrange, Lectures , p.87
(2) Hutton, Dictionary (1796), p.147
(3) Kline, p.628
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(i) The establishment of the rules of behaviour of complex numbers

Bombelli gave the four rules for negative and complex numbers and
b
although the first printed version of his Algebra contained errors, these

were corrected and it is true to say that the period began with a sound

arithmetical foundation. Unfortunately these rules did not spread and

gain acceptance as they deserved. I have mentioned Harriot's trial with
an incorrect rule for (-) x (-) and Fuler's errors in the multiplication
of imaginaries. In his Dictionary, Hutton summarises contradictory
information in circulation near the end of the period. Although not every
mathematician was in such a state of confusion, Gauss for instance, there
are grounds for saying that uncertainty about the four rules for complex
numbers was greater at the end of the period than at the beginning. How-
ever, as more mathematicians were using complex numbers at the end than

at the begihning, the number using them effectively would also have been
greater. The properties of conjugates were given correctly by Bombelli,
and first came into prominence in the solution of the cubic. These pro-
perties seem to have been well understood in spite of their unexpectedness,
and did not become the subject of controversy. Newton first gave a rule
for the number of complex roots in a polynomial, but it was not justified
until the mid-19th Century. Towards the end of the period the rules for
powers and roots were given by d'Alembert and Fuler, Fuler being the
first to give a value for ‘/-1‘/-1. A1l these algebraic rules were used
when complex numbers were incorporated into trigonometry, calculus and
analysis. The Argand diagram gave a geometrical demonstration of the rules
and it could be used to show that they were correct. In extending the
real number field to include complex numbers, the criterion was that the
rules should be such as to give the accepted real number results when
restricted to reals. This view was stated explicitly by Euler, Peacock,
de Morgan etc. The process was still that of extension and synthesis in
the 18th Century; analysis of the complex number field into its component

subsets did not start until well on in the 19th Century.
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(1i) The usage of complex numbers

Complex numbers, which came forcibly to the attention of mathe-
maticians through the solution to the cubic, soon had to be accepted as

roots of quadratics. Many mathematicians (Euler, Descartes), accepted

the fundamental theorem of algebra, Proofs were put forward by Gauss,

the later, most satisfactory ones relying on complex numbers in the proof.
One of the benefits of this theorem was the great simplification brought
to the algebra of polynomials, and it demonstrated that complex roots had
an essential part to play. During the 18th Century it had also become
clear that complex numbers were essential to complete the algebra of
logarithmic, exponential and trigonometric functions. So complex numbers
were known to be vital to complete understanding of several different
branches of mathematics at the beginning of the 19th Century. Also, by
this time, mathematicians had started to extend calculus and analysis
techniques to complex numbers as a wider branch of mathematics in its own
right, of which real calculus and analysis formed a part. The powerful
technique of separating a complex function into its real and imaginary
parts was used to solve various problems, and was especially useful in
real integration. In the solution of problems, complex answers were

seen by some mathematicians as a mathematical means of recognising that

a problem was impossible and even of assessing the degree of impossibility
(Collins, Newton, Euler etc). I have suggested that the view of

complex numbers as useful rather than useless was the single most im-

portant advance during this period.
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(iii) Manipulation of symbols

Many mathematicians were able to use the symbol y-1 together
with its rules of behaviour to great effect; this spite of the fact
that some of them were expressing doubts about its naﬁure. Most
prolific was Buler but Cotes, d'Alembert, de Moivre, laplace and
Leibniz were also important. The lack of definitions and visual
representations for complex numbers makes the successes achieved the
more remarkable. The emphasis on verification of such results by
other means (lLagrange, Maclaurin), and the evasion of complex numbers
(Gauss, Frend, Hutton etc), are hardly surprising. Such verification
might have prevented some of the slips mentioned (Fuler, Playfair) and
rendered results compatible with those already known. Euler's symbol
'i', Gauss's number couples and Argand's ~J and /*/were all potentially
useful for clarification of ideas. Symbol manipulation enabled the
relationships between logarithmic, exponential, trigonometric and
complex functions to be discovered, even if in somewhat mechanical
ways, and calculus methods to be apvlied to them. Advances made in this
superficial way could not be made more insightful until the number
system was put on a sounder theoretical basis. Symbol manipulation is
an important process for mathematical advancement under these circum-
stances. The question of detailed interaction between /-1 and other
totally different symbols, such as D, is the one on which least progress
has been made in this study. Rather few examples have been encountered,
partly because the use of such symbolism for advanced concepts had not
come into general use by the early 19th Century. This point is the
one which might most repay further research, particularly towards the

end of the period.
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(iv) Views of mathematicians on the nature of complex numbers

