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Abstract—In multimodal biometric information fusion, it is There are several causes for the missing modalities, as list
common to encounter missing modalities in which matching pelow:
cannot be performed. As a result, at the match score level, this

implies that scores will be missing. We address the multimodal ~ * Temporary/permanent alteration of biometric traits:

fusion problem involving missing modalities (scores) using sup- Underlying biometric traits are living tissues that may
port vector machines with the Neutral Point Substitution (NPS) change both over short (within days) and long period
method. The approach starts by processing each modality using of time (years). For instance, a cough may temporarily

a kernel. When a modality is missing, at the kernel level, the
missing modality is substituted by one that is unbiased with
regards to the classification, called a neutral point. Critically,

change the vocal tracts of a person and this is likely
to result in false rejection. Some drugs are known to

unlike conventional missing-data substitution methods, explicit permanently change the fingerprint minutiae. In either
calculation of neutral points may be omitted by virtue of their circumstances, the user of a biometric device, or the
implicit incorporation within the SVM training framework. operator involved, may decide not to use the device.

Experiments based on the publicly available Biosecure DS2 | \alfunctionina of a subset of biometric devices Bio-
multimodal (scores) data set shows that the SVM-NPS approach 9

achieves very good generalization performance compared to the metr_lc deylce may be worn ov_er t_lme.
sum rule fusion, especially with severe missing modalities. « Desire to increase the authentication throughputLast

. . . . L but not least, for some applications, e.g., entrance to a
Index Terms— Multimodal biometrics, multiple classifiers sys-

tem, biometric authentication, information fusion, missing fea- _theme park, Where a(_:cess request is larger than ?XpeCt,ed’
tures it may be sensible to increase the throughput of biometric

authentication by reducing the number of biometric traits
needed.
|. INTRODUCTION One can distinguish two types of incomplete data samples:
those in training (i.e., during the classifier design steay®)
those in testing (i.e, when the classifier is operationat). |
In order to improve confidence in verifying the identity ofyraining, incomplete data samples can be discarded if the
individuals seeking access to physical or virtual locatidioth  proportion of incomplete samples versus the complete ones
government and commercial organizations are implementiR@very small. During testing, however, one still has to sifys
more secure personal identification systems. The challefiggncomplete data samples. In the problem of biometric authen
creating a well-designed, highly secure and accurate parsatication/identification, it can be assumed that the trajrdata

identification system has always been a central goal in Bgcuiis complete but the testing data may be incomplete due to the
businesses. This challenge can be responded to by the 56ve mentioned reasons.

of multimodal biometric systems [1], [2], [3] where both the
security and pen_‘ormance_ Ievel; can .be f_urther incregsed. B. Existing Solutions to Missing Features

Although multimodal biometric fusion is well studied, as o .
evidenced by [1] (and references herein), little attentias In the pattern recognmqn literature, the problem of nrigsi
been focused on how to handle the case of missing biomeﬂ(ﬁ(‘?‘tures car? be handlegl in three YVa}’S: )
modalities, which results in missing features in the jciobre . Imput_atl(_)n: replacing the missing features via mean
(output) space. A recent work reported in [4] as well as the Substitution [6], [7], at the simplest level, or else via
first known multimodal benchmark evaluation [5] shows that More complex methods (e.g. [8]) that take into account
the problem of missing features can indeed be handled. tn fac ~ SPecifics of the distribution statistics and morphology.
according to [5], given a carefully designed fusion meckami ~ * Exhaustlve. fusion dg&gp designing a fusion classifier
a multimodal system can degrade gracefully in performance for all possible combinations of observable features (also

