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a b s t r a c t 

Here we present a novel, histogram-based salient point feature detector that may naturally be applied to 

both images and 3D data. Existing point feature detectors are often modality specific, with 2D and 3D 

feature detectors typically constructed in separate ways. As such, their applicability in a 2D-3D context is 

very limited, particularly where the 3D data is obtained by a LiDAR scanner. By contrast, our histogram- 

based approach is highly generalisable and as such, may be meaningfully applied between 2D and 3D 

data. Using the generalised approach, we propose salient point detectors for images, and both untextured 

and textured 3D data. The approach naturally allows for the detection of salient 3D points based jointly 

on both the geometry and texture of the scene, allowing for broader applicability. The repeatability of 

the feature detectors is evaluated using a range of datasets including image and LiDAR input from indoor 

and outdoor scenes. Experimental results demonstrate a significant improvement in terms of 2D-2D and 

2D-3D repeatability compared to existing multi-modal feature detectors. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Light Detection And Ranging (LiDAR) scanners have been used

o obtain 3D data for decades, but it is only in recent years that

hey have seen more widespread applicability due to the high

omputational capacity required to cope with such large datasets.

owever, the integration of LiDAR scans with data from other

odalities (e.g. images) remains a difficult problem, with many ap-

roaches relying on line features for their registration ( Liu and Sta-

os, 2012; Wang and Neumann, 2009 ), which may not always be

vailable. This causes significant bottlenecks in practical applica-

ions such as digital film production, where LiDAR scans and im-

ges are captured on-set to obtain data about the scene, but sub-

equently need to be manually registered during post-production.

he problem is further exacerbated by the high resolution and

arge scale of the data, requiring scalable methods for registration

hat are robust to the diverse, multi-modal aspect of the data. 

To address this, here we propose a point feature detector that

ay be naturally and meaningfully applied between both 2D and

D data. Feature detection is a typical first stage in many regis-

ration pipelines ( Li et al., 2010; Liu and Stamos, 2012; Wu et al.,

008b ), whereby considering only a small subset of discrimina-
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ive features in each dataset the registration parameters may be

btained in a relatively straightforward manner. However, obtain-

ng suitably repeatable features between both 2D and 3D data is

 particularly challenging problem due to the large heterogeneity

etween the two modalities. 

Instead, existing point feature detection methods are typically

entred around images. Recent advances in 3D data acquisition

e.g. Microsoft Kinect) has resulted in a significant interest in 3D

eature detection ( Guo et al., 2014; Tombari et al., 2013b ). How-

ver, it is clear that the majority of 2D and 3D feature detectors are

onstructed in very separate ways. The more popular 2D feature

etectors are based on the derivative of the image, and provide

 principled approach to scale selection using scale-space theory

 Lowe, 2004; Mikolajczyk and Schmid, 2004 ). Yet, very few may

e extended to operate on 3D data, with many 3D feature detec-

ors based on surface curvature ( Tombari et al., 2013b ), and since

he traditional scale-space approach typically cannot be applied to

D data without altering the geometry. The differences between

D and 3D feature detectors are further exacerbated by the range

f existing 3D data types (point cloud, volumetric, mesh, textured /

ntextured), leading to different 3D feature detectors for each case

 Guo et al., 2014; Tombari et al., 2013b; Yu et al., 2013 ). 

As such, it is very difficult to use existing point feature de-

ectors jointly across 2D and 3D due to the incomparable nature

f their constructions, and the limited scope to which 3D detec-

ors may be applied. Applications such as registration, that would
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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typically rely on point feature detectors, instead use other tech-

niques in the 2D-3D case (e.g. learning a bag of features across

multiple viewpoints ( Tombari et al., 2013a ), or Mutual Information

alignment ( Mastin et al., 2009 )). These approaches are not as gen-

eral as their feature-based counterparts; often making restrictive

assumptions about the scene, or requiring a good initial alignment.

To address this issue, here we propose a more general ap-

proach to point feature detection, based on the Kadir-Brady (KB)

saliency detector ( Kadir and Brady, 2001 ). Its histogram-based ap-

proach does not exclusively depend upon data-type specific quan-

tities such as derivatives or curvatures. Instead, it defines a salient

point as having a high information content (as measured by the

entropy of its histogram) at a particular scale. This histogram-

based approach allows it to be formulated across different modal-

ities in a more meaningful manner than other feature detec-

tors due to the vast array of ways in which histograms may be

constructed. 

Based upon the KB saliency detector, and inspired by the suc-

cess of the 2D Harris corner detector ( Aanæs et al., 2012; Harris

and Stephens, 1988 ) we propose a novel extension to the 2D KB

saliency detector. Whereas the original KB saliency detector con-

structs a histogram of pixel intensities in a circular region, we pro-

pose a derivative-based approach whereby the histogram is con-

structed based on the distribution of eigenvalues of the second

moment matrix. This allows our approach to detect salient points

with respect to the derivative of the image, where it may operate

in a more general manner than a typical corner detector and avoid

repetitive parts of the scene. 

By using the generalisable histogram-based approach of the KB

saliency detector, the above approach may be naturally extended

to 3D data by constructing a histogram based on the 3D sec-

ond moment matrix ( Sipiran and Bustos, 2010 ). Furthermore, the

histogram-based approach allows for the detection of salient points

based on both the geometry and texture of the scene by construct-

ing a 2D histogram based on the texture of the 3D surface, and

combining the 2D and 3D histograms. This allows it to operate in

a meaningful manner regardless of whether or not the 3D data is

textured, and is able to combine the best of both sets of features

for textured data. 

The contributions of this paper are three-fold. Firstly, a general-

isation to the KB saliency detector is formulated, demonstrating its

broad applicability to operate wherever histograms may be mean-

ingfully constructed within a metric space. Secondly, in light of this

generalisation, we propose a 2D derivative-based KB saliency de-

tector based on the second moment matrix. Thirdly, the derivative-

based KB saliency detector is naturally extended to 3D, where it

may operate on both textured and untextured 3D data. It is, to

the best of our knowledge, the first 3D feature detector to operate

based on both the geometry and texture of the scene simultane-

ously. The proposed detectors are evaluated in a 2D-2D and 2D-3D

manner where it is shown to be more repeatable than existing de-

tectors (Harris 2D and 3D ( Harris and Stephens, 1988; Sipiran and

Bustos, 2010 ), and SIFT 2D and 3D ( Lowe, 2004; Zaharescu et al.,

2012 )). 

This paper is structured as follows. In Section 2 we describe

related work in point feature detection between 2D and 3D. In

Section 3 a description of the KB saliency detector is given, along

with proposed extensions and modifications ( Kadir et al., 2004;

Shao and Brady, 2006; Shao et al., 2007 ). In Section 4 we pro-

pose a generalisation of KB saliency. The generalisation is subse-

quently implemented for a 2D derivative-based KB saliency detec-

tor ( Section 5 ), and a 3D KB saliency detector ( Section 6 ) that may

operate on textured or untextured 3D data. In Section 7 results

will be given, involving qualitative and quantitative results in both

2D and 3D; finally, conclusions and future work are presented in

Section 8 . 
d
. Related work 

There has been a significant amount of research in point feature

etection; both in 2D ( Li et al., 2015; Tuytelaars and Mikolajczyk,

008 ) and in 3D ( Guo et al., 2014; Tombari et al., 2013b ). Here

e aim to give a brief overview of point feature detection in each

odality, describing and comparing the mechanisms involved. 

.1. 2D point feature detection 

A significant number of 2D point feature detectors may be

ategorised as derivative-based . The early Harris corner detector

 Harris and Stephens, 1988 ) is a prime example, based on the sec-

nd moment matrix M (made up of the partial derivatives of the

mage in a neighbourhood of the point). When both eigenvalues of

 are large, it implies a corner is present; a ‘corner measure’ is

onstructed accordingly. Alternatively, the Hessian matrix may be

sed ( Beaudet, 1978 ) as the basis for a feature detector. It detects

blob’ structures, where a point is of relatively high or low inten-

ity compared to its immediate surroundings. The eigenvectors and

igenvalues describe the size and shape of the blob, with the de-

erminant of the Hessian typically used as a response value. 

