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Abstract

Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the
continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research
interest. It is a challenging problem with a remarkable practical interest. The most popular continuity
clustering method is the Spectral Clustering algorithm, which is based on graph cut: It initially generates a
Similarity Graph using a distance measure and then studies its Graph Spectrum to find the best cut. This
approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of
the cluster. This work proposes a new algorithm, inspired by Spectral Clustering, that reduces the parameter
dependency while maintaining the quality of the solution. The new algorithm, named Genetic Graph-based
Clustering (GGC), takes an evolutionary approach introducing a Genetic Algorithm to cluster the Similarity
Graph. The experimental validation shows that GGC increases robustness of Spectral Clustering and has
competitive performance in comparison with classical clustering methods, at least, in the synthetic and real
dataset used in the experiments.
Keywords: Machine Learning, Clustering, Spectral Clustering, Graph Clustering, Genetic Algorithms.

1. Introduction

Classical clustering algorithms like K-means 51

or Expectation-Maximization (EM) 24 estimate a

set of parameters to build a data model 16; other

algorithms do not construct such model. A well-

known algorithm that belongs to the latter is Spec-

tral Clustering (SC) 69; this algorithm seeks the

continuity of the data, instead of the centroids.

This characteristic makes SC well suited for a va-

riety of relevant problems, such as pattern recog-

nition and artificial vision 69.

In few words, SC 57 first builds a Similarity

Graph based on distance measures (or Similar-

ity Function). Then, the algorithm computes the
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eigenvectors of the Laplacian Matrix (Spectrum)

extracted from the Similarity Graph and finally

they are clustered using a classical algorithm such

as K-means. This approach has been quite success-

ful, and the algorithm is widely used. However, SC

has some practical problems, probably the main

problem is related to its robustness, it highly de-

pends on the parameters chosen in the Similarity

Function. This dependence generates a collection

of undesirable effects that has a negative impact

on the algorithm performance, for example, when

the dataset is noisy 13.

Several authors have proposed solutions to the

robustness problem. Some solutions aim to opti-

mize the parameter setting of the Similarity Func-

tion 13; other solutions focus on the selection of the

clustering algorithm which groups the data pro-

jected through the eigenvectors in SC 72. In this

paper we introduce a new solution to this problem

that consists of modifying the SC algorithm to

eliminate the dependence on the distance defini-

tion. Then we propose a new algorithm inspired

by SC named Genetic Graph-based Clustering

(GGC). Our proposal uses a Genetic Algorithm

(GA) 2,40 and is based on Graph Theory. Simi-

larly to SC, GGC constructs a Similarity Graph

according to a Similarity Function but, instead of

computing its Laplacian Matrix, it looks for the

clusters in the Similarity Graph using a GA.

Two essential elements in any GA design are

the fitness function and the encoding of the indi-

viduals. The first one is used to guide the evolu-

tionary search 19,66, the second one determines the

search space and landscape 62. In GGC the fitness

function is a metric that measures the quality of

the clusters and it is based on Complex System

Analysis and Graph Theory 23,55,74.

Given a network which is represented as a

graph, previous techniques analyse the different

properties of the network through various mea-

sures. The principal measures are the Clustering

Coefficient 23 (CC) and the Average Distance (AD)

of the elements. There are several variations of

them, such as the Weighted Clustering Coefficient
9 which considers weights in the edges of the graph.

In order to support a good election for the fitness

function, two measures are analysed in detail.

One of the main problems of AD or other Com-

plex Network measures is that they do not consider

the continuity of the dataset which is important in

this kind of clustering approach. The continuity

is the “form” defined by the data, for example, an

object form into an image. Therefore, other dif-

ferent fitness functions based on well-known algo-

rithms (such as K-Nearest Neighbours 20 or Mini-

mal Graph Cut 64) have also been tested and com-

bined to improve the results.

As it was mentioned above, the second criti-

cal element in the design of a GA is the encoding.

In this particular case of clustering, the encoding

has a convergence problem. The literature has ad-

dressed this issue and there are many approxima-

tions to the encoding of clustering in GA, (see 38

for a complete analysis of this problem). Given the

importance of this topic to the success of GGC,

we study two possible encodings, comparing their

main features and subsequent performance.

In order to assess the performance of GGC,

we have carried out a collection of experiments

that compare GGC performance and robustness to

those of some classical algorithms, like K-means,

EM and, of course, SC.

The rest of the work is structured as follows. It

first introduces in detail SC and surveys the state

of art in GAs and Graph Theory for clustering.

Then, Section 3 describes the GGC algorithms and

the two fitness functions and encodings selected to

be studied in detail. An analysis of GGC follows in

Section 4, which includes some experimental work

and theoretical results. Section 5 assesses GGC

performance comparing it to K-means, EM and SC

with synthetic and real datasets. Finally, Section 6

outlines some conclusions and future lines of work.

2. Related Work

This section starts with a general introduction

of the clustering methods, specially SC. Once the

clustering methods have been introduced, it fo-

cusses the attention on how GAs have been applied

to clustering techniques. Finally, some measures

and metrics based on Graph Theory and Complex

Networks are introduced and defined.

2.1. Clustering Algorithms

Clustering is frequently used in Data Mining



and Machine Learning. The most popular clus-

tering technique is K-means. Given a fixed num-

ber of clusters, K-means tries to find a division of

the dataset 5,51 based on a set of common features

given by distances (or metrics) that are used to

determine how the cluster could be defined.

Other approximations, such as EM 24, are ap-

plied when the number of clusters is unknown. EM

is an iterative optimization method that estimates

some unknown parameters computing probabilities

of cluster membership based on one or more prob-

ability distributions; its goal is to maximize the

overall probability or likelihood of the data being

in the final clusters 24.

The most recent approaches combine classifica-

tion techniques with clustering algorithms to im-

prove the results quality, for example, Hsu uses

Neural Networks applied to brain-computer inter-

face systems 39, Kodogiannis et al. use Neural Net-

works and fuzzy clustering for short-term load fore-

casting 45 and Davis et al. combine segmentation

and classification for hand radiography 22.

Other research lines have tried to improve these

algorithms. For example, some online methods

have been developed to avoid the K-means con-

vergence problem to local solutions which depend

on the initial values 8. These methods create the

clusters by adding a new instance at each step and

modifying the cluster structure with this new in-

formation. Some other improvements of K-means

algorithm are related to deal with different kinds of

data representation, for example, mixed numerical

data 4 and categorical data 63 . There are also some

studies comparing methods, for example, Wang et

al. 73 compare self-organizing maps, hierarchical

clustering and competitive learning when estab-

lishing molecular data models of large size sets.

2.2. Graph-based and Spectral Clustering

Other clustering techniques are related to

Graph Clustering. A well-known algorithm is SC,

which is based on a straightforward interpretation

of weighted undirected graphs as can be seen in
7,54,57,69 . SC starts building a Similarity Graph

through a Similarity Function applied to the data

instances. The Similarity Graph can be formulated

in three different ways69:

1. The ǫ-neighbourhood graph: all the com-

ponents whose pairwise distance is smaller

than ǫ are connected.

2. The k-nearest neighbour graphs: the

vertex vi is connected with vertex vj if vj

is among the k-nearest neighbours of vi.

3. The fully connected graph: all points

with non-zero similarity are connected with

each other.