with increasingly many missing features reported in [6]) o _
« Naive Bayes fusion assuming independence in the fea-
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tentially bias towards one class or another. The dynamioffus space in order to be substituted. This difficulty arises bsea
solution, on the other hand, requires an exhaustive dedigntlee symmetric, positive-definite Kernel matrix that spesifi
all possible fusion problems defined by the observable -joirfairwise relations among all the training samples (and kvhic
score subspace. If there ale biometric systems to combine,can be regarded as a Gram matrix in the embedding space [11])
2N — N — 1 fusion classifiers will be needed (subtracting this undefined for the missing features/modalities. The NPS
cases involving the empty set as well as a single feature@)ethod adopts a decision-agnostic approach with regard to
Hence, this is not a scalable approach. Finally, by workirthe substitution of these values, i.e. it assumes that ngssi
only with the marginal distributions, the Naive Bayes agato modalities do not contribute to any bias in the discrimioiti
cannot handle possible correlation among the expert autpudf one class from another. Critically, unlike conventional
As will be evidenced in our experiments, in the fusion prable missing-data substitution methods, the determinatiorhege
involving multiple fingerprints (see Figures 3 and 4, fopoints can be implicitly incorporation within the SVM tramng
instance), the match (genuine) scores among differentringéramework.
of the same subject, for the same as well as different (leftin [10], it has been shown that the NPS method is theo-
versus right) hands, are actually correlated. This imptled retically equivalent to the sum rule fusion scheme when the
the need to work with the joint-score space directly. modalities are maximally disjoint (i.e., there are no commo
There are two categories of solutions to the missing fesamples). As justified by Kittleet al. [12], this finding means
ture problem, depending on the type of classifier frameworttiat the neutral-point method should exhibit a degree of re-
generative versus discriminative classifiers. For the ggive silience to class misattribution within the individual s$ifiers
classifier, an obvious approach is to model the joint-scotierough the relative canceling of combined estimationrsr(ib
distribution. Then, during testing, one can simpharginalize sufficiently decorrelated). We would therefore like to qiifsm
the joint-score distribution with respect to the missingtéees, this result for a typical (i.e., non-maximally disjoint)tdaset.
in order to obtain the distribution marginals with only the
observed features subspace. Inference via the Bayes rBIe
(estimating posterior probabilities) or the log-likeldwratio - o )
test then becomes straightforward. This solution was tedor The contributions of this paper are two-fold:
in [5]. « to apply the NPS method, in an SVM framework, to solve
[BEGIN ADDED TEXT] For discriminative classifiers, the multimodal biometric fusion problem with missing
marginalizationwill make the learning the parameter (search) modalities (features).
problem NP-complete [9]. An alternative solution that ofte « to validate this approach using a publicly available
leads to acceptable performance is to ignore or to skip pa- database (for repeatability of experiments), i.e., thesBio
rameters corresponding to missing information, duringhbot  cure DS2 score-and-quality database [13].

inference and prediction. This approach was pursued inof9] fThe experimental results show that while the sum fusion rule
discriminative classifiers based on Bayesian network iflass attains performance that is better than any Sing|e biometri
and logistic regression. However, this is not always pdssitmodality (confirming to findings in the fusion literature 12
and, in general, parameter-omission must be treated or1aj), our proposal using the NPS method achieves evenrbette
classifier-by-classifier basis. The purpose of this paper rigsults. We hypothesize that this will be typical for naliyra
to propose a possible implementation of this strategy usiggsing multi-kernel, missing-data problem such as mudtiad
support vector machines (SVM), in a manner that is naturaljjometrics.
congruent with the underlying Kernel-based discrimirativ This paper is organized as follows: Section Il presents
strategy. [END ADDED TEXT] the theory of NPS. It will first introduce the notation for
multimodal kernel design problem, and then present theraleut
C. Our Proposal point method. Section Il supports the presented theoryrby a
In this paper, we thus propose a discriminative classifiekperimental validation. This is followed by discussiomsl a
capable of dealing with missing features using a kerne¢thasconclusions in Section IV.
SVM approach. The multimodal biometric fusion problem is
formulated as one of combining multiple kernels, in which
each kernel is designed for a particular biometric modality
(such that normalization of each output may be required in . .
order to handle the different range of each kernel prior f& "€ Multimodal Kernel Fusion Prob[em
combining). Our particular problem is to combine multiple Specifying a generalized feature mapto be that which
kernels when the experimental data is not fully represeimtedgenerates an output iR” for a detected object, we consider
each kernel. a multimodal kernel decision problem to be one in which
In order to handle the missing features during testeature maps are associated either with a &8t} of m
ing/inference, we will adopt the neutral point substitntiodistinct sensor space&?*t(sm(u))) — RNm, or else associ-
(NPS) method [10]. An SVM works by projecting features intated withm distinct kernel measure?§m(¢?m(~)7 q@m(-)) — R
a linear kernel embedding space defined with respect to thadined on arbitrary (possibly evetcommof sensor-output
same features. Missing modalities (i.e., features in tlet-jo spaces{S}. The former case, where distinct kernels are
score space) thus, in general, cannot be located within thissociated with distinct modalities, may be considered as
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representative of aexperimentally driverscenario; the latter problem being to find maximal margin discriminant hyper-
case is more typical of a ensemble-learning-driven scepanplane in spacev; :