In the case of both the Harris and Hessian detectors, they

ay be made affine-invariant by constructing the matrices from

mage derivatives over an elliptical regions ( Mikolajczyk and

chmid, 2004 ). Furthermore, they may be made scale-invariant by

onstructing the matrices over ellipses of varying size while con-

olving with a Gaussian kernel ( Mikolajczyk and Schmid, 2004 ).

t is observed that detecting keypoints based on the magnitude

f the scale-normalised Laplacian of Gaussians (LoG) produces the

ighest percentage of correct scales. This has led to the popular

IFT detector ( Lowe, 2004 ) that detects keypoints by the magni-

ude of the Difference of Gaussians (DoG). DoG is approximately

qual to the scale-normalised LoG by the heat equation, hence this

pproach allows for LoG estimation without the need for deriva-

ives to be computed. However, the DoG response is large for

dge-like structures, so SIFT subsequently culls edge responses us-

ng the ratio of eigenvalues of the Hessian. The traditional Gaus-

ian scale-space approach has its limitations since it blurs both

oise and fine detail (e.g. edges); this has been addressed by

lcantarilla et al. (2012) who use a non-linear scale-space that re-

pects the natural boundaries of the image. 

A secondary category of point feature detectors are those that

re intensity-based . These detectors typically operate over a neigh-

ouring set of pixels, but disregard the derivative of the im-

ge. As such, they are often more robust to noise (particularly

alt-and-pepper noise) than derivative-based feature detectors. An

arly intensity-based approach is the SUSAN detector ( Smith and

rady, 1997 ); it defines a Univalue Segment Assimilating Nucleus

USAN) as a set of neighbouring pixels that have a similar intensity

alue to a centre pixel. Corners are subsequently defined where the

umber of pixels in the USAN is small. Region detectors typically

all into the intensity-based approaches category; for example, the

SER detector ( Matas et al., 2002 ) detects regions where pixel in-

ensities inside the region are either higher or lower than those on

ts boundary. 

A subset of intensity-based approaches are the histogram-based

eature detectors that detect feature points via histogram construc-

ion. The Kadir-Brady saliency detector ( Kadir and Brady, 2001 ) is

n example of this; it constructs a histogram of pixel intensities

n a neighbourhood of a point, salient points are detected where

he distribution of pixel intensities has a high entropy at a partic-

lar scale. It will be discussed in greater detail in the next sec-

ion, where it forms the basis of the proposed 2D-3D point feature

etector. 
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Using the histogram-based approach, a keypoint may be de-

ected based on the idea of self-similarity , (or lack of it) to its

eighbours. Maver ( Maver, 2010 ) looks for similar histograms of

ixel intensities in radial and tangential regions so as to detect

eypoints that exhibit different types of symmetry. Conversely,

ee and Chen (2009) look for a point whose histogram is sig-

ificantly dissimilar from its immediate neighbours. Tombari and

i Stefano (2014) use a similar idea, but where histogram compar-

son is only performed on the k -nearest neighbours and a compu-

ationally efficient implementation is proposed. The notion of self-

imilarity is very useful for multi-modal registration, since scenes

ay often exhibit a similar structure between modalities but lack

imilar finer features. Tombari and di Stefano (2014) show their ap-

roach to be of potential use for cross-spectral image registration,

nd Shechtman and Irani (2007) construct a self-similarity descrip-

or for cross-spectral imagery and sketch-based retrieval. 

The majority of 2D point feature detectors are focused

urely within the 2D domain. There is evidence to suggest that

istogram-based approaches are a promising avenue for multi-

odal feature detection due to their general formulation. However,

his has never been applied in a 2D-3D context, where the his-

ogram construction process may more generally result in feature

etection based on both the geometry and texture of the 3D data. 

.2. 3D point feature detection 

Approaches to point feature detection in 3D vary depending

pon the type of data being used. For volumetric 3D data many

D feature detectors may be naturally extended, e.g. 3D SIFT

 Flitton et al., 2010 ). Indeed, a performance evaluation of volumet-

ic 3D feature detectors ( Yu et al., 2013 ) show extensions of fa-

iliar 2D feature detectors (Harris, Hessian, MSER, etc). However,

ther representations of 3D data (point cloud or mesh) create diffi-

ulties since points are non-uniformly sampled, points may or may

ot be textured, and a scale-space may not be so naturally con-

tructed. Point cloud representations are however the subject of

his paper and as such feature detection for this representation will

e reviewed here. 

Similarly to 2D feature detection, the Harris corner detector has

een naturally extended to operate on 3D data ( Sipiran and Bus-

os, 2010 ). For each point, a best fit tangent plane is first deter-

ined. Each neighbouring point is projected onto the plane and

ssigned an ‘intensity’ value for each point as its distance to the

lane. The 2D Harris corner detector may be applied to this set of

ntensity values, resulting in the 3D Harris corner detector. 

Second derivative-based approaches in 3D typically mani-

est themselves through curvature-based approaches, while avoid-

ng any mention of a Hessian matrix. For example, Chen and

hanu (2007) propose an approach that locally estimates a

uadratic surface around each vertex and uses this to obtain the

rincipal curvatures. They then assign a Shape Index (SI) to each

ertex based on the maximum and minimum principal curvatures.

oints are detected based upon whether its SI is significantly big-

er or smaller than the mean of a neighbourhood of SIs. 

Alternative approaches may not be derivative-based at all, tak-

ng advantage of the unordered point cloud representation of the

ata. For example, Zhong (2009) proposes Intrinsic Shape Sig-

atures (ISS), based on the eigenvalue decomposition of the 3

3 covariance matrix around a point. They subsequently cull

oints whose ratio between successive eigenvalues are similar,

hen rank feature points in proportion to the smallest eigenvalue.

earning-based approaches have also been proposed, for example

y Teran and Mordohai (2014) , who learn across a set of geometric

ttributes using a random forest. The approach allows for specific

oint detection to match the criteria observed during the training

hase, resulting in a more flexible approach. 
Scale-space approaches to 3D feature detection have been pro-

osed in a number of ways. Castellani et al. (2008) propose to de-

ect point features by using the Difference of Gaussians (DoG) on

he set of 3D points, determining a point’s saliency by how far

t moves along its normal under the DoG operator. However, this

ype of approach has been criticised since it obtains a scale-space

epresentation by altering the geometry of the scene. Alternatively,

 scale-space may be constructed by convolving other attributes of

he 3D data. Such an approach is taken by Zaharescu et al. (2012) :

hey detect keypoints in a generic way that is applicable to scalar

unctions of 2D manifolds, e.g. mean curvature, or the intensity (if

he data is textured). However, it cannot detect keypoints based

ointly on geometry and texture. Their approach is similar to SIFT,

omputing a scalar function at each point, using a DoG operator

n the scalar function and rejecting keypoints for which the ratio

f the eigenvalues of the Hessian are large. 

An approach that is very similar to SIFT is the Viewpoint Invari-

nt Patches approach of Wu et al. (2008a ), that is only applicable

o textured 3D models. They propose to compute a local tangent

lane to each 3D point, onto which a neighbouring texture patch

ay be orthographically projected. The 2D SIFT detector and de-

criptor may be subsequently applied on the texture patch to al-

ow a framework for 3D-3D registration. Wu et al. furthermore ap-

ly their approach in a 2D-3D scenario ( Wu et al., 2008b ), where

IFT features are detected in both 2D and 3D data. They determine

utative feature matches that are refined by warping the 2D SIFT

eatures such that they approximately match the same form of the

rthographic VIP SIFT features. 

A histogram-based approach to 3D point feature detection was

rosed by Fiolka et al. (2012) , who extend the KB saliency de-

ector ( Kadir and Brady, 2001 ) and construct a histogram based

n the distribution of normals. However, their approach only de-

ects salient features based on the geometry of the scene and

oes not detect those based on any available texture; as a re-

ult it does not provide a unified approach to salient point de-

ection in 3D. An earlier version of this work was published in

rown et al. (2014) based on the mean curvature, however this

as a purely geometry-based KB saliency detector. In this paper

e a) propose a derivative-based 2D KB saliency detector, and b)

n contrast to both Fiolka et al. (2012) and Brown et al. (2014) , we

onsider both the geometry and texture of the scene, allowing for

alient point detection based on both attributes of the data simul-

aneously. Our framework for generalisable salient point detection

s evaluated between 2D and 3D on a range of synthetic and real

ata. 

