
Algorithmica (2018) 80:2656–2682
https://doi.org/10.1007/s00453-017-0387-0

Complexity of Token Swapping and Its Variants

Édouard Bonnet1 · Tillmann Miltzow2 ·
Paweł Rzążewski3

Received: 14 March 2017 / Accepted: 13 October 2017 / Published online: 20 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract In the Token Swapping problem we are given a graph with a token placed
on each vertex. Each token has exactly one destination vertex, and we try to move all
the tokens to their destinations, using the minimum number of swaps, i.e., operations
of exchanging the tokens on two adjacent vertices. As the main result of this paper,
we show that Token Swapping is W [1]-hard parameterized by the length k of a
shortest sequence of swaps. In fact, we prove that, for any computable function f , it
cannot be solved in time f (k)no(k/ log k) where n is the number of vertices of the input
graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time
algorithm. We also consider two generalizations of the Token Swapping, namely
Colored Token Swapping (where the tokens have colors and tokens of the same
color are indistinguishable), and Subset Token Swapping (where each token has a
set of possible destinations). To complement the hardness result, we prove that even
the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph

The extended abstract of this paper was presented at STACS 2017 [3]. The research was partially
supported by the ERC Grant PARAMTIGHT: “Parameterized complexity and the search for tight
complexity results”, No. 280152.

B Paweł Rzążewski
p.rzazewski@mini.pw.edu.pl

Édouard Bonnet
edouard.bonnet@dauphine.fr

Tillmann Miltzow
t.miltzow@gmail.com

1 Department of Computer Science, Middlesex University, London, UK

2 Université libre de Bruxelles (ULB), Brussels, Belgium

3 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw,
Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0387-0&domain=pdf
http://orcid.org/0000-0001-7696-3848

Algorithmica (2018) 80:2656–2682 2657

classes. Finally, we consider the complexities of all three problems in very restricted
classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths,
trying to identify the borderlines between polynomial and NP-hard cases.

Keywords Token swapping · Parameterized complexity · W[1]-hardness

1 Introduction

In reconfiguration problems, we are interested to transform a combinatorial or geomet-
ric object from one state to another, by performing a sequence of simple operations.
An important example is motion planning, where we want to move an object from one
configuration to another. Elementary operations are usually translations and rotations.
It turns out that motion planning can be reduced to the shortest path problem in some
higher dimensional Euclidean space with obstacles [8].

Finding the shortest flip sequence between any two triangulations of a convex poly-
gon is a major open problem in computational geometry. Interestingly it is equivalent
to a myriad of other reconfiguration problems of so-called Catalan structures [4].
Examples include: binary trees, perfect matchings of points in convex position, Dyck
words, monotonic lattice paths, and many more. Reconfiguring permutations under
various constraints is heavily studied and usually called sorting.

An important class of reconfiguration problems is a big family of problems in graph
theory that involvesmoving tokens, pebbles, cops or robbers along the edges of a given
graph, in order to reach some final configuration [1,5,9,11,14,16,23,31,35]. In this
paper, we study one of them.

The Token Swapping problem, introduced by Yamanaka et al. [36], fits nicely
into this long history of reconfiguration problems and can be regarded as a sorting
problem with special constraints.

The problem is defined as follows, see also Fig. 1. We are given an undirected
connected graph with n vertices v1, . . . , vn , a set of tokens T = {t1, . . . , tn} and two
permutations πstart and πtarget. These permutations are called start permutation and
target permutation, respectively. Initially vertex vi holds token tπstart(i). In one step,
we are allowed to swap tokens on a pair of adjacent vertices, that is, if v and w are
adjacent, v holds the token s, and w holds the token t , then the swap between v and w

v1 v2

v3v4

T1

T2

T3

T4

v1

v2

v3

v4

πstart

Fig. 1 Every token placement can be uniquely described by a permutation

123

2658 Algorithmica (2018) 80:2656–2682

results in the configuration where v holds t , w holds s, and all the other tokens stay in
place. The Token Swapping problem asks if the target configuration can be reached
in at most k swaps. Thus, a solution for Token Swapping is a sequence of edges,
where the swaps take place. The solution is optimal if its length is shortest possible. To
see the correspondence to sorting note that every placement of tokens can be regarded
as a permutation and the target permutation can be regarded as the sorted state.

Yamanaka et al. [36] observed that every instance of Token Swapping has a
solution, and its length is O(n2). Moreover, �(n2) swaps are sometimes necessary.

It is interesting to note that although the problem in its full generalitywas introduced
only recently [36], some special cases were studied before in the context of sorting
permutations with additional restrictions (see Knuth [24, Section 5.2.2] for paths, Pak
[30] for stars, Cayley [6] for cliques, and Heath and Vergara [19] for squares of a path).

Recently the problem was also solved for a special case of complete split graphs
(see Gaku et. al. [38]). It is also worth mentioning that a very closely related concept
of sorting permutations using cost-constrained transitions was considered by Farnoud,
Chen, and Milenkovic [13], and Farnoud and Milenkovic[12].

The computational complexity of Token Swapping was investigated by Miltzow
et al. [28]. They show that the problem is NP-complete and APX-complete. Moreover,
they show that any algorithm solving Token Swapping in time 2o(n) would refute the
Exponential TimeHypothesis (ETH) [21]. The results ofMiltzow et al. [28] carry over
also to a generalization of Token Swapping, called Colored Token Swapping,
first introduced by Yamanaka et al. [37]. In this problem, vertices and tokens are
partitioned into color classes. For each color c, the number of tokens colored c equals
the number of vertices colored c. The question is whether k swaps are enough to
reach a configuration in which each vertex contains a token of its own color. Token
Swapping corresponds to the special case where each color class comprises exactly
one token and one vertex. NP-hardness of Colored Token Swapping was first
shown by Yamanaka et al. [37], even in the case that only 3 colors exist.

We introduce Subset Token Swapping, which is an even further generalization
of Token Swapping. Here a function D : T → 2V specifies the set D(t) of possible
destinations for the token t . We ask if k swaps are enough to reach a configuration,
when each token t is placed on a vertex from D(t). Observe that Subset Token

Swapping also generalizes Colored Token Swapping. It might happen that there
is no satisfying swapping sequence at all to this new problem. Though, this can be
checked in polynomial time by deciding if there is a perfect matching in the bipar-
tite token-destination graph. Thus we shall always assume that we have a satisfiable
instance.

In this paper we continue and extend thework ofMiltzow et al. [28]. They presented
a very simple algorithm which solves the instance of Token Swapping in nO(k)

time and space, where k denotes the number of allowed swaps. In Sect. 3 we show
that this algorithm can be easily generalized to Colored Token Swapping and
Subset Token Swapping. Next, we present a slightly slower exact algorithm,whose
advantage is only polynomial (in fact, only slightly super-linear) space complexity.

The algorithm by Miltzow et al. [28] shows that Token Swapping is in XP. A
natural next step is to investigate whether the problem can be solved in FPT time
(i.e., f (k) · nO(1), for some function f). There is some evidence indicating that this

123

Algorithmica (2018) 80:2656–2682 2659

could be possible. First, observe that if more than 2k tokens are misplaced, then
one can immediately answer that we deal with a No-instance, as each swap involves
exactly two tokens. Further, one can safely remove all vertices from the graph that
are at distance more than k from all misplaced tokens. This preprocessing yields an
equivalent instance, where every connected component has diameter O(k2). Thus for
boundedmaximum degree� each component has size f (k), for some function f . The
connected components of f (k) size can be solved separately by exhaustively guessing
(still in FPT time) the number of swaps to perform in each of them.Moreover, even the
generalized Subset Token Swapping problem is FPT in k +� (see Proposition 3).
For those reasons, one could have hoped for an FPT algorithm for general graphs.
However, as the main result of this paper, we show in Sect. 4 that this is not possible.

Theorem 1 (Parameterized hardness) Token Swapping is W [1]-hard, parameter-
ized by the number k of allowed swaps. Moreover, assuming the ETH, for any
computable function f , Token Swapping cannot be solved in time f (k)(n +
m)o(k/ log k) where n and m are respectively the number of vertices and edges of the
input graph.

Observe that this lower bound shows that the simple nO(k)-time algorithm is almost
best possible. It is worth mentioning that the parameter for which we show hardness
is in fact number of swaps + number of initially misplaced tokens + diameter of the
graph, which matches the reasoning presented in the previous paragraph.

To show the lower bound, we introduce handy gadgets called linkers. They are
simple and can be used to give a significantly simpler proof of the lower bounds given
by Miltzow et al. [28]. One might also use them to establish a simpler and potentially
stronger inapproximability result.