in which multiple kernels are employed to capture different .

aspects of the learning problem. Since the latter case mésu Ui(zi(w)) = K;(0;,2(w)) +b; <0

the former, for maximum generality we consider only thi

approach and omit explicit subscripting of the sensor spa%
S.

When considered on a per-modality basis (i.e., applicable
only to modality n), one cannot, in general, assume that
a Kernel matrix K, = K, (¢"(S(ws)), ¢"(S(wy))) will K;(0;,6;) +C Z 0; — min(§; € X, be R,4; € R)
give rise toidentical Mercer embedding spaceg(S) = w; QY
( {'L(S).,ng(sl), 2(S),...)" when the s'et.of objects from Subject to:
which i and j are drawn undergoes variation due to missing
features/modalities. This is even more acute when thetselec
subsets have differing cardinalities, given the relation of
this quantity to the embedding space dimensionality (theThe presence of the slack variable§, gives rise to a
dimensionality of the space will always ©ier for inner- “softer” margin, allowing solutions to classification ptetns
product kernels). This makes the substitution of, for inetga that are not linearly separablé;(measures the degree of
mean valued vectors for the missing values non-trivialikenl misclassification of each object). These variables disapime

hich generally has a much more complex (i.e non-linear)
cision boundary i; ).
This leads to the standard SVM Training Criterion:

Yi| K (05, w4(wr)) +b] > 1—65,6; >0

the standard parametric missing value problem. the dual formulation of the problem, leaving orlyas a free
(Here, ¢*(S) are Eigenfunctions of the integral linearconfiguration parameter for specifying the trade-off betwe
operator associated with Kernkl,; i.e., such that(S(w;)) = margin maximization and error minimization. The (Wolfe)

)\%ui, where K, = UAU’ and U = (u1,ug,us,...u), dual form of the criterion is hence a quadratic programming
with A = diag(Ai, \a,...\,) the eigenvalue matrix, and problem with respect to the Lagrangian multiplieks,
u; = ¥;(S(w;)) [i.e., thew; are Mercer features]).

In the following section, we shall address the missin 1 o o
modality problem though SVM theory. gz i 5 D 2 lymKa(aiwy), @) AesAu

w; €N w; €QF w €NF
— max
B. The Neutral Point Method Subject to:
Let us assume an underlying unidimensional sensor space
within each modality, and omit explicit consideration okth Z yidij =0,0< N\ ; <C/2,0; € QF
sensor-space/feature-map relatiggty (w)) as it does not effect w, e
findings:

This gives rise to a decision rule defined by the support
objects(2; € 2F as the remaining Lagrange multipliers tend
to zero\; ; — 0 (leaving A; ; > 0):

We thus consider a set of Kernel measutks,in relation
to which sensor outputs can be defined for each eatifye.,
wherex maps objectss into a common real-valued space):