This work takes the most common approach in the

literature, which is the fully connected graph with

the Similarity Function named Radial Basis Func-

tion (RBF) Kernel 32. RBF is defined by

s(xi, xj) = e−σ||xi−xj ||
2

(1)

where σ is a parameter used to control the width

of the neighbourhood.

It is important to remark that the Similarity

Function parameters are highly connected with the

SC results. Small changes in these parameters pro-

duce high changes in the solution reducing the al-

gorithm robustness (this is deeply studied in Sec-

tion 4.3). Chang and Yeung exposed these prob-

lems in 13.

Once the Similarity Graph is constructed, the

second step of the algorithm is the extraction of its

Spectrum or Laplacian Matrix. There are different

definitions of the Laplacian Matrix that affect the

performance of SC. Let I be the identity matrix

and D the diagonal matrix whose (i, i)-element is

the sum of the Similarity Graph (represented as a

weighted Matrix) ith row, and let W be the Simi-

larity Graph, then we can define the following three

Laplacian Matrices 69:

• Unnormalized Spectral Clustering. It
defines the Laplacian Matrix as

L = D −W (2)

• Normalized Spectral Clustering. It de-
fines the Laplacian Matrix as

Lsym = D−1/2LD−1/2 (3)

• Normalized Spectral Clustering (re-
lated to Random Walks 69). It defines
the Laplacian Matrix as

Lrw = D−1L (4)

The Laplacian Matrix or SC algorithm used in

this work is the Normalized Spectral Clustering

Algorithm, which is the most classical technique



in the literature 69. The three Laplacian Matri-

ces have been deeply studied in the related liter-

ature 69,54,70. They are connected to the graph

cut problem, which looks for the best way to cut

a graph keeping a high connectivity amongst the

elements which belongs to each partition, and a

low connectivity between the elements of different

partitions.

The graph cut problem is closely related to clus-

tering. In the graph cut literature this problem

has two classical solutions69: RadioCut and NCut.

Von Luxburg et al. 69 describe the connection

between the different approaches of SC (focused

on the Laplacian Matrices), RadioCut and NCut.

They also show that Unnormalized Spectral Clus-

tering converges to RadioCut and the Normalized

methods converge to NCut. On the other hand, a

deep analysis about the theoretical effectiveness of

Normalized clustering over Unnormalized can be

found in 70.

Finally, in the third step, the eigenvectors of the

Laplacian Matrix are considered as data points and

a clustering algorithm, such as K-means, is applied

over them to define the clusters. The main prob-

lem is how to compute the eigenvectors and the

eigenvalues of the Laplacian Matrix of the Sim-

ilarity Graph avoiding the huge memory that it

consumes. For example, when large datasets are

analysed, the Similarity Graph of the SC algorithm

requires a high memory storage and it makes ex-

tremely hard the eigenvalues and eigenvectors com-

putation (using a dataset with 100,000 instances,

the fully-connected Similarity Graph will use a ma-

trix of 1010 elements and 8 bytes per element; the

total size is almost 80Gb).

New Spectral Clustering methods are focused

on some practical improvements. These refine-

ments have been centred on big data processing

such as, for example, distribute the algorithm ex-

ecution 15 or real-time processing of data streams
14.

Our work is inspired by SC because our ap-

proach calculates a Similarity Graph, but in our

case we use a different search algorithm, such as a

GA, and borrow concepts from Graph Theory and

Complex Networks analysis to find the clusters,

instead of the Laplacian Matrix extracted from

the Similarity Graph.

2.3. Genetic Algorithms for Clustering

GAs have been traditionally used in optimiza-

tion problems 12,30,60, but given their extraordi-

nary flexibility, GAs are used to solve a wide range

of problems in many domains; clustering is a good

example. They can be tuned in many ways, some

examples can be found in 59 , where the algorithm

is improved through backward-chaining, creating

and evaluating individuals recursively reducing the

computational time. Other applications of GAs in

clustering are swarm systems 47, software systems
25, file clustering 27 and task optimization 58 or

information extraction 30, among others.

Cole 18 shows different approaches of the ge-

netic clustering problem, especially focused on the

encoding and clustering operations. Hruschka et

al. 38 provide a deep revision with a complete up

to date state of the art in Evolutionary Algorithms

for clustering.

There are several methods using evolutionary

approaches from different perspectives, for exam-

ple: Aguilar 3 modifies the fitness function consid-

ering cluster asymmetry, coverage and specific in-

formation of the studied case; Tseng and Yang 67

use a compact spherical cluster structure and a

heuristic strategy to find the optimal number of

clusters; Maulik and Bandyopadhyay 52 use the

clustering algorithm for metric optimization try-

ing to improve the cluster centre positions; Shi et

al. 65 base the search for the clusters in their Ex-

tend Classifier Systems (a kind of Learning Clas-

sifier System), in which the fitness is determined

by the measure of its prediction accuracy; Das and

Abraham 21 use Differential Evolution.

Some of the methods previously described are

based on K-means. For instance, Krishna and

Murty 46 replace the crossover of the algorithm

using K-means as a search operator and Woj-

ciech and Kwedlo 75 also use Differential Evolu-

tion combined with K-means. Finally, Adamska 1

introduces other general results of evolutionary ap-

proaches to clustering. There are also other com-

plete studies for multi-objective clustering devel-

oped by Handl et al. 36 and for Nearest Neighbour

Networks by Huttenhower et al. 41.

In this work, we have used different encodings

and fitness functions to look for new methods and

algorithms in the domain of graph-based clustering



problems 53.

2.4. Graph Theory and Clustering

Graph theory has made significant contribu-

tions to data analysis, especially over the last few

years, with its application to manifold reconstruc-

tion 6,34 using data distance and graph representa-

tion to create a structure which can be considered

as an Euclidean space (or manifold).

Graph models are useful to represent a large

number of problems in different domains. They

have become especially popular over the last few

years, being widely applied in Social Networks

analysis. Graph models can be naturally used in

these domains, where each node or vertex can be

used to represent a network element, and each edge

is used to represent their interactions. Later, al-

gorithms, methods and Graph Theory have been

used to analyse different aspects of the network,

such as the structure, behaviour, stability or even

community evolution inside the graph 23,28,55,74 .

Schaeffer64 describes a complete roadmap of

graph clustering, including a comparison of the

three types of graphs: weighted, directed and undi-

rected. The methods that Schaeffer compares are

cutting, spectral analysis and degree connectivity

amongst others. An exhaustive analysis of con-

nectivity methods can be found in Hartuv and

Shamir37.

In network analysis, it is common to repre-

sent graphs, especially in the study of social net-

works, where users are connected by affinities or

behaviours. This approximation has been studied

in some of the small world networks based on two

main variables: the average distance between ele-

ments and the clustering coefficient of the graph
23,55,74.

The present work is closer to the network ap-

proach because our algorithm looks for sub-graphs

in a graph whose elements share similar features.

In an initial study of the problem 10, an evolution-

ary approach was adopted based on the K-means

algorithm applied to community finding approach

(which is also a clustering problem applied to a

graph representation).

Other similar approximations related to the

finding-community problem can be found in Re-

ichardt and Bornholdt61, where different statistical

mechanics for community detection are used. How-

ever, we decided to use GAs because we are mainly

interested in optimization methods for tuning up

the definition of our clusters, allowing to adapt the

size and membership of these clusters using metrics

and features selected from graph characteristics.