. The Kadir-Brady saliency detector 

Here an outline of the Kadir-Brady (KB) saliency detector

 Kadir and Brady, 2001 ) and its extensions and various implemen-

ations ( Kadir et al., 2004; Shao and Brady, 2006; Shao et al., 2007 )

re given. 

The KB saliency detector ( Kadir and Brady, 2001 ) is originally

ased on the principle that the parts on an image that are highly

omplex are salient. Scale-invariance is achieved by measuring

he complexity across a range of scales and only selecting points

hose complexity is peaked with respect to their scale. To further

ocalise its scale, it is required that the point is statistically dissim-

lar across its neighbouring scales, known as inter-scale saliency.

he saliency of a point is therefore the product of two terms: its

omplexity and its inter-scale saliency. Finally, salient points are

lustered into salient regions so as to be more robust to noise.

hese three stages of the KB saliency detector (complexity esti-

ation, inter-scale saliency, and clustering) are now described in

ore detail: 
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Fig. 1. An example of four distributions of pixel intensities from the image. The distributions on the left have a relatively large entropy and change significantly over scale. 

The distributions on the right lie in an approximately uniform part of the image, having low entropy and not changing over scale, hence will not be deemed salient by the 

approach. Image taken from ( Mikolajczyk et al., 2005 ). 
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Stage I: Complexity estimation. The complexity of a given

point ( p ) at a particular scale ( σ s ) is determined by its entropy . En-

tropy is, however, defined for a probability mass function (pmf) P

taking one of K values (i.e. P = { p 1 , . . . , p K } , p i ≥ 0 ∀ i , 
∑ K 

i =1 p i = 1 ),

and is defined as: 

H(P ) = −
K ∑ 

i =1 

p i ln p i (1)

Informally, the entropy of a pmf gives a measure of how ‘spread

out’ it is: it is maximised for the uniform distribution and min-

imised when the pmf is 1 for one bin and zero for all other bins

( Shannon, 1948 ). We take 0 ln 0 = 0 (since lim x → 0 x ln x = 0 ). 

To meaningfully apply the concept of entropy to a point p at

scale σ s , a histogram of pixel intensities is first constructed from

all pixels within a distance σ s from p ; denoted { v 1 ,σs 
, . . . , v K,σs 

} .
The histogram is normalised to obtain a (frequentist) pmf, denoted

{ ̂ v 1 ,σs 
, . . . , ̂  v K,σs 

} , i.e. 
∑ K 

i =1 ̂  v i,σs 
= 1 . Then the entropy of point p at

scale σ s is defined as the entropy of the frequentist pmf: 

H(p , σs ) = −
K ∑ 

i =1 

ˆ v i,σs 
log 

(
ˆ v i,σs 

)
(2)

Stage II: Inter-scale saliency. Similarly to other feature detec-

tors, only features whose response value is peaked in scale-space

are sought-after; i.e. only features whose entropy is peaked in

scale-space are kept. Furthermore, it is necessary for the feature

to be statistically dissimilar across scale. Based on this, the pmf is

compared to the pmfs of the neighbouring scales, and the saliency

is weighted by how dissimilar the pmfs are. Thus the weighting

function is constructed as: 

 (p , σs ) = 

σ 2 
s 

σ 2 
s − σ 2 

s −1 

K ∑ 

i =1 

∣∣ˆ v i,σs 
− ˆ v i,σs −1 

∣∣ (3)

The coefficient 
σ 2 

s 

σ 2 
s −σ 2 

s −1 

is used so as to be scale-invariant. 

From these two stages, a set of keypoints - those whose en-

tropy is peaked in scale-space - are obtained. They have a saliency

value of H ( p , σ s ) × W ( p , σ s ). An example of histograms obtained

for the first two stages is given in Fig. 1 , where the advantages of
etermining salient points as those with a high entropy and dis-

imilarity across scale are demonstrated. 

Stage III: Salient regions. From the previous stage a great deal

f salient points are returned by the detector (typically hundreds

f thousands); far too many to be of use in any practical appli-

ation. Hence, a simple clustering algorithm is proposed. In the

riginal paper ( Kadir and Brady, 2001 ) a rather complicated clus-

ering algorithm, dependent upon two user-defined parameters, is

roposed. However, code provided on the author’s webpage uses a

reedy clustering algorithm: it iteratively takes the point with the

ighest saliency value and removes all other points within its scale,

ontinuing in this fashion until no points are left. We have found

he greedy clustering algorithm to be better in practice, as well as

ore general since it is parameter free. 

A deficiency in the above approach is that it is not affine-

nvariant: histograms are computed in a circular region around a

oint, rather than the full range of potential elliptical regions. This

as addressed in Kadir et al. (2004) where a full, time-consuming

earch over all ellipses in the image is implemented. Alternatively,

n Shao and Brady (2006) , the authors propose to first detect

ffine-covariant salient regions using the original KB saliency de-

ector, then adapt these to make them affine-invariant. 

In ( Shao et al., 2007 ) Shao et al. provide a number of improve-

ents to the algorithm that significantly increase its robustness.

hey do not change any fundamental aspect of the approach, in-

tead computing desired quantities in a more accurate and princi-

led manner. Specifically, 

i) The weighting W ( p , σ s ) is more accurately computed, re-

flecting the ratios of the number of pixels at each scale. Let

there be N s pixels within σ s from p . Then the weighting is

determined as: 

W (p , σs ) = 

N s 

N s − N s −1 

K ∑ 

i =1 

∣∣ˆ v i,σs 
− ˆ v i,σs −1 

∣∣
+ 

N s +1 

N s +1 − N s 

K ∑ 

i =1 

∣∣ˆ v i,σs +1 
− ˆ v i,σs 

∣∣ (4)

ii) The histogram is sampled differently so as to weight pixels

towards the centre of the circle more than those towards the
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edge. A Gaussian weighting is initially suggested; instead a

computationally inexpensive alternative is proposed where

a pixel is weighted twice as much if it is within σs −1 and

three times as much if within σs −2 . 

iii) Partial volume estimation: some pixels are only partly

within the circle. In this case, they contribute to the his-

togram in proportion to how much of the pixel is inside the

circle. 

iv) Parzen windowing: the histogram is convolved with a Gaus-

sian to obtain a smoother pdf. Bilinear interpolation is sug-

gested as a computationally inexpensive alternative. 

The proposed modifications of Shao et al. (2007) result in some

mprovement to the performance of the KB detector, as evaluated

n the dataset of Mikolajczyk et al. (2005) . Hence, Shao et al.

emonstrate the potential of the approach as a repeatable feature

etector, but do not demonstrate its broad applicability. In the next

ection, we generalise the KB detector and show how it may be

roadly applied across different modalities. 

. The generalised Kadir-Brady saliency detector 

The original KB saliency detector was limited in its construc-

ion and as such was only applicable to images. In this section

e propose a much more general formulation that allows it to be

pplicable in a multi-modal manner. Subsequently, we propose a

erivative-based reformulation in the 2D domain, and a 3D formu-

ation that naturally accounts for both the geometry and texture of

he scene. 

To generalise the KB saliency detector, we observe that much of

ts construction is based on a very general concept: points whose

ntropy is peaked across scale are regarded as salient. To illustrate

ow widely this concept may be applied, we shall formulate the

B saliency detector in a more general manner for points lying in

 metric space. 

To this end, let M be a set and d : M × M → R 

+ be a metric,

.e. let (M , d) be a metric space. Define a ball of radius σ centred

t p ∈ M as 

 σ (p ) := { x ∈ M : d(p , x ) ≤ σ } (5)

epresenting the set of elements of M within σ of p . Finally, as-

ume a mapping F may be constructed from each element of M
o an K -dimensional positive vector, i.e. F : M → R 

+ K . Construct-

ng F as a specifically vector-valued function will allow for broader

pplicability where multiple attributes of the data are taken into

ccount (e.g. geometry and texture). 

