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Abstract—The forthcoming wireless network is expected to
support a wide range of applications, from supporting au-
tonomous vehicles to massive Internet of Things (IoT) deploy-
ments. However, the coexistence of diverse applications un-
der a unified framework presents several challenges, including
seamless resource allocation, latency management, and system-
wide optimization. Considering these requirements, this paper
introduces WIND (Wireless Intelligent Network Digital Twin), a
self-adaptive, self-regulating, and self-monitoring framework that
integrates federated learning (FL) and multi-layer digital twins
to optimize wireless networks. Unlike traditional digital twin
(DT) models, the proposed framework extends beyond network
modeling, incorporating both communication infrastructure and
application-layer DTs to create a unified, intelligent, and context-
aware wireless ecosystem. Besides, WIND utilizes local machine
learning (ML) models at the edge node to handle low-latency
resource allocation. At the same time, a global FL framework
ensures long-term network optimization without centralized data
collection. This hierarchical approach enables dynamic adapta-
tion to traffic conditions, providing improved efficiency, security,
and scalability. Moreover, the proposed framework is validated
through a case study on federated reinforcement learning for
radio resource management. Furthermore, the paper emphasizes
the essential aspects, including the associated challenges, stan-
dardization efforts, and future directions opening the research
in this domain.
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Fig. 1. An illustration of required latency and reliability in 5G/6G use-cases.

I. INTRODUCTION

The forthcoming Wireless network is expected to accom-
modate a wide range of use cases, each with a different
level of quality of service (QoS) requirement, as depicted
in Fig. 1. Furthermore, the rapid expansion of autonomous
systems and the industrial Internet of things (IoT) demands
that modern wireless networks support heterogeneous traffic,
ultra-low latency, and stringent reliability constraints. Address-
ing these challenges requires a fundamentally new approach
to network optimization and intelligent decision-making [1].
The notion of the digital twin (DT) [2] emerges to be the
most preferred and convenient solution among the available
options. Specifically, DT creates real-time virtual replicas of
wireless networks for dynamic analysis, optimization, and pre-
dictive modeling. While traditional DTs in wireless networks
exclusively focus on network modeling, the next-generation
intelligent wireless ecosystem demands an integrated approach
that can simultaneously model the network infrastructure and
the applications running on top of it. Accordingly, the dual-
layer DT approach ensures a symbiotic relationship between
physical entities and their virtual representations, allowing for
real-time synchronization and intelligent decision-making.

Considering the emergence of this topic, we intro-
duce WIND (Wireless Intelligent Network Digital Twin), a
self-adaptive, self-regulating, and self-monitoring system-of-
systems that leverages federated learning (FL) and multi-
layer DTs for real-time optimization. Unlike conventional
DT implementations, the proposed framework possesses the
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Fig. 2. Digital twin simplified layered architecture.

following novelties: a) the proposed model provides both the
communication network and application-layer digital twins,
ensuring seamless interaction between infrastructure and ser-
vices, b) utilizes edge-based machine learning (ML) for im-
mediate resource allocation, reducing latency and improving
responsiveness, and c) incorporates FL for global optimization,
enabling long-term enhancements in network efficiency and
scalability.

By combining localized intelligence at the edge with global
learning via federated optimization, WIND transforms tradi-
tional network operations into an intelligent, self-optimizing
ecosystem. The remainder of this paper outlines the theoretical
foundations of WIND, describes its system model, presenting
simulation results demonstrating its real-world applicability.
Further, the paper emphasizes the essential aspects, including
the associated challenges, standardization efforts, and future
directions opening the research in this domain.

II. THE SIMPLIFIED DT ARCHITECTURE: A WIRELESS
PERSPECTIVE

The DT models aim to create a virtual representation of the
physical system, functioning in two distinct modes: real-time
monitoring and control alongside the physical system, and pre-
deployment simulation for predictive analysis and optimiza-
tion. This differentiates DTs from traditional simulations such
as Sim Scale and AMEsim, which model specific scenarios but
lack continuous feedback loops and real-time interaction. In
contrast, DT models dynamically synchronize with real-world
data, enabling monitoring, analysis, and optimization through
evolving learning techniques [3].

