


2 

~:'S-C:L>~lC:~~ -------

: --

~ - .--. .. 
,--:;; ,~....., ' .... _.,~ •. _"i. " ..... _ 



3 

-_. ,,-, ,~. ~ -----



4 

T 

-'::.} 

'11TT J\._-,-_ 

_ L'~_ " 



5 

-/'-,--
'''_.- -,.~~':'--j 

.C\.<. __ _ 

~., -:-, -::,r-' ,-i'-,'_--':: ,'":-' 
-1 __ -.-:'_ ;.. _:..J"~L 



..... , ~ -~ 

,-'_. __ r"~. 

6 



7 

I ~ m R 0 J U ~ ~ I ~ 



Cartilage is an ubiquitous tissue which occurs in a wide range 

of forms - rods, nodules, sheets or hollow capsules. The morpho­

genesis of this tissue is of fundamental importance in that the whole 

of the vertebrate endoskeleton has a cartilaginous origin though much 

of it is later replaced by bone. Only the dermal skeleton does not 

have a cartilaginous phase. Even once a cartilage element, such as 

a long bone, has ossified, subsequent growth in length is based on 

cartilage growth within the epiphyseal growth plate. 

Growth and morphogenesis of cartilage are intimately related 

and can be viewed in three phases: pattern formation, morphogenesis 

- the generation of form, and growth via the growth plate (Wolpert, 

1982). 

Pattern Formation 

Before cartilage is observed in the limb, the limb itself has 

to undergo considerable growth and development and it is during limb 

outgrowth that pattern formation occurs. 

has to be considered first. 

I) Limb outgrowth 

Limb outgrowth, therefore, 

The chick embryo wing bud first appears as a slight swelling on 

the flank, opposite somites 15-20, at stage 17 (stages are taken 

from Hamburger and Hamilton, 1951), which is equivalent to 52 hours 

of development as reported by Fell (1925). The early development 

of the wing bud is characterised Qy rapid outgrowth and expansion 

which transforms the initial, simple beehive shape into an elongated 

structure slightly flattened dorso-ventrally (Zwilling, 1961). At 

stage 18, both the wing and the leg bud consist of a mass of 

undifferentiated mesenchyme surrounded by an ectodermal covering 

(Fell, 1925); the ectoderm is thickened along the distal rim and is 
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known as the Apical Ectodermal Ridge (AER). The AER is necessary 

for development since removal results in truncated limbs (Saunders, 

I94S; Janners and Searls, 1971; Summerbell, 1974; 1977). 

Elongation of the limb bud is due to proliferation of the 

mesenchyme cells; at stage IS the mitotic index throughout is high, 

about 10% but this decreases steadily to ~ by stage 30 (Hornbruch 

and Wolpert, 1970). Mitotic cells are uniformly distributed until 

stage 24 when there is a significant decrease in mitotic index of 

proximal cells when compared with distal cells. The ectoderm has 

a more or less constant mitotic index of approximately 4% throughout 

stages IS-30. Ede and Law (1969) have suggested that growth occurs 

in a proximo-distal direction and this is consistent with the proximo-

distal gradient of mitotic activity observed. Several authors have 

proposed that mesenchyme proliferates within boundaries imposed by 

the ectoderm and that limb elongation occurs via distal mesenchyme 

cells dividing and moving into free space provided by ectodermal 

growth (Amprino, 1965; Hornbruch and Wolpert, 1970; Summerbell and 

Wolpert, 1972; Summerbell, 1977). 

During development, the skeletal and muscular elements of the 

limb differentiate within the mesenchyme in a proximo-distal sequence. 

How the spatial organisation of these elements is specified is the 

process of pattern formation. 

2) Specification of pattern 

Pattern formation governs the process of spatial differentiation 

in which individual cells within a population are specified to undergo 

a particular molecular differentiation (Wolpert, 1969). The spatial 

organisation of tissues, such as muscle and cartilage, can account 

for the structural differences observed between the chick embryo wing 

and leg bud. Molecular differentiation of cartilage is similar in 
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these limbs and it is their spatial organisation which is different. 

Pattern may be already present in the fertilised egg (see pre­

pattern model of Turing, 1952), which implies that, in a limb field, 

each cell is different, or it may come about at a later stage when 

differences between identical cells may be specified resulting in the 

pattern observed (Wolpert, 1969). Both of these models could specify 

some kind of skeletal pattern but only the latter is able to explain 

how reduplicated limbs can come about (see later), and therefore 

only this type of model will be considered in detail. 

Wolpert (1969) introduced the concept of Positional Information 

by which individual cells within a population each received a Positional 

Value, the way in which each cell interpreted this positional value 

resulted in appropriate cyto-differentiation. Two classes of models 

based on positional information have been put forward; short-range 

specification where local neighbour-neighbour interactions take 

place (French, Bryant and Bryant, 1976; Maden, 1977), and long-range 

specification where at least one special signalling region is present 

in the system studied (Wolpert, 1971; Gierer and Meinhardt, 1972). 

The Polar-coordinate model of French et al (1976) was proposed 

from the results of studies on regeneration in insect and amphibian 

legs and insect imaginal discs (Bryant. Bryant and French, 1977). 

and required that cells had already undergone some process to specify 

positional values. The model is based on intercalation, i.e. when 

cells with different positional values come into contact, under 

experimental circumstances, generation of new structures with the 

missing values ensues. The model looks at the limb circumferentially 

and the results are interpreted as the limb maintaining a "complete 

circle" of positional values. Recently this model has been pro­

posed to apply to the chick limb (Iten and Murphy, 1980; Iten, 1982), 

however, this proposal is controversial, and has been criticised by 
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the experimental results of Wolpert and Hornbruch (1981) and Honig 

(1981). Since it cannot account for the initial specification of 

positional values, it is a model more suited to regeneration than 

to pattern formation. 

Positional values could be set up by long-range signalling 

systems. Two models of such long-range specification have been 

put forward; Tickle, Summerbell and Wolpert (1975) suggest that the 

specifying signal may be a diffusible morphogen whilst Gierer and 

l\leinhardt (1972) have suggested that the signal arises from a 

reaction-diffusion mechanism. The major differences between these 

models are when and how a signalling region can appear, Wolpert 

(1971) proposes that the signalling region is specified early in 

development and subsequently affects later cells making the population 

of cells in the limb field heterogenous, on the other hand Gierer 

and Neinhardt (1972) suggest that the limb field is almost homogen 

and that the specifying region forms by autocatalysis. Both of 

these models could explain the spatial organisation observed in limbs 

but only the Wolpert model has dealt extensively with the chick wing 

and only this will be considered in detail below. 

The way in which positional values are established along two 

of the axes of the chick wing have been investigated and it turns out 

that each axis is specified by a different mechanism. In addition 

to a long-range signal, a clock mechanism has also been proposed. 

i) The proximo-distal axis 

The AER has been found to specify and maintain a region about 

30Qum thick at the distal tip of the limb, known as the Progress Zone 

(Summerbell, Lewis and Wolpert, 1973), - if the AER is removed the 

progress zone is no longer maintained, resulting in truncated limbs 

as mentioned above. The cells in the progress zone are constantly 

leaving due to cell proliferation, and it is proposed that specification 

1 1 



occurs just as the cells leave the zone. Cyto-differentiation can 

only occur once cells have left the progress zone. The final position 

of a cell in the limb depends on the time spent in the progress zone; 

the longer it stays, the more distal the structure it will participate 

in forming (Summerbell et al, 1973) (Fig. 1). 

ii) The Antero-posterior axis 

Positional value along this axis is thought to be specified by 

a graded signal (Wolpert, 1969), originating from a small group of 

mesenchymal cells found at the posterior edge of the progress zone, 

known as the Zone of Polarising Activity, or Polarising Region 

(Saunders and Gasseling, 1968; Balcuns, Gasseling and Saunders, 1970). 

Evidence that a signal from the polarising region specifies digits 

comes from experiments where polarising regions were grafted to a more 

anterior level of a host limb, in contact with the AER (Saunders, 

Gasseling and Gfeller, 1958; Tickle, Summerbell and Wolpert, 1975; 

Summerbell and Tickle, 1977). These grafts resulted in reduplication 

of cartilage elements in the antero-posterior axis (Fig. 2). Only 

cells in the progress zone are susceptible to the influence of the 

polarising region (Summerbell, 1974) and, considering the results 

obtained from successive grafts to different positions along the 

antero-posterior axis, it seems likely that elements are specified 

by their distance from the polarising region when they leave the progress 

zone (Tickle et al, 1975). The signal from the polarising region 

has been found to be universal since grafts of this region from mice 

(Tickle et aI, 1976), hamsters (MacCabe and Parker, 1976), and snapping 

turtles (Fallon and Crosby, 1977) were all able to induce chick limb 

reduplication. 

The specifying agent is thought to be a diffusible morphogen 

(as proposed by Tickle et al, 1975) originating at the polarising 

region and decreasing in concentration postero-anteriorally, a high 

12 



concentration would specify digit 4 whilst a low concentration would 

specify digit 2 (Tickle et aI, 1975; reviewed by Summerbell and Honig, 

1982). The chemical nature of the signal is unknown but recent work 

(Tickle, Alberts, Wolpert and Lee, 1982) has shown that the vitamin A 

derivative, retinoic acid, mimics the action of the polarising region. 

Vitamin A appears to be a morphogenetically active chemical since it 

can also alter the pattern of structures regenerated in amphibian limbs 

(Naden. 1982). 

iii) The Dorso-ventral axis 

The mechanism of pattern formation along the dorso-ventral axis 

is thought to be under the control of the ectodermal cell sheath, but 

is little understood (MacCabe, Errick and Saunders, 1974). 

Although several models exist to explain pattern formation the 

positional information model proposed by Wolpert (1969) provides the 

most useful way of considering limb development. Interpretation of 

positional values will result in molecular differentiation which, for 

cartilage, is identified as secretion of cartilage matrix. 

3) Nolecular differentiation of cartilage 

Cartilage matrix is composed of water, collagen, proteoglycans 

and other proteins. In the type of cartilage found in long bone 

rudiments (hyaline cartilage) the only collagen present is Type II 

which is made up of three identical a II chains (( a 11)3) and is specific 

to cartilage (Niller and Matukas, 1974; Prockop et aI, 1979. von der 

Mark and Conrad, 1979). Proteoglycans consist of a small amount of 

protein convalently linked to glycosaminoglycans (GAGs), the GAGs found 

in cartilage are chondroitin sulphate, keratin sulphate and hyaluronic 

acid. Each of the GAGs bind together via the link protein to form 

one proteoglycan molecule (see Stockwell, 1979 for review). Chon-

droitin sulphate is the most abundant GAG in cartilage and is scarc.e 
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elswhere in the embryo, as opposed to hyaluronic acid which is less 

abundant in cartilage and is found in many other tissues. Chondroitin 

sulphate is characterised by the position of the sulphate group on it's 

repeating disaccharide units. The disaccharide unit consists of 

Glucuronic acid bound to N-acetylgalactosamine (Stockwell, 1974); 

chondroitin sulphate A has a sulphate at the c4 position and chondroitin 

sulphate C has a sulphate at the c6 position on the galactosamine moiety 

(Mathews, 1958). Any incorporation of sulphate into cartilage is thought 

to reflect increased synthesis of chondroitin sulphate; incorporation of 

radioactively labelled 35S04 has been recorded as early as stage 22 but 

metachromatic matrix is not visible until stage 25 (Searls, 1965). 

Differentiation of cartilage can be identified by the incorporation of 

35S04 into chondroitin sulphate (Searls, 1965. Abbot and Holtzer, 1966), 

by the presence of large amounts of chondroitin sulphate proteoglycan 

(Crawford, 1980), or by the presence of Type II collagen (von der !vlark 

et aI, 1981). 

After pattern formation has specified that a particular group of 

cells will become cartilage these cells interact with each other in some 

way to produce a cartilage element. How this element takes shape is the 

process of morphogenesis and this shall be considered below. 

Morphogenesis 

Cartilage occurs in a wide range of shapes, and cartilage morpho-

genesis has to account for all of these. One thing every cartilage 

element has in common is that each element arises from a mesenchymal 

condensation, and it would appear that the shape of the initial conden­

sation may reflect the shape of the final element formed, e.g. the 

condensation of a long bone is an elongated structure whereas that of 

a wrist element is more rounded. Since the shape of a condensation 

may be an important first step in the morphogenesis of that tissue, the 
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formation of the condensation, in the chick limb, shall be considered. 

I) Pre-cartilage mesenchymal condensations 

The first study of chondrogenesis in the chick limb was by Fell 

in 1925, who stated that a mesenchymal condensation was observed in the 

proximal part of the limb at 4 days, with the first signs of a cartilag­

inous matrix appearing in the centre of the future diaphysis of the 

femur at 5 days. Within 30 hours of chondrogenic initiation, three 

zones of cells were observed in the developing rudiment (Fell and Canti, 

1934), these were a zone of small, rounded, actively dividing cells, a 

zone of cells flattened at right axis to the long axis of the limb and a 

zone of large hypertrophic cells. (Fig. 3). 

This initial condensation process is thought to be very important 

for normal chondrogenesis to proceed, but as yet the actual mechanism 

involved has not been fully elucidated. Two views of the mechanism 

involved in the condensing process together with two views of· the 

ultrastructure of the condensation are hotly debated. A third possi-

bility. that the condensation is due to a localised increase in mitosis, 

as has been proposed by Wessells (1965) to account for dermal papillae 

condensations in feather development, has been shown to be unlikely in 

the limb by Ja~~ers and Searls, (1970) and by Hornbruch and Wolpert 

(1970). 

It is generally agreed that a condensation results in a area of 

high cell density appearing in the region of presumptive cartilage (Ede 

and Agerbak, 1968; Gould, Day and Wolpert, 1972; Searls, Hilfer and Mirow. 