From the above constructions the key components of the KB

etector may be defined, allowing for generalised KB saliency de-

ection in (M , d) . The probability mass function for an element

 ∈ M at scale σ s is determined by computing a weighted sum

ver mappings ( F ) from all points in ball B σs (p ) and normalising:

xplicitly, the pmf is { ̂ v 1 ,σs 
, . . . , ̂  v K,σs 

} , where 

ˆ 
 i,σs 

= 

∑ 

q ∈ B σs (p ) w (q , p ) F i (q ) ∑ K 
j=1 

∑ 

q ∈ B σs (p ) w (q , p ) F j (q ) 
(6) 

here the weighting w ( q, p ) is constructed to favour points

loser to p . A Gaussian weighting is originally suggested by

hao et al. (2007) but discarded due to considerations of computa-

ional efficiency. However, this consideration does not necessarily

old since the weightings may be precomputed, and relative gains

n efficiency are always application dependent. In this paper, we

se a Gaussian weighting since it leads to a more principled and

obust approach: 

 (q , p ) = e 
−|| q −p || 

σ2 
s (7)

With the construction of the pmf ( Eq. (6) ), the entropy of a

oint p ∈ M at scale σ s is well defined, and is the same as Eq. (2) :
(p , σs ) = −
K ∑ 

i =1 

ˆ v i,σs 
log 

(
ˆ v i,σs 

)
(8) 

ubsequently the inter-scale saliency, W ( p , σ s ), is defined as in

q. (4) . Finally, the saliency of a point p ∈ M at scale σ s is de-

ned as the product of H ( p , σ s ) and W ( p , σ s ). Salient points are

ubsequently clustered by iteratively taking the point with the

ighest saliency value ( p H ) and removing all other points within

 σs (p H ) . 

As an example, for the 2D KB saliency detector, the metric

pace is (R 

2 , L 2 ) , representing the image plane under the Eu-

lidean norm. A ball B σs (p ) is simply a circle of radius σ s cen-

red at p . The mapping F takes the intensity of a pixel and maps

t to the index of the histogram bin (i.e. if the intensity of pixel

 is I ( p ) then F (p ) = (0 , . . . 0 , 1 , 0 , . . . , 0) , with a 1 in the I ( p )th

lement of the vector). However, the more general construction

here F is a multi-valued function allows for pixels to contribute

o multiple bins. This not only extends the KB saliency detector to

ther modalities but provides additional advantages, e.g. for bilin-

ar interpolation, or where points have multiple attributes (such

s where 3D points contain information regarding geometry and

exture). 

Based on the above formulation, the generalised KB saliency de-

ector may be applied to a range of multi-modal data. In the next

wo subsections, we construct a derivative-based 2D KB saliency

etector, as well as a 3D KB saliency detector that naturally oper-

tes on both the geometry and texture of the scene. In both cases,

he approaches are elegantly incorporated within the generalised

B saliency framework by simply defining the metric space and

onstructing the mapping F . 

. Derivative-based 2D Kadir-Brady saliency detector 

The original 2D KB saliency detector was constructed based on

he distribution of pixel intensities in a neighbourhood of a point.

hilst this gives some indication of some of the more complex,

alient parts of the image, it fails to detect the geometrically salient

spects. In particular, it rarely detects corners, for which the neigh-

ouring complexity of pixel intensities varies little with scale. As a

esult, the original 2D KB saliency detector fails to detect repeat-

ble features between 2D and 3D (see the results in Section 7.5 );

ocusing more on the texture of the scene rather than the geome-

ry. 

In light of this limitation for the original KB saliency detector

nd based on the preceding generalisation, in this section we pro-

ose a derivative-based KB saliency detector. Specifically, the his-

ogram mapping F is modified to be a function of the derivative

f the image at any given pixel. This allows for high-derivative

oints within a low-derivative neighbourhood (e.g. corners) to be

eemed salient; an important outcome in low-textured scenes.

owever, it is more general than a typical corner detector, deter-

ining salient points wherever a change in image derivative with

espect to scale occurs, and avoiding noisy or repetitive parts of the

cene. 

The derivative-based KB saliency detector is formulated as fol-

ows: the metric space is (R 

2 , L 2 ) , the same as the original KB

aliency detector. The mapping F is a function of the derivative of

he image (specifically, the second moment matrix). Denote the in-

ensity of a pixel p as I ( p ) and its derivatives in the x and y direc-

ions as I ( p ) x and I ( p ) y respectively. For a fixed scale σ , construct

he second moment matrix ( Harris and Stephens, 1988 ) centred at
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Fig. 2. An example of four distributions of second moment matrix eigenvalues from the image. The distributions on the left have a relatively large entropy and change 

significantly with scale, and are likely to have a high saliency value. Conversely, the distributions on the right, while having a relatively large entropy, do not change 

significantly over scale, and are likely to have a lower saliency value. 

Fig. 3. Example output of the proposed derivative-based KB saliency detector. Left : Input image. Middle : A heatmap indicating the magnitude of the eigenvalues of M (p ) . 

The intensity of magenta represents the relative magnitude of the first eigenvalue, with blue representing the second eigenvalue. Right : Salient points detected based on a 

histogram of the eigenvalues. The size of the circle represents its scale. 
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p as: 

M (p ) = 

( ∑ 

q ∈ B σ (p ) 

w (q , p ) 

) −1 

×
∑ 

q ∈ B σ (p ) 

w (q , p ) 

(
I(q ) 2 x I(q ) x I(q ) y 

I(q ) x I(q ) y I(q ) y 
2 

)
(9)

where w ( q, p ) is a Gaussian weighting function designed to favour

points closer to p , e.g. w (q , p ) = e 
−‖ q −p ‖ 2 

2 σ2 . In constructing the ma-

trix, we cap the derivatives at 50 pixels to give a more perceptu-

ally meaningful approach that favours all large changes in image

derivative to the same extent. 

For constructing the derivative-based KB saliency detector, we

are interested in the eigenvalues λ1 and λ2 of M (p ) that describe

the derivative of the image. In qualitative terms, when λ1 and λ2 

are both large, p is a corner; when λ1 	 λ2 , p is an edge; and

otherwise p has little change in derivative in any direction. To con-

struct the histogram mapping F , the eigenvalues of M (p ) of all pix-

els on the image are normalised and discretised to lie in a r D × r D 
histogram. Subsequently, F maps the eigenvalues of M (p ) to the

bins of the r D × r D histogram (hence, the codomain of F is R 

+ r 2 
D ).

Bilinear interpolation is performed, meaning at most four elements

of F will be non-zero. 

An example of histograms constructed using the proposed

derivative-based 2D KB saliency detector is given in Fig. 2 , and a

heatmap of the relative magnitudes of the eigenvalues of M (p )
longside the output of the proposed detector is given in Fig. 3 .

t can be seen that the approach detects salient points where the

istogram of eigenvalues changes with respect to scale. This allows

t to detect a range of derivative-based structures within the scene

hile naturally avoiding the repetitive areas. 

. The 3D Kadir-Brady saliency detector 

For 3D KB saliency detection, we shall define the metric space

nd histogram construction from Section 4 . Such a general for-

ulation allows for a large range of potential implementations;

f note is its applicability to both textureless and textured 3D

ata within the same framework. More concretely, we may use

 histogram mapping F that describes both the geometry and

he texture of 3D data, rendering it equally applicable regard-

ess of whether the 3D data is textured. In this section, we

escribe the histogram construction based purely on geometry

 Section 6.1 ), on texture ( Section 6.2 ), and on both ( Section 6.3 ). An

xample of histograms constructed using each approach is shown

n Fig. 5 . 