Within the wireless communication domain, simulation en-
vironments have been essential for performance evaluation.
Meanwhile, AI-driven learning techniques have proven ef-
fective in optimizing network operations. DTs bridge these

approaches by integrating simulation-based testing with real-
time learning and adaptation. Fig. 2 depicts the proposed
simplified DT architecture consisting of four layers: Physical
Layer, Edge/Fog Layer, DT Layer, and AI/ML Layer. The
interaction between the different layers ensures an efficient
and dynamic feedback system for continuous improvements
that follows four phases, as described below:

i. Analyzing Phase: The DT process begins with the
analyzing phase (AP) located at the Physical layer, which
involves extensive data gathering and event mapping from real-
world systems. For wireless systems, this data may include the
number of cellular users, serving stations, vehicle density, and
mobile user speed. Data is captured through various means,
such as sensors, cameras, and edge computing devices, pro-
viding insights into network performance metrics, including
cost, reliability, efficiency, and scalability. This phase ensures
that the DT has access to comprehensive and up-to-date
information.

ii. Extraction Phase: Once the data is analyzed, the extrac-
tion Phase (EP) focuses on efficiently selecting and process-
ing relevant information. This phase employs ML and deep
learning (DL) algorithms to extract critical insights, optimize
feature selection, and translate real-world data into a digital
format. A feedback loop operates between the analyzing and
extracting phases, ensuring continuous refinement of extracted
data and allowing control signals to regulate data collection
processes dynamically. Since the EP is located at the Edge
Layer, being closer to the real-world system it also handles
real-time adjustments, making short-term, quick changes (e.g.,
traffic offloading, latency mitigation, dynamic resource alloca-
tion).

iii. Modelling/Simulation Phase: This phase is the core of
the DT system, responsible for representing real-world data
in a virtual space. The extracted information is processed
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Fig. 3. An illustration of the WIND system model.

using advanced simulation tools like Simulink, Sim Scale,
AMEsim, and AI-based frameworks. This phase operates
in two modes: (1) Real-time monitoring and control: The
DT functions alongside the real-world system, continuously
adjusting parameters through edge computing and AI-driven
insights. (2) Pre-deployment simulation and testing: Before
actual implementation, network changes can be tested in a
simulated environment to assess performance and impact,
reducing risks in real-world deployment. This is crucial for
strategic decisions like network expansions, infrastructure up-
grades, and optimization strategies without disrupting real-
world operations. This phase includes multiple training and
optimization cycles, ensuring that simulations remain aligned
with real-world conditions and adapting dynamically to new
challenges.

iv. Execution Phase: Located at the AI/ML Layer repre-
sents the final stage, where the refined digital model provides
actionable insights for both real-time network optimization
and strategic deployment decisions. In real-time operations,
AI models drive network adjustments and send optimization
decisions for immediate actions to the physical layer for long-
term improvements. Meanwhile, pre-deployment simulations
aid decision-makers in strategic planning and infrastructure
expansions by testing and validating network adjustments
before real-world implementation. By enabling the information
flow from the AI/ML layer back to the DT Layer, we allow
for experimentation and simulation before AI/ML recommen-
dations are applied to the real-world system.

Through these structured interactions, the DT framework
ensures a seamless integration between simulation, AI-driven
learning, and real-time operational adjustments, maximizing
efficiency and adaptability in complex wireless network envi-
ronments.

III. WIND: WIRELESS INTELLIGENT NETWORK DT
The rapid expansion of wireless networks is expected to

connect billions of users and devices, exhibiting different
traffic patterns and resource requirements, which raise the
demand for an intelligent and adaptive management approach.

As depicted in Fig. 3, this section presents the proposed
architecture WIND, addressing the mentioned challenges by
mapping real-world network conditions into a virtual environ-
ment for continuous monitoring, prediction, and optimization.
Fig. 3 introduces the WIND system model, that is mapped to
the proposed layered architecture as follows:

• Edge Layer for Low-Latency Decisions: Local ML mod-
els at edge nodes handle immediate resource allocation,
prioritizing traffic classes dynamically to ensure efficient
real-time decision-making.

• FL for Long-Term Optimization: The DT central server
aggregates local model updates, refining a global ML
model that continuously improves network-wide perfor-
mance without centralized data collection.

This integration of hierarchical ML learning with edge-local
models managing short-term adaptations and FL optimizing
long-term performance creates a self-adaptive, traffic-aware
wireless network.