Finally, Newman and Girvan 56 provide an-

other work that measures the quality of the com-

munities with graph metrics. Clauset et al. 17

show metrics that can be used to find the struc-

ture of a community in very large networks. GAs

have also been applied to find communities or clus-

ters through Agglomerative Genetic Algorithms
49 and multi-objective Evolutionary Algorithms 44

amongst others.

In this work, our approach uses metrics from

Graph Theory -the K-Nearest Neighbour and

the MinCut metrics- and Complex Networks -

the Weight Clustering Coefficient- to guide the

heuristic-based search of the genetic algorithm

through the fitness function.

3. The Genetic Graph-based Clustering Al-

gorithm (GGC)

GGC is an algorithm motivated to avoid the

strong dependence between SC and its metric pa-

rameters, and in particular the Similarity Function

that generates the Similarity Graph. Even though

GGC takes an evolutionary approximation to clus-

tering and uses some concepts from Graph Theory,

it is strongly inspired by SC. This section describes

in detail GGC and presents the two encodings and

fitness functions that were studied in order to de-

sign the algorithm.

The algorithm first initializes the number of

clusters, like in SC and K-means. Our technique

looks for the best sub-graphs of the Similarity

Graph which might define a clear partition. The

Similarity Graph is generated by a Similarity Func-

tion like in the SC algorithm. The population is a

set of potential solutions (named partitions) which

evolve until a good enough solution is found, or a

maximum number of generations is reached. The

fitness function is a metric used to assess the poten-

tial solutions. The algorithm will try to maximize

the fitness value. In the following, we describe the

evolutionary components of GGC.



3.1. The GGC Encodings

The GA has been constructed using two classi-

cal integer encodings, well known in cluster-based

genetic algorithms 30. The first encoding is a sim-

ple vector encoding (label-based) while the second

one is based on set theory (medoid-based). These

two encodings have been selected to compare their

computational effort and performance to choose

the best encoding for our algorithm (the experi-

mental comparison is in Section 4.1).

3.1.1. Label-based and Medoid-based Encodings

We examined two encodings to choose the one

with better performance. The first one follows

the philosophy of what the literature named label-

based 30 encoding. Each gene in the chromosome

represent an xi of the dataset, and its value indi-

cates the cluster that it belongs to. This is a näıve

encoding, genes contain an integer that identifies

one cluster. The number of nodes in the graph

determines the chromosome length. The Fig. 1 a)

shows an example of this encoding scheme with

a chromosome containing the partition drawn in

Fig. 2.

The second encoding is based on sets. In this

case the chromosome is divided in several variable-

length chunks, each one associated to a cluster.

The chunks contain the data instances (medoids
30) which compose each cluster. Probably, it can

be better understood looking at Fig. 1 b), which

shows the partition of Fig. 2 using this encoding.

nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 1 2 2 2 3 3 3

a) Label-based encoding.

Cluster 1 Cluster 2 Cluster 3

Chr. {1, 2, 3} {4, 5, 6} {7, 8, 9}

b) Medoid-based encoding.

Fig. 1. Example of label-based and medoid-based
encoding in GGC.
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Fig. 2. Examples of the clusters considered in Fig.
1

3.1.2. Invalid elements

The genetic operations (mutation and

crossover) of the GA might create invalid chro-

mosomes. Using these encodings, it only hap-

pens when a chromosome contains one or more

empty clusters. In partitional clustering, these so-

lutions are invalid because the number of clusters

is initially given, and therefore each cluster must

contain at least one element. To avoid invalid

chromosomes, the fitness value assigned to these

chromosomes is 0. This value prevents that the

elements passes to the next generation.

nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 1 1 1 2 2 2 2

a) Label-based encoding.

Cluster 1 Cluster 2 Cluster 3

Chr. 1 {1, 2, 3, 4, 5} {6, 7, 8, 9} ∅

Chr. 2 {1, 1, 3, 9} {4, 5, 6} {7, 8}

b) Medoid-based encoding.

Fig. 3. Example of invalid chromosomes in GGC.

Some examples of invalid elements for each en-

coding are shown in Fig. 3. In this case, if k = 3

and n = 9, the first individual has missed cluster

3 (in both, label-based encoding and first chromo-

some for medoid-based encoding). In the medoid-

based encoding, the second chromosome repeats



one element. In partitional clustering, all the clus-

ters need to have at least one element and each

element can only be assigned to one cluster.

3.2. GGC Genetic Operators

This section describes the genetic operators

which are used between the chromosomes for

each encoding. The classical operators (selection,

crossover and mutation) have been used.

3.2.1. Selection

Regardless of the encoding used, the selection

operator selects a subset of chromosomes to repro-

duce and breed the offspring. These chromosomes

are selected using a tournament 71. In few words, a

tournament selects randomly n chromosomes, as-

sesses them using the fitness function, and then

takes the fittest one. It is called a (µ + λ) selec-

tion, where µ represents the number of bred chro-

mosomes, and λ the new chromosomes generated.

3.2.2. Crossover

Any of the two encoding schemes induces a phe-

notypic space smaller than the genotypic space,

and therefore different genotypes correspond to the

same phenotype (see Fig. 4). This is a problem

from the perspective of the recombination oper-

ator, because it destroys the correlation between

phenotypic and genotypic spaces 62. For this rea-

son, it is recommendable to relabel the individuals

before the application of the crossover. The criteria

followed for this relabelling process is to maximize

the similarity between the chromosomes which are

crossed. It is focused on the convergence improve-

ment of the algorithm by reducing the search space

and the number of invalid elements. To this end

we define the following similarity measure.

Definition 1 (Cluster Similarity measure)
Let {x1, . . . , xn} be a set of elements, and Ci, Cj

the clusters which are compared. Their similarity
measure is defined by:

s(Ci, Cj) =
1

2

(

∑

q
δqCi

δqCj

|Ci|
+

∑

q
δqCi

δqCj

|Cj |

)

(5)

where |Ci| is the number of elements of cluster Ci

and δqCi
is the Kronecker δ defined by:

δqCi
≡ δCi

(xq) =

{

0 if xq /∈ Ci

1 if xq ∈ Ci

nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 1 1 2 2 2 3 3 3

Chr. 2 2 2 2 3 3 3 1 1 1

a) Label-based encoding

Cluster 1 Cluster 2 Cluster 3

Chr. 1 {1, 2, 3} {4, 5, 6} {7, 8, 9}

Chr. 2 {7, 8, 9} {1, 2, 3} {4, 5, 6}

b) Medoid-based encoding
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Clusters of data instance from 1 to 9

1
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3

4
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7

8

9Chromosome 1: Cluster 1
Chromosome 2: Cluster 2 Chromosome 1: Cluster 2

Chromosome 2: Cluster 3

Chromosome 1: Cluster 3
Chromosome 2: Cluster 1

c) Original Representation

Fig. 4. These two chromosomes represent the same
solution (for both kind of encodings), but the name
of the clusters appears different using the label-
based encoding.

The relabelling process can be divided in three

fundamental steps:

1. The similarities between the clusters are cal-

culated, using Equation (5).

2. The similarities are sorted using a decremen-

tal order.