A A A >
X = {z(w),w € Q} 1) f(zi(w)) = Z YN K (@i(w;), zi(wr)) +b; <0
jrw; €QF
Any kernel K;(«}, 2}) embeds (via the inner product equiv- s

alence) the scale of the respective sem&ointo a hypothetical With:

linear space (the embedding space) in which the null element . .
and linear operations are defined. If the Kernel is itself an (Zj:%em A Dl e y(wl))\iﬂlKi(a:i(wj),xi(wl))>

inner product on the sensor outputs thEnD X;: however, bi = > 3
this relation does not hold for general kernels. Jiwj €QF I
For a single modality, the training set: However, there exists a continuum of points for eadbr
which no decision is given:

Qi :{wj’j: 1’”"Ni} (2) 52(1571' E.)azm' , -)Eiz),i:{xi G)E; Kl(éz,lz)+i)l :0}

is completelydefined by kernel matrix and class indicgs b; = —Ki(é,;,zw)
=+£1): . . .
< ) These are the neutral points (see Figure 1). In the following
we do not, at any stage, need to explicitly calculate them.
QF => {K,; = | Ki(zi(wj), zi(wr)),wj,w € QF |, y(w;), In particular, where a neutral point is indicated within a
w; € Q1) calculation, we shall find that it is only required that it be
J %

an individual drawn from the total set of neutral points,
Support Vector Machines (SVMs) are the most commanithout any corresponding requirement of specifyiwich
Kernel-based approach to two-class pattern recognitioa, tspecific neutral point it is. In other words, the designafoaro
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Fig. 1. An illustration of the decision space embedding imthiconstructed by NPS kernel fusion under conditions aftipfly disjoint modalities - note
ill-posedness of embedding without NPS. (For visual clagtyly 3 dimensions of embedding space are rendered, and Keimgdrities are displayed in

terms of Euclidean distances)

individual neutral point behaves as a “particularity” ogter The question arises immediately as to the existence of the
and not as an indexical within equations. summation termsk;(0;, z;(w;)) whenl # 4; i.e., whether
To proceed further, we now need to explicitly considean object designated within one modality-specific kernel em
the multikernel decision problem. Substituting the modtedding space also exists within another modality-specific
straightforward multi-modal Kernel, the linear kernel whe embedding space. If, for instance, multi-modal training see
K/ 2") = %" | Ki(z},2}) into the (non-dual) SVM deci- partially disjoint (e.g. when training sets have missingttee
sion problem, we find that the training criterion becomes: values) then the multi-modal kernel problem as specifieais n
" soluble in itself. If multi-modal training sets are comgligt
ZKi(gi’gi)+C Z §; — min(6; € X,,b € R,6; € R) disjoint (for instance, when the training sets within each
P wyear modality are proprietary) then the multi-modal kernel peoty
_ is maximally ill-posed.
Subject to: However, because of the presence of the individual modality
n decision problems in the above constraint optimizatiorbpro
Ly (Ki(0s, 25 (wj)) + Z Ki(01,21(wj)) +b) > 1—465,0; lem, we can apply the neutral point substitution as corstiu
I=1,1i the least biasing value substitution. Thus, rather thapgsimg

>0,w; € Q7],i=1,...,n amissing data approach that makes strong assumptions about



the form of the data (e.g. that it is Gaussian in nature), ® el From the neutral-point perspective, it is thus possible to
takes only very partial consideration of the nature of thendaregard SVM classification on partially-disjoint multi-meald
(as in mean-substitution), we propose to adopt a missitg-ddata (i.e., data with missing feature components) as being
approach that iselevant to the classification problem in hand“weighted” towards the sum of the marginal decisions accord
Hence, we replace “missing” sensor valuegw;),! # 4, in ing to the proportion of incomplete data. The exact degree to
(3) by unbiased neutral points; ; € Xy ;. which this affects overall classification will be data andriet

As was shown in [10] for the case of completely disjoindependent. We would therefore like to quantify this resoit f
modalities, if we make the appropriate neutral point stisti a typical data set.
tions (i.e.,z;(w;),l # i — &4, within the summation), then ~We hence now turn to an empirical exploration of the neutral
the solution to the above equation exhibits linear sephiyabi point method in a realistic scenario, in which the modal data
In fact, it defaults to the sum rule decision scheme for thHg only very partially disjoint; that is, where the multimedd
individual modality-specific SVMs: data is largely complete, apart from a few missing values (fo

. instance, of the sort that occur in the field of census data
f(:vi(w),i —1,...n) = ZLKi(é‘ zi(w)) + I;iJ z 0 (3) returns, for which the method was first developed).