Since there is no FPT algorithm for Token Swapping (parameterized by the
number k of swaps), unless FPT = W [1], a natural approach is to try to restrict the
input graph classes, in hope to obtain some positive results. Indeed, in Sect. 5 we
show that FPT algorithms exist, if we restrict our input to the so-called nowhere-dense
graph classes.

Theorem 2 (FPT in nowhere dense graphs) Subset Token Swapping is FPT
parameterized by k on nowhere-dense graph classes.

The notion of nowhere-dense graph classes has been introduced as a common
generalization of several previously known notions of sparsity in graphs such as planar
graphs, graphs with forbidden (topological) minors, graphs with (locally) bounded
treewidth or graphs with bounded maximum degree.

Grohe et al. [17] proved that every property definable as a first-order formula ϕ

is solvable in O(f (|ϕ|, ε) n1+ε) time on nowhere-dense classes of graphs, for every
ε > 0. We use this meta-theorem to show the existence of an FPT time algorithm for
Subset Token Swapping, restricted to nowhere-dense graph classes. In particular,
this implies the following results.

Corollary 1 Subset Token Swapping is FPT

(a) parameterized by k + tw(G),

123

2660 Algorithmica (2018) 80:2656–2682

Table 1 The parameterized complexity of Token Swapping, Colored Token Swapping, and Subset
Token Swapping

k + � k + diam k, nowhere-dense/k + tw tw+ diam

TS FPT ([28]) W[1]-h (Th 1) FPT paraNP-c (Th 3)

CTS FPT W[1]-h FPT paraNP-c

STS FPT (Prop 3) W[1]-h FPT (Th 2) paraNP-c

Bold values indicate results from this paper (which are not simple consequences of other results). It is
always accompanied by an appropriate reference to Theorem/Proposition

(b) parameterized by k in planar graphs.

It is often observed that NP-hard graph problems become tractable on classes of
graphs with bounded treewidth (or, at least, with bounded tree-depth; see Nešetřil and
Ossona de Mendez [29, Chapter 10] for the definition and some background of tree-
depth and related parameters). It is not uncommon to see FPT algorithms running in
time f (tw)nO(1) (or f (td)nO(1)) or XP algorithms running in time n f (tw) (or n f (td)),
for some computable functions f . Especially, in light of Corollary 1(a), we want to
know if there exists an algorithm that runs in polynomial time for constant treewidth. In
Sect. 6we rule out the existence of such algorithms by showing that Token Swapping

remains NP-hard when restricted to graphs with tree-depth 4 (treewidth and pathwidth
2; diameter 6; distance 1 to a forest).

Theorem 3 (Hard on almost trees) Token Swapping remains NP-hard even when
both the treewidth and the diameter of the input graph are constant, and cannot be
solved in time 2o(n), unless the ETH fails.

Table 1 shows the current state of our knowledge about the parameterized com-
plexity of Token Swapping (TS), Colored Token Swapping (CTS), and Subset
Token Swapping (STS) problems, for different choices of parameters.

While we think that our results give a fairly detailed view on the complexity
landscape of Token Swapping, we also want to point out that our reductions are
significantly simpler than those by Miltzow et al. [28].

Since the investigated problems seem to be immensely intractable, in Sect. 7 we
investigate their complexities in very restricted classes of graphs, namely cliques,
stars, and paths. We focus on finding the borderlines between easy (polynomially
solvable) and hard (NP-hard) cases. The summary of these results is given in Table 2.
Observe that on cliquesToken Swapping is in P, whileColored Token Swapping

(and thus also Subset Token Swapping) is NP-hard. On the other hand, on stars
Colored Token Swapping (and thus also Token Swapping) is in P and Subset

Token Swapping is NP-hard.
The paper is concluded with several open problems in Sect. 8.

123

Algorithmica (2018) 80:2656–2682 2661

Table 2 The complexity of Token Swapping (TS), Colored Token Swapping (CTS), and Subset

Token Swapping (STS) on very restricted classes of graphs

Trees Cliques Stars Paths

TS ? P (see [28]) P (see [28]) P (see [28])

CTS ? NP-c (Th 9) P (Th 7) P (Th 11)

STS NP-c NP-c NP-c (Th 8) NP-c [18]

Bold values indicate results from this paper (which are not simple consequences of other results). It is
always accompanied by an appropriate reference to Theorem/Proposition “?” Denotes unknown cases

2 Preliminaries

Yamanaka et al. [36] showed that in every instance of Token Swapping, the length of
the optimal solution is O(n2) and this bound is asymptotically tight for paths. Here we
show that long induced paths are the only structures forcing solutions of superlinear
length.

Proposition 1 The length of the optimal solution for Token Swapping in an n-vertex
Pr+1-free graph G is at most r · n.

Proof We can assume that G is connected, since otherwise we can solve the problem
on connected components separately. Let P be the longest path in G and let v be its
end-vertex. Observe that G − v is connected (otherwise P is not longest) and Pr+1-
free. First, we move the token with destination v to this vertex, which requires at most
diam(G) � r swaps. Then we can recursively continue with the graph G − v (we
never touch v again). Such a solution has length at most r · n. ��

Note that this bound is asymptotically tight—to see this, consider a graph, whose
every connected component is isomorphic to Pr and has the reverse permutation of
tokens (if we want to have our instance connected, we can add one additional vertex,
adjacent to one of the end-vertices of each path, and put a well-placed token on it).
Moreover, we observe that the bound from Proposition 1 holds also for Colored
Token Swapping and Subset Token Swapping problems. Indeed, we can fix
one destination for each of the tokens (by choosing a perfect matching in the token-
destination graph) to obtain an instance of Token Swapping, whose solution is also
the solution for the original problem.

For a token t , let dist(t) denote the distance from the position of t to its destination.
For an instance I of Token Swapping, we define L(I) := ∑

t dist(t), i.e., the sum
of distances to the destination over all the tokens. Clearly, after performing a single
swap, dist(t)may change by at most 1.We shall also use the following classification of
swaps: for x, y ∈ {−1, 0, 1}, x ≤ y, by a (x/y)-swap we mean a swap, in which one
token changes its distance by x , and the other one by y. Intuitively, (−1/ − 1)-swaps
are the most “efficient” ones, thus we will call them happy swaps. Since each swap
involves two tokens, we get the following lower bound.

123

2662 Algorithmica (2018) 80:2656–2682

Proposition 2 [[28]] The length of the optimal solution for an instance I of Token
Swapping is at least L(I)/2. Besides, it is exactly L(I)/2 if and only if there is a
solution using happy swaps only.

When designing algorithms, especially for computationally hard problems, it is
natural to ask about lower bounds. However, the standard complexity assumption
used for distinguishing easy and hard problems, i.e., P �= NP, is too weak to tell
us something meaningful about possible complexities of algorithms. The stronger
assumption that is typically used for this purpose is the so-called Exponential Time
Hypothesis (usually referred to as the ETH), formulated by Impagliazzo and Paturi
[21]. We refer the reader to the survey by Lokshtanov, Marx, and Saurabh for more
information about ETH and conditional lower bounds [25]. The version we present
below (and is most commonly used) is not the original statement of this hypothesis,
but its weaker version (see also Impagliazzo et al. [22]).

Exponential Time Hypothesis (Impagliazzo and Paturi [21]) There is no algorithm
solving every instance of 3- Sat with N variables and M clauses in time 2o(N+M).

3 Algorithms

First, we prove that Subset Token Swapping (and therefore also Colored Token

Swapping as its restriction) is FPT in k+�, where k is the number of allowed swaps,
and � is the maximum degree of the input graph. This generalizes the observation
of Miltzow et al. [28] for Token Swapping. Furthermore, we show that the simple
algorithm for Token Swapping, presented by Miltzow et al. [28], carries over to
the generalized problems, i.e., Colored Token Swapping and Subset Token

Swapping. At last, wewill present an algorithm that has polynomial space complexity.

Proposition 3 Subset Token Swapping is FPT in k + � and admits a kernel of
size 2k + 2k2 · �k .

Proof Let I be an instance of Subset Token Swapping on a graphG withmaximum
degree � and suppose I has a solution s of length at most k.

Let Vm be the set of such vertices v ofG, that the token initially placed on v does not
accept v as its destination. First, observe that every vertex from Vm has to be involved
in some swap in s. Thus we can assume that |Vm | ≤ 2k (otherwise we immediately
report a No-instance).