3. The second chromosome is relabelled maxi-

mizing the similarity with the first chromo-

some.

Fig. 5 shows an example of two chromosomes,

which represent the same solution, before the rela-

belling process for each encoding and the result of

this process.



nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 3 1 2 1 2 3 1 3

Chr. 2 2 2 2 3 3 3 1 1 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Chr. 2 1 1 1 2 2 2 3 3 3

a) Label-based encoding.

Cluster 1 Cluster 2 Cluster 3

Chr. 1 {1, 3, 5, 8} {4, 6} {2, 7, 9}

Chr. 2 {7, 8, 9} {1, 2, 3} {4, 5, 6}
↓ ↓ ↓ ↓

Chr. 2 {1, 2, 3} {4, 5, 6} {7, 8, 9}

b) Medoid-based encoding.

Fig. 5. Example of the relabelling process ap-
plied to two chromosomes with the label-based and
medoid-based encodings.

nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 1 1 2 2 2 3 3 3
l l l l

Chr. 2 1 2 1 2 3 2 3 3 3

New Chr. 1 1 1 1 2 3 2 3 3 3

New Chr. 2 1 2 1 2 2 2 3 3 3

a) Crossover for Label-based encoding.

Clusters 1 Clusters 2 Clusters 3

Chr. 1 {1, 2, 3} {4, 5, 6} {7, 8, 9}

Chr. 2 {2, 3} {5, 6, 7} {1, 4, 8, 9}

Intersection {2, 3} {5, 6} {8, 9}

New Chr. 1 {2, 3, 4} {5, 6, 1} {8, 9, 7}

New Chr. 2 {2, 3,1, 7} {5, 6, 4} {8, 9}

b) Crossover for Medoid-based encoding.

Fig. 6. Crossover using the label-based and
medoid-based encodings after relabelling process.

The crossover of the label-based encoding ex-

changes strings of numbers between two chromo-

somes. It is straightforward since both strings have

the same length (see Fig. 6 a)). In the medoid-

based encoding, it keeps the similar elements of

both chromosomes and the different elements are

randomly distributed amongst the clusters, creat-

ing two new elements (see Fig. 6 b)).

3.2.3. Mutation

GGC uses an adaptive mutation for both en-

codings that works as follows:

1. A chromosome is randomly chosen to be mu-

tated according to a mutation probability pm,

that is fixed at the beginning, with pm ∈

[0, 1].

2. When a chromosome is chosen, the alleles

which will be mutated are selected. The de-

cision considers the probability of the allele

to belong to the cluster which have been as-

signed. If the probability is high, the allele

has a low probability of mutation and vice

versa. In our algorithm, this probability de-

pends on the metric defined in the fitness

function. This means that even if the muta-

tion probability is high and an allele is chosen

to mutate, if the chromosome is close to the

solution it could not mutate.

3. Finally, the alleles are mutated depending on

the encoding:

• The label-based encoding changes the al-

lele value. The new value is a random

number between 1 and the number of

clusters.

• The medoid-based encoding moves the

allele to other cluster. It randomly

chooses the new cluster which will con-

tain the allele.

nodes
1 2 3 4 5 6 7 8 9

Chr. 1 1 1 2 2 2 3 3 3
↓ ↓

Mutated chr. 2 1 1 2 2 2 2 3 3

a) Label-based encoding.

Cluster 1 Cluster 2 Cluster 3

Chr. {1, 2,3} {4, 5, 6} {7, 8 , 9}

Mutated chr. {1, 2} {4, 5, 6, 8} {7, 9, 3}

b) Medoid-based encoding.

Fig. 7. Mutation of two alleles in a chromosome.



Fig. 7 shows the mutation process. In the

label-based encoding, the first and seventh alleles

have been randomly chosen to be changed. In the

medoid-based encoding, the third and eighth alle-

les have been moved from first and third clusters

to third and second respectively.

3.3. The GGC Fitness Functions

This section describes the two fitness functions

designed in the context of GGC; these functions

have been chosen to satisfy the continuity condi-

tion of the clusters. The first fitness is the Weight

Clustering Coefficient 9 which looks for “strong tri-

angles” formed between neighbours in the graph.

The second is a combination of the K-Nearest

Neighbour 48 and the Mincut methods 64.

3.3.1. The Weighted Clustering Coefficient Fitness

Function

The first fitness function uses Global Weight

Clustering Coefficient 9 as the fit value for the pop-

ulation. Supposing an undirected weight graph, it

applies the following metric Cw
i , which is defined

as:

Cw
i =

∑

j,h

wij+wih

2
aijaihajh

Si(ki − 1)
(6)

where wij are the weights of the matrix, aij is

1 if the edge from i to j exists and 0 otherwise,

Si =
∑

j
wij and ki is the number of neighbours

of the node i. The denominator Si(ki − 1) defines

a normalization factor to range the value between

[0, 1]. This fitness looks for individuals which have

high similarity with their neighbours and whose

neighbours also have high similarity between them.

3.3.2. KNN-Minimal Cut fitness

The second fitness function under study is a

combination of the classical K-Nearest Neighbour-

hood (KNN) 48 and the Minimal Cut64 algorithms.

KNN is useful to guarantee the continuity condi-

tion which is frequent in the Spectral Clustering

solutions. To control the separation between the

elements of the clusters, the Minimal Cut measure

is used. It guarantees that those elements which

clearly belong to different clusters are not assigned

to the same cluster. The K value for KNN is ini-

tially given by the user, nevertheless, in this work

we have fixed it to 2 because it is the minimal

value to guarantee the continuity, in a similar way

than the Clustering Coefficient, and additionally it

avoids over-fitting.

KNN covers all the nodes and checks if the K-

closest elements (related to the metric) are in the

same cluster. The fitness value of this measure is

the mean of the percentage of well-classified neigh-

bours of all the individuals in a cluster. The Mini-

mal Cut measure calculates the average value edge

weights which have been removed. The final value

of the fitness is the product of the KNN metric and

the subtraction between one and the Minimal Cut

metric; both metrics have the same range: [0,1].

Therefore, the algorithm maximizes the value of
TotalKNN

|C|
×
(

1− TotalMC
|C|

)

where:

TotalMC =
∑

x∈C

∑

y/∈Cx
wxy

|{y|y /∈ Cx}|
(7)

TotalKNN =
∑

x∈C

|{y|y ∈ Γ(x) ∧ y ∈ Cx}|

|Γ(x)|
(8)

In these formulas, wxy represents the weight of

edge x → y, C represents the set of clusters and

Γ(x) represents the neighbourhood of the element

x. It reduces the weight values of the edges which

are cut and improves the proximity of the neigh-

bours.

3.4. The Algorithm Steps

The GGC algorithm can be divided in three

main steps:

1. Similarity Graph generation: a Similar-

ity Function (usually based on a kernel) is ap-

plied to the data instances (i.e., the domain

concepts), connecting all the points with each

other. It generates the Similarity Graph.

2. Genetic search: Giving an initial number

of clusters k, the GA generates an initial pop-

ulation of possible solutions and evolves them

using a fitness function to guide the algorithm

to find the best solution. It stops when a

good solution is found, or a maximum num-

ber of generations is reached.

3. Clustering association: The solution with

the highest fitness value is chosen as a solu-

tion of the algorithm and the data instances



are assigned to the k clusters according to the

solution chosen.