A. Digital Twin-Driven Federated Learning System Model

In Fig. 3, the user equipment (UE) nodes represent real-
world use cases in a virtualized DT environment. Unlike
conventional systems that randomly assign resources, the DT-
driven approach categorizes UEs based on traffic classes,
allowing ML models to allocate resources dynamically based
on priority levels. The WIND system consists of three main
components:

• User Equipment Nodes: These include mobile devices,
IoT sensors, UAVs, and autonomous vehicles, each cat-
egorized based on traffic requirements (e.g., latency-
sensitive, high-bandwidth, or best-effort traffic). This
classification ensures that latency-sensitive applications
receive prioritized resource allocation.

• Edge Nodes and Base Stations (BSs): Each BS is con-
nected to an edge node that hosts a local ML model.
These models process real-time traffic data, handling
immediate decisions such as load balancing, interference
mitigation, and resource scheduling. This edge-based
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learning ensures ultra-low latency responses without over-
whelming the central infrastructure.

• DT Central Server: The central decision-making entity
aggregates local ML model updates from different edge
nodes, refines a global FL model, and redistributes the
optimized parameters to improve network performance
over time. This approach eliminates raw data transmis-
sion, preserving privacy while continuously enhancing
model accuracy.

B. Adaptive Traffic-Aware Learning Process

The Wireless DT system follows a structured learning and
optimization cycle:

• Traffic-Based Prioritization: UE nodes are categorized
based on their traffic class (e.g., latency-sensitive appli-
cations such as VR streaming or autonomous vehicles
receive higher priority over best-effort IoT traffic). The
ML model dynamically adjusts priorities to ensure opti-
mal Quality of Service (QoS).

• Cluster Formation and BS Association: Prioritized UE
nodes form clusters and associate with the nearest BS, en-
abling localized learning and decision-making. Each BS
is linked to an edge node, where ML models process real-
time traffic and optimize short-term resource allocation.

• FL and Global Optimization: Instead of transmitting raw
data, local ML models at edge nodes train on traffic-
specific data and send only model updates to the DT
Central Server. The FL process at the DT Central Server
aggregates these updates, computes the optimal global
parameter, and distributes the refined model back to edge
nodes.

• Continuous Adaptation and Performance Enhancement:
This iterative process enables adaptive learning, ensuring
the system continuously improves by integrating real-
world traffic dynamics into the global ML model. As
a result, the network remains optimized both for im-
mediate needs (low-latency applications) and long-term
performance (efficient network-wide management).

C. WIND as an Adaptive Learning Framework

By leveraging DT-driven Federated Learning, the proposed
WIND framework achieves: (1) Ultra-low latency commu-
nication: Edge-local ML models handle real-time decisions,
ensuring rapid responses; (2) Privacy-Preserving AI Optimiza-
tion: Federated learning reduces reliance on centralized data
collection, enhancing security; (3) Traffic-aware resource man-
agement: The system dynamically adjusts allocations based
on UE traffic classes, ensuring high-priority traffic receives
optimal performance.

This adaptive WIND architecture, integrating local edge
intelligence with federated global learning, creates a scal-
able, self-optimizing wireless network designed to meet the
demands of next-generation applications.

D. WIND: Simulation Results

To evaluate the performance of the proposed WIND ar-
chitecture, we conducted simulations focusing on federated

Fig. 4. Federated Reinforcement Learning in Scheduling and Resource
Allocation.

reinforcement learning for radio resource management in a
wireless network environment. The primary objective is to
demonstrate how WIND’s hierarchical learning framework,
which combines edge-based ML for real-time decisions with
FL for long-term network optimization, improves network
efficiency, resource allocation, and QoS.

The simulation setup modeled a multi-cell wireless network
consisting of three macro cells, each with heterogeneous traffic
demands. The traffic mix included four distinct application
types: 360◦ video (20 Mbps), live video streaming (1 Mbps),
VoIP (32 kbps), and FTP (256 kbps), representing diverse
latency and bandwidth requirements [4]. To ensure a realistic
assessment, user mobility patterns varied across cells, influ-
encing channel conditions and service distribution dynamics.

The evaluation process follow the WIND-enabled learning
cycle. In the Analyzing and Extraction Phases, digital foot-
prints are generated by capturing key parameters such as chan-
nel quality indicators (CQI), instantaneous throughput, delay,
packet loss, and traffic arrival rates. This information is used
to train local ML models at edge nodes, which dynamically
adjust scheduling policies to prioritize latency-sensitive traffic
while balancing network load. The modeling and simulation
phase involve training reinforcement learning (RL) models on
historical traffic data to identify optimal scheduling strategies
[5]. These RL models are then federated across multiple edge
nodes, with the DT Central Server aggregating model updates
to create a globally optimized scheduling policy.