1=1 [Il. EXPERIMENTAL FINDINGS
This is a very reassuring result, in that it shows that ouicgho A. Database, Reference Systems and Experimental Protocols
of unbiased substitution for missing data naturally cqroesls The data used in our evaluation scheme is taken from
to the only alternative way of dealing with the completelyhe Biosecure databas@iosecuré is a European project
disjoint data problem (i.e., treating it as a case of deni$ib  \hose aim is to integrate multi-disciplinary research rfdn
sion). Further, itindicates that neutral point substitotieadily  piometric-based identity authentication. Applicatioramples
permits room for the error decorrelation effect to take @lagre 5 puilding access system using a desktop-based or a
(which can be important if the composite Kernel increases thygpjle-based platform, as well as applications over therint
dimensionality of the embedding space to the point at whigfpt sych as tele-working and web or remote-banking services
the “curse of dimensionality” becomes apparent). What is ng§ far as the data collection is concerned, three scenarios
immediately clear, however, is the extent to which this@ffe  haye been identified, each simulating the use of biometrics
advantageous for partially disjoint data, where the com@osjn remote-access authentication via the Internet (ternhed t
decision space is not so straightforwardly decomposable. «|nternet” scenario), physical access control (the “depkt

In such partial cases, it is still possible to apply the sam@enario), and authentication via mobile devices (the ‘ftabb
neutral point substitution as in the disjoint case, protidescenario) [15].

th«'it we decompose into its components at the outsét=  For the purpose of our experiments, we used the subset
21— bi (as in the separable solution). The constraint equatigf the desktop scenafowhich further contains a subset of
thus becomes: still face, 6 fingers and iris modalities, denoted by fal-ftl

6 and irl, respectively. These 8 channels of data, as well

on . as the reference systems, and the experimental protoals ar

Ly (K (05, wi(w;) + b > (Kz(%xz(wj)) + bz)) summarized in Table I.
I1=1,1%#i Note that for the purpose of performance assessment, the
>1-0;,0; >0,w; €Q7],i=1,...,n data set and experimental protocols are not the primary con-

cern; any database could have been used. The only requiremen

By applying the neutral point substitution such thak that a wide variety of biometric modalities are used ineord
Ki(01,24,:)+b = 0 for missing values within the summation,to illustrate the generality of our approach.
we have that the summation need only be performed over thet is important to note that there are two score data sets:
known quantities, and the solution is found as for the stathdathe development and the evaluation sets (see Table I(c)). In
SVM. We hence do not need to explicitly calculate thg;.  this table, S1 means the session 1 data whereas S2 means the

[BEGIN ADDED TEXT] session 2 data. Farach client the data in S1 consists of two

We know that the feature vector with missing modalitgamples collected within the same session. They are catlect
values exists within the composite space when augmentedfacilitate the development of a baseline system (i.e:, fo
by the neutral points because it is fully defined within thenrollment). It is known that intra-session performance is
Kernel matrix (i.e. because the neutral points are linearhyased [16].
dependent the support objects). Thus, even if the decisionlo illustrate this systematic bias, we compare the perfor-
in the composite space can be shown to be decomposabkence of the same session (S1) versus that of differenibsess
into the individual modalities (i.e. for fully independedata (i.e., S2), for each of the 8 channels of data, in terms of Equa
sets), we do not, even in these circumstances, commefgeor Rate (EER), in Figure 2. As can be observed, the same-
classification from the individual modalities; we alwaysrwo session performance is systematically better than therdift-
with the composite feature space which potentially has faession performance.
more classification information than fused output from the . . .

ttp://www.biosecure.info/

individual modalities. 2The matching scores used in the experiments are available¥anldad
[END ADDED TEXT] at: http://personal.ee.surrey.ac.uk/Personal/Nornuduivieb/fusiong.