4. GGC Analysis

This section shows an analysis of the GGC al-

gorithm, including the two encodings introduced

in Section 3.1 and the metrics associated with

the fitness functions previously described. Finally,

the robustness of the GGC algorithm is evaluated

against and compared to the robustness of the SC

algorithm.

4.1. Comparison of GGC Encodings

The two encodings used in this work are equiva-

lent and can be applied to any problem with similar

results, however, they present the following differ-

ences:

• Omitting the relabelling process, the label-

based crossover operation is faster than the

medoid-based crossover. In the label-based

case, the crossover is O(n) because only one

loop is necessary to swap the values of two

vectors. For the medoid-based case, the

crossover is O(n2) because two nested loops

are necessary to find the common elements of

two sets.

• The mutation effort of the two algorithms is

almost the same, although the label-based

encoding is slightly faster because in the

label-based encoding the value changes in-

stantly when the mutation is applied, while

in the medoid-based encoding the value is ex-

tracted from one set and introduced in an-

other set and a swap process is needed.

• Both encodings can use the relabelling pro-

cess, however the medoid-based encoding

simplifies the similarity calculus using the in-

tersection operation.

• GGC algorithm presents, as any other

heuristic-based search method, a local max-

imum convergence problem. This problem

has not been deeply studied in the GGC

algorithm, however it depends on the GA

operators. To compare both encodings con-

vergence behaviour, the Spirals dataset 43

has been tested against them. Fig. 8 plots

the convergence results for this dataset (for

50 runs of the algorithm per encoding and

fitness function) using the parameters shown

in Table 1, the KNN value set to 2 (as is

explained in Section 3.3.2) and the tourna-

ment value also set to 2. The algorithm uses

an adaptive mutation (see Section 3.2.3), the

value (0.5) is the initial value for the mutation

and (10−4) the final value. In this case, the

label-based encoding converges faster than

the medoid-based encoding.

Dataset Pop. Gen. Cross. Mut. Eli. Fit.
Spirals 200 2000 0.3 0.5-10−4 50 1.0

Table 1. Parameter setting with population, gen-
erations, crossover probability, mutation probabil-
ity and elitism size used with the Spirals datasets.
The table also includes the fitness value achieved.

The label-based encoding reduces the compu-

tation effort (see Table 2). Therefore, it has been

chosen to carry out the rest of the experiments.

Encoding Process
Cross. Mut. Relab Convergence

Label-based X X X
Medoid-based X

Table 2. Comparison for both encoding related to
genetic operations in GGC. ‘X’ shows the encod-
ing which achieves the best results with respect to
computational effort and speed.
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Fig. 8. GGC convergence for Spirals dataset. The
convergence for the label-based encoding is reached
in the 30 generation, using the medoid-based en-
coding is reached in the 40 generation.

4.2. GGC Fitness Functions Analysis

During the experimental stage to test the be-

haviour of our fitness functions, we detected that



the Weight Clustering Coefficient fitness obtained

the maximum value even when the solution was

incorrect. The analysis of this problem shows that

it only happens when the Similarity Graph was

fully connected (i.e., all the weights are bigger than

0). We analyzed this fact in more detail in an at-

tempt to explain it, concluding that there is an

issue with this approximation: It can be math-

ematically proved that this problem is a “metric

mistake” †. The following theorem shows the proof:

Theorem 1 Suppose that G is a graph (with

3 elements or more) and W is the matrix of the

weights of the graph. If wij > 0 ∀i, j then Cw
i =

1 ∀i.

Proof. We choose a random element i which

has n neighbours. Let x1, . . . , xn be the weight

values from the node i to its n neighbours. From

the definition of the Cw
i we have:

Cw
i =

∑

j,h

wij+wih

2
aijaihajh

Si(ki − 1)

If we calculate Si we have:

Si = x1 + . . .+ xn

In this case aij = 1 ∀i, j and ki = n, then:

Cw
i =

∑

j,h

xj+xh

2

Si(n− 1)

If we sort the sum elements we have the following:

0 + x1+x2

2
+ . . . + x1+xn

2
x2+x1

2
+ 0 + . . . + x2+xn

2

... +
... + . . . +

...
xn+x1

2
+ . . . +

xn+xn−1

2
+ 0

If we consider the symmetries of the sum, and

we sum the elements which are symmetric, then

we have:

(x1 + x2) + . . .+ (x1 + xn) = (n − 1)x1 + x2 + . . .+ xn

(x2 + x3) + . . .+ (x2 + xn) = (n − 2)x2 + x3 + . . .+ xn

(x3 + x4) + . . .+ (x3 + xn) = (n − 3)x3 + x4 + . . .+ xn

.

.

. =
.
.
. +

.

.

.
(xn−1 + xn) = (1)xn−1 + (1)xn

In this case, if we sum, for example, the x2 that is

left in the first sum to (n−2)x2 we have (n−1)x1,

if we do the same with the x3 left in the first and

second sum to (n− 3)x3 we have (n− 1)x3. If we

continue until xn we have (n− 1)xi ∀i. Then:

Cw
i =

(n− 1)(x1 + . . .+ xn)

Si(n− 1)

We know that Si = x1 + . . .+ xn then:

Cw
i =

(n− 1)(x1 + . . .+ xn)

(x1 + . . .+ xn)(n− 1)
= 1

2.

Since the Similarity Graph construction that

was chosen is the fully connected graph (see Sec-

tion 2.2), the only fitness that has been applied in

the experiments is the KNN-Minimal Cut fitness

to avoid this problem.The fully connected approx-

imation was chosen because the GGC algorithm

tries to maximize the robustness of the cluster-

ing selection related to the metrics, as is explained

in the following subsection. Therefore, if the ǫ-

neighbourhood graph or the k-nearest neighbour

graph are chosen (see Section 2.2), the Similarity

Graph increments the number of zero similarities,

which is not desirable when all the elements could

have a non-zero similarity between them. It could

reduce the robustness of the algorithm and sup-

poses a higher dependency on parameters; in this

case, the Similarity Graph generation parameters:

the ǫ value of the ǫ-neighbourhood graph, and the

k value of the k-nearest neighbour graph.

4.3. Robustness of the GGC algorithm

An important problem related to SC is its de-

pendency on the parameters of the Similarity Func-

tion. The GGC algorithm has been designed to

alleviate this problem. The KNN metric which is

applied in the fitness calculation provides a higher

robustness to the algorithm compared to the SC

algorithm, it does not depend on the order of dis-

tance magnitude calculated by the metric.

To compare the sensitivity of SC and GGC to

the parameters of the metric, the RBF kernel has

been used to carry out the experiments. This ker-

nel is defined by: Kij = e−σ||xi−xj ||
2

, where K

is the similarity matrix, xi, xj are data instances,

and σ is the parameter which changes the order

of magnitude. The experimental results show that

SC clearly depends on σ parameter. Fig. 9 shows

the different clustering results obtained using the

†This metric has also been used in several works about Weighted Complex Networks 9 and it is an important reference in the
literature.



SC and the GGC algorithms modifying the σ pa-

rameter between 1 and 4000.
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Fig. 9. SC and GGC results for the spirals43

dataset with σ values from 1 to 4000, respectively.
The red straight line in the top represents the ro-
bustness of GGC over SC.