Let E ′ be the set of edges that appear in s and let G ′ be the subgraph of G induced
by E ′. Consider a connected component C of G ′. Suppose first that the vertex set of
C does not contain any vertex from Vm . Observe that the sequence s′ obtained from s
by removing all edges from C is also a solution for I of length at most k. So, without
loss of generality, every connected component C of G ′ contains a vertex from Vm , and
has at most k edges. Let G ′′ be the subgraph of G induced by the vertices at distance
at most k from Vm (we find it by running a breadth-first search, starting from Vm).
We observe that every vertex incident to an edge in E ′ is in G ′′. Thus the instance
I ′ of Subset Token Swapping, restricted to G ′′, is equivalent to I . Note that the

123

Algorithmica (2018) 80:2656–2682 2663

maximum degree of G ′′ is at most �, and the number of vertices in G ′′ is at most
2k + 2k2�k . Thus I ′ is a kernel for I . ��

Miltzowet al. [28] show that an optimal solution forToken Swapping canbe found
by performing a breath-first-search on the configuration graph, i.e. a graph, whose
vertices are all possible configurations of tokens on vertices, and two configurations
are adjacent when we can obtain one from another with a single swap. We observe
that the same approach works for Colored Token Swapping and Subset Token

Swapping, the only difference is thatwe terminate on any feasible target configuration.

Proposition 4 Let G be a graph with n vertices, and let k be the maximum number of
allowed swaps. TheColored Token Swapping and the Subset Token Swapping

problems on G can be solved in time:

• O(n! · n2) = 2O(n log n),
• nO(k) = 2O(k log n),

using exponential space. ��
The main drawback of such an approach is an exponential space complexity. Here

we show the following complementary result, inspired by the ideas of Savitch [34].

Theorem 4 Let G be a graph with n vertices, and let k be the maximum num-
ber of allowed swaps. Subset Token Swapping on G can be solved in time
2O(n log n log k) = 2O(n log2 n) and space O(n log n log k) = O(n log2 n).

Proof Consider the algorithm Reach (see Algorithm 1). It is easy to verify that it
returns true if the configuration πs can be reached from the configuration π0 with
exactly k swaps, and false otherwise.

Algorithm 1: Reach(G, π0, πs, k)
Input: G = (V, E) – a graph, π0, πs – configurations of tokens on G, integer k ≥ 0

1 if k = 0 then
2 if π0 = πs then return true else return false

3 if k = 1 then
4 foreach e ∈ E do
5 if πs can be obtained from π0 with a swap on e then
6 return true

7 return false

8 else
9 foreach configuration π ′ of tokens on G do

10 if Reach(G, π0, π
′,
k/2�) = true and Reach(G, π ′, πs , �k/2) = true then

11 return true

12 return false

The depth of the recursion is O(log k). The configurations can be generated with
polynomial delay, using only linear (in n) memory. Thus the time complexity of the

123

2664 Algorithmica (2018) 80:2656–2682

u1 u2

u3u4

V1 V2

V3

V4

(u1)

(u2)

(u3)

(u4)

Fig. 2 On the left is the pattern graph P; on the right, the host graph H . We indicate the image of ϕ with
white vertices. To keep the example small, we did not make P 3-regular

algorithm is n!log k · nO(1) = 2O(n log n log k). The space needed to keep track of the
recursive stack is O(n log n log k). Recall that k = O(n2)—otherwisewe immediately
report a Yes-instance.

To use the algorithm for Subset Token Swapping, we can enumerate all possible
target configurations in n! · nO(1) = 2O(n log n) time and polynomial space, and then
solve the instance of Token Swapping for each of them. ��

4 Lower Bounds on Parameterized Token Swapping

Let us start by defining an auxiliary problem, called Multicolored Subgraph

Isomorphism (also known as Partitioned Subgraph Isomorphism; see Fig. 2).
InMulticolored Subgraph Isomorphism, one is given a host graph H whose

vertex set is partitioned into k color classes V1�V2�. . .�Vk and a pattern graph P with
k vertices: V (P) = {u1, . . . , uk}. The goal is to find an injection ϕ : V (P) → V (H)

such that uiu j ∈ E(P) implies that ϕ(ui)ϕ(u j) ∈ E(H) and ϕ(ui) ∈ Vi for all i, j .
Thuswe can assume that each Vi forms an independent set. Further, we assumewithout
loss of generality that E(Vi , Vj) := {ab ∈ E(H) : a ∈ Vi , b ∈ Vj } is non-empty if
and only if uiu j ∈ E(P). In other words, we try to find k vertices v1 ∈ V1, v2 ∈ V2,
. . ., vk ∈ Vk such that, for any i < j ∈ [k],1 there is an edge between vi and v j if and
only if E(Vi , Vj) is non-empty.

The W [1]-hardness of Multicolored Subgraph Isomorphism problem fol-
lows from theW [1]-hardness of theMulticolored Clique. Marx [26] showed that
assuming the ETH, Multicolored Subgraph Isomorphism cannot be solved in
time f (k)(|V (H)| + |E(H)|)o(k/ log k), for any computable function f , even when
the pattern graph P is 3-regular and bipartite (see also Marx and Pilipczuk [27]). In
particular, k has to be an even integer since |E(P)| is exactly 3k/2. We finally assume
that for every i ∈ [k] it holds that |Vi | = t , by padding potentially smaller classes

1 For an integer p, by [p] we denote the set {1, . . . , p}.

123

Algorithmica (2018) 80:2656–2682 2665

local token

global token

private token

private paths

starting path

finishing set

a

b

Fig. 3 The linker gadget La,b . Black (private) tokens are initially properly placed. Dashed arcs represent
destinations of tokens of the finishing set (they all go to the starting path). In the intended solution, all
local tokens are moved to a single private path (bottom left). Next, they are swapped with the tokens on the
starting path (bottom right). The global tokens go to that private path

with isolated vertices. This can only increase the size of the host graph by a factor of
k, and does not create any new solution nor destroy any existing one.

Now we are ready to prove the following theorem.

Theorem 1 (Parameterized hardness) Token Swapping is W [1]-hard, parameter-
ized by the number k of allowed swaps. Moreover, assuming the ETH, for any
computable function f , Token Swapping cannot be solved in time f (k)(n +
m)o(k/ log k) where n and m are respectively the number of vertices and edges of the
input graph.

Proof To show parameterized hardness of Token Swapping, we introduce a very
handy linker gadget. This gadget has a robust and general ability to link decisions.
As such, it permits to reduce from a wide range of problems. Its description is short
and its soundness is intuitive. Because it yields very light constructions, we can rule
out fairly easily unwanted swap sequences. We describe the linker gadget and provide
some intuitive reason why it works (see Fig. 3). ��

4.1 Linker Gadget

Given two integers a and b, the linker gadget La,b contains a set of a vertices, called
finishing set and a path on a vertices, that we call starting path.

123

2666 Algorithmica (2018) 80:2656–2682

The tokens initially on vertices of the finishing set are called local tokens; they
shall go to the vertices of the starting path in the way depicted in Fig. 3. The tokens
initially on vertices of the starting path are called global tokens. Global tokens have
their destination in some other linker gadget. To be more specific, their destination is
in the finishing set of another linker.

We describe and always imagine the finishing set and the starting paths to be ordered
from left to right. Below the finishing set and to the left of the starting path, stand b
disjoint induced paths, each with a vertices, arranged in a grid, see Fig. 3. We call
those paths private paths. The private tokens on private paths are already well-placed.
Every vertex in the finishing set is adjacent to all private vertices below it and the
leftmost vertex of the starting path is adjacent to all rightmost vertices of the private
paths.

For local tokens to go to the starting path, they must go through a private path. As
its name suggests, the linker gadget aims at linking the choice of the private path used
for every local token. Intuitively, the only way of benefiting from a2 happy swaps
between the a local tokens and the a global tokens is to use a unique private path (note
that the destination of the global tokens will make those swaps happy). That results
in a kind of configuration as depicted in the bottom right of Fig. 3, where each global
token is in the same private path. The fate of the global tokens has been linked.

4.2 Construction

We present a reduction from Multicolored Subgraph Isomorphism with cubic
pattern graphs to Token Swapping where the number of allowed swaps is linear in
k. Let (H, P) be an instance of Multicolored Subgraph Isomorphism. For any
color class Vi = {vi,1, vi,2, . . . , vi,t } of H , we add a copy of the linker L3,t that we
denote by Li . We denote by j1 < j2 < j3 the indices of the neighbors of ui in the
pattern graph P . The linker Li will be linked to 3 other gadgets and it has t private
paths (or choices). The finishing set of Li contains, from left to right, the vertices
a(i, j1), a(i, j2), and a(i, j3). We denote the tokens initially on the vertices a(i, j1),
a(i, j2), and a(i, j3) by local(i, j1), local(i, j2), local(i, j3), respectively.

The starting path contains, from left to right, vertices b(i, j1), b(i, j2), and b(i, j3)
with tokens global(i, j1), global(i, j2), and global(i, j3) (see Fig. 4).