Regardless of histogram construction, the metric space used

ere is simply (R 

3 , L 2 ) , i.e. consider all points to lie in 3D space

nder the Euclidean norm. If the 3D data were a mesh the geodesic

istance may be used instead, however this is slower to compute

nd not as widely applicable. 
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.1. Geometry-based 3D KB saliency detector 

Initially, we describe the approach taken based purely on the

eometry of the 3D data. To do so, we project the local surface of

he 3D data to an image and apply the same techniques as per-

ormed previously (construction of the second moment matrix); a

imilar approach has been taken for the construction of the 3D

arris corner detector ( Sipiran and Bustos, 2010 ). The image is

aken to be a tangent plane to the 3D data, and the ‘intensity’

alue of the image represents the distance of the 3D data to the

lane. We take a purely derivative-based approach in this subsec-

ion; an intensity-based geometric KB detector may not be con-

tructed since the ‘intensity’ value of every point onto its own tan-

ent plane is always zero. 

Our derivative-based geometric KB detector is more formally

onstructed as follows: for a point p ∈ R 

3 , first determine a least-

quare tangent plane at p . Construct an orthonormal frame for the

angent plane as { t 1 , t 2 , n }, where n is the normal to the plane.

hen, for a fixed scale σ , consider the neighbouring set of points

 q ∈ B σ ( p )}. Project each point onto the plane, yielding local ( u, v )

oordinates ((q − p ) · t 1 , (q − p ) · t 2 ) and define its ‘intensity’ value

 ( q ) as the directional distance from q to the plane, computed as

(q − p ) · n . The second moment matrix may thus be constructed in

he same way as Section 5 as: 

 (p ) = 

( ∑ 

q ∈ B σ (p ) 

w (q , p ) 

) −1 

×
∑ 

q ∈ B σ (p ) 

w (q , p ) 

(
I(q ) 2 u I(q ) u I(q ) v 

I(q ) u I(q ) v I(q ) v 
2 

)
(10) 

here, similarly to Section 5 , w (q , p ) = e 
−|| q −p || 2 

2 σ2 . The eigenvalues

f N (p ) are subsequently used in the histogram mapping F , in the

ame manner as performed previously. Note that the orthonormal

rame { t 1 , t 2 , n } is not unique - there is ambiguity in the directions

f t 1 and t 2 . However, the eigenvalues of N (p ) are rotationally in-

ariant and therefore this ambiguity will not affect the desired out-

ome. Hence, we have avoided the need to construct a unique and

nambiguous orthonormal reference frame that often plagues 3D

eature detectors ( Guo et al., 2013; Petrelli and di Stefano, 2012 ). 

However, the derivatives I ( q ) u and I ( q ) v required in Eq. (10) may

ot be estimated as easily as for the 2D detector, where the in-

ensity values of a pixel’s immediate neighbours may be used

o determine the derivative. Instead, we compute a Gaussian

eighted average from a set of neighbouring points, similarly to

aharescu et al. (2012) . To compute the derivatives I ( q ) u and I ( q ) v 
rom a non-uniformly sampled set of 2D points { r ∈ B σ ( q )} each

ith intensity I ( r ); firstly, denote the derivative for the 2D point

 as g := ( I ( q ) u , I ( q ) v ). Then note that, for a point r lying suffi-

iently close to q , the following relationship holds by definition of

he derivative: 

 

T ( q − r ) ≈ I(q ) − I(r ) (11)

e may use Eq. (11) to determine g by solving the weighted least-

quares equation: 

rg min 

g 

∑ 

r ∈ B σ (q ) 

w (r , q ) 
(
I(q ) − I(r ) − g 

T (r − q ) 
)2 

(12)

here w ( r, q ) is a Gaussian of small variance, e.g. w (r , q ) =

 

−|| r −q || 2 
2 ( σ2 ) 

2 

so that the local derivative estimates of I ( q ) are computed

ver a tighter region than that from which N (p ) is constructed.

q. (12) is solved by ‘stacking’ each weighted equality in (11) to

orm an over-determined system of the form A g = b , from which

he least-squares solution to (12) is given by g = ( A 

T A ) −1 A 

T b . 
Subsequently, computing the gradient ( I ( q ) u , I ( q ) v ) for every

eighbouring point projected onto the tangent plane allows for

he matrix N (p ) to be constructed and its eigenvalues to be com-

uted. To construct the mapping F , the eigenvalues of N (p ) of all

oints in the data are normalised and discretised to lie in a r G ×
 G histogram, where bilinear interpolation is performed. An exam-

le of the proposed geometry-based KB saliency detector is shown

n Fig. 4 alongside a heatmap of the eigenvalues of N (p ) . The ap-

roach detects a range of geometrically significant structures in a

cale-invariant manner, while avoiding the more repetitive areas of

he model. 

.2. Texture-based 3D KB saliency detector 

We propose two texture-based 3D KB detectors: an intensity-

ased approach and a derivative-based approach, both of which

ill be evaluated in Section 7.5 . For the intensity-based approach,

he mapping F is exactly the same as in the original 2D KB im-

lementation: taking the intensity of a point to its histogram

in while applying bilinear interpolation. Where the 3D data is

oloured, the greyscale value is computed via the equation I =
 . 299 R + 0 . 587 G + 0 . 114 B . The histogram is assumed to be of the

ame size ( K ) as the original intensity-based 2D KB implementa-

ion. 

To obtain the mapping F for the derivative texture-based 3D KB

aliency detector, we adopt essentially the same approach as the

eometry-based 3D KB saliency detector in the previous section.

he local surface of the 3D data is projected onto a tangent plane,

nd the second-moment matrix ( Eq. (10) ) may be constructed

gain. However, rather than using the intensity value of a pro-

ected point I ( q ) as the directed distance between q and the tan-

ent plane, the greyscale value of the point q is used instead. The

ntensity differences ( I(r ) − I(q ) ) in Eq. (12) are capped between

50 and 50 pixels, similarly to the 2D approach in Section 5 , so as

o give a more perceptually meaningful distance. The eigenvalues

f N (p ) (where I ( q ) represents the intensity of point q ) are subse-

uently normalised to lie in a r D 
2 histogram. 

.3. Geometry and texture based 3D KB saliency detector 

Our framework naturally allows for the extension to detect

alient points based on both the geometry and texture. Given that

he two histograms may be constructed based on the geometry or

he texture, their joint histogram may be constructed. The intensity

exture-based KB detector may be combined with the geometry-

ased KB detector to produce a Kr G 
2 histogram. Alternatively, the

erivative texture-based KB detector may be combined with the

eometry-based KB detector, to produce a r D 
2 r G 

2 histogram. Bilin-

ar interpolation is again performed in these histograms. 

An example of histograms constructed based on the geometry,

erivative-based texture, and both, is shown in Fig. 5 . The his-

ograms based on both are the joint histogram of the geometry and

he derivative-based texture histograms. They are relatively large

nd, in general, sparse; exhibiting a very high entropy only when

aused by both the geometry and texture. However, this approach

s able to detect salient points based on either the geometry and

exture, since in either case a relatively high entropy is observed

t a particular scale. 

. Experimental evaluation 

In this section we evaluate the performance of our proposed

eneralised salient point detector against other approaches, with

oth 2D and 3D data. Qualitative and quantitative results are given,

here the final aim is to detect highly repeatable, sparse features
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Fig. 4. Example output of the proposed derivative-based KB saliency detector. Left : Input 3D data. Middle : A heatmap indicating the magnitude of the eigenvalues of N (p ) . 

The intensity of magenta represents the relative magnitude of the first eigenvalue, with blue representing the second eigenvalue. Right : Salient points detected based on a 

histogram of the eigenvalues. The size of the sphere represents its scale. 

Fig. 5. An example of the derivative-based histogram distributions from 3D data when considering geometry, texture, and both. The point on the right has a large distribution 

of eigenvalues based on texture but not based on geometry, whereas the point on the left has a relatively larger distribution of eigenvalues based on geometry (as well as 

texture). In both cases, the resulting joint histogram (based on geometry and texture) is relatively sparse. 
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1 Code available from https://github.com/torstenfiolka/sure3d 
2 
between 2D and 3D, that may be of use in the subsequent regis-

tration stage. For comparison against our approaches, there exist a

large number of feature detectors in both 2D and 3D ( Guo et al.,

2014; Tuytelaars and Mikolajczyk, 2008 ), however we focus specifi-

cally on comparing against feature detectors that may be meaning-

fully constructed in both 2D and 3D. We shall first introduce the

detectors in each modality before describing how they are evalu-

ated: firstly between 2D and 2D, and secondly between 2D and 3D.