These experimental results show that the pa-

rameters used in the definition of the kernel are

critical (see the evolution of σ in Fig. 9) because

these parameters define the degree of the similar-

ity. Ng et al. introduced a method to calculate the

optimal σ in 57, however, as Fig. 10 shows, this

technique is not always enough. GGC always ob-

tains the same results because it has been designed

to be robust to the modification of the metric pa-

rameters, when this modification keeps the order

relationship between the elements of the dataset

and only changes the distance magnitude. The

next section will show the experiments carried out

using the GGC algorithm. The accuracy of the al-

gorithm is tested using synthetic and real datasets.

5. Experimental Results

This section compares the GGC algorithm with

other classical clustering algorithms (K-means, EM

and SC) using synthetic and real datasets. The

accuracy value is calculated using the similarity

metric defined in Equation (5).

5.1. Experiments on Synthetic Data

Eight datasets have been extracted from the

state of the art in clustering research area which

study the behaviour of different algorithms similar

to SC 13,31,33,42,68,76

5.1.1. Data Description

The initial datasets considered are 2-

dimensional data which can be separated by hu-

man intuition, but are problematic to classical

clustering algorithms. We have analysed the fol-

lowing datasets:

Data Instances Clusters Structure
Ag 788 7 Parametric
Cp 399 6 Mixture
D31 3100 31 Noisy Parametric
Fl 241 3 Continuity
Jn 373 2 Continuity
Pb 300 3 Noisy Continuity
R15 600 15 Parametric
Sp 312 3 Continuity

Table 3. Synthetic datasets, and their features,
used to evaluate the GGC algorithm performance.

• Aggregation33 (Ag): This dataset is com-

posed of 7 clusters, some of them can be sep-

arated by parametric clustering methods.

• Compound76 (Cp): There are 6 clusters

which are only separable by non-parametric

methods (or using special kernels if paramet-

ric clustering is applied).

• D3168: This data has 31 clusters with a high

level of noise.

• Flame31 (Fl): This dataset has three ideal

clusters: the first one is the base of the fig-

ure, the second one is the top and the last

one are three outliers at the top-left of the

image.

• Jain42 (Jn): This dataset is composed of two

surfaces with different density and a clear

separation.

• PathBased13 (Pb): This dataset has 2 clus-

ters which can be separated by a parametric

method and another cluster which can only

be separated by a non-parametric method.

This example is problematic for algorithms

such as Spectral Clustering because this al-

gorithm is sensitive to noisy data.

• R1568: Similar to D31, this dataset is divided

in 15 clusters which are clearly separated.

• Spiral13 (Sp): In this case, there are 3 spirals

close to each other.



Table 3 summarizes the features of the datasets.

5.1.2. Experimental Results

The selected clustering algorithms (K-means,

EM using a Gaussian Mixture Model estimator,

SC and the GGC algorithm) have been applied to

the previous described datasets. We carried out an

experiment executing the algorithms 50 times and

taking their best results. We selected best fitness

as performance measure because of two reasons.

First, the goal is to maximize the fitness to achieve

the best cluster discrimination, i.e., what Eiben

and Jelasity named design domain, and therefore

the best fitness is a better choice 26. Secondly, in

our experiments, and on the contrary than other

authors observations 50, we observed that simi-

lar fitness values are associated to quite different

genotypes. It follows the same reasoning of 26

where Eiben and Jelasity explain when these two

approaches should be used in GA. Table 4 shows

the best accuracy results, and Table 5 shows the

parameters and the best fitness values achieved

by the GGC algorithm for these datasets. GGC

and SC use the RBF kernel 32. EM and K-means

use the Euclidean distance 24. These metrics are

well-known in the literature.

Table 4 shows that Aggregation, Jain and Spi-

rals are not problematic for SC (we are using the

Ng 57 version of the algorithm). However, Com-

pound, Flame, PathBased, D31 and R15 are more

problematic. Compound is difficult to classify for

SC because the distribution of the data is highly

heterogeneous. In the case of Flame, there is not

a clear boundary between the clusters. It makes

difficult the application of the algorithm. D31 and

PathBased have noisy information (see Fig. 10), it

produces several deviations for the SC algorithm.

R15 has also noisy information in the central clus-

ters. Finally, the standard deviation (see Table

4) shows that SC is generally unstable, probably

caused by the robustness problem mentioned in

Section 4.3.
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Fig. 10. Three experimental results applying SC,
using the approach given by Ng et al. 57. From
top to bottom: “Compound”, “Pathbased” and
“D31”. The arrows point the problematic sections.

K-means, as a parametric technique, does not

obtain good general results. The reason is that the

parameter is a set of centroids optimized by the

algorithm. In the case of Compound, for example,

the clusters of the top-left position of the image

(see Fig. 11) are well classified, however it is im-

possible, with these conditions, that the algorithm

classifies correctly the bottom-left two clusters be-



cause one cluster surrounds the other (see Fig.

11). The same problem appears with Jain, Spirals,

PathBased and Flame. In the case of Aggregation,

the worst misclassification is related to the three

clusters of the bottom-left and the two clusters

of the right (see Fig. 11). In this case, the dif-

ferent sizes of the clusters influence the selection

process. The D31 and R15 misclassification might

be a consequence of a local minimum convergence

of the algorithm caused by the noisy information.

This algorithm is also unstable according to the

standard deviation (see Table 4) due to its local

minimum convergence.

Data SC (%) GGC (%) EM (%) K-M (%)
Pb 89 ± 8.8 88 ± 3.8 71 ± 5.6 74 ± 6.7
Ag 96 ± 5.8 100 ± 2.1 79 ± 7.8 86 ± 9.2
D31 85 ± 7.5 99 ± 2.2 90 ± 7.4 82 ± 6.5
Cp 77 ± 7.7 100 ± 1.3 57 ± 8.9 72 ± 7.1
R15 81 ± 8.2 100 ± 2.0 100 ± 9.9 81 ± 8.3
Jn 100 ± 4.8 100 ± 1.8 57 ± 9.7 78 ± 6.3
Sp 100 ± 5.3 100 ± 1.5 35 ± 7.3 35 ± 7.6
Fl 99 ± 5.1 99 ± 1.7 69 ± 9.9 70 ± 8.7

Table 4. Results (and standard deviation) of the
different datasets applying K-means, Expectation
Maximization, Spectral Clustering and the GGC
algorithm. The best results are remarked in bold
and the second in italic.

Data Pop. Gen. Cross. Mut. Eli. Fit.
Ag 100 2000 0.4 0.01-10−4 50 0.99
Cp 200 2000 0.5 0.01-10−4 50 0.96
Fl 100 2000 0.4 0.01-10−4 50 0.98
Jn 100 500 0.4 0.2-10−4 50 1.0
Pb 100 2000 0.4 0.01-10−4 50 1.0
R15 200 2000 0.5 0.3-10−4 50 0.99
Sp 100 500 0.4 0.01-10−4 50 1.0
D31 200 5000 0.7 0.4-10−4 50 0.94

Table 5. Best parameter selection (Popula-
tion, Generations, Crossover probability, Mutation
probability and Elitism size) used in the GGC al-
gorithm and the best fitness value. The K value
of the KNN-Minimal Cut fitness is always set to 2.
The tournament size is also 2.
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Fig. 11. Three experimental results applying K-
means, using the classical algorithm 51. From top
to bottom: “Aggregation”, “Compound” and “Spi-
ral”. The arrows point the problematic sections.
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Fig. 12. Three experimental results applying EM,
using a Gassian Mixture Model 24. From top to
bottom: “D31”, “Jain”,“Spiral”.