For each p ∈ [3], local(i, jp) shall go to vertex b(i, jp), whereas global(i, jp)
shall go to a(jp, i) in the gadget L jp . Observe that the former transfer is internal and
may remain within the gadget Li , while the latter requires some interplay between
the gadgets Li and L jp . For any h ∈ [t], by U(i, h) we denote the hth private path.
This path represents the vertex vi,h . The path U(i, h) consists of, from left to right,
vertices u(i, h, j1), u(i, h, j2), u(i, h, j3). We set U(i) := ⋃

h∈[t] U(i, h). Initially, all
the tokens placed on vertices of U(i) are already well placed.

We complete the construction by adding an edge u(i, h, j)u(j, h′, i) whenever
vi,hv j,h′ is an edge in E(Vi , Vj) (see Fig. 5). LetG be the graph that we built, and let I
be thewhole instance of Token Swapping (with the initial position of the tokens).We
claim that (H, P) is a Yes-instance of Multicolored Subgraph Isomorphism if

123

Algorithmica (2018) 80:2656–2682 2667

Li

b(
i,

j 1
)

b(
i,

j 2
)

b(
i,

j 3
)

a
(i

,j
1
)

a
(i

,j
2
)

a
(i

,j
3
)

a(j1, i)
Lj1

a(j2, i)
Lj2

a(j3, i)
Lj3

U(i, 1)

U(i, 3)

U(i)

u(i, 3, j2)

global(i, j2)

local(i, j2)

U(i, 2)

Fig. 4 The different labels for tokens, vertices, and sets of vertices

v3,1

V3

v3,2

v3,3

v7,1

V7

v7,2

v7,3

u(3, 1, 7)

u(3, 2, 7)

u(3, 3, 7)

u(7, 1, 3)
u(7, 2, 3)

u(7, 3, 3)

E(V3, V7)

Fig. 5 The way linkers (in that case, L3 and L7) are assembled together, with t = 3

and only if I has a solution of length at most � := 16.5k = O(k). Recall that k is
even, so 16.5k is an integer.

4.3 Correctness

(⇒)First assume that there is a solution {v1,h1 , v2,h2 , . . . , vk,hk } to theMulticolored

Subgraph Isomorphism instance.We perform the following sequence of swaps. The
orderings thatwedonot specify among those swaps are not important,whichmeans that
they can be done in an arbitrary fashion. In each gadget Li , we first bring local(i, j3)

123

2668 Algorithmica (2018) 80:2656–2682

to b(i, j3), then local(i, j2) to b(i, j2), and finally local(i, j1) to b(i, j1), each time
passing through the same private path U(i, hi). This corresponds to a total of 12 swaps
per gadget and 12k swaps in total. Note that global(i, jp) ismoved to u(i, hi , jp). Now,
for each edge vi,hi v j,h j of the host graph H (i.e., uiu j ∈ E(P)), we swap the tokens
global(i, j) and global(j, i). By construction of G, u(i, hi , j)u(j, h j , i) is indeed an
edge in E(G), so this swap is legal. This adds 3k/2 swaps. At this point, the token
global(j, i) is on vertex u(i, hi , j). Therefore, we move each token global(j, i) to the
vertex a(i, j) in one swap. This corresponds to 3k additional swaps. Observe that it
has also the effect of putting the private tokens back to their original private path.
Thus, every token is now well placed. The overall number of swaps in this solution is
12k + 3k/2 + 3k = 16.5k = �.

(⇐)Wenow assume that there is a solution s toToken Swapping of length atmost
�. We define Y := {(i, j) | uiu j ∈ E(P)}. Note that (i, j) ∈ Y implies (j, i) ∈ Y , and
|Y | = 3k. We compute the sum L(I) of the distances token to destination. For any
(i, j) ∈ Y , local(i, j) is at distance 4 of its destination b(i, j) (via any private path).
For any (i, j) ∈ Y , global(i, j) is at distance 5 of its destination a(j, i) (following any
private path of Li , then an edge to gadget L j , and a last edge to a(j, i)). The rest of
the tokens are initially well-placed. Therefore, L := L(I) = (4 + 5) · 3k = 27k. By
Proposition 2, the length of any solution for I is at least 13.5k.

Claim 1 In any solution s for I , at least 3k initially well-placed tokens have to move.

Proof of Claim 1 There are 3k local tokens and each has a disjoint neighborhood from
all the others. Furthermore, all tokens in their neighborhood are private tokens, which
are already well placed. ��

In solution s, let x be the number of swaps between a well-placed token and a
misplaced token (in the best case, (−1/ + 1)-swaps), and y the number of swaps
between twowell-placed tokens ((+1/+1)-swaps). Claim 1 implies that x+2y � 3k.
Those x + y swaps increase the sum of distances token to destination by 2y; its value
reaches L+2y. As � � 16.5k, there can only be atmost 16.5k−(x+y) � 13.5k+y =
L+2y
2 other swaps. Therefore, all those swaps shall be happy. It also implies that in

each U(i) exactly 3 well-placed tokens move in solution s. A last consequence is
that all the swaps strictly worse than (−1/ + 1)-swaps (that is, (0/ + 1)-swaps and
(+1/ + 1)-swaps) have to be swaps between two well-placed tokens.

Claim 2 In any solution s, no token local(i, j) leaves the gadget Li .

Proof of Claim 2 It should first be noted that the token local(i, j) can only increase
its distance to its destination by leaving Li . Let j1 < j2 < j3 be such that (i, jl) ∈ Y
for every l ∈ [3]. The distance of local(i, j) to its destination is its distance to b(i, j1)
plus l − 1. Besides, local(i, j) can only leave Li via a vertex u(i, h, j ′) with h ∈ [t]
and (i, j ′) ∈ Y . From this vertex, it can go to u(j ′, h′, i) for some h′ ∈ [t]. Now,
the distance of local(i, j) to b(i, jl) is 2 if l = 3, and at least 3 otherwise. In both
cases, the swap that puts local(i, j) cannot be happy. Therefore, by the consequences
of Claim 1, it has to be a swap with a well-placed token. That means that this swap is
at best a (0/ + 1)-swap. This is only possible if it is a (+1/ + 1)-swap between two
well-placed tokens; hence, a contradiction. ��

123

Algorithmica (2018) 80:2656–2682 2669

Claim 3 For every i ∈ [k], the 3 tokens of U(i) which moved in solution s, are in the
same U(i, hi), for some hi ∈ [t].
Proof of Claim 3 Let j1 < j2 < j3 such that (i, j1), (i, j2), and (i, j3) are all in Y .
Consider the token local(i, j2). It firstmoves to a vertex u(i, hi , j2) (for some hi ∈ [t]).
By Claim 2, its only way to its destination b(i, j2) is via u(i, hi , j3). This means that
the token initially well-placed on u(i, hi , j3) is one of those 3 tokens of U(i) which
moved. Now, by considering the token local(i, j1), the same argument shows that the
three tokens of U(i) which are moved by solution s are u(i, hi , j1), u(i, hi , j2), and
u(i, hi , j3). ��

We now claim that {v1,h1, v2,h2 , . . . , vk,hk } is a solution to the Multicolored

Subgraph Isomorphism instance. Indeed, for any (i, j) ∈ Y , global(i, j) has to go
to a(j, i). By Claim 3, it has to be via vertices of U(i, hi) and U(j, h j), and there is
an edge between those two sets only if vi,hi v j,h j ∈ E(H).

The graph G has 3(t + 2)k vertices and O(t2k2) edges. We recall that � =
O(k). Therefore, any algorithm solving Token Swapping in time f (�)(|V (G)| +
|E(G)|)o(�/ log �), for some computable function f , could be used to solve Multi-

colored Subgraph Isomorphism in time f ′(k)(|V (H)| + |E(H)|)o(k/ log k); and
would contradict the ETH. This completes the proof of Theorem 1.

5 Token Swapping on Nowhere-Dense Classes of Graphs

As we have seen in Sect. 4, there is little hope for an FPT algorithm for Token

Swapping (parameterized by k), unless FPT = W [1]. Now let us show that FPT
algorithms exist, if we restrict our input to nowhere-dense graph classes.

To define nowhere-dense graphs, first let us introduce a notion of a shallow minor.
A shallow minor of a graph G at depth d is a subgraph of a graph obtained from
G by contracting subgraphs of G, each of radius at most d, into single vertices, and
removing loops and multiple edges. A class G is nowhere-dense if for every d the
class of shallow minors at depth d of graphs in G has bounded clique number. For
more information about this topic, we refer the reader to the comprehensive book of
Nešetřil and Ossona de Mendez [29, Chapter 13].

As graphs with bounded degree are nowhere-dense, this result generalizes Propo-
sition 3.

Theorem 2 (FPT in nowhere dense graphs) Subset Token Swapping is FPT
parameterized by k on nowhere-dense graph classes.

Proof If we are able to express Subset Token Swapping as a first-order formula,
then the result follows immediately from the meta-theorem by Grohe et al. [17]. ��
Theorem 3 [Grohe et al. [17]] For every nowhere-dense class C and every ε > 0,
every property of graphs definable by a first-order formula ϕ can be decided in time
O(f (|ϕ|, ε) · n1+ε) on C, where f is some function depending only on ϕ and ε.