1972; Thorogood and Hinchliffe, 1975). It is the way in which this 

increase in cell density comes about that is controversial. The view 

of Ede and Agerbak~I968) is that increase in cell density comes about 

by active cell migration of pre-cartilage cells into the region of 

presumptive cartilage with a concomitant increase in intimate cell-cell 
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contacts. On the other hand, Gould et al (1972) suggest that the 

increase in cell density is due to lack of movement away of pre-cartilage 

cells after cell-division, with no increase in intimate cell-cell contacts. 

a) Centripetal movement mechanism 

The increase in cell density in the central core is thought to 

come about through centripetal movement of peripheral mesenchyme cells 

and Ede and Agerbak (1968) liken this process to the aggregation phase 

of amoebae of the slime mould Dictyosteliun discoid~um. No migration 

of mesenchyme cells can be observed in vivo, therefore the behaviour 

of dissociated limb mesenchyme cells has been studied in the hope that 

this may provide an analogous mechanism. 

Ede, Wilby and Colquhoun (1977) have demonstrated that re-

aggregating limb mesenchyme cells growing in culture form chondrogenic 

foci with surrounding cells moving towards them. These foci are thought 

to be similar to the whorl-like arrangements observed in transverse 

sections of whole limbs CEde and Flint, 1972). The migration of mesen-

chyme cells in culture is once again likened to aggregation of slime 

mould amoebae. In normal limb development the centripetal movement 

proposed is considered to involve a change in adhesiveness of some mesen-

chyme cells. This would result in pre-cartilaginous mesenchyme cells 

migrating past non-cartilaginous cells until they came into contact with 

cells of a similar adhesiveness, stick together and form a condensation. 

Evidence for increased adhesiveness playing a major role in the 

condensation process comes from ultrastructural studies of normal 

chondrogenesis and from in vitro studies of the chick mut~~t talpid. 

Increased adhesion between cells in a condensation in vivo has 

been reported by Thorogood and Hinchliffe (1975) who studied the process 

of condensation in the chick hind-limb. These authors, recorded an 

increase in cell density of 62,10 at the region of ~resumptive cartilage, 

-40 cells/unit area at stage 20 to 65 cells/unit area at stage 24. (These 



results have been calculated as an increase from 12-19 cells/1000)Um
2 

by 

Hall (1978»). Although cell density has been increased at stage 24 no 

increase in cell-cell contact was observed, but if an increase in 

adhesiveness, as proposed by Ede and his colleagues, was a transient step 

then looking at condensations from various stages may miss this step. 

To overcome this, Thorogood and Hinchliffe (1975) looked at different 

regions of a stage 26 tibia where the central region, which had already 

undergone matrix secretion, was considered to represent an advanced 

stage of chondrogenesis, and regions distal to this were considered to 

be less advanced. Cells at the distal end of a stage 26 tibia exhibited 

the highest cell density, 70 cells/unit area, were very close together 

and became intimately associated. They state that this region is 

similar to the classical condensation observed under the light micro­

scope and propose that close apposition occurs by active migration of 

cells into the presumptive cartilage region. However, it is not clear 

if the stage 26 distal cells are exhibiting extensive cell-cell contacts. 

Some observations on the mutant talpid3 may also be related to the 

condensation process. Talpid3 is a mutant caused by an autosomal 

recessive gene which is lethal, between 7-14 days of development, in 

homozygous embryos (Ede and Kelly, 1964a;b), and is characterised by 

short, very wide limb buds (Cole, 1942) with abnormal cartilage 

condensations. If;any of the condensations are found to remain fused 

when they should normally have separated (Ede, 1971). When normal 

and talpid3 limbs were dissociated and allowed to re-aggregate separately, 

normal mesenchyme cells formed a few large aggregates, whilst talpid3 

cells formed numerous small clusters. This was interpreted to 

mean that talpid3 cells were more adhesive and therefore less motile, 

than normal cells so that when they came into contact with each other 

they stuck together and remained in that position. In the 
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limb the extra adhesiveness of talpid3 mesenchyme would hinder migration 

and therefore inhibit formation of condensations. any condensations 

which did form would contain mutually adhesive cells which would tend 

to remain together resulting in the fused elements observed. 

b) Non-movement mechanism 

The mechanism of centripetal migration can be contrasted with the 

model proposed by Gould et al (1972) in which it is suggested that the 

increase in cell density observed in a condensation arises, not through 

movement into the condensation, but through lack of movement away 

after cell division. This lack of movement could be related to the 

phenomenon of contact inhibition of locomotion as exhibited by cells in 

culture (Abercrombie and Heaysman, 1954). The major point of this 

report is that, although there is an increase in cell density of 

central core cells from 11cells/l000~m2, at stage 21, to 15cells/ 

2 1000/urn , at stage 24 (an increase of 36%), there is no concomitant 

increase in intimate cell-cell contacts. This result has been supported 

by ultrastructural studies of Searls et al (1972) who observed a decrease 

in extensive cell-cell contacts between stages 18-24. Gould et al 

(1972) and Searls et al (1972) both record an increase in the total 

number of cell contacts during this period, but these are via filopodia 

and rarely extend more than 0.5 /Um. They suggest that the increase in 

cell density observed under the light microscope is due mainly to the 

many filopodia and not solely to the close packing of cells. Gould 

et al (1972) state "that to talk of condensation of the pre-cartilage 

mesenchyme as if it involved a close packing of cells resulting in a 

considerable increase in cell contact is misleading" •• "true" conden-

sations only appear in pre-myogenic mesenchyme. 

Very little cell movement has been demonstrated in the chick limb 

in vivo (Searls, 1967), and when embryonic cells were implanted into 
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the chick wing they exhibited a lack of invasiveness (Tickle, Goodman 

and Wolpert, 1978). There is also a precedent for lack of active 

migration causing condensation from studies of a different system, the 

amphibian neural crest (EpperlQ.in and Lehmann, 1975). After the 

initial contact between cultured neural folds and pharyngeal ectoderm, 

neural crest cells proliferate and form a cluster solely due to lack of 

movement away after cell division. 

During the condensation process, pre-cartilaginous mesenchyme 

cells undoubtedly get closer and ma::) come into contact therefore 

adhesiveness may be an important factor but a difference in adhesion, 

between cartilaginous and non-cartilaginous mesenchyme cells, as pro­

posed by Ede and Agerbak (1968) is unlikely. Whatever role adhesive­

ness plays in the condensation process it is not sufficient to cause 

segregation of cells in vitro (Searls, 1972; 1973). Mixtures of stage 

24, 25 or 26 central core (or cartilage) cells with central core cells 

from stages 20-22 did not exhibit the "sorting-out" phenomenon described 

by Steinberg (1964). 

It is not yet clear which mechanism is involved in the actual 

condensation process, but experimental evidence suggests that the lack 

of cell movement after cell division (Gould et aI, 1972) is the most 

likely. 

A major controversy, however, is whether there is increased 

cell-cell contact in the condensations. The apparently contradictory 

ultrastructural observations can be explained if examined closely. 

One possibility is that the differences may simply be due to the fact 

that Gould et al (1972) studied the wing bud whilst Thorogood and 

Hinchliffe (1975) studied the leg bud; wing development lags behind leg 

development by about 12 hours, and it could be that the close proximity 

observed in the leg had not yet occurred. A second possibility, that 
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the differences observed are due to different methods of fixation 

causing shrinkage of chondrogenic cells, therefore causing them to 

appear further apart, (as suggested by Thorogood and Hinchliffe (1975) 

to be the case in the electron micrographs of Gould et al (1972»), is 

unlikely since myogenic cells exhibit no shrinkage and show large areas 

of cell fusion. 

A third possibility, and the most likely. is that the distal region 

of a stage 26 tibia does not represent an accurate model of an early 

condensation. The secretion of matrix has already began in the centre 

of a stage 26 tibia and therefore, cells distal to the centre will be 

under excess pressure due to the matrix secreted. It is probably this 

extra pressure which causes the very close apposition observed. Indeed, 

when Thorogood and Hinchliffe (1975) look at a stage 24 condensation 

they observe that "there is an increase in cell number but without the 

close apposition of cell surfaces" which is identical to the result of 

Gould et al (1972). -- It would seem likely, therefore, that at stage 24, 

when the condensation is most pronounced, pre-cartilage cells do not 

come into close contact with each other, and the mechanism proposed by 

Gould et al (1972) must be considered as being the most probable. 

The signal which triggers off the condensation process is not 

known but some evidence has been produced to suggest that a change in 

glycosaminoglycan proportions is involved. Hyaluronic acid (HA) is 

at a maximum just prior to matrix secretion (stage 24) and it is at 

this point that synthesis of hyaluronidase dramatically increases 

(Toole, 1972). Brea~down of HA into oligo saccharides has been found 

to stimulate chondroitin SUlphate synthesis (Wiebkin and fviuir, 1973; 

1975), therefore, removal of HA may be a controlling step in cartilage 

differentiation. 

Hyaluronic acid may be involved in the condensation process itself 
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but the evidence for it's involvement can be interpreted to support 

both mechanisms of condensation and is therefore unclear. Toole and 

Trelstad (1971) proposed that HA provided a substratum over which 

mesenchyme cells migrated during corneal development and Toole (1972) 

suggested that limb mesenchyme cells moved into the centre of the limb, 

at stage 22 utilising a similar mechanism. On the other hand, HA has 

been found to mask the protein fibronectin in the mouse (Silver, 

Foidart and Pratt, 1981) and it is possible that mesenchyme cells in 

a condensation are being held close together by fibronectin (which 

appears as HA) after cell division. This interpretation has been 

supported by observations in the chick where levels of fibronectin 

seem to increase as HA is broken down (Newman and Frisch, 1979; Dessau 

et al, 1980). 

Hyaluronic acid has been known to be involved in cell proliferation 

and mobility since 1952 when Maurer and Haduck demonstrated it's 

presence in considerable quantities in the early stages of callus 

formation during repair of fractured long bones. Recently Solursh 

et al (1979) demonstrated the importance of HA in the morphogenesis of 

the sclerotome but suggested that HA acted by expanding and pushing 

mesenchyme cells "en masse" with no individual cell migration. In 

solution, HA expands greatly to occupy a volume 10,000 times that of 

the molecular chain (Preston, Davies and Ogston, 1965. Laurent, 1970), 

and this could account for the pushing phenomenon. Until further 

studies are carried out on the condensation process, the role of HA 

in it must remain unclear. 

Since it is difficult to determine the conditions required for 

cartilage differentiation in the living embryo many studies have been 

performed in vitro. 
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2) In vitro chondrogenesis 

Cell cultures of mouse or chick embrjo pre-cartilage limb 

mesenchyme have been found to produce histologically identifiable 

cartilage only when grown at densities greater than confluence (Umansky, 

1966; Caplan, 1970). A very useful technique for ensuring greater 

than confluent density has been developed by Ahrens, Solursh and Reiter 

(1977) and this involves plating out cells in a volume of 10~ul con­

taining 2x105 cells, (i.e. 2xl07 cells/mI.) - a micro-mass culture. 

At this density limb mesenchyme cells from stage 24 embryos forms discrete 

aggregates during the first day of culture, by 72 hours these aggregates 

stain positively with alcian blue (pH I) indicating the presence of 

cartilage matrix. Posi tively staining aggregates are called "cartilage 

nodules" and nodules will not form without the preceding aggregation 

step_ 

The ability to form cartilage nodules is stage dependent: 

mesenchyme cells from limbs of stages 21-24 will form a relatively 

constant number of nodules, irrespective of the, stage, but cells from 

stage 17-19 limbs will only form aggregates without subsequent nodules. 

stage 20 cells mayor may not produce nodules suggesting that this is 

a transitional stage during which the cells acquire the ability to form 

nodules. Thus it has been suggested that the ability to form aggregates 

and the ability to form nodules seem to be two distinct steps in vitro. 

The ability to form nodules seems to be related to levels of 

cyclic AMP since the addition of dibutryl cyclic AMP (an analogue) or 

theophylline (an inhibitor of cyclic AMP phosphodiesterase, the enzyme 

responsible for cyclic AMP breakdown), both of which elevate levels of 

cyclic AMP, results in nodule formation in stage 19 cultures. The 

action of cyclic M~P in nodule formation is unclear, it would seem, 

from the above results, that elevation of cyclic ~IP enhances differ­

entiation but Kosher (1976) has found the opposite result when somitic 

22 



mesoderm is exposed to cyclic M~P - cartilage differentiation is 

suppressed. Whitfield et al (1979) have shown that many differentiating 

tissues, other than cartilage, also have increased levels of cyclic M~P, 

but the role of cyclic M~P here, as in nodule development, is unclear. 

In addition to the stage dependency, the ability to form cartilage 

is also region dependent. Central core mesenchyme from stage 24 embryos 

produced virtually a carpet of cartilage whereas similarly staged peri­

pheral cells formed only a few nodules in addition to fairly extensive 

areas of myogenic tissue. This implies that by stage 24 the chick 

limb consists of a heterogenous population of mesenchyme cells (Ahrens 

et al, 1979). 

Solursh, Ahrens and Reiter, (1978) have extrapolated their in vitro 

results to correspond with in vivo events and have produced a model 

outlining the steps involved during in ~ chondrogenesis. Their 

model states that cells develop the capacity to form cartilage before 

the condensation phase, but that aggregation must occur before cartilage 

matrix is produced and this has led Newman (1977), and Solursh and Reiter 

(1980) to conclude that histogenic, or cell-cell interactions are a 

pre-requisite for cartilage cell differentiation. Individual cells, 

able to secrete cartilage matrix without histogenic interactions, only 

appear after overt differentiation has begun (Solursh and Reiter, 1975). 

We have recently suggested (Archer, Rooney and Wolpert, 1982) that cell­

cell interactions are not required for cartilage differentiation and that 

isolated pre-cartilage mesenchyme cells are capable of producing a 

metachromatic matrix if they remain rounded during culture. Cells 

were maintained in a rounded configuration by culturing on a semi­

adhesive substratum (poly (H~f~») and these cells synthesised more 

sulphur-containing extracellular matrix than cells allowed to flatten 

on normal tissue culture plastic. It is proposed (Archer et al. 1982) 

that the high density involved in micro-mass cultures favours a rounded 
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cell configuration, and it is this, not histogenic interactions, which 

is the pre-requisite for cartilage matrix production. 