Performance comparisons between traditional scheduling
methods and WIND-enabled federated reinforcement learn-
ing reveal significant improvements. Conventional scheduling
approaches, such as proportional fair (PF), struggled to bal-
ance latency-sensitive services with overall network efficiency,
often leading to degraded QoS for critical applications. Fig.
4 illustrates the performance of the trained RL policies for
each cell, showing the percentage of users meeting all QoS
requirements across different traffic classes, with the amount
of time when these QoS objectives are met. The RL policy
for cell 1 exhibits a sharper decline, as 360◦ video users
are prioritized due to their better channel conditions, while
other traffic classes experience lower QoS satisfaction because
of varying speeds and less favorable channel conditions. In
cell 2, the RL policy maintains a more stable representation,
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TABLE I
MAJOR CHALLENGES OF WIRELESS COMMUNICATION

Major Areas Challenges Remark Opportunities with DTs

Artificial Intelligence
/ Machine Learning

The data required to train the
models is scarcely available

Enables hi-tech robots, ma-
chines and promotes automa-
tion

The real-time data integration of DTs and the DT-
generated data can be used to train models and test
models [6].

Back-Scattering
The backscattering communi-
cation utilizes the backscat-
tered signals, which require ef-
fective precoders.

It supports the back reflection
to save the energy level.

Different precoder designs can be tested using the DTs
[7].

Big Data
Processing and storing issues
in big data

It is proposed to handle large
sizes of data in an efficient
manner

DTs use a streamlined data processing and manage the
flows intelligently instead of collecting raw data contin-
uously [6].

Internet of Things
Sensing and connectivity is-
sues

Supports of millions of new
devices i.e., IoT Industries

DTs can be used to develop and deploy proactive man-
agement methods to efficiently manage the IoT devices
[8] .

Edge Computing
Reliable and robust system re-
quired for implementation

To reduce the latency and im-
prove the edge computing

The task offloading decisions can be made by DTs in
real-time while considering the computation resources,
energy consumption and other related parameters [9].

Terahertz Communi-
cation

Small coherence window and
Localization issues

Open new possibilities for
high speed devices through
broad spectrum

To solve the localization problem under small coherence
time window, DTs can be used as predictive models.

6G
The AI/ML’s involvement in
network management under
6G context may challenge en-
suring the network is reliable

There is a major motive to sup-
port the diverse applications
that have the unique quality of
service requirements

The DTs can be used to model the network and predict
the outcomes in real-time of one control action before
applying to the physical network [10]. This means that
the reliability of the network can be increased.

as the algorithm optimizes service distribution, ensuring 360◦

video users receive their requested QoS, albeit at the expense
of other traffic classes, which experience a reduced amount
of time for QoS satisfaction. In cell 3, the curve is even
flatter, reflecting the wider spatial distribution of 360◦ video
users, which influences the overall scheduling dynamics. In
contrast, WIND’s federated learning approach dynamically
adjust scheduling rules based on real-time traffic conditions
and global learning insights, resulting in a more balanced
allocation of resources across all traffic classes.

Simulation results demonstrated that WIND improves QoS
satisfaction across multiple performance metrics. The per-
centage of users meeting their QoS requirements (latency,
throughput, packet loss) is consistently higher under WIND-
enabled scheduling than standalone RL models. Additionally,
the federated RL model exhibits better generalization across
cells, ensuring stable performance even in varying network
conditions. Unlike single-cell RL training, which optimizes
policies for localized conditions but struggle with adaptability,
WIND’s federated approach leverage knowledge from multiple
cells, enabling it to respond effectively to dynamic traffic
fluctuations.

Further analysis highlight WIND’s impact on network effi-
ciency. By offloading real-time scheduling decisions to edge-
based ML models, the framework significantly reduce the
computational overhead on central servers while maintaining
low-latency responses for time-sensitive applications. This
adaptive learning cycle, where short-term adjustments at the
edge inform long-term federated optimizations, prove to be
highly effective in balancing network resource utilization,
improving service reliability, and reducing congestion.