EM obtains better results than K-means but it

also has problems with other datasets. It achieves

better results for R15 although the rest of the

datasets are misclassified (see Fig. 12). Never-

theless, this algorithm also has stability problems

according the standard deviation.
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Fig. 13. Three experimental results applying
GGC, using a Gassian Mixture Model 24. From
top to bottom: “Compound”, “Flame”,“Spiral”.

Finally, the GGC algorithm achieves good re-

sults in almost all the cases (see Fig. 13). Table

5 shows the parameters selection of the GA for

each case. The results show that the GGC algo-

rithm only has problems with the most noisy cases:

Flame, Pathbased and D31. The reason is related

to a boundary problem. It is difficult for the al-

gorithm (using the RBF metric in the generation

of the Similarity Graph), to determine the limits



of the clusters when they are not clear. Also, even

if the algorithm has achieved the maximum accu-

racy values, there are some cases where the fitness

function does not obtain the maximum value of

its range. It is usual that hard problems such as

Compound or D31 do not permit the fitness to

find a max-range solution, even if the final cluster

selection achieved by the algorithm is closed to the

human selection. Finally, GGC is the most robust

algorithm according its standard deviation.

5.2. Experiments on Real Data

Finally, some experiments have been focused on

real datasets which have been previously classified

by humans.

5.2.1. Dataset Description

The experiments have been applied on three

real datasets extracted from the UCI Machine

Learning Repository 29:

• Iris (Ir): This dataset is a well-known

dataset. It has 150 instances of 3 different

classes (50 per class). Each class refers to a

type of iris plant: Iris Setosa, Iris Versicolour

and Iris Virginica. Each instance has 4 at-

tributes which are Sepal length, Sepal width,

Petal length and Petal width. It does not

have missing values.

• Wine (Wn): This dataset has 178 instances.

Each instance has 13 attributes and can be-

longs to 1 of the three different classes. Each

class refers to a type of wine. The first class

has 59 instances, the second one has 71 and

the third one has 48. It does not have missing

values.

• Handwriting (HW): This dataset is based

on digits handwriting. It has 60000 train in-

stances and 10000 test instances. Each in-

stance has a vector of 784 elements which

represents a 28x28 matrix where each element

is a pixel in grayscale ranged from 0 to 256.

There is also a column for the labels num-

bered from 0 to 9. It does not have missing

values. In this work only 6000 instances of

this dataset has been analysed because the

Similarity Graph generated by the Spectral

Clustering algorithm is bigger than the mem-

ory available ‡.

5.2.2. Preprocessing and Normalizing the Data

The preprocessing process is divided in two

steps:

• The first step has been the study of the avail-

able variables through histograms and corre-

lation diagrams which were used for dimen-

sion reduction. The information provided by

this phase shows the values which are useless

because, for example, are constants or have a

high correlation (more than 0.8 if we consider

that the correlation values is in range [0, 1])

with other variables. This means that they

may variate the clustering results, if they are

not eliminated, with redundant information.

• The second preprocessing phase consists of

the normalization of the variables. First, the

attributes with outliers are recentralized. Af-

ter, the same range is applied for all. We

combine Z-score11 to recentralized the distri-

bution and avoid outliers and MinMax35 to

fixed the range of all the values between 0

and 1.

The Iris and Wine datasets contain a few number

of instances and attributes, it implies that the di-

mentionality reduction is not necessary. However,

in the case of the handwriting dataset there are a

lot of attributes (pixels) which do not contribute to

the analysis, for instance those pixels which have

always the same value. There are also features

which have a high correlation between them. The

Handwriting attributes have been reduced in the

first step leaving 195 of 784 attributes for the anal-

ysis. All the attributes of the datasets have been

normalized applying the techniques of the second

step.

‡The computer used has 4 Gbytes of RAM memory and 1 Gbytes of Virtual Memory, in the generation of the Similarity Graph it is
necessary to generate a matrix of 6000× 6000 of double values. If a double variable requires 8 bytes, then the whole matrix requires
6000 × 6000 × 8 ≈ 288 Mbytes. However, if the 60000 data instance are used, the memory required is 60000 × 60000 × 8 ≈ 28.8
Gbytes.



5.2.3. Experimental Results

The experiments have followed the same pro-

cedure that was used with the synthetic datasets

experiments. Table 6 reports the parameters selec-

tion. The value of σ of the RBF kernel (used to

generate the Similarity Graph) has been approxi-

mated to 100. Table 7 shows the accuracy percent-

ages of the different clustering algorithms. The re-

sults for the Iris show that EM is the best classifier

(with an accuracy of the 96,67 %) and the GGC

algorithm is the second one (92%). The results for

the Wine dataset show that all the algorithms ob-

tained high accuracy values (bigger than the 95 %),

and the GGC algorithm obtained a perfect classifi-

cation with the maximum fitness value (see Table

6). Finally, the results of the Handwriting show

that SC and GGC obtain the best classification

results (73,55% and 99%, respectively).

These results are a consequence of the data

distribution. Iris dataset has instances of differ-

ent classes which are closed to each other; the

GGC algorithm has problems to discriminate the

boundary of the clusters specially when there are

intersections between the clusters. The fitness

value of the Iris is the highest that the algorithm

has achieved, it shows that there are instances

which belongs to different clusters but are closed

to each other. In the case of the Wine dataset,

the classes are clearly separated, as the different

clustering techniques show. It improves the results

of the GGC algorithm, because the boundaries

are clearer. It must be also similar in the Hand-

writing case, however, the fitness value shows that

there are some instances in the cluster boundaries

and they are difficult to assign. The standard

deviation shows that the algorithms stability cor-

responds with the stability of the synthetic dataset

tests.

Data Pop. Gen. Cross. Mut. Eli. Fit.
Ir 1000 2000 0.1 0.8-10−4 50 0.99
Wn 100 20000 0.4 0.01-10−4 50 1
Hw 20 20000 0.9 0.2-10−4 5 0.90

Table 6. Best parameter selection (Popula-
tion, Generations, Crossover probability, Mutation
probability and Elitism size) used in GGC algo-
rithm for the different real datasets and the best
fitness value obtained. The K value of the KNN-
Minimal Cut fitness is always set to 2. The tour-
nament size is also 2.

Data K-M (%) EM (%) SC (%) GGC (%)
Ir 89 ± 8.8 97 ± 10.1 89 ± 8.1% 92 ± 2.1
Wn 96 ± 3.1 97 ± 4.1 96 ± 2.9% 100 ± 1.9
Hw 51 ± 7.1 35 ± 8.1 % 74 ± 5.1 99 ± 3.1

Table 7. Best accuracy values (and the standard
deviation) obtained by each algorithm during the
experimental results applied to the UCI datasets.