Irrespective of the mechanism involved in the condensation process, 

pre-cartilage cells start to secrete matrix and the final cartilage 

element begins to ta~e shape. The factors involved in transforming a 

long bone condensation into a long bone rudiment will be considered below. 

3) rvIorphogenesis of the chick embryo long bone rudiment 

Fell (1925) observed that soon after the first sign of matrix 

secretion chondroblasts, in the centre of the presumptive rudiment, 

became orientated perpendicularly to the long axis of the limb. From 

this stage onwards growth of the rudiment is due mainly to cell division, 

cell hypertrophy and matrix secretion. Cell division, cell hypertrophy 

and matrix secretion would only be important in morphogenesis if differ­

ential rates of expression were observed for each factor in each zone 

of the rudiment. 

a) Cell division 

A cartilaginous, chick long bone rudiment, between stages 30-34, 

consists of three zones of cells, similar to those of the epiphyseal 

growth plate, and can be considered as being an elongated growth plate. 

Differential rates of cell division have been observed in the cartil­

aginous epiphyseal growth plate of rats by Kember (1972; 1973; 1978), 

mitoses were abundant in the zone of flattened cells. few in the zone 

of resting cells and none in the zone of hypertrophy. 

Cell division does not appear to be the most important factor 

in cartilage rudiment growth since a rudiment continues to grow to 80% 

of controls after exposure to 4000 rads (40 Greys) of X-irradiation 

(Biggers and Gwatkin. 1964; Archer, personal communication). (40 

Greys is considered to be sufficient to knock out cell division, of 

mammalian cells in culture, without killing the cells). Cell division, 
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however, does seem to play some role in morphogenesis since the shape 

of the epiphysis was found to be abnormal, and 20% of the growth 1-TaS 

affected. 

b) Cell hypertrophy 

If cell hypertrophy is prevented by storage in glycerol saline 

at -79°C for It hours (Biggers, 1957), the increase in length observed, 

once thawed, is dramatically reduced compared with controls. Freezing 

kills hypertrophic cells preferentially and stops flattened cells 

producing further hypertrophic cells. Blockage of hypertrophy was 

found to affect the diaphysis only since cell division and morphogenesis 

in the epiphysis returned to normal. 

The ability of chondrocytes to hypertrophy may provide an explan­

ation as to why some rudiments, such as the ulna, elongate extensively 

whilst others, such as the wrist elements, which do not hypertrophy, 

hardly elongate at all (Summerbell, 1976; Holpert, 1981). The difference 

in the increase in length observed between the ulna and the wrist is a 

clear example of non-equivalence as proposed by Lewis and Wolpert 

(1976). This theory states that, for cartilage, each element is 

different and each will grow according to the individual growth programme 

of that element. Each element is laid down at the same initial size, 

about JOONm, (Lewis, 1975) and it is the growth programme which deter­

mines the final length. 

c) Matrix secretion 

Every cartilage cell is capable of secreting matrix and this may 

be the most important factor in cartilage growth and morphogenesis. 

Thorogood (1983 in press) has outlined three ways in which matrix 

secretion could affect cartilage morphogenesis; 

i) Differential rates of secretion 

ii) Differential rates of matrix accululation 

iii) Polarised secretion of matrix. 
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Very little evidence is available for the first two points but some 

information is available for the third. 

Orientated matrix deposition is thought to occur in cartilage 

rudiments (. #1983 in press) but there is some controversy about 

how it comes about. Gould, Selwood, Day and vlolpert (1974) believe 

that matrix secretion causes cellular orientation whereas Holmes and 

Trelstad (1980) believe that cellular orientation is present before 

matrix secretion begins. 

Transverse sections of early cartilaginous rudiments show a whorl­

like arrangement of cells (Ede and Flint, 1972; Gould et aI, 1974), 

cells at the centre are rounded and separated by metachromatic man~ix, 

whilst peripheral cells appear as elongated cresent shapes with very 

little extracellular matrix and many extensive cell contacts. The 

elongated peripheral cells eventually form the perichondrium and secrete 

type I collagen, whilst rounded cells secrete cartilage type II collagen 

(von der Hark and von der Mark, 1977; von der Nark et al, 1980). In 

longitudinal sections the central cells appear flattened, as observed 

by Fell (1925), suggesting that they are in fact disc-shaped. Gould 

et al (1974) suggested that the pressure exerted by the matrix, associated 

with growth in the rudiment, caused chondroblasts to become disc-shaped 

and peripheral cells to form the perichondrium and proposed a model to 

explain the orientation observed. (Fig. 4). Further growth in length 

is now enhanced by the constraining effect of the perichondrium as suggested 

by Carey (1922) and Fell and Canti (1934). 

If cell orientation precedes matrix secretion, as proposed by 

Holmes and Trelstad (1977; 1980), then some factor demonstrating cell 

polarity might be expected to be present. This factor has been 

identified by Holmes and Trelstad (1977; 1980) to be the nucleus -

golgi body axis. In the 9 day old mouse embryo hind-limb bud non­

cartilaginous mesenchy-me cells were orientated with their golgi body 
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tovrards the basement membrane, but as development proceeded this 

orientation was reversed so that, by the onset of matrix secretion 

(13 days), the golgi body was orientated away from the basement membrane 

(Holmes and Trelstad, 1977). Pre-cartilage mesenchyme cells at 12 

days were orientated with their golgi body towards the longitudinal 

axis of the condensation i.e. away from the basement membrane (Holmes 

and Trelstad, 1980). However, this orientation was only clear in 

pre-cartilage condensations of the hind limb and even here was only 

significant in proximal (upper leg) or distal (foot) regions of the 

limb, cells in the central (tibia/fibula) region condensations exhibited 

virtually random orientation prior to matrix secretion. 

The orientation decreased in the proximal and distal regions at 12.5 

days which is not consistent with orientation being present before 

matrix secretion. However, orientation returned after matrix secretion 

which is consistent with the proposal of Gould et al (1974). 

Interestingly, Trelstad (1977) states that somitic mesoderm is orientated 

in very early (stage 12) chick embryos and after matrix secretion has 

begun (stage 27) but orientation cannot be found in an intermediate 

stage (stage 16). This could suggest that waves of orientation exist, 

with no orientation just prior to matrix secretion. 

If cellular orientation is present before matrix secretion, the 

pressure effect proposed by Gould et al (1974) would still take place 

as described. Hhich factor is the cause and which factor is the effect 

is unknown, but both models result in cellular orientation and this would 

allow polarised secretion of matrix to play a major role in cartilage 

morphogenesis. 

The importance of matrix secretion has been demonstrated in the 

mandible of embryonic rats by interrupting the processes of matrix 

secretion and matrix organisation. The synthesis of glycosaminoglycans 

was inhibited by the addition of Diazo-nor-leucine (DON) (DieHert and 
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Pratt, 1979), the utilisation of sulphate was prevented by 6-

Aminonicotinamide (6-AN) (Diewert, 1979) and collagen cross-linkage 

was illi~ibited by B-Aminopropnonitrile (BAPN) (Diewert, 1980 a; b), all 

treatments resulted in the production of a cleft palate due to lack 

of increase in length of Meckel's cartilage. Meckel's cartilage from 

each side of the ja"\f has to come close together for normal palate 

development. DON and 6-AN both exerted their effects on the growth 

of the cartilage whilst BAPN allowed growth to occur, but caused 

bending of the cartilage, therefore they could not come close together. 

This implies that collagen secreted by chondroblasts may play a greater 

role in morphogenesis than it does in growth, possibly by altering 

the organisation and therefore the rigidity of the matrix. 

d) Other factors 

Some attention has been paid to other factors which may play a 

role in morphogenesis, these factors have been considered by Thorogood 

(1982 in press) and include appositional growth, recruitment of cells 

from the surrounding mesenchyme and physical constraints. 

Appositional growth is thought of as differentiation of the inner 

layer of the perichondrium into chondroblasts which merge into the 

cartilage, but such an incorporation of perichondral cells has yet to 

be clearly demonstrated. Increase in transverse diameter of epiphyseal 

growth plate cartilage occurs by interstitial growth of proliferative 

chondroblasts (Rigel, 1962; Hert, I972) , Meikle (1975) demonstrated 

that the third metacarpel of a 7 day rat, when transplanted into an 

intracerebral site, exhibited a marked lack of increase in transverse 

diameter 1 .. hen compared with controls. He stated that "perichondrial 

chondrogenesis" was unaffected, but does not make clear how this 

phenomenon was assessed. The lack of increase in transverse diameter 

was due to inhibition of cell division of proliferative chondroblasts. 

He concluded that "perichondrial chondrogenesis" played a very minor 
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role in the growth of cartilage. 

Cell recruitment is a similar phenomenon to that of appositio.nal 

growth except that the cells are thought to come from the surrounding 

mesenchyme and the recruitment occurs before the cartilage element 

has formed. Two examples have been put forward. 

Ede and Agerbruz's (1968) centripetal movement mechanism for the 

process of condensation is essentially a recruitment of cells. As 

discussed above, there is no direct evidence to verify any recruitment. 

The other example has been put forward by iiolff (1958) and Haillpe-

(1959; 1960) to explain why the tibia grows much larger than the fibula. 

'I'lolff (1958) proposed a "principle of competition" which stated that 

the larger the anlagen the greater its "field of influence" i.e. its 

ability to recruit cells. According to Hampe (1959, 1960), the tibia 

is more able to recruit mesenchyme cells, leaving a smaller pool for 

the fibula to draw cells from, therefore the tibia gets longer whilst 

the fibula does not. Recent work, however, suggests that the fibula 

gets smaller relative to the tibia because the distal epiphysis of the 

fi bula fuses to the distal epiphysis of the tibia and breaks av.Tay 

(Archer, Hornbruch and Holpert, personal communication). The rate of 

increase in length of the fibula decreases, because it lacks an 

epiphyseal end, and it gets left behind as the tibia continues to grow. 

Very few studies have been carried out on the effect of physical 

constraints on cartilage morphogenesis. An increase in pressure 

exerted on whole tibiae (Rodan, Nensi and Harvey. 1975), on slices of 

tibiae (Rodan. Bourret, Harvey and r1ensi, 1975) or on dissociated cells 

from each zone of the tibia (Bo~~et and Rodan, 1976), all resulted in 

a change in the intracellular levels of cyclic AMP and affected the 

uptake of radioactively labelled JH-thymidine. HO~T this pressure 

could be exerted in vivo is unkn01m but it is probable that the 

perichondrium plays a vital role. 



Little is known about the role of the perichondrium in cartilage 

growth and morphogenesis which is surprising since every cartilage 

element is surrounded by a perichondrium. Carey (1922) and Fell and 

Canti (1934) suggested that the perichondrium might act as a constraining 

sheath preventing circumferential expansion and thereby favouring 

longitudinal growth. The idea of the perichondrium acting as a 

constraining sheath has been modified and has been termed Directed 

Dilation (Wolpert, 1982; Archer Rooney and Wolpert, 1982), on the 

basis of experimental evidence which will be considered in detail in 

later chapters. Relevant to this, some work has been performed on 

the constraining effect of the periosteum. The periosteum arises 

from the perichondrium and consists of an inner layer of osteogenic 

cells and an outer layer of fibroblastic cells. Crilly (1972) 

demonstrated that if a circumferential incision was made in the 

periosteum of the radius of an immature chicken, the radius overgrew 

in length compared with controls. Similar results have been 

presented for the immature rat (Houghton and Dekel, 1979). Both 

groups conclude that a growing long bone is held under considerable 

pressure by the periosteum, and that release of this pressure, by 

circumferential incision of the periosteum, allows excess growth in 

length to occur. 

It appears likely that physical constraints exerted by the 

perichondrium play an important role in transforming the main factors 

of cartilage growth and morphogenesis, cell division, cell hypertrophy 

and matrix secretion, into the appropriate morphogenesis observed 

during development. The role of the perichondrium in cartilage 

morphogenesis may turn out to be of fundamental importance. 

This thesis will only deal with chondrogenic tissue after it 

has been committed and when it's morphogenesis appears to be autonomous. 

The autonomy of cartilage morphogenesis will be considered below. 
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4) Autonomy of cartilage morphogenesis 

Once chondrogenic tissue has become committed it will continue 

to differentiate and eyhibit an almost normal morphogenesis even if 

it is transplanted to non-chondrogenic regions or cultured in vitro. 

This autonomy is expressed whether the tissue is complex, as in a 

whole limb, or simple, as in an isolated long bone rudiment (Nurray 

and Huxley, 1925; )VlUrray, 1926; strangeways and Fell, 1926; Fell and 

Canti, 1934; Biggers, 1964; Holder, 1977a; b; c). Autonomy of 

morphogenesis is not restricted to limb cartilage and has been shown 

for scleral cartilage (Heiss a.l1d Amprino, 1940), Ivleckel's cartilage 

(Jacobson and Fell, 1941), the sternum (Chen, 1952; 1953) and ribs 

(Kieny, Hauger a.Y).d Sengel, 1972). }u though cultured elements retain 

their gross morphology, long bone rudiments do not form a marrow 

cavity, hypertrophic cells do not get re-absorbed and joints may fuse 

together (Fell and Robinson, 1929; Holder, 1978), which implies that 

some balance must exist between intrinsic and extrinsic factors in 

the normal development of detailed features of the mature element. 

Weiss and Hoscona (1958), however, suggest that the autonomy of 

cartilage morphogenesis is due to properties intrinsic to the cartilage 

cells themselves. Their experiment showed that committed periocular 

mesenchyme, when dissociated, always formed a flat sheet of chondroblasts 

but, in contrast, dissociated Jt day committed limb core mesenchyme 

always formed rods of cartilage similar to that produced in the limb. 

ltJolpert (1982) would suggest that, although every cell is different by 

virtue of its positional information, the morphogenesis of cartilage 

depends, not on the nature of the positional values of the constituent 

cartilage cells, but on the instructions recieved from the perichondrium 

surrounding each element. Possible differences in perichondrial 

structure would account for~the various cartilage shapes produced, 

and, their autonomy could therefore be controlled simply by the 
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perichondrium. In normal development the perichondrium would interact 

with local extrinsic properties to produce the final element observed. 