The question of the metaphysical nature of complex numbers has

been the most interesting one. This constituted a great difficulty and

was undoubtedly a reason why some mathematicians avoided them, some
cases of this have been described. Words attached to the subsets of
the complex number field, and the adverse nature of most of them have

been discussed. It is easy to understand the inevitable effect of the

implied attitudes contained in them. Even the favourable terms such as

real or true carry the implication that somewhere there is some non-real,
untrue aspect or entity from which they must be distinguished, and it is
difficult to see how these problems can ever be resolved. In the meta-
physical sense the answer is that complex numbers are by nature two-
dimensional or two-element numbers, this answer was not given until the
early 19th Century. They first arose in the solution of equations
which were expected to give numerical roots, but did not always appear
to do so. The properties of conjugates and their strange ability to
extinguish imaginary parts when ddded or multiplied, were known during
the whole of the period. In the mathematical sense, Wallis gave geo-
metrical and arithmetical interpretations, and Argand gave an improved
geometrical interpretation. The algebraic number pair interpretation
given by Gauss gave further insight, and this idea proved fruitful to
later algebraists. By the early 19th Century, complex numbers had been
interpreted algebraically, arithmetically and geometrically, and many
words had been used to describe them. Some of these terms, such as ‘'im-
possible!, tended to place these quantities not only outside mathematics
but outside reality itself. Algebraists have been most inclined to
discuss in print the nature of complex numbers, and Fuler expressed most
openly the doubts shared by many writers of his time. The eccentric
English mathematician Frend took scepticism to the greatest lengths
when eliminating even negatives from his Algebra , a book whose contents

would not have seemed strange to mathematicians of a millennium earlier.
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(v) Representations and models for complex numbers

Mathematicians' earliest encounter with complex numbers involved

the roots of equations, an equation being thought of as representing an

actual concrete problem. Complex roots arising in a quadratic could

not be represented in the diagrams of Al-Khowarismi because a negative
area was involved, or in the Cartesian plane because no real intersections
could be found. Neither could the roots be interpreted in a concrete
way in terms of the solution to the problem, because complex roots to
the equation meant that there was no real solution to the problem. This
meant that mathematicians had to look elsewhere for a representation or
model, and they found it very difficult to know where to look. Wallis's
diagram has been mentioned, also his attempt to gain more concrete in-
sight by the study of problems giving complex answers. Wallis must be
acknowledged as the writer making most contribution on this question up
to the end of the 18th Century. The notion that the imaginarinesé of
the solution measured the degree of impossibility of the problem was
fairly widespread, but no successful attempt at quantification

has been found. In 1768, W.J.G. Karsten

produced a diagram(1) which showed the

many logarithms of a real or complex

quantity represented by the circle whose
ordinates are the imaginary ordinates

of a hyperbola. As shown in the diagram,
this circle is the one whose centre lies
on the axes of symmetry and which touches the two branches. For the
hyperbola y2= x2- 32, and for the circle y2= a2- x2. This diagram was
not capable of much generalisation. The first break-through came with
the Wessel/Argand diagram and the complex plane of Gauss. These must
constitute by far the most important step in oroviding a representation

for complex numbers.

(1) Cajori, "Historical note on the Graphic Representation of
Imaginaries before the time of Wessel", Amer,Math.Monthly,

19(1912), 167-71, (p.170)
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(vi) The status of complex numbers and attitudes to them

The attitudes of mathematicians to the number system can be

inferred from the list of terms given above. The unfavourable terms

not only express lack of confidence in the number system by those who
devised them, but vperpetuation of this attitude in those who continued
to use them. Succeeding mathematicians, and others, must have absorbed
the impression that the number system contains some very obscure and
difficult elements, and this is especially so for the complex numbers.
As complex numbers were seen over the period as increasingly useful,
attitudes became more favourable, and eventually Argand and Gauss were
able to make some valuable suggestions for reform. By the early 19th
Century complex numbers were known to be vital to several branches of
mathematiés, and the fundamental theorem of algebra made it essential
to regard complex roots as numbers with status similar to that of other
roots. The Argand diagram gave a geometrical interpretation from which
1 V/-1' could be eliminated, and number couples did the same for an al-
gebraic approach. However, the jmpression remains that many mathematiclans
were still very unsure about complex numbers, and some examples have
been given. They had been forced into the formalist position of having
to accept an undefined set of numbers with known rules of behaviour,
but whose nature was not thought to be well understood. The formalist
stance was not to be described until well into the 19th Century, and the
dissatisfaction with this state of affairs is clear. The fact that no
other number categories had been defined was not noticed because it was
possible to feel an jntuitive comprehension of these; this may be
attributed to the fact that there were plenty of simple concrete models
and diagrammatic representations for them. Mathematicians have been
mentioned who have avoided complex numbers where possible, others who
totally ignored them and a few who have made ambiguous statements about