Overall, the simulation results validate WIND’s capability to
optimize next-generation wireless networks by bridging real-
time edge intelligence with federated global learning. The
framework’s ability to continuously refine scheduling policies

based on evolving network conditions makes it a scalable, self-
adaptive solution for future wireless ecosystems, particularly
in 6G and beyond networks.

IV. USE CASES, CHALLENGES AND FUTURE DIRECTION

Section II reviewed a twin network that was extended to
the innovative WIND architecture in Section III. Further, this
section specifically focuses on the main challenges, standard-
ization efforts, and future research directions that come with
the evolution of DT in wireless communication.

A. Use Cases and Standardization

DTs hold the potential to revolutionize various sectors,
including industrial IoT, healthcare, and manufacturing. Rec-
ognizing their potential, standardization bodies are actively
working on DT frameworks. Some of the key sectors are
summarized as [2];

Industrial IoT & Healthcare: DTs facilitate autonomous
monitoring, tracking, and control of industrial systems. In
addition to operational data, DTs can capture environmental
data such as location, configuration, financial models, etc.,
which is particularly helpful in various industrial activities,
e.g., predicting future operations and anomalies. Similar to
the twin of the wireless system discussed in Section II, DTs
can clone a healthcare framework, which may help with cost
reduction, patient monitoring, and personalized healthcare.

Automation & Manufacturing: DTs can be used in the au-
tomotive sector, e.g., to create the virtual model of connected
vehicles. The model referred to in Fig. 2 can be reconfigured
to capture vehicles’ behavioral and operational data and can
help analyze vehicle performance. Besides, twinning can have
a significant impact on the way products are designed, manu-
factured, and maintained, making manufacturing more efficient
and optimized while reducing throughput times.
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Standardization Efforts: There is a growing interest in
DTs, with several standardization efforts underway to establish
guidelines. These standardization activities are crucial for
ensuring interoperability, security, and efficiency in deploying
digital twins within wireless communication networks, thereby
facilitating their integration into future wireless systems in-
cluding; a) International telecommunication union (UTU):
The ITU telecommunication standardization sector (ITU-T)
has been actively developing standards for digital twin net-
works. Notably, recommendation ITU-T Y.3090 outlines the
framework for network 2030 services, b) IEEE: besides, the
IEEE standards association has initiated efforts, e.g., IEEE
P2806 to standardize digital twin technologies across various
sectors, including wireless communications, c) 3rd generation
partnership project (3GPP): within the scope of 5G and
evolving 6G technologies, 3GPP has been exploring the in-
corporation of digital twin concepts to enhance network man-
agement and orchestration. These efforts aim to create virtual
representations of network elements to improve monitoring,
optimization, and predictive maintenance.

B. Challenges and Future Directions

In Table I, we summarize the major domains in the modern
wireless communication systems, covering various challenges
and opportunities that come with DTs [11].

i. Associated Challenges: The associated challenges are
summarized as;

• DT migration: DTs are being designed based on the
specific characteristics of one environment, which brings
migration challenges. Reuse without redesign or rede-
velopment poses challenges in terms of accuracy and
effectiveness.In wireless communication, each user has a
unique use case that requires different hardware circuitry
and simulation scenarios, leading to compatibility issues
in the DT network. Furthermore, wireless topologies
frequently change, increasing the likelihood of data cor-
ruption during DT migration. In addition, factors such as
noise, interference, and bandwidth can affect the position
of twin migrations. To address these challenges, it is
crucial to carefully assess the available wireless com-
munication options in the new environment and ensure
compatibility with the DT system [12].

• Data management and storage: In wireless communica-
tion, signals are subject to fluctuations, and base stations
transmit them to users based on these variations. DT
must constantly monitor these changes, resulting in large
amounts of data. Additionally, data transmission delays
can cause issues with latency and reliability, necessitating
scalable storage solutions for DT. To summarize, DT
requires effective solutions to address these challenges
[13].

• Safety, security and privacy: To ensure efficient deploy-
ment of DT technology, we must address the issues of
safety, security, and privacy in wireless communication.
The integration of DT increases the threat landscape as
the data and control flows of DTs are vulnerable to
interception. This is an important issue due to the open-air

operation in wireless communications. Moreover, using
and storing the data collected regarding user traffic creates
challenges to privacy. To ensure safety, it is necessary
to maintain a backup of the wireless network and put
efficient security measures [14].