In 2D, we consider five detectors. Firstly, the traditional Harris

corner detector ( Mikolajczyk and Schmid, 2004 ). However, it is ob-

served that, for small numbers of features, Harris does not detect

a suitable spread of features, with many corners detected in the

same area (see Fig. 9 ). Therefore, we secondly evaluate the Good

Features to Track algorithm ( GFT ) Shi and Tomasi (1994) to obtain

a better, more representative set of corners. Thirdly, we evaluate

against the state-of-the-art SIFT detector ( Lowe, 2004 ). The final

two detectors evaluated are the proposed derivative-based KB de-

tector ( Section 5 ), referred to as KBD , and the original intensity-

based KB detector ( Shao et al., 2007 ) (referred to as KBI ) so as to

experimentally justify the construction of the proposed KBD detec-
tor formulated in Section 5 . 
In 3D, there are optional detectors available to compare against

epending upon if the texture of the data is used. For untex-

ured 3D data, we consider four detectors: Harris ( Sipiran and

ustos, 2010 ), SIFT, SURE 1 ( Fiolka et al., 2012 ) and the proposed

erivative-based geometric KB detector ( Section 6.1 ), referred to as

B-G . In 3D, Harris is not scale-invariant and performs non-maxima

uppression, therefore typically detects a better spread of corners

n 3D than its 2D counterpart; hence there is no need for a 3D

ood Features to Track detector. For untextured 3D data, SIFT de-

ects keypoints based upon the mean curvature, and will be re-

erred to as SIFT-G . Both Harris and SIFT-G are implemented in

oint Cloud Library. 2 Harris is extended to 3D ( Filipe and Alexan-

re, 2014 ) by replacing image gradients by surface normals from

hich a 3D covariance matrix is constructed. The response value

s then a function of the determinant and trace of the covariance

atrix (similar to 2D). SIFT is extended to 3D ( Hänsch et al., 2014 )

sing either the curvature of a point or the intensity (if the 3D
http://pointclouds.org/ 

https://github.com/torstenfiolka/sure3d
http://pointclouds.org/
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oint cloud is textured). A Difference-of-Gaussians (DoG) may be

pplied solely on this attribute of the point cloud (curvature or

ntensity) that does not change the position of the points. Local

axima and minima may then be found by comparing to a point’s

 -nearest neighbours, subsequently points with low curvature are

ejected as they are deemed unstable. 

For textured 3D data, there are additional detectors that may be

valuated against. SIFT may detect features on textured data based

n the intensity (referred to as SIFT-T ). Alternatively, the KB ap-

roaches may be used to detect features based purely on the tex-

ure, with the intensity-based KB detector referred as KBI-T and

he derivative-based KB detector for textured 3D data referred to

s KBD-T . Only the KB approaches allow for both the texture and

eometry to be combined ( Section 6.3 ), referred to as KBI-B and

BD-B . 

From the above 2D feature detectors ( Harris, GFT, SIFT, KBI ,

nd KBD ) we firstly evaluate their repeatability in a 2D-2D sce-

ario ( Section 7.4 ). Subsequently, alongside the 3D feature detec-

ors ( Harris, SIFT-G, KB-G, SURE, SIFT-T, KBI-T, KBD-T, KBI-B , and KBD-

 ) we evaluate their repeatability between 2D and 3D. For untex-

ured 3D data, we use six 2D-3D point combinations: Harris-Harris,

FT-Harris, SIFT-SIFT-G, KBI-KB-G, KBD-SURE and KBD-KB-G . For tex-

ured data there are a further five 2D-3D combinations: SIFT-SIFT-T,

BI-KBI-T, KBD-KBD-T ; and where both geometry and texture are

onsidered by KB: KBI-KBI-B and KBD-KBD-B . Thus, where the 3D

ata is textured, a total of 11 2D-3D feature detector combinations

ill be evaluated, to compare the effects of considering the geom-

try, texture, or both, of the textured 3D data. 

.1. Implementation details 

For the proposed KB detectors two parameters are user-defined:

he number of bins for the mapping F ( K, r D and r G ), and the

umber and range of scales ( σ s ). For the number of bins of KBI

e take K = 16 in both 2D and 3D. For the proposed derivative-

ased approaches ( KBD ) we use r D = r G = 4 ; hence, both KBI-B and

BD-B have the same total number of bins of 256. The number

f scales is 12 in all cases. For the range of scales in 2D we take

1 = 3 with σs = 3 + σs −1 . This is similar to the parameters of

hao et al. (2007) whose experiments show that a gap of 3 pixels

etween scales performed the best. In 3D, the scale is defined in

roportion to the size of the model. First, denote the length of the

iagonal of the bounding box of the model as L . Then, for the syn-

hetic data, σ1 = 0 . 004 L whereas σ1 = 0 . 003 L for real data (since

eatures are relatively smaller for the more complex real data).

ubsequent scales are defined by σs = sσ1 , the same as the mesh

aliency approach by Lee et al. (2005) . In determining the param-

ter σ 1 in both the 2D and 3D case, we run experiments to justify

ur choice of parameters (shown in the appendix). For the con-

truction of matrices M (p ) and N (p ) in Eqs. (9) and (10) , the size

f the ball B σ ( p ) is taken to be σ = 5 . 

For a fair comparison, the other approaches ( SIFT, GFT,

arris , and SURE ) are altered, where possible, to align with

hese user-defined parameters. For SIFT in 2D the parameters

rovided by Vedaldi and Fulkerson (2008) are used and by

ikolajczyk et al. (2005) for Harris ; and the parameter for GFT

s defined such that no two corners are within 16 pixels of each

ther. In 3D, the fixed scale of Harris is set to σ 1 , and for SIFT-G,

IFT-T , and SURE , 12 scales are used, with the smallest set to σ 1 . 

.2. Datasets 

Three datasets are used: a 2D-2D dataset from Mikolajczyk

t al. (2005) (shown in Fig. 6 ); a synthetic 2D-3D dataset (shown

n Fig. 7 ); and a real 2D-3D dataset (shown in Fig. 8 ). 
The 2D dataset is taken from Mikolajczyk et al. (2005) . It is a

et of six groups of six images, with the known homography be-

ween each image in a group provided. Each group of images has

ndergone a certain transformation (blurring, scale, JPEG compres-

ion, lighting, and viewpoint (twice)), from small to large trans-

ormations. The first and last images in each group are shown in

ig. 6 . 

For synthetic data, we use six untextured 3D models. The first

our models in Fig. 7 are from the Stanford 3D Scanning Repos-

tory. 3 For each of these four models, 50 images were rendered

sing POV-Ray using a random rotation matrix ( Arvo, 1992 ) and

ranslation such that the model is centred in the image, using a

oint light source at the same location as the camera. The latter

wo models are the 3D reconstruction provided by Guillemaut and

ilton (2011) of the dinosaur and temple from Middlebury’s multi-

iew reconstruction dataset ( Seitz et al., 2006 ). In this case, 50 im-

ges with their known projection matrix from the model are pro-

ided as part of the dataset, so there is no need for rendering using

OV-Ray. 

For real data ( Fig. 8 ), we use five textured 3D models,

btained by a colour LiDAR scanner. All have been obtained

rom Kim (2014) with the exception of room , which is from

laudiny et al. (2014) . The number of points and the dimensions

f the 3D models is tabulated below ( Table 1 ): 

For each model, a set of between 7 and 11 images have been

aken of the scene and manually aligned. This has been achieved

y picking pairs of image and scene points, and using the approach

y Penate-Sanchez et al. (2013) to determine the pose and focal

ength of the camera. An example image of each model is shown at

he bottom of Fig. 8 . Note that for certain models this does not en-

apsulate much of the scene (e.g. courtyard ), making 2D-3D point

etection more difficult. 