TABLE |
A LIST OF CHANNELS OF DATA FOR EACH BIOMETRIC MODALITY CAPTURP USING A GIVEN DEVICE.

(a) Channels of data

Label | template ID{n} Modality | Sensor Remarks
fa 1 Still Face | web cam Frontal face images (low resolution)
ft 1-6 Fingerprint | Thermal 1/4 is right/left thumb; 2/5 is right/left index; 3/6 is righeft
middle finger
ir 1-2 Iris image | LG 1 is left eye; 2 is right eye

TABLE I
A LIST OF CHANNELS OF DATA FOR EACH BIOMETRIC MODALITY
CAPTURED USING A GIVEN DEVICE

(a) Reference systems

[ Modality | Reference systems ]
Still Face | Omniperception’s Affinity SDK face
detector; LDA-based face verifier
Fingerprint | NIST Fingerprint system

Iris A variant of Libor Masek’s iris system

EER (%)

(b) Protocols

Data sets No. of matching scores

dev (51 persons)

eva (156 persons)

S1

Genuine

1 x 51

1 x 156

Impostor

103 x 4 x 51

51 x4 x 156

S2

Genuine

2 x 51

2 X 156

Impostor

103 x 4 x 51

126 x 4 x 156

[BEGIN ADDED TEXT] Acronyms: S1 = session one; S2 = session twc, fai ft1  ftz f3 ft4 ft5 ft6 il

dev = development (training) setya = evaluation (test) set
Example: The entry 103 x 4 x 51” in column dev and row S2:Impostor Fig. 2. The error of the development set (blue) versus thatvafuation
indicates the number of scores due to comparing 51 clientaefes against set (red) of the 8 systems used in the cost-sensitive evafuafithe original
the queries of 103 impostors, each having 4 attempts. The &itkyl56” in  Biosecure data set.

columneva and row S2:Genuine indicates the number of genuine matching

scores due to comparing 156 client references each havinggenoine
samples. [END ADDED TEXT)]

impostor client

fal
ftl
ft2
ft3
ft4
Due to the above systematic bias, we shall use the s

development dev) set for training and the S2 evaluation sefs
(eva) set for testing all fusion algorithms. n

fal

ftl 0.8
ft2
ft3
ft4
fts 0.2
ft6

0.6

0.4

fal ftl ft2 ft3 ft4 ft5 ft6 irl

fal ftl ft2 ft3 ft4 ft5 ft6 irl

The iris baseline system used here is far from the per- . o : :
. .. . ig. 4. Correlation matrix of impostor and genuine (clientpres on the
formance claimed by Daugman’s implementation [17]. ft and right panels, respectively
verified that this is due to bad iris segmentation and a subop-
timal threshold for distinguishing eyelashes from irisioe
baselines, no effort was made to optimize performance; tBe Correlation Analysis of the Match Scores

only requirement is that all systems output match scores. In . - . : .
. A matrix plot consisting of a pairs of biometric systems

case of failure to match or to extract features, the systelin wi lvering i . ich i< sh in Fi 3 Th
output a dummy value (“-999”) to denote missing a missinge IVering Impostor malch Scores 1S shown in Figure 3. The
orresponding genuine user match scores are similar and,

score.
hence not shown here.

Two factors can result in missing modalities. First, during It is useful to summarize the two class-conditional covari-
the data collection process, some volunteers did not campleance matrices by their correlation matrices since coioglds
a whole session. Second, some acquired biometric samptesriant to variable scaling and is bounded4f, 1], with 1
are so low in quality that they cannot be processed Ifyesp.—1) being perfect positive (resp. negative) correlation.
our feature extraction algorithm, or the resultant ext@rdct The correlation matrix of the impostor and client match ssor
features could not be used for matching. Being well corarhll calculated on the development set are shown in Figure 4.
the development set contains almost complete observationsThere are two points to note. First, the impostor match
however a fraction of samples in the evaluation set (8348 mdores have generally correlation entries close to zenrise
of 76920) contain some missing modalities. the correlation among all the six fingers (columns 2 to 7, .resp
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Fig. 3. Scatter plot of (a) impostor and (b) client match scores