• Synchronization: DTs require compatible systems that
efficiently convert real-time operations into a physical
entity. However, short fluctuations in real-time operations,
such as signal quality, can directly degrade system perfor-
mance. Here, synchronization is crucial for the effective
modelling of real-time projects in virtual physical sys-
tems. To achieve optimal synchronization, delays must be
avoided, and precise conversion techniques are required
for DT applications. However, wireless communication
faces significant interference and attenuation, leading to
reduced signal quality and reliability. Overcoming these
challenges requires advanced hardware and agile software
capable of transferring data to the physical system in a
reliable manner. By carefully planning and implementing
suitable technology solutions, it is possible to minimize
synchronization issues and achieve accurate and timely
synchronization [14], [15].

ii. Future Directions: We mentioned the advantages of DT.
It opens a lot of possibilities for the future. A few of them are
mentioned below.

• New Era of Modern Technologies: To improve perfor-
mance of wireless communication systems , various tech-
nologies (i.e., AI, ML, DL, blockchain, cloud computing,
multi-access edge computing, IoT, etc.) are available as
was highlighted in Table I. To implement them on the
ground level, various modifications are required at the
architecture level (i.e., antenna, radio unit, remote radio
head, etc.). DT integrated system can help to modernize
the cellular system. This will make the system more
flexible and efficient in terms of power and spectrum
utilization.

• Different types of QoS Requirement: Nowadays, cellular
communication has created a lot of new applications
in the market. Similarly, various non-cellular devices
(i.e., LORA, Bluetooth, sigfox, ethernet, wi-fi) are also
available in the market. All such devices are wirelessly
connected to each other. These all have varied require-
ments in terms of data rate, range, latency, and reliability.
So, to fulfil the QoS requirement of the users from the
existing infrastructure is quite tough. In the future, this is
expected to become more diverse. Integration of DT can
modernize the existing infrastructure and it will make the
architecture more capable for the future.

• Features of Self-Automation System: After observing the
infrastructure of previous generations (i.e.,2G, 3G, 4G),
we conclude that at the start of every generation, vendors
have to modify the overall setup, including the user
equipment. Due to this, a vendor needs to invest a huge
amount of capital at the time of set-up installation. To
reduce this amount, vendors prefer to add automation in
every sub-part of the cellular system. It will reduce hard-
ware dependency and make the system more flexible and
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software-oriented. In addition, it will be easy to upgrade
the architecture for the next generation (i.e., Beyond 5G).
Moreover, this will also reduce the deployment cost for
the next generation. DT has the potential to adapt to these
changes and make the system self-automatic.

• Emergence of decoupling and virtualization at the soft-
ware end: 5G/6G use cases have a high level of diversity.
Due to this, existing infrastructure faces various issues
at the time of beam-forming, user coordination, resource
allocation, baseband processing, etc. To improve this,
some vendors started a decoupling and virtualization on
the Radio Access Network (RAN) side. DT can make the
virtualization and decoupling of every sub-system in an
efficient way.

• Towards localization and sensing type applications: 5G
is making cellular technologies more advanced, and up-
coming generations (i.e., Beyond-5G, 6G) put a target
to make it more prominent. It targets future possibil-
ities, i.e., UAVs, drone swarms, autonomous vehicles,
industrial robots, underwater communication, etc. These
applications are very sensitive and need a high level of
reliability. We need modern localization, sensing, and
control schemes to improve their performance. Integration
of DT in cellular infrastructure makes these features more
efficient.

V. CONCLUSIONS

This paper introduced WIND (Wireless Intelligent Network
Digital Twin), a novel framework that extends beyond tra-
ditional digital twins for wireless networks by incorporating
both network-layer and application-layer intelligence. By in-
tegrating hierarchical ML models, where edge-based models
handle real-time, low-latency resource allocation and FL opti-
mizes long-term network performance, WIND enables a self-
adaptive, self-regulating, and self-monitoring wireless ecosys-
tem. The proposed WIND framework establishes a multi-layer
DT that models both the underlying communication network
and the applications running on top of it, ensuring seamless
interaction between infrastructure and services. Through this
dual-layer approach, WIND enhances context-aware network
adaptation, allowing for more efficient and intelligent decision-
making. The combination of localized ML models at the edge
and FL at the global level ensures that short-term optimizations
do not compromise long-term network efficiency, making the
system robust and scalable.
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