Once a long bone has ossified, continued growth is still due to 

growth of cartilage; in mammals each long bone forms a cartilaginous 

epiphyseal growth plate and growth of the bone is due mainly to growth 

within this growth plate. 

Growth and the Growth Plate 

The growth plate consists of three zones of cells with prolif-

eration occurring only in the zone of flattened cells (Kember, 1972, 

1973, 1978). The rate of proliferation is similar for each growth 

plate of different long bones and it is the size of the proliferating 

population which determines the rate of increase in length of the bone 

(Kember, 1978). The mechanism by which the three zones of cells are 

set up is therefore very important in determining the rate of growth. 

The growth plate is very easily damaged (e.g. any interference 

with the vascular supply causes severe damage), and for this reason 

it has not proved possible to study the growth plate in vitro. 

However, as mentioned above, the chick embryo cartilaginous long bone 

rudiment is essentially an enlarged growth plate, and since these 

rudiments are accessible to direct manipUlation both in vivo and in --- -

vitro they produce an excellent model for the study of the cellular 

basis of cartilage growth within the growth plate. 

The aim of this thesis will be to discuss the factors involved 

in cartilage morphogenesis with reference to the ~ole played by 

physical constraints. Particular attention shall be paid to the role 

of the perichondrium in eliciting these constraints. An attempt will 

be made to describe how three zones of cells are set up in the long 

bone rudiment, thus providing a model to describe the setting up and 

functioning of the epiphyseal growth plate. 
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Fig. I. The Apical Ectodermal Ridge (AER) maintains the cells in 
the Progress Zone in a labile state. As the cells leave this zone 
they have positional values assigned to them. Position in the 
proximo-distal axis is determined by the amount of time spent in the 
progress zone. In the case of the antero-posterior axis, position 
is determined by the distance of the cell from the Zone of Polarising 
Activity (ZPA) when it leaves the progress zone. 
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Fig. 2a. :;Jhole mount of a 10 day Hing stained Hi th alcian green 
to shOtt/" the cartilage elements. H - Humerus, R - Raclius, U - Ulna, 
II - Digit II, III - Digit III, IV - Digit IV. 

2b. Grafting an excess polarising region to an anterior 
position on a -wing bud results in the formation of supernumerary 

The digits formed are mirror-image symmetrical tb the 
natural digits of the host. 

Fig. 3. Tliree zones of cells can be clearly recognised in a 
developing long bone rudiment - in this case half of the central 
phalange of digit 3 at stage 32. Note the zones of rounded (R) 
flattened (F), and hypertrophic cells. Bach cellular zone lS 

contained Hithin a multilayered perichondrium (p). Toluidine 
bllJ.8 stail"l~ Vag. x 200. 
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Diag-£amatic Bepresentation of Cellular Orientati on in 
Long Bones. 

A pre-cartilage condensation, in cross-section is 
considered to be a cylinder with randomly spaced cells. 
If only central cells begin to secrete cartilage matrix 
then peripheral cells with lJe forced to f12~tten. 
The flattened cells 1,ill eventually form the perichondrium. 
Alongi tudinal section Vie"0T of the central cells at a 
stage similar to that above. 
If every central cell secretes matrix and the cylinder 
remains the same diameter then the cells will become 
evenly spaced. 
If the walls of the cylinder expand, in a radial direction, 
at the sa.Ti1e time as central cells secrete matrix then 
flattening of the cartilage cells would occur. 

In a developing rudiment the Hidth is narrOHest at the diaphysis 
but increases towards the epiphyseal region. this increase in 
Hidth begins at the position of flattened cells and could account 
for the flattening observed.(see fig. 3). 
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General IVlaterials and Nethods 

Fertilised ~ite leghorn chicken eggs were obtained from a local 

source (Needle Farm; Enfield), and stored in a cooled incubator. at 

o 
12 C, for up to 7 days. To restart embryonic development, eggs were 

transferred to a humidified incubator at 37-390 C. On the third day 

of incubation the eggs were removed from the incubator and the blunt 

end was pierced to puncture the air sac. The eggs Here then windowed 

by cutting a square into the shell using a diamond-edged cutting disc 

on a dentists drill, the shell was wiped with 70% alcohol and the 

square was removed. The shell membrane was carefully torn, causin~ 

the to collapse into the air sac, and the embryo was exposed. 

The embryos were staged according to Hamburger and Hamilton (1951), 

the vrindm-r was sealed with sellotape and eggs containing normal embryos 

were returned to the incubator until the desired stage was reached. 

Approximately 90% of the eggs 1-,ere found to be fertile and normal. 

2) lliedia 

i) BGJb - Fitton Jackson modified medium 

BGJb - Fitton Jackson modified medium is a chemically defined 

medium used specifically for growth of cartilage explants (Biggers, 

Gwatkins and Heyner. 1961). 

100ml of BGJb - Fitton Jackson modified medium (Gibco) was 

supplemented with IOml of Foetal Calf Serum (Gi bco). 1. Iml of 200mlIJ. 

L-Glutamine (Gibco), to a final concentration of 292jUg/ml. 1.Iml of 

a 100 x Antibiotic-Antimycotic solution (Gibco). to a final concentration 

of 100 units Penicillin, 100 Jug Streptomycin and 0.25 JUg Fungizone/ml. 

and 30mg of Ascorbic acid (AnalaR). 



ii) Nutrient mixture F-I2 (Ham). 

Hams F-I2 is a chemically defined medium used specifically for 

cell culture, particularly clonal cell culture (Ham. 1965). 

Hams F-I2 (GibeO) Has supplemented with the same constituents as 

BGJb except, in some cases, Foetal Calf Serum was replaced by Chicken 

Serum (Gibco). 

All media were sterilised by filtration through a sterile fiiillipore 

filter with a pore size of O.22/Um. 

3) Enzymes 

i) T-.cynsin 

30mg of trypsin (1:250 Difco, U.S.A.) was dissolved in rOml of 

phosphate buffered saline (PBS) to make a 0.3"/0 solution (vr/V). The 

pH was adjusted to 7.L~, the solution was centrifuged at 1250 r.p.m. for 

5 minutes and the supe:rn.atant was filtered through a sterile IVlillipore 

filter. The solution was made into aliquots which were kept frozen 

until required. 

ii) Collagenase 

20mg of Type IA collagenase (Sigma) was dissolved in JOInl of 

PBS to make a O. qb solution (~'l/V). The solution was filtered through 

a Nillipore filter and kept frozen until required. 

4) Organ culture 

~Hngs were removed from suitably staged embryos and placecl in 

sterile PBS. The ectoderm and surrouncling muscles Here removed from 

skeletal elements with watchmakers forceps, isolated long bone rudiments 

were cleared of any remaining conIlecti ve t.:L3sue either by needles made 

from 500 lum diameter tungsten "fire (Goodfellow i'!J.etals) or by carefully 

rolling the rudiment on e, piece of dry I'lillipore filter. Dissections 

were carried out under a Zeiss Stereo IV microscope with illumination 

from a Schott Hainz KL 150B fibreoptic lamp. Dissections for both 
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organ and cell culture were carried out under sterile conditions in a 

Bicroflow hood (Flow Laboratories). 

The organ culture technique used was a modification of that 

described by Jensen, GHatkin and Biggers (1964). The rudiment was 

cultured on a piece of sterile Nillipore filter which was placed on 

top of a stainless steel gauze grid. The grid was placed into a pool 

of I.5ml of BGJb medium in a sterilin 35mm tissue culture petri dish and 

incubated in a humidified incubator Hith a .5%C02 : 95% air mixture at 

38°C (± 0.5°C) (Forma Scientific) medium was changed every second day 

when the rudiment was revolved 1800 to prevent tissue adhering to the 

filter. 

5) Cell culture 

i) Limb bud mesenchyme 

VTing buds vlere removed from embryos between stages 22-24 and placed 

in a sterile PBS. The ectoderm and peripheral mesenchy~e was cut away 

so that only an oblong, central core of presumptive cartilage and local 

connective tissue remained. This central core was treated l~i th 0.1% 

trypsin (lOmin.) at 37°C (diluted from 0.3% trypsin with PBS). The 

tissue was not agitated and was therefore loose but still whole, it was 

then centrifuged at 1000 r.p.m. (lOmin.) and the supernatant which 

contained very few cells, was discarded. The pellet was resuspended 

in 0.2"/0 collagenase (lOmin-.) at 370
, vigourously agitated on a 

whirlymi~er every 2-3 minutes, centrifuged at 3000 r.p.m. (rOmin.), 

resuspended, and washed twice in Hams F-12 medium. This procedure 

resulted in the production of a population of single cells. Cells 

Here counted in a haemo~ometer and plated out on glass coverslips, or 

on Sterilin 35mm tissue culture dishes, at various concentrations ranging 

from IxI06 cells/ml - 2xI07 cells/ml. Cells, at the initial concentration 

of 1xI06 cells/ml, were diluted Hi th Hams F-I2 such that the final 
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concentration ranged from 1xI04 - 1x106 cells/dish. Nicro-mass 

cultures (Ahrens et al, 1979) were set up by plating out a IO/Ul 

drop containing 2xI05 cells (i.e. 2xI07 cells/ml), into the centre of 

a tissue culture dish. TI~e cells were allowed to settle for 2 hours 

after which the dish was gently flooded with lml of Hams F-I2 medium. 

All dishes were then incubated in a 5% CO 2 incubator at 37°C, 

and the medium was replaced every day. 

ii) Long bone cartilage 

Wing rudiments were removed from 7,8 and 16 day old embryos 

and rolled on fiillipore filters as described for organ culture. 

The cartilage areas of each rudiment were cut into fragments approx-

imating the size and position of each of the 3 zones of cells. (The 

size and position of each zone can be estimated by studying histological 

sections - see results section of Chapter I). Fragments from each 

region were pooled and, for rounded and flattened cell regions. 

peripheral areas were cut away leaving a rectangular shaped piece of 

cartilage with very little connective tissue. 

a) 7 and 8 day ~~diments 

Trimmed fragments from the rounded and flattened cell regions 

were immediately treated with 0.3% trypsin (IOmin.) at 37°C, vigourously 

agitated every 2-3 minutes and centrifuged at 3000 r.p.m. (IOmin.) to 

settle clump's of tissue. This treatment loosened any connective 

tissue from the fragments but had virtually no effect on the structure 

of the cartilage. The supernatant, containing the connective tissue, 

was discarded, the pellet was resuspended in 0.2% collagenase (30min.) 

at 37°C, and vigourously agitated every 5 minutes. After 30 minutes 

the clwlips had almost totally dissociated into single cells and these 

were centrifuged. washed and plated out as above. 

Cells were obtained from the hypertrophic cell fragments by 

utilising one of two methods. The first method was to trim the 



fragments and dissociate them in the same "'tray as described above, The 

second method was to gently squash the hypertrophic cell fragments 

under a glass coverslip prior to any enzymatic treatment. This 

resulted in a piece of hypertrophic cartilage, free from any connective 

tissue, being expelled from each end of the fragment (see Chapter 3). 

The expelled pieces of cartilage were pooled and dissociated in the 

same way as the rounded and flattened cell fragments. 

Both methods gave equal nu.1Jlbers of hypertrophic cells vThich 

appeared identical in culture, but, since squashing the cartilage gave 

a completely homogenous population of chondrocytes, this method was 

most often used for the isolation of hypertrophic cells. This method 

was not used for rounded or flattened cell fragrrlents since the cOTh~ective 

tissue seemed to stretch and the cartilage was never found to be free 

of connective tissue. 

b) 16 day rudiments 

The cartilaginous areas were cut away from the bony centre with 

a scalpel blade before they were cut into fragments. Every fragment 

was trimmed into rectangular shaped pieces because hypertrophic cartilage 

at this stage could not be squashed under a coverslip. The pieces of 

cartilage were dissociated in the same manner as for younger rudiments 

but the treatment times differed; treatment with 0.3% trypsin was for 

15 minutes, and treatment with 0.2% collagenase varied from 1-2 hours 

depending on the region being treated (Hypertrophic cells took longer 

to dissociate then rounded cells). Tnis dissociation procedure always 

left some cluii1ps of cartilage \~hich were removed by centrifugation at 

100 r.p.m. for 3 minutes. The supernatant contained a population of 

more or less single cells which were then centrifuged and ~lated out 

as above. 
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6) Fixation and Histology 

i) Long bone rudiments 

a) Hax sections 

Rudiments were fixed immediately, or after various days in culture, 

for 2 hours in Bouins general fixative, dehydrated through a graded 

series of alcohols (2 changes in 50%, 70% and 90% - 15 minutes each, 2 

changes in 100% - 30 minutes each), cleared in xylene (2 changes of 30 

minutes each) and embedded in paraffin wax (2 changes of 30 minutes each, 

follo1fed by final embedding) (Solmedia Ltd.). Serial sections, 7/llIfl 

thick, were cut on a rot~~ microtome (Reichart Instruments, Austria), 

hydrated and stained either with Harris's hematox-j"lin and eosin or 0.2-'70 

toluidine blue (Hurrlason, I979). 

b) Araldite sections 

I) Light microscope 

Rudiments were fixed for 2 hours in ice cold, half strength 

Karnovsky, cacodylate buffered, formalin/gluteraldehyde mixture (Karnovsky, 

I965), rinsed in 0.II1 cacodylate buffer and dehydrated through the alcohols 

as above (Rudiments could be stained. en bloc, with 0.1% aldan green 

2GX, (made in 1% acid alcohol), for I hour between changes in 70% alcohol, 

to faciliate orientation during sectioning). After dehydration, rudiments 

,fere cleared in propylene oxide (2 changes of 15 minutes each), placed in 

a I:1 mixture of propylene oxide: Araldite resin (30min.) and embedded in 

Araldite (Agar aids). Serial sections, I ~m thick, were cut on a 

Cambridge Huxley I'iKII ul tralnicrotome and stained with 0.1% toluidine blue. 