rows 2 to 7) areall positive, betweerd).3 to 0.6. According
to [18], this indicates that combining two fingerprint syate

may not be as effective as combining two different biometric 2)

traits, e.g., a fingerprint and a face biometric. The problem
is therefore implicitlymulti-modal, and can be Kernelized in

terms of SVM recognition within the individual modalities.

C. Results

Using the neutral point substitution method outlined in
Section 2, we therefore specified an experimental scenario
in which the SVM classifier acts both individually upon the

modalities of the Biosecure database, and collectivelysuia

rule decision fusion and composite Kernelization. Comigosi

kernelization is carried-out via the linear kerr€lz’, z”") =

S Ki(«, /) with neutral point substitution undertaken
for the missing values. An inner product kernel is chosen for

transparency within the individual modalities.

[BEGIN ADDED TEXT] Although the original data con-

tains some missing modalities, it is instructive to examntme

3)

4)

effect of missing modalities to various degrees. In achieve

this, we use the following procedure: L&f be a matrix of

scores of N samples byd dimensions (corresponding to all

the d columns of match scores frorh = 8 devices: face,
6 fingers and 1 iris). The total number of elementshihis

Section Ill) using full observations. During inference,
missing values are substituted with neutral points.
SVM- NP sum norm, where norm €
{znorm,nonorm}, is another implementation of
SVM-NP which assumes the expert outputs to be
maximally disjoint. An SVM is therefore trained for
each expert and the outputs of the SVM ensemble (for
observable modalities) are then summed. Them
here indicates the type of normalization procedure,
which can either be with the zero-mean unit variance
normalization gnor nj, or without any normalization
(nonor m. The parameters of Z-norm, i.e., mean and
standard deviation, are calculated on the output of each
SVM on the entire training set.

SVM NP nean norm is the same as configuration 2
above, except that the mean fusion rule is used instead
of the sum rule.

SWM fuse norm for fuse € {sumnean} and
norm € {znor mnonor m} is the same as the con-
figurations 1-3, as explained above, except that SVM
are used without NPS.

) raw fuse, where fuse € {sumnean}, indicates

direct fusion of the raw scores using either the sum or
the mean rule.

d x N. Missing values were gradually introduced by replacingEND ADDED TEXT]

T observed values with “-999” (the dummy value denoting [BEGIN ADDED TEXT]

In the experiments, two per-

missing value) in such a way that all the elements in the matfiormance indicators are used: Equal Error Rate (EER) and
M have equal probability of being deleted. We variéduch False Match Rate (FNMR) at False Non-Match Rate (FMR)
that the ratio of7'/(dN) is 10%, 20% and 30% and that theof 0.1%. EER is the operating point where FMR and FNMR
subsequent subset always contained the missing values ofie equal. FMR, also known as false acceptance rate, is the
estimated probability of accepting an impostor. FNMR, om th

precedent subsetfEND ADDED TEXT]
[BEGIN ADDED TEXT]

The results of these tests aredther hand, is the probability of rejecting a client. BothHEE

given as superimposed DET curves in Figure 5. The methoai’d FNMR@FMR=0.1% are commonly used in the biometric
literature. [END ADDED TEXT]
1) SVM NP j oi nt denotes the proposed SVM approach The following observations can be made:
with neutral point substitution. In this case, a single « SVM NP fuse norm is better than anySVM fuse
SVM was trained with the joint-score space of 8 features

are explained below:

(corresponding to the 8 expert outputs described

in

norm, for any fusion strategyfuse € {sum,mean} and
any normalization strategyorm € nonorm, znorm}.