them. Some, like Wallis, were able to deal with them in a seemingly
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cool and confident way, whereas others, such as Fuler, expressed doubts

but nevertheless manipulated them effectively to obtain new and useful

results., Hutton summarised what he saw as an area of confusion in the

rules of operation. The many discoveries made, and their recognised

usefulness, were advances which should have consolidated confidence in
complex numbers by the early 19th Century.

It is remarkable that they
do not seem to have done so.

Fven de Morgan, a pioneer of symbolic
algebra, had little confidence in either complex or negative numbers.

It was this very lack of confidence which led him to devise a symbolic
system, in which not all terms were necessarily defined. Attitudes are
often difficult to assess and much has to be inferred, few writers have

been willing to express their opinions openly. Those who have done so

have provided some fascinating insights.
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Appendix I

J J Sylvester 1814-1897

Sylvester held several University posts on both sides of the
Atlantic, but also spent sixteen years as Professor of Mathematics at
the Royal Military Academy Woolwich (see Hutton). It was during this
period, in 1864 and 1865, that he produced three papers(1) on the oroof
of Newton's rule. In the first he expresses admiration for Newton's
discovery and points out that many other mathematicians (Maclaurin,
Waring, Fuler) had tried unsuccessfully to find a proof. He dismisses
the quadratic and cubic as trivial and gives proofs for the quartic
and quintic. The quartic is expressed homogeneously in x and y and
these are given infinitesimal increments. These are used to prove the
rule. A different, graphical method is used for the quintic. This
paper was long, over 100 pages, it did not provide a general method.
The second paper of 1865 dealt with the sextic and above, it used the
sign of the second differential in the neighbourhood of the roots.
This paper did not provide a proof, and consisted of only two pages.

It was in the third paper of 1865 that the first satisfactory
general proof was given. This paper was the syllabus of a lecture
given at King's College Iondon and to the Mathe?ggical Society of
Iondon when Augustus de Morgan was in the chair'“’. In this method,
which is algebraic, the polynomial is written in the form

- n=-2
fx = aoxn + na1xn L + én(n-1)a2x + o+ nan_1x +a, with

A = a2 - a _a (the differences used by Newton). He then
n-1 n-1 n-2 n

AL, A

i i a an
considers a, an associated couple of elements, and a ., 2, .,
r+1

(1) Sylvester, Mathematical Papers , 11, pp.376-479;493-94;498-513

(?) Sylvester, II, 498-513

(1)



associated couple of successions., He then considers the permanence or

variation of sighs in successive associated succession couples, taking

all cases, noting the effects of these on the roots, also the effects

of the omission of terms, in a close and detailed analysis, He traces

' .« « the law of change in the number of double permanences . . .
as X Increases continuously. No change can take place except

at the instant when one or more of terms in the inferior or
superior series, or in both simultaneously become zero . . .

'Thus for a single vanishing of an intermediate term in the
upper or lower series double permanences may be gained as x
continually increases but never lost.'

The same is true for the lower series. The series referred to are
the terms of the polynomial and the Newtonian fractions added above.
The law of change in double permanences has to be laboriously verified
as x changes continuously, to check that the number can only change
when a term in one of the series is zero.

Unfortunately we do not know how Newton discovered his rule,
or how he justified it. The successful proof of Sylvester is com-
plicated and difficult to describe. It does not produce the rule and
if Newton had a proof of this kind, he must have discovered the rule
in some other way. Newton may have just guessed the rule from simple
cases or may not have thought it worthwhile to write out the details

of such a proof.

@)



Appendix II

Some suggestions for further research

While working on this study it has been impossible to

overlook the fact that there is a great deal of material still

to be investigated. It is suggested that the following may be

of most

Work in

Work in

importance.

algebra of :

John Napier (1550-1617)

Thomas Harriot (1560-1621)
Alexis-Claude Clairaut (1713-1765)
Carl Friedrich Gauss (1777-1855)

trigonometry, calculus and analysis of :

Roger Cotes (1682-1716)
Abraham de Moivre (1667-1754)
Louis Arbogast (1759-1803)

(3)
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