2) Electron microscope 

Rudiments were fixed and washed as for light microscope sections, 

they were then post-fixed in cacodylate buffered 1% osmium tetroxide for 

I hour at 4°C. The dehydration and embedding prOCedure was identical 

to that described above except that the rudiments did not require 

staining with alcian green. I rU:'!1 thick sections were stained with 0.1% 
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toluidine blue for the light microscope whilst ultrathin sections, 

O.l/u.m thick, were picked up on rhodium - coated copper grids 

(Craticules Ltd. - 200 mesh), stained 1·ri th 4% aquous uranyl acetate 

(5' \ fA 1 ':» "/. 1 ' ., , (-::. ) (':) 1 d "'96'"') , " TIan.) \. na an ana or ~eaQ Cl "Cra"Ce Jmln. \Heyno~ s. J.. .J. ana 

examined using a Phillips EI'UOO electron microscope. 

ii) Cell cultures 

t1icro-mass cultures "ere rinsed in serum-free Hams F-I2 gently 

loosened and freed from the tissue culture dish and processed as above 

for sectioning in araldite. To visualise non-micro-mass cultures, 

in situ, the cell cultures were rinsed in serum-free Hams F-12, and 

fixed by adding Iml of an ice cold 3:1 alcohol : glacial acetic acid 

mixture to the culture dishes for 10 minutes. The dishes, or coverslips, 

were rinsed twice in ice cold trichloro-acetic acid, rinsed twice in 

ice cold double distilled water and allowed to dry in air. 

were stained with aldan blue (pH 2.8) and nuclear fast red or with 0.2% 

toluidine blue (Humason, 1979). 

7) Autoradiography 

i) )H-thymidine 

a) Labelling; 

Excised 7 day old (stage 32) cartilage rudiments were grown in 

organ culture for at least I hour before the medium was removed and 

replaced by I. 5ml of BGJb medium containing I5/u Ci/ml of 6-\-thymidine 

(/',.mersham International, specific activity 23 Ci/m.mol). 

is incorporated into DNA during the S phase of the cell cycle and is 

therefore a marker for those cells which passed through the S phase 

during the period of incubation with the label. U1e incubation period 

varied from 1-24 hours after which the rudiments were fixed and 

sectioned ("ax and araldi te) as described above. Sections from the 

centre of each rudiment were floated on subbed slides (Rogers, 1967), 
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allm-red to dry and dipped in nuclear emulsion gel. (I5;u Ci of JH_ 

thymidine Has sufficient to label chondrocytes in vivo (Lewis, 1977) 

and this was chosen arbitrarily to ensure a high degree of incorporation 

h ' . d ~ t· \ over a sorT. perlo OI lme). 

Cell cultures, growing on glass coverslips, were labelled by 
') 

replacing the medium 1--ri th Hatlls F-12 containing 2;U Ci/ml of -1I-thymidine. 

The period of labelling varied from 1-16 hours, after which the cells 

were fixed and dried as described above. After drying, the coverslips 

were mounted onto subbed slides and dipped. (2/u Ci/ml of ~-thymidine 

has been shown by many workers to be sufficient to label cells in vitro, 

including chondrocytes from the vertebrae of 10 day old chick embryos 

(r-'iurison, 1972). 

b) Dipping 

All procedures were carried out in the darkroom under safe light 

£1'-904 (11ford), Nuclear emulsion gel, type L4 (11ford). was melted 

at 4JoC in a water bath and diluted 1:1 vIi th a solution of 2;& glycerol 

(AnalaR) in distilled water. 'The mixture was gently stirred, allowed 

to settle for 2 minutes and excess bubbles vIere removed by dipping 

test slides into the mixture. \vhen no bubbles "I-rere present, the slides 

were dipped vertically into the mixture, removed and drained of excess 

emulsion. The back of the slide was wiped clean and the slides were 

placed, sections up, onto a cooled metal tray to dry and solidify. 

Hhen dry, the slides were placed in light-tight boxes, sealed in black 

plastic bags and stored at 

~ 
The path distance of JH-thyrr,idine (Beta particles) is approximately 

J um (Rogers, 1967), therefore, wax sections (7/Um thick) and labelled 

cells (at least 5Alill thick) contained, effectively at least twice as 

much radioactivity as Araldi te sections (1/Ulll thick). Therefore, 

the exposure time varied depending on the type of section dipped; "fax 

sections and cell cultures only required 2 weeks exposure 11'hilst 

45 



Araldite sections required 4 weeks. 

c) Developing 

Slides were allowed to reach room temperature, still sealed in 

light-tight boxes, before being developed for 7 minutes in Kodak DI9 

developer, at 20oC, in the darkroom. Developed slides were washed in 

running water (IOmin.) and fixed in a I:4 dilution of Amfix (IOmin.) 

(rrlay and Baker Ltd.). Slides were then re-washed in running water 

(IOmin.). rinsed tvdce in double distilled water (IOmin. each). stained 

as above and examined under the light microscope. 

ii) 3H-thymidine - scintillation counter 

After 2 days of culture, 3H-thymidine (2~Ci/ml) was added to 

stage 23-24 limb bud mesenchyme for 16 hours. The labelled medium 

was then removed and the cells were washed 3 times in P.B.S. before 

being fixed in absolute methanol (5 minutes at OOC). After fixation 

the attached cells were washed in TCA and dissolved in O.5ml of O.3M 

NaOH which in turn was dissolved in 5ml of "Aquasol 2" liquid 

scintillation cocktail (NEN) and the activity measured in a Packard 

Tri-Carb liquid scintillation counter. 

iii) Na2 358°4 

The synthesis of sulphated glycosaminoglycans by stage 23 limb 

bud mesenchyme cells, and stage 32 chondrocytes, in vitro was determined 

by incubating the cells 

national). Cells were 

in the presence of Na2 35S04 (Amersham Inter­

grown at a concentration of 2xI05 cells/35mm 

sterilin petri dish for 2 days, before the medium was replaced with 

medium containing Na2 358°4 at a concentration of 2/uCi/ml and 

incubated for a further 16 hours. 

Sulphated glycosaminoglycans may be deposited into the extra-

cellular matrix or may be released into the medium in soluble form, 

thus the synthesis must be measured in different ways. 
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a) r1atrix deposition 

After the 16 hour labelling period, the cultures were washed 4 

times in P.B.S. and digested, at 37°C, for 2 hours in Iml of hyaluronidase 

(0.5mg/ml) (Sigma) made up in Sorensens buffer (pH 5.6). The digests 

were dissolved in 5ml of "Aquasol 2" liquid scintillation cocktail 

(NEN) and the activity measured in a Packard Tri-Carb liquid scintill-

ation counter. This is essentially the method of Meier and Solursh 

(1972) • 

b) Soluble glycosaminoglycans 

Medium, pooled from 3 identical cultures, was centrifuged at 

3000 r.p.m. (5min.) to remove any floating cells. Iml of the super-

natant was removed and into this was added 0.2ml of 2M Tris buffer, 

0.7ml of double distilled water, O.Iml of chondroitin sulphate (IOmg/ml) 

and Iml of 1% cetylpyridinium chloride consecutively. The mixture 

was allowed to stand for 5 minutes and was then centrifuged at I2000g 

for 15 minutes, on an ultra-centrifuge, at room temperature. The 

precipitate was resuspended in ice-cold distilled water, centrifuged at 

I2000g for 15 minutes at aOc (to prevent the precipitate dissolving), 

resuspended and centrifuged again. The final precipitate was dissolved 

in Iml of absolute methanol and counted in 5ml of "Aquasol 2" as 

described above. This method is similar to that of De la Raba and 

Hol tzer (1965). 
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Irltroduction 

Grm~th of cartilage long bone rudiments OCCllrs by a combination 

of cell division, cell hypertrophy and secretion of extracellular matrix. 

Hall (1978) denned gro"\-rth as "a permanent increase in the size of any 

perameter that is measurable," in the case of cartilage, gro~Tth lS 

manifested as an overall increase in length and/or an increase in 

rudiment diameter. The earliest gro\;fth of a cartilage rudiment can 

be re-presented as the proliferation of precursor Cells and the 

accumulation of progenitor cells into pre-cartilage condensations, 

The mitotic index of cells during and after the formation of condensations 

in the chick wlng bud has been investigated extensively (Janners and 

Searls, 1970; Hornbnwh and '[Jolpert, 1970 and. LeHis, 1975) and the 

results indicate that a proximo-distal increase in cell division occurs. 

Cell l:inetic studies have 2..1so lJeen performe~ on the epiy[lJTseal gro'0Tth 

plate of juvenile rats (Ken:ber, 1972; 1973; 1978) and these !"',ave 

demonstrated tliat? ¥fi thin one animal, ro"tes of proliferatiol1. irl e-\T8ry 

,gro1l1J"th pla.te are similar although tr1e labellil1.g indices a~re different ~ 

Kember found. tll.at incorporation of tritiated thymidine \"J'as conf'ined 

almost entirely to the proliferation zone an(l suggested that the size 

of the proliferating cell population may be an important factor controlling 

long bone groHth. Very little "'fork hOHever, has been performed on 

the intermediate stage of the cartiloPoinous long bone ltldiment. 

t;ach long bone rudiment has a different rate of increase in 

length and can be radzed in ascending rates of grOlNth, as follOl,rs: 

radius, ulna, humerus, tibia and fernur (V.a11 J.. '-'_~ a11d flella110Y 9 1955; 

Summerbell, 1976). Tue groHth of cartilage rudiments in vitro has 

a1so been comprehensively studied (Yell and Hobinson, 1929; Fell and 

)lIellanby, 1955 and Holder, 1978) and once again ascending rates of 
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gro1~th are found 0 

about -c,ne increase in length. have beerl little studied!) StOClllll et al 

clistal half of the chick ti biotarsis by mecLSl).rlng 

tiie length of each histogenic zor18 of cells)1 but yaic1. no atten.tiorl to 

any changes in cell number or distribution "lfithin the zones as the tibia 

developecl. 

This chapter aims to study the grocith of long bone rudiments 

of the chick Hing particulary the ulna, in terms of increases in length, 

changes in number and distribution of cells Hithin the rounded, flattened 

and hypertrophic zones and the pattern of cell labelling in these zones 

after incubation "Iii th tritiated thymidine both in vivo and in vitro, 

The ulna has been chosen because it appears at the same time as the 

humerus but does not have a kin.."l: In the centre of the diaphysis 

(Summerbell, 1976), also, the radius has already been examined for cell 

number changes (Holder, 1978), 

j\Iaterials and Nethods 

Rudiments were removed asceptically from theciings of embryos 

betueen stage 30 - stage 36 (6-10 days), measured immed_iately using a 

calibrated eyepiece graticu .. le, and then cultured for up to L~ days, as 

described previously. Cultured rudiments Hele measured daily and 

samnles Here fixed, in t strength Kamovsky fixative, for histological 

examination. 

Cell counts ",ere only carried out on longitudinal sections of 

ulnae; sectiorlS l"rere selected from the centre of eacl1. yudin1ent arId cells 

Here counted uSlng a xL~O objective and an eyepiece divided into 

100 squares. Total numbers of cells in each histological zone Here 

counted together 1ii th the number of cells along the longitudinal axis, 

the nlImber of cells across the transverse axis and the clensity of cells 

:present lD. each zone. The total length of each zone was also measured, 
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hOHever, these measurement are slightly arbi tary since the bound_aries 

bet'freen zones are not clear. Zonal boundaries '<Jere defined as the 

regions ",here the cell type of the adjacent zone began to predominate, 

Labelling indices -;;-Jere calculated from stage 30 and stage 33 
'":< 

ulnae l"hich had been incubated. with I5/ilCi/ml of -'Ii-thymidine in vitro 

for times ranging from 2-6 hours. Again, only labelled cells in 

central sections Here examined. Grain counts Here not necessary since 

the cell was ei tl1.er heavily labelled or not labelled at all .. Cell 

counts for labelling indices could only carried out on cul tured_ 

rudiments because of the impracticability of labelling in vivo - see 

Discussion. 

Results 

I) Increase in length 

i) In vivo 

The mean lengths and the rates of increase for each long bone 

rudiment of the w-ing are sho"m in Table T [i;ach rudiment increased 

in length by approximately 275% from stage 30 - stage 36. The mean 

lengths and mean growth rates appear similar for each rudiment (Table I) 

but this is due to slight differences in times of development betw-een 

specimens; Hhen an individual :Hng Has measured, the humerus l"as alvrays 

longer than the ulna which in turn was always longer than the radius. 

Each rudiment exhibited a similarly shaped grovfth curve (Fig. I), 

,,,i th the gro"jth rate being uniform until stage 32 1fJhen a large increase 

,<[as observed. This higher rate 1fTaS maintained until stage 3Lr Hhen 

another increase in rate Has observed (Fig. I). 

ii) In Vitro 

Table II shows an increase in length of approximately I30}~ for 

s ta.ge 30 rudiments over a L~ day period in cul tu.re. (stage 30 ruciiIIlents 
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Hould be expected to increase by approximately I90)S over the same period 

The pattern of g.coVJth seems autonomous since the radius 

retained the lowest growth rate and the humerus retained the highest, 

In vitro grmith curves (Fig. 2) are very different from those for in 

vivo rudiments (Fig. I). Ini tiall;y'" trle in vi tI"O gro1fth rate aplJroaches 

the in vivo the first da;:r of culture but there is a 

constant decrease in growth rate thereafter, if rudiments are cultured 

for 10 days or more linear increments cease and a plateau lS observed 

(not shm-Jn). The general shape of an in vitro g.cowth curve, for any 

given rudiment, Has similar irrespective of the age of the rudiment 

prior to culture. 