We will define the instance of Subset Token Swapping as a first-order formula
�≤k of size O(k4). Recall that if the length of an optimal solution is k, then at most 2k

123

2670 Algorithmica (2018) 80:2656–2682

tokens are swapped. In our formula variables will denote vertices of G. The relation
edge(x, y) denotes the existence of an edge xy. The subsets of possible destinations
of tokens will be represented by relation target (x, y), which means that the vertex
y is a possible destination for the token initially starting on vertex x . Moreover, each
token will be identified by its initial position.

Let �k denote the formula encoding the solution of Subset Token Swapping

with exactly k swaps. If we are interested in a solution using at most k swaps, it is
given by ��k = ∨k

i=1 �i .
We use variables to represent:

1. the “traced” tokens t1, t2, . . . , t2k that are involved in the solution (some of them
may stay intact, if the solution uses less than 2k tokens),

2. the final positions dest1, dest2, . . . , dest2k of the “traced” tokens (dest j is the
final position of token t j),

3. the swaps s11 , s
2
1 , . . . , s

1
k , s

2
k (in the i-th swap we exchange the tokens on edge

s1i s
2
i),

4. the tokens that are swapped in the i-th swap for i = 1, 2, . . . , k – by st1i , st2i we
denote the tokens that were swapped in the i-th swap, i.e., st pi denotes the token
on vertex s pi before performing the i-th swap,

5. the positions of “traced” tokens in each round – pos j,i is the vertex, where token
t j is after i-th swap.

Now we are ready to present the formula �k .

�k =∃(t1, t2, . . . , t2k) (1)

∃(dest1, dest2, . . . , dest2k) (2)

∃(st11 , st21 , st12 , st22 , . . . , st1k , st2k) (3)

∃(s11 , s
2
1 , s

1
2 , s

2
2 , . . . , s

1
k , s

2
k) (4)

∃(pos1,0, pos2,0, . . . , pos2k,0) (5)

∃(pos1,1, pos2,1, . . . , pos2k,1) (6)

∃(pos1,2, pos2,2, . . . , pos2k,2) (7)

... (8)

∃(pos1,k, pos2,k, . . . , pos2k,k) (9)

∀(x)(
2k∧

j=1

x �= t j) → target (x, x) (10)

∧
2k∧

j=1

2k∧

j ′=1

(j �= j ′ → t j �= t j ′) (11)

∧
2k∧

j=1

target (t j , dest j) (12)

123

Algorithmica (2018) 80:2656–2682 2671

∧
k∧

i=1

edge(s1i , s
2
i) (13)

∧
2k∧

j=1

pos j,0 = t j (14)

∧
2k∧

j=1

pos j,k = dest j (15)

∧
k∧

i=1

⎛

⎝
2k∨

j=1

st1i = t j ∧ pos j,i = s1i

⎞

⎠ (16)

∧
k∧

i=1

⎛

⎝
2k∨

j=1

st2i = t j ∧ pos j,i = s2i

⎞

⎠ (17)

∧
k∧

i=1

2k∧

j=1

(
¬(st1i = t j ∨ st2i = t j) → pos j,i+1 = pos j,i

)
(18)

∧
k∧

i=1

2k∧

j=1

2k∧

j ′=1

(19)

(
(j �= j ′ ∧ st1i = t j ∧ st2i = t j ′) → (pos j,i+1 = pos j ′,i ∧ pos j ′,i+1 = pos j,i)

)

(20)

In lines 1–9 we define the variables. Line 10 says that the tokens that are not involved
in any swaps are already at feasible positions. Line 11 ensures that the traced tokens
are pairwise different. Lines 12 and 13 say that the final positions of traced tokens
should be feasible, and we can perform swaps only on edges. In lines 14 and 15 we
synchronize the values of variables pos j,0 and pos j,k with variables t j and dest j . In
lines 16 and 17 we synchronize the values of variables sp1i , sp

2
i and s

1
i , s

2
i . In line 18

we make sure that the tokens that are not involved in the current swap, stay on their
positions. Finally, in line 19 and 20 , we say that the tokens involved in the current
swap exchange their positions.

We derive the following corollary.

Corollary 3 Subset Token Swapping is FPT

(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

To see Corollary 1(a), recall that bounded-treewidth graphs are nowhere-dense.
Therefore by Theorem 2 there exists an algorithm with running time O(f (k)n1+ε),
for any ε > 0 and treewidth bounded by some constant c. Observe that the constant
hidden in the big-O notation depends on the constant c. In particular c has no influence
on the exponent of n.

123

2672 Algorithmica (2018) 80:2656–2682

6 Token Swapping on Almost Trees

This section is devoted to the proof of the following theorem.

Theorem 6 (Hard on almost trees) Token Swapping remains NP-hard even when
both the treewidth and the diameter of the input graph are constant, and cannot be
solved in time 2o(n), unless the ETH fails.

Proof In Exact Cover by 3- Sets, we are given a finite family, denoted by S =
{S1, S2, . . . , Sm}, of 3-element subsets of the universe X = {x1, x2, . . . , xn}, where 3
divides n. The goal is to find n/3 subsets inS that partition (or here, equivalently, cover)
X . The problem can be seen as a straightforward generalization of the 3- Dimensional
Matching problem. This problem is NP-complete and has no 2o(n) algorithm, unless
the ETH fails, even if each element belongs to exactly 3 triples [2,15]. Therefore we
can reduce from the restriction of the Exact Cover by 3- Sets problem, where
each element belongs to 3 sets of S, and obviously |S| = |X | = n. ��

6.1 Construction

For each set S j ∈ S, we add a set gadget consisting of a tree on 10 vertices (see Fig. 6).
In the set gadget, the four gray tokens should cyclically swap as indicated by the dotted
arrows: g j

i shall go where g j
i+1 is, for each i ∈ [4] (addition is computed modulo 4).

The three black tokens, as usual, are initially well placed. The three remaining vertices
are called element vertices. They represent the three elements of the set. The tokens
initially on the element vertices are called element tokens. For each element of X ,
there are 3 element tokens and 3 element vertices.

We add a vertex c that is linked to all the element vertices of the set gadgets and
to all the vertices g j

0 . Each token originally on an element vertex should cyclically go
to its next occurrence (see Fig. 7). The token initially on c is well placed (it could be
drawn as a black token).

The constructed graph G has 10n + 1 vertices. If one removes the vertex c the
remaining graph is a forest, which means that the graph has a feedback vertex set of
size 1 and, in particular, treewidth 2. G has its diameter bounded by 6, since all the
vertices are at distance at most 3 of the vertex c. We now show that the instance S of
Exact Cover by 3- Sets admits a solution if and only if there exists a solution for

g0 g1 g2 g3

Fig. 6 The set gadget for red, green and blue. We voluntarily omit the superscript j (Color figure online)

123

Algorithmica (2018) 80:2656–2682 2673

.

c

Fig. 7 The overall picture. Each element appears exactly 3 times, so there are 3 red tokens (Color figure
online)

our instance of Token Swapping of length at most � := 11 · n/3+ 9 · 2n/3+ 2n =
35n/3 = 11n + 2n/3.

6.2 Soundness

The correctness of the construction relies mainly on the fact that there are two com-
petitive ways of placing the gray tokens. The first way is the most direct. It consists
of only swapping along the spine of the set gadget. By spine, we mean the 7 vertices
initially containing gray or black tokens. From hereon, we call that swapping the gray
tokens internally.

Claim 4 Swapping the gray tokens internally requires 9 swaps.

Proof of Claim 4 In 6 swaps, we can first move g3 to its destination (where g0 is
initially). Then, g0, g1, and g2 need one additional swap each to be correctly placed.
Weobserve that, afterwedo so, the black tokens are back to their respective destination.

��
We call the second way swapping the gray tokens via c. Basically, it is the way

one would have to place the gray tokens if the black tokens (except the one in c) were
removed from the graph. It consists of, first (a) swapping g0 with the token on c, then
moving g0 to its destination, then (b) swapping g1 with the current token on c, moving
g1 to its destination, (c) swapping g2 with the token on c, moving g2 to its destination,
finally (d) swapping g3 with the token on c and moving it to its destination.

Claim 5 Swapping the gray tokens via c requires 11 swaps.

Proof of Claim 5 Steps (a), (b), and (c) take 3 swaps each,while step (d) takes 2 swaps.
��

Considering that swapping the gray tokens via c takes 2 more swaps than swapping
them internally, and leads to the exact same configuration where both the black tokens
and the element tokens are back to their initial position, one can question the interest
of the second way of swapping the gray tokens. It turns out that, at the end of steps (a),
(b), and (c), an element token is on vertex c. We will take advantage of that situation
to perform two consecutive happy swaps with its two other occurrences. By doing so,
observe that the first swap of steps (b), (c), and (d) are also happy and place the last
occurrence of the element tokens at its destination.