6. Conclusions and Future Work

This work presents a new clustering method

inspired in the Spectral Clustering algorithm and

based on Genetic Algorithms. The Genetic Graph-

based Clustering (GGC) algorithm has been de-

fined comparing different encodings and fitness

functions. The main contributions of the algo-

rithm are its simple design according to the en-

coding and the fitness functions based on Graph

Theory measures. The kernel of the GGC algo-

rithm is the fitness function which combines the

KNN and Minimum Cut measures. This heuristic

is applied to the Similarity Graph which is gen-

erated in the first step of the Spectral Clustering

method. Several advantages of this approach over

SC can be summarized as follows:

• The combination of these measures improves

the robustness of the algorithm giving higher

independence of the parameters of the Simi-

larity Function metric.

• The memory usage is similar to SC because

both work with the same Similarity Graph.

• The experimental results show that the new

algorithm obtains good results for both, syn-

thetic and real datasets.

The future work will be focused on several

methods to improve GGC. The effects of noisy in-

formation should be deeply analysed. The number

of clusters could be automatically selected using

strategies such as cross-validation. Finally, other

fitness functions that might improve the conver-

gence, and the clusters quality of GGC will be

studied.
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plex Networks. Birkhäuser Publishing, 2010.

24. A. P. Dempster, N. M. Laird, and D. B. Ru-
bin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the
Royal Statistical Society. Series B (Methodolog-
ical), 39(1):1–38, 1977.

25. D. Doval, S. Mancoridis, and B. S. Mitchell. Au-
tomatic Clustering of Software Systems using
a Genetic Algorithm. In IEEE Proceedings of
the 1999 Int. Conf. on Software Tools and Engi-
neering Practice (STEP’99), pages 73–91, 1999.

26. A E Eiben and Márk Jelasity. A critical note on
experimental research methodology in EC. In
In: Proceedings of the 2002 Congress on Evo-
lutionary Computation (CEC2002, pages 582–
587. IEEE, 2002.

27. V. Fernandez, R. G. Martinez, R. Gonzalez, and
L. Rodriguez. Genetic algorithms applied to
clustering. In In Proceedings of the Winter Sim-
ulation Conference, pages 1307–1314, 1997.

28. Santo Fortunato, Vito Latora, and Massimo
Marchiori. Method to find community struc-



tures based on information centrality. Physical
Review E (Statistical, Nonlinear, and Soft Mat-
ter Physics), 70(5):056104–1–056104–13, 2004.

29. A. Frank and A. Asuncion. UCI machine learn-
ing repository, 2010.

30. Alex A. Freitas. A review of evolutionary al-
gorithms for data mining. In In: Soft Comput-
ing for Knowledge Discovery and Data Mining,
pages 61–93, 2007.

31. Limin Fu and Enzo Medico. Flame, a novel
fuzzy clustering method for the analysis of dna
microarray data. BMC Bioinformatics, 8:1–15,
2007.

32. S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr.
Principal component analysis-enhanced cosine
radial basis function neural network for robust
epilepsy and seizure detection. Biomedical En-
gineering, IEEE Transactions on, 55(2):512 –
518, feb. 2008.

33. Aristides Gionis, Heikki Mannila, and Panayi-
otis Tsaparas. Clustering aggregation. ACM
Trans. Knowl. Discov. Data, 1(1):1–30, March
2007.

34. Alexander N. Gorban and Andrei Zinovyev.
Principal manifolds and graphs in practice:
From molecular biology to dynamical sys-
tems. International Journal of Neural Systems,
20(3):219 – 232, 2010.

35. Jiawei Han and Micheline Kamber. Data min-
ing: concepts and techniques. Morgan Kauf-
mann, 2006.

36. Julia Handl, Julia H, and Joshua Knowles. Evo-
lutionary multiobjective clustering. In In Pro-
ceedings of the Eighth International Conference
on Parallel Problem Solving from Nature, pages
1081–1091. Springer, 2004.

37. Erez Hartuv and Ron Shamir. A clustering al-
gorithm based on graph connectivity. Informa-
tion Processing Letters, 76(4–6):175–181, 2000.

38. E.R. Hruschka, R.J.G.B. Campello, A.A. Fre-
itas, and A.C.P.L.F. de Carvalho. A survey
of evolutionary algorithms for clustering. Sys-
tems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on,
39(2):133 –155, march 2009.

39. Wei-Yen Hsu. Application of competitive hop-
field neural network to brain-computer interface
systems. International Journal of Neural Sys-
tems, 22(01):51–62, 2012. PMID: 22262524.

40. S.L. Hung and H. Adeli. A parallel ge-
netic/neural network learning algorithm for
mimd shared memory machines. Neural Net-
works, IEEE Transactions on, 5(6):900–909,
1994.

41. Curtis Huttenhower, Avi Flamholz, Jessica
Landis, Sauhard Sahi, Chad Myers, Kellen Ol-
szewski, Matthew Hibbs, Nathan Siemers, Olga

Troyanskaya, and Hilary Coller. Nearest Neigh-
bor Networks: clustering expression data based
on gene neighborhoods. BMC Bioinformatics,
8(1):250, 2007.

42. Anil Jain and Martin Law. Data clustering: A
user’s dilemma. In Sankar Pal, Sanghamitra
Bandyopadhyay, and Sambhunath Biswas, edi-
tors, Pattern Recognition and Machine Intelli-
gence, volume 3776 of Lecture Notes in Com-
puter Science, pages 1–10. Springer Berlin /
Heidelberg, 2005.

43. Alexandros Karatzoglou, Alex Smola, Kurt
Hornik, and Achim Zeileis. kernlab – an S4
package for kernel methods in R. Journal of
Statistical Software, 11(9):1–20, 2004.

44. Keehyung Kim, RI (Bob) McKay, and Byung-
Ro Moon. Multiobjective evolutionary al-
gorithms for dynamic social network cluster-
ing. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation,
GECCO ’10, pages 1179–1186, New York, NY,
USA, 2010. ACM.

45. Vassilis S. Kodogiannis, Mahdi Amina, and Ilias
Petrounias. A clustering-based fuzzy wavelet
neural network model for short-term load fore-
casting. International Journal of Neural Sys-
tems, 0(0):1350024, 2013.

46. K. Krishna and M. N. Murty. Genetic K-means
Algorithm. IEEE Transactions on Systems,
Man, and Cybernetics – Part A: Systems and
Humans, 29(3):433–439, 1999.

47. W.B. Langdon and R. Poli. Evolving problems
to learn about particle swarm and other op-
timisers. In Evolutionary Computation, 2005.
The 2005 IEEE Congress on, volume 1, pages
81 –88 Vol.1, sept. 2005.

48. Daniel T. Larose. Discovering Knowledge in
Data. John Wiley & Sons, 2005.

49. Marek Lipczak and Evangelos Milios. Agglom-
erative genetic algorithm for clustering in social
networks. In Proceedings of the 11th Annual
conference on Genetic and evolutionary com-
putation, GECCO ’09, pages 1243–1250, New
York, NY, USA, 2009. ACM.

50. Sean Luke. Is the perfect the enemy of the good.
In In Genetic and Evolutionary Computation
Conference, pages 820–828. Morgan Kaufmann,
2002.

51. J. B. Macqueen. Some methods of classification
and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pages
281–297, 1967.

52. U Maulik. Genetic algorithm-based cluster-
ing technique. Pattern Recognition, 33(9):1455–
1465, 2000.
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