2) HistolofDT 

i) In -fivo 

At stage 28 the ulna appears to have only tvro distinct types of 

cartilage cell, a central zone of flattened cells ItTi th a much smaller 

zone of rounG.ed cells at each end (Fig. 3). Some flattened cells in 

the centre of the rudiment are beginning to enlarge but no recognisable 

hypertrophic cells are yet present. At this stage a loose perichondrium 

can be observed around the central region, but at the "epiphyseal" ends 

the chondrogenic cells merge imperceptibly into the surrounding 

mesenchyme. By stage 30, however, several distinct hypertrophic cells 

are present and the ulna resem-oles a typical cartilage long bone rudiment 

with 3 histological cell types - rounded, flattened and hypertrophic 

(see Fig. 4). The perichondrium around the hypertrophic cell region 

is more distinct than at stage 28, the perichondrium around the flattened 

cell regions appears loose and at the epiphyseal ends the cartilage 

continues to merge into the mesenchyme (Fig. L~). 

The periosteum first appears around the centre of the region of 

hypertroph.ic cells at stage 32 and is closely follo·~Ted by sub-periosteal 



osteoid forrnation (Fig 0 5~1 The pericl1.onciriL1TE is faiT'ly distirlct 

ar"o'und the flatterlecL cell ~cegiorls ancl nov{ a loose perichondrium 

is observed cO"'vering the epi~phy-seal 811QS G At the proximal end of the 

ulna the beginnings of a protrusion, the olecranon, is observed. 

Iil. vivo the olecrancn forrns a groov"e for the ulrla to fit In-co at tr18 

el bOT;, (Fig. 5 I' At stac;se 34 (Fig. 6), J zones of cells are still 

pres'snt and the bilayered periosteum s~u.rrouncls the wl'1ole of trle 

hypertrophic cell region. ~-\t the j~lnctions of tIle h~lPertroyllic cell 

zone l~Ti trl the flatter18cl cell zones tIle yeriOS-Cel.1ffi is replaced. \~i ttl a 

perichondrium (Fig. 6). The olecranon is more pronounced ancc appears 

as an asymmetric extension of the epiphysis. 

The invasion of blooc_ vessels into the cartilage and the 

formation of a maJr'r01~T ca\li ty begins, In the ~lrla1 at stage 35 7: 
1'\<nen. central hypertropr:.ic cells ctye rssor-bsC: .. 

blood v·essels ~rill enter can -be J:'-8cogn.isecl at stage J~~ (Fig II 6) ~) 

F1rom this sta,ge onliards the gross histology changes little except 

that the area, oecomes prog~cessively larger at the expense o:f 

cartilagin.ous regions I) 

Although the gross internal configuration of the chondrocytes 

cll.anges little bet"\i1reel1. stage 30 - stage JLr y a trarlsi tory· c11a"nge irl trr8 

orientation of cells "('Ii thin zones occurs in some rudiments behreen 

stage 30 - stage 31. At this stage, flattened cells in the ce:'1tre 

of the ruiiments (which are aligned Vii th their ..Long axis perpeniicular 

to the long axis of the rudiment) appear to re-orientate ,\,Thilst they 

are in the process of hypertrophying (they nOVi have their long axis 

parallel to the long axis of the rudiment). This re-orientation is 

particularly evident in the humerus (Fig. 8) and is not apparent by 

stage J2~ A similar orientation has been observed in the tibia 

(Archer, unpublished o-bservation). 
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;'2 - stage 3~ it is -possi 018 to idelltif3T ths pOSJ .. tioY'.L of each cell-ular 

Z0118 b:y exalnirlation using ir:cic:ent illurHunation (Fig I) 9) ~ Irile 

junctions of the zone of hypertrophic cells "lith the zones of flattened 

cells occurs at tll.8 Doint 1'!1-lere the diaIneter of the d .. iaph;ysis bsgins 

to increase, also, because of periosteum there is 5, difference 

In zones o 7118 yeriosteuIiL surrounding the 

ilypertrophic cell zone appears opa,qu .. 8 whereas "~l~le peric110n.cirium 

surro1.lncling the fla,tteneri Cell zones appears clearer and. lighter in 

colour. The boundary between the zones appears almost 2.S a straight 

the zone of rounded cells is not so ~ceacUly identified but it can still 

be seen and can be accurately estimated. This means of identifying 

each zone can be used to set up cell cultures of individual chondrocyte 

cell types. The efficiency of this gross method of zone separation. 

is sh01~n in Figure 10 . 

. . ) 
l=- In vitro 

l"ihen a stage 30 ulna is grc~'m in vitro for four days it increases 

in length such that it approaches the length of a stage 35 ulna in vivo 

I'T ,~ - d -1-\ (-,- '-'0 . °5 . -, 2-1.
0
• 3' . . \ \ a o1.es 1 alY. l) \ s vage .J - stage;: 'taKes - Qays In ~J • 

The lIduIn'b-bell shape of the rudiment has been retained and the cultured 

rudiment ,levelops a gross morphology similar to that of the non-c·:.lltured 

stage 35 ulna (T;'ig 
\,.1. _, " IIa) . The histological structure, however, is 

quite different -T' . th 1_0, compare Wl " Fig. 7) . 

Sub-periosteal bone formation and the spreafi of hypertrophy have 

begun as in vivo but no invasion of blood vessels or resorption of 

cartilage is observed (Fig. IIb). Also, the olecranon, visible In 

non-cuI tured rud~Lments (Figs. 6 and 7) fails t"0 aI)pear so that both 

e-pi -physeal end.s nm, aD-pear rounded (FioC"' IIa \!' • - - ~~ ~ 
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TIle increase ill lengt11 o~bser\led il-: Ct;Ll t'ure to 70% of the 

In vivo increase), together Hith the cOYltinuing spreaci of hypertrophy 

suggests that a large proportion of the increase 

dU.8 to properties of the cartilage rudiment itself G It woulci appear, 

hO-~iever, that enviromental factors are necessary for the nrocess of 

osteoge11esis to ~?roceed fl,:rther tl'lC3J:1 the first collar of sub-ps:r'iosteal 

bone. 

J) Cellular changes during cartilage g-..cowth 

Along the proximo-distal axis 0= a cartilage rudiment, 5 zones 

of cells can be observed rOl1DdeCL $ flat -seneo., hjrpertropb.ic, flattened 

anci rouncied (see Fig. 6). 

between. stage 30 - stage y~, detailing the lengths of eacb. indi\riclual 

zone, the number of cells, end to end. along the length of each z,one 

the number of cells across tile ~'Jid th of eac11 zone the tota2. nurnber of 

cells in each zone, and the density of cells in each zone. ::i;ach table 

also includes the same data for a stage 30 ulna Hhich has been cultured 

for J days. Ulnae were cultured for J days so that they ,wuld be 

approximately equal in length to a stage JU non-cultv.red ulna (compare 

Table I 1d th Table IT',. -/ non-cultured and 

cultured data Hill be considered separately. 

i) In vivo 

Al though eadI table presents differing data there are several 

similarities in the general trends observed~ These are outlined 

belOH. 

a) Proximal zones a~e generally larger than. their~ corresponding 

distal zones: they are longer (ta-ble III), contain more cells end to 

end (Table IV), contain more cells across their -did th (Table V) and 

have a g-..ceater cell nu.mber (Table VI) for every stage studiec. 

HO!iever, there is no difference in cell density- bebTeen proximal and 
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distal zones (Table VII). 

b) Each zone increases in length during the period studied (Table 

III) but only the hypertrophic zone increased in length proportional 

to the whole rudiment, clefi::~tL:L if one zone increases in 

proportion, others m:lst decrease, in the case of carti 2.ong bone 

rudiments the hypertrophic zone increases in ]roportional length at 

the expense of flattened zones (particularly the proximal zone) and 

to a lesser extent rounded zones (Table III). The hypertrophic zone 

is also the only zone to ShOH a proportional increase in cell number 

end to end (Ta-ole IV), once again at the expense of flattened and 

rounded zones. 

c) :Sach zone" ShC1'{S an irlcrease lYl tot2J.1 cell number (7able \TI) 9 

Both the hypertrophic cell zone anc3~ the proximal rounded zone 

show a proportional increase in total cell l'J.:lmber at the expense of 

ct) ~ac11 zone Sh01;iS an iner'ease iiI the :lumber of cells across the 

Hid th of the rudiment anee this increase is ahTays greater in rounded 

zones than in flattened zones (table V). The hypertrophic zone only 

increases in cell number across it is ",ridth until stage 32 -"hen it 

remains fairly constant until the celIs are resorbed (Table 

e) rrhs 11ypertro:prlic zone starts Ollt a,s or18 of the smallest ZOl1.8S 

but from stage 32 stage 3L:- it is clearly the longest individual 

zone (Table III), This spread of hypertrophy can be -best observe~ as 

the increase in the number of cells end to end. along the longitudinal 

axis of the zone. For' the ulrla this sJ;)read proceeds at a raTe of 

approximately- 50;£ of the existing numlJsr of cells 'oer cl8v"elopmental 

stage (Table IV). 

~(ounded cell zones have a higher cell density than flattened 

cell zones Hhich in turn have a higher cell density tnan hypertrophic 
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zones (Table VII). Cell densities tS11d to decrease from stage 30 -

in every :0one except for an increase in cell density of roundeC_ 

cells between stage 32 stage ('J:'able VII). 

ii) In vitro 

Ts.,b18s III - VII ShovT tll.at w1:1eIl a stage 30 1J~111a is cuI tuxed for 

3 days the overall picture is similar to that of a stage 34 non-cultured 

ulna. Flovr8ver tl'18re 2.re several srnall clifferences ~~-rlicrl can -oe 

grouped together as follovIS: 

a) Tl18 cuI tv_reel Ylldirnent is v-ery si!nilar in length to trie stage 

non-cul tured ulna but it has longer ZO~"1e lengths (Table III), has more 

cells end to end (Table and has an increased total cell number 

(Table VI) Proximal zones C .. rs nO~f similar in length to distal zones 

Inaki~1g the rudiment more symmetrical (Table III, Fig .. T?\ 
~-) . 

b) ~Then individual zones are looked at, it is observed that every 

ZO!1e., except the proximal rOllnded zone'i increases lrl length (Tab=~8 III), 

con-calns a higher number of cells enci to end (Table IV) ani has a higher 

total cell number (,rable VI) when compared -0Ti th non-cultured ulnae. 

The -oroximal rounded zone, hOHever, is smaller (Table III) has feHer 

"1 l "'1 J ., ( rn 1 1 ,--\ _1 1-- ... ...[.. ,-. 1 r h r En "'"l ~r~ \ Ce..L..LS ena co eno_ \. l'2l"O e 1. v) a11cL llas a l.01AJer vOl,a..L Ce-.t..":' nUffiusr \ laO.L8 \1.) 

~on-cultured ulna. The lack of rounded 

cells is com:pensated for by a1'1 increase in the total num-!Jer of proximal 

flattened cells present (Table VI). 

c) Euch of the increased cell number in distal zones (Table VI) can 

be accounted for by an increase in the number of cells aCT'OSS the Hidth 

of these zones (Table V). Proximal zones do not increase in -width 

el) The hypertrophic zone (loes not increase in the nil.mber of cells 

across it's Hid_th (Table V) but it does increase dramatically in the 

number of cells end to end (Table IV). This results in the hypertro:phic 
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zone becomin.g the longest zone (~abl'8 III) vrith the g-.£"eatest nl.lml~er 

of cells (Table VI). 

e) The cell density in each zone is lower than that found in 

corresponding zones of stage 34 non-cul bJxed ulnae (Table VII). 

Labelling Indices 

Calculations of labelling indices T,rere carried out on the radius. 

ulna and humer~s at stage 30 and stage J3 (6 and 8 days) after 

incubating the rudiments in tritiated thymidine for 2, 4 or 6 hours. 

Table VIII ShOHS the overall labelling index for each Hhole rudiment. 

The percentage of cells labelled at any given time was remarkably 

similar for each rudiment studied. The labelling index increased 

~fhen labelling time was increased from 2 to 4 hours but remained static 

between 4 and 6 hours for both ages studied. There would appear to 

be a decrease in the overall labelling index behreen a:1.Cl stage 

33 for each rudiment at each time inter~al. Since 4 hours of labelling 

produces the highest percentage of labelled cells. Figures 13 - 18 

show the pattern of labelling in each rudiment at this time. 

Hhen the labelling index of each individual zone is looked at 

(Tables. IX - XIV), it is observed that th::.re is ahmys a higher 

percentage of rounded cells labelled than flattened, and. al;;,fays more 

flattened labelleo_ t~nan 11.Yl=!ertroprlic. Hypertrophic cells hardly label 

at all in the radius and_ ulna (Figs 0 13, TOI' ~nN T~() ,.J.. 0.. \....:.. _ .. Hypertro pb.i c 

cells which do label are near the border vd th the flattened zones and 

perhaps should be considered as hypertrophying flattened cells. The 

only rudiment to Sh01'1 any significant labelling of hypertrophic cells is 

the sta.ge 30 humerus (Table XI, ji'ig. 15); and it is importan.t to note 

that this is the time Hhen re-orientation of flattened cells is taking 

place as mentioned in section 2 above. 

For any labelling time in both Hie stage 30 ar.:d stage 33 radius 



2.,1'}:1 ulna ') of cells the ,iistal ~.co1.1rl(lec~ cell 

(Tables I)(? TIiS humerus? on tll.e other hand has a~ 

(Tables and. 