123

2674 Algorithmica (2018) 80:2656–2682

We assume that there is a solution Sa1 , . . . , San/3 to the Exact Cover by 3-

Sets instance. In the corresponding n/3 set gadgets, swap the gray tokens via c and
interleave those swaps with doing the two happy swaps over element tokens, whenever
such a token reaches c. By Claim 5, this requires 11 · n/3 + 2n swaps. At this point,
the tokens that are misplaced are the 4 · 2n/3 gray tokens in the 2n/3 remaining set
gadgets. Swap those gray tokens internally. This adds 9 · 2n/3 swaps, by Claim 4.
Overall, this solution consists of 29n/3 + 2n = 35n/3 = �.

Let us now suppose that there is a solution s of length at most � to the Token

Swapping instance. At this point, we should observe that there are alternative ways
(to Claims 4 and 5) of placing the gray tokens at their destination. For instance, one can
move g3 to g1 along the spine, place tokens g2 and g3, then exchange g0 with the token
on c, move g0 to its destination, swap g3 with the token on c, and finally move it to its
destination. This also takes 11 swaps butmoves only one element token to c (compared
to moving all three of them in the strategy of Claim 5). One can check that all those
alternative ways take 11 swaps or more. Let r ∈ [0, n] be such that s does not swap the
gray tokens internally in r set gadgets (and swap them internally in the remaining n−r
set gadgets). The length of s is at least 11r+9(n−r)+2(n−q)+4q = 11n+2(r+q),
where q is the number of elements of X for which none occurrence of its three element
tokens has been moved to c in the process of swapping the gray tokens. Indeed, for
each of those q elements, 4 additional swaps will be eventually needed. For each of
the remaining n − q elements, only 2 additional happy swaps will place the three
corresponding element tokens at their destination. It holds that 3r � n − q, since the
element tokens within the r set gadgets where s does not swap internally represent
at most 3r distinct elements of X . Hence, 3r + q � n. Also, s is of length at most
� = 11n + 2n/3, which implies that r + q � n/3. Thus, n � 3r + q � 3r + 3q � n.
Therefore, q = 0 and r = n/3. Let Sa1 , . . . , San/3 be the n/3 sets for which s does not
swap the gray tokens internally in the corresponding set gadgets. For each element
of X , an occurrence of a corresponding element token is moved to c when the gray
tokens are swapped in one of those gadgets. So this element belongs to one Sai and
therefore Sa1, . . . , San/3 is a solution to the instance of Exact Cover by 3- Sets.

The ETH lower bound follows from the fact, that the size of constructed graph is
linear in n.

7 Variants of Token Swapping on Stars, Cliques, and Paths

In this section we investigate the complexities of the variants of Token Swapping

on very simple classes of graphs.
Let us start with defining an auxiliary digraph, which will be useful in coping with

Colored Token Swapping. For an instance of Colored Token Swapping on a
graph G, we define the color digraph G∗, whose vertices are colors of tokens on G,
and arcs correspond to vertices of G. The vertex v corresponds to the arc e(v) = cc′,
such that c is the color of v and c′ is the color of the token placed in v. Note that
both loops and multiple arcs are possible. There is a very close relation between color
digraphs and Eulerian digraphs.

Observation 1 The following hold:

123

Algorithmica (2018) 80:2656–2682 2675

(i) if G∗ is the color digraph of some instance of Colored Token Swapping,
then every connected component of G∗ is Eulerian;

(ii) for every Eulerian digraph H with n edges, and for any graph G with n vertices,
there exists an instance of Colored Token Swapping on G, such that its color
digraph G∗ is isomorphic to H.

Proof To see (i), consider a vertex c of G∗. Its out-degree is the number of tokens
placed on vertices with color c. The in-degree of c is the number of tokens in color c.
Thus the in-degree is equal the out-degree, from which (i) follows.

Now, to see (ii), consider a vertex c of G∗, let d be its out-degree (equal to the
in-degree, as G∗ is Eulerian). Then in G give the color c to any d vertices. Moreover,
for each arc cc′ in G∗ we place a token in color c′ on a vertex in color c. We repeat
this for every vertex c in G∗, obtaining an instance of Colored Token Swapping,
whose color digraph is exactly G∗. ��

Now consider a solution s for the instance of Colored Token Swapping in G
and fix the destinations of tokens according to s. We observe that the cycles in the
permutation defined by these destinations correspond to circuits in G∗. Thus, when
trying to find a solution for an instance of Colored Token Swapping, we will first
try to fix appropriate destinations (by analyzing circuits in G∗), and then we will solve
the instance of Token Swapping.

7.1 Stars

To prove the next theorem we will use the following result by Pak [30]. We state in
the language of tokens and swaps, although the original motivation of Pak was sorting
a permutation by transpositions with the first element.

Lemma 1 [Pak [30]] Let I be an instance of Token Swapping on a star with n
leaves, with the initial configuration of tokens π . If the decomposition of π into cycles
consists of one cycle involving the central vertex, m cycles of length at least 2, and b
cycles of length 1, then the length of an optimal solution to I is n + m − b.

Theorem 7 Colored Token Swapping can be solved in polynomial time on stars.

Proof Let G be a star with center v0 and leaves v1, v2, . . . , vn . The color of the vertex
v will be denoted by c(v). Also, let c0 := c(v0).

First, suppose that there exists a leaf v, such that the token t that is initially placed
there has color c(v) as well. Let s be an optimal solution and consider a permutation π

of tokens given by s. We want to show that π(v) = v. Using the solution of Pak [30],
this implies that t is never swapped.

For the purpose of contradiction, suppose π(v) �= v. Then, there exists a token t ′
initially on vertex u with π(u) = v and a vertex w with π(v) = w. In other words,
token t ends at vertex w. So neither u, v nor w is involved in a 1-cycle, but all three
vertices must have the same color. Thus we can alter this solution to a new permutation
π ′, by setting π(v) = v and π(u) = w. This increases the number b of 1-cycles by

123

2676 Algorithmica (2018) 80:2656–2682

1 and the number m stays the same. This contradicts the optimality of s by Lemma 1
and we conclude π(v) = v.

Thus for any leaf v with a token t of color c(v) holds, that the solution does not
change after removal of v.

Thus from now on we assume that no leaf v contains a token colored with color
c(v).

Consider the color digraph G∗. By the previous paragraph, we observe that with
just one possible exception c0c0, it has no loops. LetC0,C2, . . . ,Cm be the connected
components of G∗, and let c0 ∈ C0. Moreover, for i ≥ 0, by pi we denote the number
of arcs in Ci . By Observation 1(i), the edges of G∗ can be decomposed (in polynomial
time) into m + 1 circuits (Eulerian circuits of its connected components).

Let e(vi1), e(v
i
2), . . . , e(v

i
pi) be such a circuit for Ci , also we assume that v01 = v0

(i.e. we start the circuit for C0 with the arc corresponding to v0). We construct the
swapping strategy s by concatenating sequences si , defined as follows:

si =
{

v0v
0
2, v0v

0
3, . . . , v0v

0
p0 for i = 0,

v0v
i
1, v0v

i
2, v0v

i
3, . . . , v0v

i
pi for i > 0.

It is straightforward to verify that s is a solution for our problem and its length is n+m.
We claim this solution is optimal.

To see this, consider any solution s′. Let us consider the instance of Token

Swapping obtained by fixing the destinations of all tokens, according to s′. Let
q0, q1, . . . , qm′ be the cycles in the permutation given by the destinations, and assume
q0 contains vertex v0. By Lemma 1, the length of the optimal solution of this instance
of Token Swapping is exactly n + m′. We observe that the set of colors of vertices
in each cycle has to be entirely contained in one of the components Ci , so m′ ≥ m,
thus the length of s′ is at least n + m′ ≥ n + m, which completes the proof. ��
Theorem 8 On stars, Subset Token Swapping remains NP-hard and cannot be
solved in time 2o(n) unless the ETH fails, even for target sets of size at most 2.

Proof We will reduce from the Directed Hamiltonian Cycle problem restricted
to digraphs with out-degree at most 2, which is known to be NP-complete [32]. More-
over, it follows from the proof that the problem cannot be solved in time 2o(n), unless
the ETH fails (the original proof considers planar instances, but if we drop the planarity
assumption, we obtain claimed lower bound).

Let G = (V, E) be a digraph with all out-degrees at most 2, we can assume it
has no loops. We will construct an instance (G ′ = (V ′, E ′), D) of Subset Token

Swapping with |D(v)| � 2 for all v ∈ V ′, that has a solution of length at most n + 1
if an only if G has a Hamiltonian cycle.