.3. Evaluation measure 

The performance of a point detector (either in 2D-2D, or in 2D-

D) is measured by its relative repeatability . To define this, we shall

rst define the repeatability between two sets of points (2D-2D or

D-3D) as follows: first apply the known transformation (homogra-

hy, or projection matrix) to one set of points, discarding any that

o not lie within the image boundary of the other set of points.

or 2D-3D evaluation, occlusions may be handled in the case of

he synthetic 2D-3D dataset, the 3D mesh is known and hence

ccluded points may be discarded; however often real data is in

he form of a point cloud and this is not possible. From one set

f 2D points { p i ∈ R 

2 } N 
i =1 

and the other set of transformed points

 q i ∈ R 

2 } M 

i =1 
(transformed under a homography, or a projection ma-

rix), and given an inlier threshold t , define an inlier as a point pair

 p, q ) for which i) the nearest neighbour to p from the set { q i } M 

i =1 
s q and vice-versa; and ii) || p − q || < t . The repeatability is subse-

uently defined as the number of inliers divided by min ( N, M ). 

It has been observed in the literature (e.g. Hauagge and Snavely,

012; Tombari et al., 2013b ) that the repeatability measure is bi-

sed towards detectors that produce a lot of features, and a mea-

ure that is invariant to the number of points detected is pro-

osed. Therefore, we compute the relative repeatability : for each set

f points, order them in decreasing value of their response value.

hen, the repeatability may be determined from the top- k points,

nd a graph may be plotted of repeatability against the k most re-

ponsive features in each set. Furthermore, this is a more useful

easure for the purposes of sparse 2D-3D registration, where large

umbers of features will not be of use due to the computational

omplexity of such a registration problem. 

http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 6. Examples in the 2D-2D dataset from six groups of image transformations. For each group, there are six images in the dataset ranging from small to large transfor- 

mations, with the first and last images in each group shown here. 

Fig. 7. Top : The 3D models used in the synthetic 2D-3D dataset. Bottom : An example image from each synthetic model used in the dataset. From left to right: armadillo, 

buddha, bunny, dragon, dino, temple . 

Fig. 8. Top : The 3D models used in the real 2D-3D dataset. Bottom : An example image from each model used in the real dataset. From left to right: cathedral, courtyard, 

reception, room, studio . 

Table 1 

3D models information. 

cathedral courtyard reception room studio 

Number of vertices 522,018 672,342 772,536 524,873 348,592 

Bounding box diameter (m) 67.2 27.9 17.6 5.34 7.80 
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Fig. 9. Qualitative 2D results. The top-150 features are shown in each case. The top two images are from the synthetic 2D-3D dataset, third to fifth from the 2D-2D dataset 

( Mikolajczyk et al., 2005 ), with the bottom four from the real 2D-3D dataset. Many images were cropped from their original dataset for ease of presentation in this figure. 
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Fig. 10. Quantitative 2D-2D results across a range of image transformations. The relative repeatability is measured for the top-100 point features in each case. An inlier 

threshold of 3 pixels is used. Example images from this dataset are shown in Fig. 9 . 
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7.4. 2D point detection 

Qualitative results for the set of five 2D point detectors are

shown in Fig. 9 , for a selection of images across the three datasets

used. It is immediately noticeable, by the size and shape of the

features, that Harris is affine- and scale-invariant; SIFT, KBI and

KBD are scale-invariant, and GFT is neither, being a very parameter-

dependent approach. SIFT , and in particular Harris , evidently have

a tendency to detect the same feature at multiple scales and very

similar locations: this motivated the use of GFT to obtain a better

spread of features ( Section 7 ). KBI and KBD naturally detect a better

spread of points than Harris and SIFT , while retaining a parameter-

free approach to scale selection. 

As a qualitative comparison between the KB approaches; KBD

detects more corners than KBI (e.g. on the cathedral) while still

detecting blob-like structures (e.g. windows in the third from top

image) due to the necessary change in derivative present in such

features. In contrast, KBI does not detect as wide a range of point

feature types as KBD and often detects many edges (e.g. the cathe-

dral). While edges may be regarded as salient, a point on an edge

is poorly localised along the edge and is not useful for registration

purposes. 

Quantitative results for 2D point feature detectors are given in

Fig. 10 for the 2D-2D dataset ( Fig. 6 ). The top-100 features are de-

tected in each image, and an inlier threshold of 3 pixels is used.

It is observed that no feature detector performs the best across

all transformations. Harris performs particularly well for scale and

JPEG compression changes, but very poorly across a change in

(

iewpoint. GFT generally performs very well across the range of

ransformations. Importantly, KBD outperforms KBI across a num-

er of transformations, justifying our proposed reformulation of

he 2D KB detector. 

.5. 3D point detection 

.5.1. Qualitative results 

Qualitative results for the 3D feature detectors are shown in

ig. 11 for synthetic data and Fig. 12 for real data. 

For the untextured synthetic data, Harris, SIFT-G, KB-G , and SURE

ay be used. In Fig. 11 , the scale-covariant Harris detector success-

ully detects a number of small-scale corners but often in repetitive

laces (e.g. the leg of the armadillo ). KB-G is more robust than SIFT-

 , detecting a wider range of points, e.g. on the armadillo and dino .

y contrast, SIFT-G has a tendency to detect smaller, less mean-

ngful features, e.g on the bunny. SURE typically detects corner-like

tructures where there is a wide distribution of normals, however

t often detects large features and misses smaller corners e.g. on

he dragon . As a comparison between features detected in 3D and

he qualitative 2D results ( Fig. 9 ); 3D Harris correlates quite well

ith 2D GFT , however it is clear the scale-covariance of GFT is an

ssue on the dragon. SIFT and SIFT-G often do not detect geomet-

ically meaningful entities, with some 2D SIFT features detected

ff the model. KBI and KBD have some qualitative correlation with

B-G , but KBI often detects edges and avoids corner-like structures

particularly so on the dino ). 
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Fig. 11. Qualitative 3D results for all models from the synthetic dataset. The top-200 points are shown in each case. The size of the sphere indicates the scale of the point. 
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Qualitative results for real data are given in Fig. 12 , where

oints are detected based on geometry ( Harris, SIFT-G, KB-G ), tex-

ure ( SIFT-T, KBI-T and KBD-T ), or both ( KBI-B and KBD-B ). Similar

onclusions may be drawn from the geometry-based approaches

s for the synthetic results ( Fig. 11 ): Harris is limited by its scale-

ovariance, KB-G is generally more robust than SIFT-G , and SURE

ypically detects larger features and misses the finer detail. For

exture-based detectors, few qualitative distinctions can be made
etween SIFT-T and KBD-T , however KBD-T detects more textural

orner-like structures than SIFT-T (the same as in 2D in Fig. 9 ).

imilarly to the 2D results, KBI-T detects more edge-like struc-

ures - particularly on the pavement on the cathedral . Interest-

ngly, texture-based feature detectors often detect geometrically-

ignificant features (e.g. corners on the cathedral , and the table-leg

n the room ) due to a natural change in colour on the model sur-

ace, or the lighting conditions. Finally, it is clear that both KBI-B
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Fig. 12. Qualitative 3D results for cathedral and room from the synthetic dataset. The top-400 points are shown in each case. The size of the sphere indicates the scale of 

the point. 
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Fig. 13. Results on the untextured synthetic dataset. Each graph shows the relative repeatability of the detectors for each dataset, for k = 20 , 40 , 60 , 80 , 100 . The graphs are 

ordered such that a graph of inlier threshold 3 pixels is shown above that of inlier threshold 6 pixels. 
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Fig. 14. Qualitative 3D results for varying quantities of features on the armadillo model. The left shows results for GFT and Harris , with KBD and KB-G on the right. 
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and KBD-B detect points based on both the geometry (corners of

the cathedral ) and texture (carpet and picture in room ). 

7.5.2. Quantitative results 

Quantitative results for the synthetic dataset are presented first.