XIV) . 

and the over'cdl l21, belliL1.g il'1dex of " , 
rOUl1Q8Q ;:;lus flattened cell Z0118 

iY1 each 11alf is calCtlla.ted p very l~ttle c:tiffer8ilc8s are obser-veC: -b8t"\,-Jeerr 

DiscuSS:Lon 

Tr1.8 T'est.llts ~r8sentecl in tb.is 

of grOlATtr1 of cartilagirlO"llS 1011.g "bone r~ld.irnents of the chick 

~ro1,.ytl1 lS dea"l t "\tTi th ill term.s of lrlcrease,s i11 lerlgt£l J! increases ~-0 

cell nUlnoeT and the labelli2."1£ il'1dex of cells at a:r: .. y· gi"'v82.1 time~ 

TI18 hierarcl'1Y- of" gro1>v-tb. rates Sb.01{11 irl Table I is in ger:..eral 

a"greeTnent . " 'tTlt:.O lJ~l FsIl SUJnmerbell 

values :presentecl 118re are "unfix8Cl 

material and. tl'1erefoJ:'e re(r~ire no consi;ie:ratio~{l 0: factors.; 

Tte iner'ease in length o-bserv"eci :peT stage is not uniform (ITig 0 

T\ 
.1../ 

stage stage 35. 

careful st"llay of Figure 1+ in SUTflmerbell fi s 1976 paper ~1-Tll.icl"1 Sh01\~S grol~itrl 

cuy\res for \rariov.s If ta~Qgents 

trlese CUY\F8S at the POi11tS ~I'rhere i:.r18 slope of the Clrrve cb.a~1ges 9 .J~l'1el1 

It also seeIns likeljT tl'1at 2., s;rnrt in. grovr~ri OCCl1rs DeT,~~Teen s'-~age 29 ..... 

stage 30, but -because of the difficul t~y in olJtainil'lg: accurate linear 

measurements of s-c.age 27 28 -;" f 

rUCllITlen-CS this adcii tional 
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2.ccelera.,tion ir1 gro~"rth canrlo-c De \isr'ifiec:_ pr'8cisely" q 

T"he is x'eplacect a periosteu.!'rl 

a.,rollnd the Tniddle of the diapl'1:v-sis at stage 32 COi11cicling v~i it"!. the first 

3.fJ!?eara.,nce of osteoid a.,n.d osteogen3_c -tissue .. 

the central car·tilag r2 core of the diaph:YTsis C83 .. S'SS to eXDand i:1 ~i\JiC:t~~1 

re~resented_ 2vS an lncrease 2.11. rrhsreiore a s-cLticlen increase in. 

length as sl'1o'Hn ill Fi,g~ I ~ rnight iJ8 eX1J8cted .. 

Osteogenesis, associated 'i\)~i t[~ the Ol1set of v-ascular irl\.rasioll~ 

occurs oetlr!8en stage (Fig~ 7) and it is 

possi ole tl1at :actors, prese11~::' in. the blood p acceler'ate gyo1~th at this 

This may be similar to the action of g:ro'frth hormone on the 

g:ro"GTth plate of hypophysectomised :rats (Isaksson. a~ssou and Gaus8 v 

29 - stage 30, could. be explained simply -by the onset of cell hypertrophy 

(Figs.. J arli causlng a rapid increase in cell volume '~Thich :is 2,gain 

manifested largely as 2,c:l increase in length. 

~Jhen g-.cmm in organ cuI ture 

deg-Ee8 of a-L1tonomous gro~~Tth in. that the gross ITlorpl101og:r is ver2l similar 

The overall ,g-.cOT/Jth 

an('t :"",11 anbv ( T0551 
'" ~'-"~-- - . .1 \ - / / 

IN-hicl1- implies tl'!.at trl-8 cu~l tU.re s3TSt:.em used. l'lere is In.Oye efficient 

('T2,ble II) were observed 

after the first day'" of cui. ture tl1.8 rate of elongat.ion con.starrtl:jT decreases 

so that in cul tv.re c, -01 a teau is reached and tIle rud.im.8!lt 

ceases to in lel'1g;t11 (data riot .P~J. cU.l tu_~ed stage 30 

u_lr.:.a ±"'orrns a J!e~ciosteurl1 d.uril'"lg tt!8 firs-c day ano.. this rnay" :play"" some 

role in. keepin:g the ra,ts of lrtCrease similar to tt~a,t fO"Llnd. il"l 'I i-v' 0 .. 



stage (stage 28) the 

in vivo 111na consists of only- t~{O cell types ~ rO"Llnded and flattened 

(Fig {) 3) s ;.f2- t11 the third. cell typ,e tl1.8 h:;lpertroIJhic cell a,:p~pearirlg 

at stage 30 (Fig .. ~~) ~ It is generally accepted that at any given 

stage the ulna is more advanced than the radius but less advanced than 

the tibia. However, Holder (1978) states that 3 types of cell are 

present in the radius by stage 28 and stocum et al ( 

T,entlOn the existence of the :3 cell types in the ti-!Jia 'cm-::-il day 8 

(stage 34). 

Tb_e histological appearance of embryonic chick limb rud.iments 

has been Hell documented (e.g. see Fell, 1925 and Holder 1978) and 

therefore will not be considered in detail here. For the purpose of 

this chapter the main points are that between stage 30 - stage an 

embryonic rudiment consists typically of J types of chondrocytes~ -::-he 

l"lypertrophic zone begins as -'erIe smaJ..-Lest zone In the centre of the 

diaphysis, at stage 30 and spreads along the diaphysis -G01',Tards the 

epiphysis so that by stage 32 it is the largest indivic-~ual zone. 

(Figs. L~ and 5, Table TTT\ 
...\.....l..~) a 

The nroblem as to a rudiment increases in length much rwre 

than ~ddth may be explaineo_ in part by an understanding of the 

process of hy·:pert~copb.y Q Hypertrophic cells arise from flattened cells 

cells are arranged. per:pen(Iicu13.,rl~r to 
.. ~ ~ .. 

perlcnOflCtrluID. 

therefore roughly :ge~cpendicular to the long axis of the rudi;nent (Fig. 

The process of hype~ctrojJhy involves a ffia_ssive increase in 

volume of a flattened cell ",hieh ean be most simply envisaged as an 

l11crease in tIle size of the small axis of the cell =-"" '2 ~ the ·"Jid tl1., 

Sl{a~asleT( (personal comrllullication; lias pc·intecl out "cha,~:, 
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1 tuclinal A:!"so O~C8 a osteum has forTIled~ 

rnaJl form a COllstJ~ail"lillg "'0arri8r I'8sisting tJ:'ans-verse ex-pansion and, 

t~n8:::efore 9 favou.r gro1~rtl-1 irl a longitudin.al dir8ctiol1 (Lutfi 11 

~;-le role of tli.8 -periostetun as a corlstrai~'1ing barrier l"'i-ill 

be consiiered in a later cha?ter~ 

It is 0 bi/lOUS from histoJ..ogical 8xamination tr-J.at durirlg tIle p}~ocess 

of gro1,rtl"J. 2,11::1 c.svelopment changes take :place in. the configuration of the 

celll)~lar Z0118S. Tl'"'J.8se changes r1.av-e been stlldied in "\ti '10 and ir:. III tT'O .. 

lengt~s zone of 2, nOY1-CLtltured ulna is 

.general the results of stocum et .... I ( 

:::L..l- \ on the 

i11 tha.t the length of eacl'l zone increases 3~S the ernbr:fo cls iJelops ('Table 

III) 

increa;ses by s-u.ch. a deg-.r·ee that it increases in 18::1gth in ~roIJortion to 

Tl"lis slJ.ggests that tl"18 

snrsad of l!.ypertro~phy tllYcn.1ghout tt-r8 rllclimerlt Jlay- be one of the most 

irr;.)orts..:nt fe .... ctors ll1. the o\rera.,l: i~:8rease III 

01 cells end to en-::L along the aXlS ar's cO'unted for eacll 

developmental stage. Tb.is sprea:J.. occurs at OJ uniform rate SUCll tl1.at, 

50~/~ g-.ceater than tIle nUml)8Y of cells end to end at t.he pre"llio·us s-r.age 

(TalJle IV), T118 im.portance of cell l'1ypertrophy f18 .. S bS8il Sl~rO\lnl 

X-i.~rradi3, t:ion 

of ~c,ne controls" 

inust also pla~r a ::-ole in the gro1-Jth process .. 

Euch .of the g-..covrth effect of the rounded cell zones lS to prociuce 

a large incr'8ase in the 11UfnbeJ::' of cells a.-cross tri8 \'\Tio.t.h of tr18 zones 



(Table 

that alITlOst all of it's in.crease in cell 11.umber (T?;,ble VI) lS llS8li to 

vriden the zone since this zone S{10"i,TS the smallest inc::::-ease in length 

(Table III) or numoer of cells 2,long the l011gi ~uo_ir2.a}. a)cis 

This is consistant Hith findings of ~ert (1972) stated tl'1at 

Th'8 pyoximal ::::-ounded zone undoubtedly plays a role 

in the increase in length by producing the Qle.eranQn J)(::,:ginui:tJ:g,-Q.,t,-st~e /32 

(Fig. 5). increase in round ed cell nu.mber 

bet~"f"een stage 32 - stage 3J (Table VI) and a large increase lYl 

l1trm1)8Y of cells efld to end (Ta,ble 

Both of the f18"ttened ZOI18S nrOdJ1Ce a sim.ilar patter'll in thei:r 

3-TIlOllnt of g-.cowth per s-ca,g6 excent that the zone is ahrays 

larger (~ables TTT 
~.l.l and IV) and contains more cells (Table VI) tl~8n t]:18 

distal zone. In these flattened ZOD.8S the cells appear to t)-S a~rranged 

across ~ or the zone 

1-rid tr1 of these zon'2S ctoes !'lot increase as Tn.1..1ch as the ::.:::-ounc..ed ZOil.8S 

(Table 9 polarised secretion of Ina trix (lrelstad, 1977; Holmes aEci 

Trelstad 1 1930), if it S){lS-CS F 1·'Tould allo1AT th.ese zones to J?la;y a greater 

role in an increa,se in lengt~n ra theY' tha11 in 1iicl th e 

As every zone increases in size during development, the 

clensi in eGtC~h zone deer"eases (Table -VII) .. 'I'he cLecrea.se ill cell 

d.en~si ty in youncled ani f~attened. cell zones bet1fJeen stage 30 

S~l1ggests tha.t trIG in.crease in tota,l cell number 1-Jliici'l. occurs ! TaJJle -vI) 

is insufficient to keep up tiith the general incTease in size of the zones 

(Tables III, IV and V). Tll.8 ax"eeL of ~ouncLed or flattened cells cl'"'Lsnge 

little clu.rir:.g this periocl (see next ch.ayter), therefore the lOiiTs:c 8811 

densit:)T must be ciue to an increased accumulation of s.xtra,cel1ula:r matrix 

iiI thougr1. tl-18 l'1jrpertroIJl1.ic cell 20118 increases ill Slze 
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oet-:,-J8en StCl.rZ8 30 - stage y.~ T so too does tb.8 11.J'pert:cop11ic cell A Tl1.is 

lncreaS8 in cell area can account for the decrease ir:. cell density, 

The transient increase in. cell densi t::r ooser-ved in tr~e :cound.ed 

cell ZOrl8S bet~Teen stage 32 - stage 33 (Table \TII) coincid.es v;i th a 

large increase ill tl1.s nl:unber of cells 1~hicl1 are present at tl'1Ett -;:,ime 

(particularly in the proximal rounded cell zone) (Table I • This 

increase in cell number and cell densi may account, in part, for the 

gro-wth S pUTt 0 oser-ved at tllis ti:me (}-'ig • I) .. 

lcJhen a stage 30 ulna "hich has been cultured for 3 days is studied 

the first impression is that it is only slightly larger than a stage 34 

non-cultured rudiment. Ho"ever, the lengths of most zones are increased 

is a greater number of cells overall (Table 

It must be noted that the proximal rounded cell zone is shorter (Table 

III), has fev-ler cells end to end (Table IV) and has a 1011er cell number 

(Table VI) than the corresponding zone in a stage 34 rudiment. This 

discrepancy can be accounted for by the fact that the cultured rudiment 

does not develop an olecranon (Fig. 12) and the zone appears more 

l.r:.'1iforlnl~y round. ~ The width of this zor18 does n.ot decrease (Table 

-lrJ11ich suggests tl1.at tl1.e zone lS grov-Ting efficiently in the cultlJ .. re 

systeYiJ. and t.hat the olec:r:anon may form in vivo due to some fact.or 

extrinsic to tl'"18 ulIla. rrhe olecranon fits around the elboH joint in 

vivo and it may -be that mechanical pressure from the hv_merus is required 

fo::c the development of this prot.rtlsion. The lack of a protrusion in 

cultured ulnae is similar to tll.e laclt a groove across the femoral 

11.ead? t .. ousin.g the aceta1:ru.lar ligaIi1811t fo-u..ncL 'Hhel'1 femol"a were cu~ltured 

Ulurray an:]. Selby 1930). 

If a stage 30 ulna 'Jere to continue deveJ..o}Jlng for :3 days in vivo 

wm.J.lcl have many more cells 

TIll.en ct stage 30 "1l]~11a lS g-rOlJliD in vitro for 3 

it does r!10re celIs than, Cv stage non-cultured. ulna (Ta~le 



that tIle cl;.lttrred rlldi~er~t majT be continuing grm! 

cellular rate sirnilay to tl1.a-s in \Ti\TO 01 

saC;:1 Z01""'.:.8 from a considered 

dist.al r011niei zorJ.8 all increase ih size a,nd cell rrulnoer (Tables I"\F aI1:J. 

:"n1,... C. 
.tIL ..... large irl proximal flattened cells 

CODlparscl ~·,jitrl 2?roxim.a,l rou11d.ed cells (T3.~l2 VI) m.a~r Silfl:plj" be due to 

tl18 lack of tll.8 olecranon e)~tencting from the rou31ded. ZOl18 , r'lo~'Jever, 

several diffe=ce11t rucliTnents e)chibit a large i11crease ill flattened cells 

'-"TIlen cultlJ.recL (.t\rcller, ;;erso:rlal commu.nication) and tllis ITtajr -De a lJJ~Op8rt:y-

'The hyp'3r:·tro~p11ic zone cOIJ.ti11l18S to spread at 

similar to that oeserveci Table IV). 