The set V ′ is equal to V �{c}where c is the center of the star, and the leaves are the
vertices of G. For each v ∈ V ′ \ {c}, we set D(v) = NG(v) (the set of out-neighbors
of v in G) and D(c) = {c}.

Suppose G has a Hamiltonian cycle v1, v2, v3, . . . , vn (with v1 adjacent to vn). It
is easy to observe that the sequence cv1, cv2, . . . , cvn, cv1 of edges is a solution for
Colored Token Swapping with length n + 1.

123

Algorithmica (2018) 80:2656–2682 2677

On the other hand, suppose there is a solution s′ for Subset Token Swapping

of length at most n + 1. Since G has no loops, every token starting at v ∈ V must
be moved to c at some point. Moreover, in the last swap we have to bring the token
starting at c back to this vertex. Thus every feasible solution uses at least n+ 1 swaps,
which implies that the length of s′ is exactly n + 1; let s′ = cv1, cv2, . . . , cvn, cvn+1.
Moreover, we have v1 = vn+1 and vi �= v j for all 1 ≤ i < j ≤ n. Thus we observe
that v1, v2, v3, . . . , vn is a Hamiltonian cycle in G. ��

7.2 Cliques

If G is a complete graph, then the optimal solution for Token Swapping is n minus
the number of cycles in the permutation given by initial positions of tokens [6]. Thus,
the problem is solvable in polynomial time. On the other hand, we can show that
Colored Token Swapping is NP-complete on cliques. Before we prove it, let us
prove an auxiliary lemma. In theDirected Triangle Decompositionwe are given
a digraph H = (V, A), and we ask whether the arc set A can be decomposed into
disjoint directed triangles.

Lemma 2 Directed Triangle Decomposition is NP-complete, even if the input
digraph H = (V, A) is Eulerian and has no 2-cycles. Moreover, it cannot be solved
in 2o(|A|), unless the ETH fails.

Proof For a given 3- Sat formula�with N variables andM clauses, wewill construct
a digraph H , which can be decomposed into triangles if and only if � is satisfiable.

The main part of the construction is essentially the same as the construction of
Holyer [20], used to show NP-hardness of decomposing the edge set of an undirected
graph into triangles (or, more generally, k-cliques). Thus we will just point out the
modifications and refer the reader to the paper of Holyer for a complete description.

We observe that by the proper adjustment of constants the graph G3 constructed
by Holyer can be made three-partite (see also Colbourn [7]). Let A, B,C denote the
partition classes. We obtain H by orienting all edges ofG3, according to the following
pattern A → B → C → A. Note that clearly H has no 2-cycles.

Consider a vertex v of G3. Without loss of generality assume v ∈ A. We note that
exactly half of the neighbors of v are in B, and the other half are in C . This implies
that H is Eulerian.

We also point out that the number of arcs in H is linear in the number of vertices.
Moreover, if we make the size of each variable gadget proportional to the number of
occurrences of this variable in� (instead of proportional toM , as in the original proof),
we obtain that |A| = O(N + M). This shows that an existence of a subexponential
(in |A|) algorithm for our problem contradicts the ETH. ��
Theorem 9 On cliques, Colored Token Swapping remains NP-hard and cannot
be solved in time 2o(n), unless the ETH fails.

Proof We reduce fromDirected Triangle Decomposition. Let H be an Eulerian
directed graph with n arcs, having no 2-cycles. Consider an instance of Colored

123

2678 Algorithmica (2018) 80:2656–2682

Token Swapping on G = Kn , such that H is its color digraph (it exists by Obser-
vation 1(ii)). We claim that there exists a solution for this instance of length at most
2n/3 if and only if the arc set of H can be decomposed into directed triangles (see
Lemma 2).

Suppose that the arc set of H can be decomposed into n/3 triangles. The vertices
of G corresponding to the edges of the i th triangle, are vi1, v

i
2, v

i
3. We construct the

solution s by concatenating sequences vi1v
i
2, v

i
1v

i
3 for i = 1, 2, . . . , n/3. It is easy to

verify that s is a solution and its length is 2n/3.
So now suppose we have a solution s of length at most 2n/3. Recall that the length

of any solution s′ is at least n minus the number of cycles in the permutation obtained
by fixing the destinations of tokens according to s′. Thus the number of cycles in the
permutation given by s is at least n/3. Since these cycles correspond to circuits in the
color digraph H , and H has no 2-cycles, this is only possible if the arcs of H can be
decomposed into triangles. ��

It is interesting to point out that if G is a clique, then the presence of many cycles
in the permutation of tokens yields a short solution for Token Swapping, while for
the case when G is a star, the situation is opposite.

Theorems 8 and 9 can be used to show a slightly more general hardness result. A
class G of graphs is hereditary, if for any G ∈ G and any induced subgraph G ′ of G
we have G ′ ∈ G. We say that that a class G of graphs has unbounded degree, if for
every d ∈ N there exists G ∈ G, such that �(G) ≥ d.

Theorem 10 Let G be a hereditary class containing an infinite number of connected
graphs with unbounded degree. Subset Token Swapping is NP-complete, when
restricted to graphs from G. Moreover, if there exists an algorithm solving Subset

Token Swapping in time 2o(n) for every graph in G ∈ G with n vertices, then the
ETH fails.

Proof We shall reduce from Directed Hamiltonian Cycle in digraphs with out-
degree at most 2. Let H be such a digraph with n vertices.

First, assume that K1,n ∈ G. Thenwe are done byTheorem8. So assume that K1,n /∈
G. SinceG is hereditary,we know that K1,n′ /∈ G for anyn′ ≥ n. Since decomposing the
arc set of an Eulerian digraph with no 2-cycles into directed triangles is NP-complete
(see Lemma 2), there exists a polynomial reduction from Directed Hamiltonian

Cycle to this problem. Consider the digraph H∗ obtained with this reduction. Its arc
set can be decomposed into triangles if and only if H has a Hamiltonian cycle. Let m
denote the number of edges in H∗ and set N = max(m, n).

By Ramsey theorem [33] (see also Erdős, Szekeres [10]) we know that there exists
an absolute constant c such that every graph with more than c · 4N vertices has either
a clique or an independent set of size N .

SinceG has unbounded degree, there exists a graphG ∈ G, such that�(G) ≥ c·4N .
Let v be a vertex of G with degree at least c · 4N and let G ′ be a subgraph of G
induced by the neighborhood of v. If G ′ has an independent set U of size N , then
G[U ∪ {v}] ∼ K1,N , so we obtain a contradiction (recall that G is hereditary). Thus
G ′ has a subset C inducing a clique of size N . Since G is hereditary and N ≥ m, we
obtain that Km ∈ G. Thus we can use the construction from Theorem 9. ��

123

Algorithmica (2018) 80:2656–2682 2679

7.3 Paths

Finally, we turn our attention to paths.

Theorem 11 Colored Token Swapping canbe solved in polynomial timeonpaths.

Proof Let c be the color of the vertex v at the left end of the path. Let t be the leftmost
token with color c. It is clear that no optimal solution contains a swap involving two
tokens of the same color, so in any optimal solution the token t will end up in v.
Repeat this argument with the second leftmost vertex, and so on. This way we fix the
destinations for all tokens, obtaining an equivalent instance of Token Swapping,
which can be solved in polynomial time (see [28]). ��

Now we will discuss the complexity of Subset Token Swapping on paths.
We want to point out an equivalent, interesting formulation of this problem. Con-
sider an instance I of Subset Token Swapping defined on a path with n vertices
v1, v2, . . . , vn . For a vertex vi , let ti denote the token initially placed on vi , and let
D(ti) denote the set of possible destinations of ti . Now consider a bipartite graph G
with bipartition classes {v1, v2, . . . , vn} and {t1, t2, . . . , tn}. The edge tiv j is present
in G if and only if v j ∈ D(ti). Fix two distinct vertical lines � and �′ on a plane
and fix the positions of vertices of G on these lines; v1, v2, . . . , vn lie on � (in this
ordering from top to bottom), and t1, t2, . . . , tn lie on �′ (also in this ordering from top
to bottom); see Fig. 8.

Consider a feasible solution s of I and let σ be the permutation assigning destina-
tions to tokens, according to s. Since after fixing the destinations we obtain an instance
of Token Swapping, which is polynomially solvable on paths, we observe that each
feasible solution s for I corresponds to a perfect matching in G (and vice versa).

Recall that the number of swaps required to solve an instance of Token Swapping

on a path is equal to the number of inversions in the initial permutation of tokens.
Suppose there is such an inversion in σ , i.e. σ(ti) > σ(t j) for some i < j . Observe

v1 v2 v3 v4

D
v1

v2

v3

v4

G

Fig. 8 A bipartite graph G constructed from an instance of Subset Token Swapping on a path

123

2680 Algorithmica (2018) 80:2656–2682

that this is exactly equivalent to saying that the edges tiσ(ti) and t jσ(t j) of G cross
(see Fig. 8).