svm-NP joint e Eigog/gnal § svm-NP jointE== Eigfinal 1
SVM=NP SUM NONOI b — C120% svm-NP sum nonorm e C120%
— I 30% i . 30%
svm-NP sum znorm——=_ svm-NP sum znorme——=
svm-NP mean nonorm em——— svm-NP mean nonorm _%'_
svm-NP mean znorm _%'_ svm—-NP mean znorm _::'._
raw mean raw mean
raw sum raw sum
SVM sum nonorm Svm sum nonorm
sSvm sum znorm SVmM sum znorm
svm mean nonorm sSvVm mean nonorm
svm mean znorm SVmM mean znorm
0 20 40 60 80 100 0 10 20 30 40 50

FNMR(%) EER(%)

(a) Verification rate (b) Equal Error Rate

Fig. 5. Performance of the baseline expert systems and thaisif with various SVM method as well as that of the sum rule.

« SYVM NP fuse nonorm for any fusion strategy, (Thus, in practice, we need not consider the issue of cdioala
fuse € {sum,mean}, is slightly inferior to its counterpart and simply use SVMs via NPS iany circumstances with
SVM NP fuse znorm This shows the important of missing data; when there is correlation, this approachywesl!
normalizing the outputs of SVM in the maximally disjointsignificantly better results than any given decision fusion
case. strategy). [END ADDED TEXT]

« SYM NP j oi nt achieves the maximal generalization \We hypothesize that the latter will be typical for naturally
performance in all data sets. arising multi-kernel, missing-data problems (i.e. datavhich

missing values are relatively rare). The neutral point roetfis
IV. DISCUSSION ANDCONCLUSIONS thus the appropriate “first-resort” strategy to considethiese

At the outset of this investigation it was conjectured on th&ases, as opposed to the alternative of multimodal decision
oretical grounds that the neutral point method is an apjatepr Sion; partlcularly.as decision fusion is asymptoticallyplioit
strategy for treating missing values in multi-kernel peshs In the neutral point approach.
with the potential to retain the error-decorrelation adages  Because of the nature of the derivation of the neutral point
of the sum-rule decision scheme in typical test scenarig¥thod, there is no explicit requirement for actual value
with partial missing data. Experiments were consequengybstitution, and the method gives rise to minimal changes
conducted on multimodal biometric data from the Biosecute the cost function of linearized kernel composition. Rert
database, in which both multi-kernelization and the migsirnore, the method differs from previous approaches in tret th
data problem arose naturally, in order to complement tifeissing values are related to the decision problem ratter th
earlier theoretical analysis derived for the asymptotenscio 10 the data distribution. In this way it is consistent witte th
of complete data-disjunction. broad philosophy of maxim margin SVM-based approaches.

Results (Fig. 5) demonstrate that the sum rule decisitMe thus characterize the neutral point method as an empiri-
scheme is indeed superior to any individual modal decisi®ally safe, well-posed and discriminitively-unbiased @geh
rule on the tested data, but that significantly greater adgmn t0 missing data substitution. Moreover, its straightfamva
arises from using a composite kernel (which would, in itselmethodological application in terms of complete trainiages
be impossible without missing value substitutiofBEGIN makes it naturally congruent with the problem of multimodal
ADDED TEXT] The experiments thus demonstrate that tH@iometrics.
advantage of the NP method is two-fold; firstly, we are able
to exploit all of the available measurement data (i.e withou
discarding any), and secondly, we are able to exploit alhef t
available correlation information.

The observed performance improvement in moving from The research leading to these results has received funding
SVM-NP-joint to SVM-NP-sum-znorm is thus a measure dfom the European Community’s Seventh Framework Pro-
the discriminative information available within the moitias gramme (FP7/2007-2013) under grant agreemén215078
when properly-correlated. Even if such correlation wer¢ nand the grant IST-214324 (www.mobioproject.org). We would
evident, the argument for using the NP method is that also like to thank EPSRC for funding received through grant
can performno worsethan decision fusion, and that NPEP/F069626/1 and the Swiss NSF grant through the advanced
substitution is therefore an intrinsically safe defaultiop. research fellowship PA002221477.
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