For each model-image pair, the relative repeatability is computed

using the top- k 2D points and the top-2 k 3D points (since it is

expected half the 3D points will be occluded by the model), for

k varying between 20 and 100. It is computed for inlier thresh-

olds ( t ) of 3 and 6 pixels and averaged across all images of the

model. Results are given in Fig. (13 ), where, given the 3D data is

untextured, a comparison is made between Harris-Harris, SIFT-SIFT-

G, GFT-Harris, KBD-SURE, KBI-KB-G , and KBD-KB-G . 

It is observed that, in general, GFT-Harris and KBD-KB-G perform

the best; between them having the highest repeatability across all

six models. Both have repeatabilities of at least 30% for (relatively)

large numbers of points; sufficiently high for subsequent 2D-3D

registration. KBI-KB-G performs quite well, but never as well as

KBD-KB-G . This is perhaps surprsing in comparison to the results

of KBI on the 2D-2D evaluation ( Fig. 10 ) - the derivative-based KB

formulation is evidently more indicative of geometry rather than

texture based on these results. Harris-Harris, SIFT-SIFT-G, KBD-SURE ,

and KBI-KB-G perform similarly poorly, rarely obtaining a repeata-

bility of above 20%. Comparing between 3 pixels and 6 pixels as

the inlier threshold; GFT-Harris performs slightly better than KBD-

KB-G for the smaller threshold, the reverse is true of the larger

threshold. However, the increase in inlier threshold from 3 to 6

typically results in a repeatability increase by a factor of around 2,

regardless of detector or dataset. 

Fig. 13 shows that, in general, the repeatability increases with

respect to the number of points detected. However, this is not the

case with GFT-Harris which, in some circumstances, shows a de-

crease in repeatability for increasing numbers of points - particu-

larly so on the armadillo , and to a lesser extent on the dino and

dragon . Fig. 14 shows qualitative results on the armadillo for GFT-

Harris and KBD-KBG for smaller quantities of points. For very small

quantities of points (20 in 2D and 40 in 3D) GFT-Harris has a high

correlation due to the relatively small number of well-defined cor-

ners on the model (toes, fingers, and ears) and hence the relative

ease at which they are detected by a corner detector. For a higher

quantity of features (60 in 2D and 120 in 3D) there are insufficient

corners in the scene and so it becomes unclear why certain fea-

tures should be detected by the corner detectors. By contrast, our
aliency-based approach is more broadly defined than a corner de-

ector allowing KBD and KBG to admit a wider range of features.

s a result, it is relatively unlikely our approach will have a higher

epeatability for small numbers of features (since salient points are

ot as narrowly defined as corner points) but conversely the defi-

ition of saliency extends to larger numbers of features. 

Next, quantitative results for the real dataset are presented. For

ach model-image pair, the relative repeatability is computed using

he top- k 2D points and the top-2 k 3D points, with the exception

f the larger courtyard and reception datasets where the top-4 k 3D

oints are used, since here it is expected the majority of the 3D

oints will not be projected onto the image. k is varied up from 20

o 200. Similarly to the synthetic dataset, the relative repeatability

s computed for inlier thresholds of 3 and 6 pixels. 

Results are presented in Fig. 15 , where a comparison is made

etween all 11 approaches (as described at the beginning of

ection 7 ). Between the different models, the best results are ob-

ained on reception and room , with repeatability rates of over 30%

n some cases. However, the other three models only obtain re-

eatability rates of between 15% and 25%. Between the different

oint detectors, KBD-KBD-T and KBD-KBD-B generally perform the

est across all models. GFT-Harris performs nearly as well except

n the more textured models room and studio. KBI-KBI-T more of-

en outperforms KBI-KBI-B , further demonstrating that KBI does not

etect geometrically significant features in 2D. Similarly to the syn-

hetic dataset, SIFT-SIFT-G Harris-Harris , and KBD-SURE do not per-

orm well in general. 

As a comparison between the methods proposed here ( KBD-KB-

, KBD-KB-T , and KBD-KB-B ), KBD-KB-G generally does not perform

s well except on the cathedral model. It is perhaps surprising that

BD-KB-T consistently performs well, particularly on courtyard and

eception where there is little discriminating texture; however as

bserved in the qualitative results, geometric features are often ac-

ompanied by a change in texture. Furthermore, the scale selection

rocess within the KB detector allows it to naturally avoid repeti-

ive parts of a scene. KBD-B consistently performs well regardless

f the scene, outperforming the other approaches on the cathedral

nd studio . 

. Conclusions and future work 

In this paper we have presented a general approach to 2D-

D salient point feature detection, based on the information-
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Fig. 15. Results on the real dataset. On the left shows the relative repeatability of the detectors for an inlier threshold of 3 pixels; on the right an inlier threshold of 6 pixels 

is used. k varies between 20 and 200. The graphs are ordered such that a graph of inlier threshold 3 pixels is shown above that of inlier threshold 6 pixels. 
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theoretic Kadir-Brady saliency detector ( Kadir and Brady, 2001 ).

The histogram-based framework developed allows for a uni-

fied approach to feature detection in 2D, and both textured

and untextured 3D data. Intensity-based and derivative-based ap-

proaches were proposed, where the derivative-based approaches

were shown to be superior since image derivatives are more in-

dicative of the underlying geometry of the scene. The results also

show the proposed approach to be more repeatable than exist-

ing feature detectors that have 2D and 3D implementations (Harris

and SIFT) across a range of image and LiDAR data, from both in-

door and outdoor scenes. Furthermore, its ability to naturally op-

erate on textured or untextured 3D data allow the approach to de-

tect features based on both attributes simultaneously, increasing its

robustness and widening its applicability. 

There is scope for improvement in our method; in particular,

the qualitative results show our approach to occasionally detect

edges as salient. While there may be some salient properties re-

garding the edges, a point on an edge is not well localised along

the edge and may not be as useful for geometry estimation. This

could be addressed in a similar manner to Tombari and di Ste-

fano (2014) where histograms are compared between neighbouring

points, rather than between neighbouring scales. Alternatively, one

may consider other attributes to construct a histogram from, other

than the first derivatives of the image. However, while the second

derivatives of the image have had considerable success in feature

detection via SIFT ( Lowe, 2004 ), the blob-like features they detect

are generally more indicative of texture rather than geometry. 

Future work will include the registration of points between im-

ages and 3D LiDAR data. In many cases, correspondences between

features cannot be automatically determined, and need to be es-

tablished alongside registration parameters. It is a computationally

expensive problem ( Moreno-Noguer et al., 2008 ), so any method

that has a high repeatability for a smaller number of points will

be more suited to this kind of problem. We furthermore plan to
Fig. 16. 2D-3D repeatability results where σ 1 is varied between 2, 3, and 4 pixels in 2D

different approach to scale selection. The default parameter is used for scale selection in 
ntegrate our approach with line features ( Brown et al., 2015 ) de-

ected in both 2D and 3D, so as to obtain a more complete scene

escription and make the subsequent registration process more ro-

ust due to the complementarity of these features. 
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ppendix A. Effect of scale parameter setting on repeatability 

Here we present repeatability results when varying the choice

f σ 1 in both 2D and 3D. The results in 2D are shown in Fig. 16

omparing results for KBO and KBD on the 2D-3D synthetic dataset.

he results for KBO show some variability depending on the choice

f σ 1 , with better results observed on the buddha and the dragon

ith σ1 = 4 but this choice of parameter gave worse results on the

ino . The choice of σ 1 makes very little difference on KBD however.

The results for varying σ 1 in 3D are given in Fig. 17 . The choice

f σ 1 affects the different approaches in a very similar way, with

1 = 0 . 3% the diameter of the bounding box giving the poorest re-

ults and σ1 = 0 . 5% giving slightly stronger results than σ1 = 0 . 4% .
. Only KBO and KBD are shown here because the other 2D feature detectors use a 

3D ( Section 7.1 ) in these experiments. 
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Fig. 17. 2D-3D repeatability results where σ 1 is varied between 0.3% and 0.5% of the diameter of the bounding box in 3D. The default parameter is used for scale selection 

in 2D ( Section 7.1 ) in these experiments. 
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hese results demonstrate that our choice of σ 1 , while not opti-

ised per dataset, gives a relative indication of the performance of

he approaches and hence supports the overall conclusions of this

aper. 
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