So let us formally define the problem Minimum Crossing Bipartite Match-

ing, which is equivalent to Subset Token Swapping on a path. The instance of
Minimum Crossing Bipartite Matching is (G, k), where k is an integer and G
is a bipartite graph with n vertices in each bipartition class. Moreover, the vertices
of G are positioned on two parallel lines, one for each bipartition class. We can also
assume that G has at least one perfect matching. The problem asks if G has a perfect
matching with at most k pairwise crossing pairs of edges.

The problem Minimum Crossing Bipartite Matching (and thus also Subset
Token Swapping on paths) was recently shown to be NP-hard by Guśpiel [18].

Theorem 12 [Guśpiel [18]] Subset Token Swapping remains NP-hard for paths,
even if each token has at most 2 possible destinations, and each vertex is a destination
of at most 2 tokens. Moreover, the problem cannot be solved in time 2o(n) (where n is
the number of vertices of the path), unless the ETH fails.

This result allows us to generalize Theorem 10 to all hereditary classes of graphs.

Theorem 13 Let G be a hereditary class containing an infinite number of connected
graphs. Subset Token Swapping is NP-complete, when restricted to graphs from
G. Moreover, if there exists an algorithm solving Subset Token Swapping in time
2o(n) for every graph in G ∈ G with n vertices, then the ETH fails.

Proof If G has unbounded degree, then the claim holds by Theorem 10. On the other
hand, if there is a constant d, such that �(G) ≤ d for all G ∈ G, then G contains
all paths. Indeed, let n be an integer and let G ∈ G be a graph with at least n · dn
vertices (it always exists, since G is infinite). Run a BFS algorithm on G, starting from
an arbitrary vertex, and consider the obtained BFS-layers. The number of such layers
is at least n, so G contains Pn as an induced subgraph. Since G is hereditary, we have
Pn ∈ G. The claim follows by Theorem 12. ��

8 Conclusion

We conclude the paper with several ideas for further research. First, we believe that it
would be interesting to fill the missing entries in Table 2. In particular, we conjecture
that Token Swapping remains NP-complete even if the input graph is a tree.

Another interesting problem is the following. By Miltzow et al. [28, Theorem 1]
(see also Proposition 4), Token Swapping can be solved in time 2O(n log n), and
there is no 2o(n) algorithm, unless the ETH fails. We conjecture that the lower bound
can be improved to 2o(n log n). It would also be interesting to find single-exponential
algorithms for some restricted graph classes, such as graphs with bounded treewidth
or planar graphs.

Finally, to prove Corollary 1, we use the powerful and very general meta-theorem
by Grohe et al. [17]. It would be interesting to obtain elementary FPT algorithms for
planar graphs and graph with bounded treewidth (or even trees), just as we did for
graphs with bounded degree.

123

Algorithmica (2018) 80:2656–2682 2681

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways, for Your Mathematical Plays: Games in
Particular, vol. 2. Academic Press, New York (1982)

2. Bodlaender, H.L., Nederlof, J.: Subexponential time algorithms for finding small tree and path decom-
positions. In: ESA 2015 Proceedings, pp. 179–190. Springer (2015)

3. Bonnet, É, Miltzow, T., Rzazewski, P.: Complexity of token swapping and its variants. In: Vollmer, H.,
Vallée, B. (eds.) 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), vol. 66
of Leibniz International Proceedings in Informatics (LIPIcs), pp. 16:1–16:14, Dagstuhl, Germany
(2017). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

4. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geometry 42(1), 60–80 (2009)
5. Calinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids. In: LATIN 2006 Pro-

ceedings, pp. 262–273. Springer (2006)
6. Cayley, A.: LXXVII. Note on the theory of permutations. Philos. Mag. Ser. 3 34(232), 527–529 (1849)
7. Colbourn, C.J.: The complexity of completing partial latin squares. Discrete Appl. Math. 8(1), 25–30

(1984)
8. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry. In: Com-

putational Geometry, pp. 1–17. Springer (2000)
9. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara,

R., Yamada, T.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142
(2015)

10. Erdős, P., Szekeres, G.: Classic papers in combinatorics. In: Chapter A Combinatorial Problem in
Geometry, pp. 49–56. Birkhäuser Boston, Boston, MA (1987)

11. Fabila-Monroy, R., Flores-Peñaloza, D., Huemer, C., Hurtado, F., Urrutia, J., Wood, D.R.: Token
graphs. Graphs Combin. 28(3), 365–380 (2012)

12. Farnoud, F., Chen, C.Y., Milenkovic, O., Kashyap, N.: A graphical model for computing the minimum
cost transposition distance. In: Information Theory Workshop (ITW), 2010 IEEE, pp. 1–5 (2010)

13. Farnoud, F., Milenkovic, O.: Sorting of permutations by cost-constrained transpositions. IEEE Trans.
Inf. Theory 58(1), 3–23 (2012)

14. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs.
In: Elbassioni, K., Makino, K. (eds.) Algorithms and Computation, volume 9472 of Lecture Notes in
Computer Science, pp. 237–247. Springer, Berlin (2015)

15. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38,
293–306 (1985)

16. Graf, D.: How to sort by walking on a tree. In: ESA 2015 Proceeding, pp. 643–655. Springer (2015)
17. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In:

STOC 2014 Proceedings, pp. 89–98. ACM (2014)
18. Guśpiel, G.: Complexity of finding perfect bipartite matchings minimizing the number of intersecting

edges. CoRR, arXiv:1709.06805 (2017)
19. Heath, L.S., Vergara, J.P.C.: Sorting by short swaps. J. Comput. Biol. 10(5), 775–789 (2003)
20. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Comput. 10(4), 713–717

(1981)
21. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
22. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-

put. Syst. Sci. 63(4), 512–530 (2001)
23. Kasai, T., Adachi, A., Iwata, S.: Classes of pebble games and complete problems. SIAM J. Comput.

8(4), 574–586 (1979)
24. Knuth, D.E.: The Art of Computer Programming, volume 3/Sorting and Searching. Addison-Wesley

(1982). ISBN 0-201-03803-X
25. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull.

EATCS 105, 41–72 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.06805

2682 Algorithmica (2018) 80:2656–2682

26. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)
27. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using

voronoi diagrams. CoRR, abs/1504.05476 (2015)
28. Miltzow, T., Narins, L., Okamoto, Y., Rote, G., Thomas, A., Uno, T.: Approximation and hardness

of token swapping. In: Sankowski, P., Zaroliagis, C. (eds.) 24th Annual European Symposium on
Algorithms (ESA 2016)

29. Nešetřil, J., Ossona de Mendez, P.: Sparsity—Graphs, Structures, and Algorithms, volume 28 of Algo-
rithms and combinatorics. Springer, Berlin (2012)

30. Pak, I.: Reduced decompositions of permutations in terms of star transpositions, generalized Catalan
numbers and k-ARY trees. Discrete Math. 204(1), 329–335 (1999)

31. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of
Graphs. Lecture Notes in Mathematics, pp. 426–441. Springer (1976)

32. Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree
bound two. Inf. Process. Lett. 8(4), 199–201 (1979)

33. Ramsey, F.P.: On a problem in formal logic. Proc. Lond. Math. Soc. 3(30), 264–286 (1930)
34. Savitch,W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput.

Syst. Sci. 4(2), 177–192 (1970)
35. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Combin. Theory Ser. B 16(1),

86–96 (1974)
36. Yamanaka, K., Demaine, E.D., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A.,

Uchizawa, K., Uno, T.: Swapping labeled tokens on graphs. In: FUN 2014 Proceedings, pp. 364–375.
Springer (2014)

37. Yamanaka, K., Horiyama, T., Kirkpatrick, D.G., Otachi, Y., Saitoh, T., Uehara, R., Uno, Y.: Swapping
colored tokens on graphs. In: WADS 2015 Proceedings, pp. 619–628 (2015)

38. Yasui, G., Abe, K., Yamanaka, K., Hirayama, T.: Swapping labeled tokens on complete split graphs.
SIG Tech. Rep. 2015–AL–153(14), 1–4 (2015)

123

	Complexity of Token Swapping and Its Variants
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	4 Lower Bounds on Parameterized Token Swapping
	4.1 Linker Gadget
	4.2 Construction
	4.3 Correctness

	5 Token Swapping on Nowhere-Dense Classes of Graphs
	6 Token Swapping on Almost Trees
	6.1 Construction
	6.2 Soundness

	7 Variants of Token Swapping on Stars, Cliques, and Paths
	7.1 Stars
	7.2 Cliques
	7.3 Paths

	8 Conclusion
	References