T1:.e density of cells in each zone of a stage 30 cultured rudiment 

is lOl,ier tha11 tl1at found in the corresponding zones of a stage non-

cul tured rudime:rkt (Table VII). N·on- cuI tv.red rud_ime11ts sll.oW a, d8c:r'eas8 

in cell density f~-ith increasing developmental stage (Table VII) and it 

is Dossible that the lOHer cell densities observed. in cult;u.:ced ::-udimen-ts 

are Just 2" c011-Cin"uatio11 of tb.is pr'ocess * 

These results irlc.icate that the culture S3i st8IIl v.sed is efficiel1t 

cartilagir~o·us zones +~ vV develop at a ::-ate sirnila,r to that 

of in vivo rudiments. It proved technically difficult to incorporate 

)E-th:vrniclil1.8 into cartilage lLlciirl18nts In v'iv"o (injection of lal;elled 

labelleci perichond_r-il1.Tfl but ne-vsr labelled ca.,rtilage - pro-bably· becaUSe 

of the avascular n.Cl.,ture of earl~l cartilage) but if -[,;:18 cU.l turs syste:m 

allo1JJs ::le'\relopm2Ilt to contirll18 as lTI vi-vo tllen il'1COrporatior: of 

th:y:midine in \ri -era for s~nort "?8riocis of time SlLO~lllcl ·llseful 

to la"belli11g indices in vivo. - XIV -oresent 

values for the labelling ind.ices of the radius, -o_lna and humerus at stags 
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JO &XlC1 StEt.ge JJ,. rrll.e ge112r'al conclusion.s from tl-lese tables are: 

labelling index than hy:pertrophie 

cell zones, 

2.) Jistal halves of tb.e radi~lls aril -Ll~~n3-, tsn<l to l~a\je a, 

ir::=1ex than. proxiIllaJl b.alves,. 

T"n tl'1e case of tl'1e ~n'umer"L1S, -oYo)cirnal ll.al \1es terld to have Et }~ighe:r' 

la.l;elling incie:{ tl~an tile distal hal-ves,. 

inGex for each r·u~cliTnen.t trie total 

cel=-s -:'Tsre COi,) .. nter: , that the total eel2. 

of a stags 33 radil1s cultureri for 2 hours 3836 1"ras r'emarlzabl~l sirrlilar 

to that f01..1nd by- Holder (1977) iTl a st8~e JJ non-cu.ltu:red ra~:illS 

3627. The eXCeSS cells fo-unc. are clue to .' \ 'll"CrO) j) 

ra,ts I973; 1978) ai.so iXlcl-Llcied (la';~a on the lalJelling ind:'ces of 

the irldivici'ual gro~Tt~"l nlates ~ It is difficult to 

~(ember' s ~C'est::.lts ~·\Titb. those list8c~ aoo\re since cartilage long bone 

rl.lo.iTI1811ts do n.ot r~av-e e~pip~'1~yseal grovItt. 1Jlates" HOHever, if a long 

lJOIle T'RuQlTI1el1.T .. is considered as t1.JO separate halv~E:s and each r1alf (roUrlGe'~ 

DIllS flattenecL cell zones) is 

indivictual grolith plate, gener2,1 com-parisons can then be made. 1rJhen this 

is :1.on8), sif:'~ilctl"'i ties are ~ , 
IOilflQ: 

i) the ~~abelling index for any glven half; or inclivid:lal zone (or 

to i" e to the labelli11,g iYlliex oosel ...... ved lS t:r:p:'ca,l of tll.at rUJlirne~:lt, 

not just of that embryo 

.. \ 
l' , _....1../ c. given age; a~'1ci -tirne the 

66 



67 

index in Cl,n-:f b.alf ruclirne~t (:-coD~I!ded pll,:'s flatteD.eeL ZO:1e \{a,lass) 

is is looT-;:ed at (the actual labeJ_ling 

radius, hal:;:' , 

old. rat, p:roxlmal. tio,icL labelling index = I6fb) .. This is consistan.-::' 

,dth the findings that the labelling indices of gr01~th plates in the 

rat pelvis are similar to those of long bones (Kember 1972, 1973). The 

results from the chick embryo go fu::c:,her -- - '"' ~,.. 
>,./ __ :::;...,1, .... 

-:_ ~r'< --, 

'1 .. ,.j.2.t;;: overall labelling 

index for a whole l"Ud:;_111snt is also similar for any rudiment at any 

-particl-Llar age and time of incubation with JH-thymidine. These results 

suggest that cartilaginous rudiments of the chick wing provide an 

excellent model for the mammalian e:piphyseal groHth plate. 

T;he conclusions froIn reem.ber' ~ S 1"Tork TtIer8 that the cell cJrcle time 

a11C_ the per"Cer1tage of cells ente:2:'ing S nl'l2.se yrio:t, to entering t118 cell 

1971; ~Cem.l)er·, 1978) Tllerefore 'variations in the rate Oett,\[2ell. 

inc1i\Tid_-Gal bOTles az'e due to -varia:tioI'lS l21 tne size of tl'18 :prol=-f8rating 

cell :po:pulatioE, ~)iIflilar conclu.siorrs ca11 ·08 macle from cl'1iclc 8illiJr"3TO 

results (see la~er cha:9ter for cell C3Tc1e times) to TI1.e decrease lYl tIle 

:;rO"LU1.ger (sta,ge 30) ruiirn.srlts w car ... ':Je :3xlJlairlecl the IaCT, tl13.,t a large 

It is i~!1:portan_t to ~~il0~i ~T1La,t d.ete:rmines the Slze of tr18 IJroliferati11g 

It ::s tl1a.t tIle clla::.:.ge fro:-il ro"!..:ndecl cell to 

flatteneci cell J~S due to sone diffuvsible signal 

T-F' a co:c' ... cent:ca-tiorl 
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ulns (06S no~ lnCreaSe 'n 

ir~ 

cell si.nce 

00f1.8 a 

ra,iJlc., iTlcrease; Cell la inciic2,-ces 

-Cion 

cliffer,en.C8S in t~ce :cate of tha"t 

t:le size of th'8 in.itial co~clens2.t~oD. 

of' in c:~eterIl1i:niI1g tl'18 final size 0=[ tr;.s ~ucl=-ment ~ 

t2-Ine -oeriocl stll-iiecl in cn.a ~ter th.e rtlciiment 

maintains its characteristic "dumc-bell" shape. How this sha:pe is formed 

in the first ~lace and how is subsequently maintained througrccL 

be the subject. of the fol1o-wing chapts:c. 



Fig, I. In vivo grovJth curves of the long bone rudiments of the 
chick embryo Hing. 

x---x Radius 

0---0 Ulna 

+---+ Humerus 

Fig. 2. In vitro gro1-rth curves of the long bone rudiments from 
a stage 30 wing. 

x---x Radius 

0---0 Ulna 

+---+ Iiumerus 
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Fig. 3. Stage 28 ulna. Only 2 cell types are present, rounded 
and. flattened. The flattened cell zone is surrounded by a very 
i-reak perichondrium whilst the rounded cell zones merge into the 
mesenchyme. 
Tal&' blu~e sta,in.. flag 0 x 125. 

Fig. 4. stage 30 ulna. J cell types are nOH present, rounded, 
flattened and hypertrophic. Note that the perichondrium appears 
more distinct around the hypertrophic cell zone. 
Tol. -blue stain. hag. x 5G. 

Fig. 5. stage 32 ulna, proxiRal half. Cells in the centre of the 
rudiment are now surrounded by an early periosteum. Flattened 
and rounded cell zones continue to be surrounded by a perichondrium. 
The proximal rounded cell zone shows the beginings of a protrusion -
the olecranon. 
ifol. blue staine Eag. x 40. 
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Fig. 6. Stage 3~' uln2" , proximal half. The periosteum nOH extends 
as far as the zone of hypertrophy. The lighter stained area near 
the centre of the hypertrophic cell zone (x) marks the position 
i,here the invasion of blood vessels begins. The olecranon process 
is more distinct in the proximal rounded cell zone. 
Tol. blue stain. l"iag. x 32. 

Fig. 7. stage 35 ulna. Central hypertrophic cells are resolbed 
by blood vessels Hhich gradually spread throughout the hy:pertrophic 
region. 
Tol. blue stain. ;dax section of "lhole vring. Lag. x 32. 

Fig., 8 II Stage 30;/31 hUlnerus 10 Reorientation of central flattened 
cells just prior to cell hy-pertrophy.. ~r.!.is orientation is not 
apparent by stage 32. 
Tol. olue stain. Iiag. x 125. 
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35 

3 Ot·4 Days 



13" stage 30 radil::~s la1)811ed for 4 l'1.ours to The ciistri-bu-tior.. 
of labelled nuclei can be seen to be maintained aJ_most exclusively 
to the rounded cell zones, very fel.f flattened cells are labelled 
and no hypertrophic cells have incorporated label. 
Tol. blue stain, Flag. x 50. 

Fig. 14, 
labelling 
Tol. bleJ.e 

Stage 30 ulna labelled for U hours. The pattern 
is very similar to that for a stage 30 radius. 
stain. IYlag. x 50. 

of 

Fig. 15. ,Stage 30 humerus labelled for Lc hours. The pattern of 
labelling is similar to that for the raclius and ulna but in this case 
a felf hy:pertro:phic cells have incorporated label. 
Tol. blue stain. 11ag. x 
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lTig 1> 16 ~ Stage 33 radius labelleci for L~~ hou~rs., The o\rerall pattern 
is sirn.ilB-J::' to that for a stage JO rudirnent@ l\fote tl'1at the distinct 
p8~icrl011d,:riurn is 11.ea·vi13T labelled compared to the carti.lage cell zones" 
Tol. blue stain. I<ag" x 

Fig, 17. Stage 33 ulna labelled. for Lj, hours. Similar to the stage 
JJ radius. ~\Tote that small clusters of la-belled cells 32:'8 present 
in the proximal round.ed cell zone - these may aid the production of 
the olecranon. 
Tol. blue stain. I'lag, x L~O, 

Fig. 18. Stage JJ humerus labelled for 4 hours. 
cells have labelled. 
Tol. blue stain. l"\ag. x 40. 

82 



83 



84 



Stag;e 

29 

31 

35 

36 

-':-age) 

LJn.fixeci 
- " - .-

ca.l.~l.. ::Irs.t,GcL 

stags. 

+ 

1'learr lengths of cartilage l011g: boY!e l"'·iJ~diIilents of tJ"le 
developing chick 'Hing. 

B.aclius 

1. o 

I 80 +. 0 10 

2. 

-;- 0 

+ 0 

3 + 0 ::::5 

L~.63 _L 0 21 

( . \ 
\;Tlffi) 

rlna 

J 59 0 II 

-f Cl 20 

+ Ii 21 

rneaSll:recl 

2~ + r; 

L:~ 26 ~+- 0 2.6 

5 

273 

stage 36 = 6-10 days (Hamburger and Hamil ton, 1951). 
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TalJ~Le II 
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GTO\t\T-G~i rate 
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;7"~ in.cr'22.,s8 
5_rl ler.:g:'l~~ 

Lsngtll 

.?~2~div"s 

I -t-

2. ~O :JU ,-

'"":: 32 -, .,;. 

3.69 +. 

4 .. 02 

~555 

123 

OI s~age 

of rUGimerlt (mm,~: 

UIYla 

O ,-" 

t::. or T 

C 2. 93 + 

r\ '1 -'-,j . j 

n 
'-t + ',j 

0 20 ,~ 

()~657 

cartilage bene 

HUJn.eY'u~, 

n 'T1 r; ,~ 

v t::. -r C) -.,/ 

0 16 ? + ;. -
0 . 08 L!_ 05 0 

" 06 ~~ 71 + C u . 
~, .12 c, 2Q + 0 U Jo ~C 

o. 

T 

Urrfixect Tl.lc..:unerrts 1:J2:re :measurej_ claily :"lsing cL cali -bra tecl 8)repi8Ce 

g-..caticule '['lhilst :;eing ctlltu.rscl on tOy of I.'~illipo:c-e filteJ:-' I'arts e 

-r , 

05 

T~ 
.. ..L ~j 

"'I3.11..188 are for Tn.sasu.rernsJ:':ts m.ad8 on a,t least s-p8Clmens 
for sacI1 ~udi~,ent"' 
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Table III ear: lS::1gths of hist:J1ogical :zo!j,es cf tY1S '.Ilr:.a~ 

R::YL:nde0 
(Prox: ~; 

~~lc""ttenecl 

Hyyertropb.ic 

~ ) 

Le~C1gth 

0.13, 
( T'J, 
\ --J' 

o JJ 
(35.1) 

0.17 
(I8~~) 

0.22 
(23J~) 

n no 
v" 1.,,/,/ 

.6) 

zone (min) 

0.J:6 
(16)> 

o 20 
':20 0) 

C 20 
(20.0) 

o 
( • CJ 

32 

0.17 
(IO~5) 

o 
(29. c: 

0·52 
T\ 

0":"/ 

0 .. 1_) 
(9 ~ 2) 

J3 

o 20 
(10.3) 

n C::T 
'.J 'J-"-

(26.=:) 

0·39 
20 .. C) 

(8.2) 

0.)'7 
IT? \.. ~--- ~ 

0.61-', 
(21 9) 

1.22 

0, ~T 
v J--

T7.5) 

(,- -) 
1'0 ' \. e ...... 

(20,J) 

ZODe lengths ~'Tere Ii18aSllyecl ::royn I fllIn -tb.ici;: 2.trald~it2 sections llSlr:g a 

cali 1]rEttecl eJ-e-piece 
ssctions, 10 jtJ .. FL 

Values :3 ce:;.tral 

a-,ttem~t is rn.e..r:te -\Ie total len.gtl~s for ea,ch stags sirLce ~lou.nger 
rucliTneY'.:.-cs ~'T8r8 fOll"0.d '"So sr1]:"i:-G~( Trt1Jch J10j~e than. 82.d'2:Y rlJcLiilleTltS,. 

stags L:.lrlct cl~lt.":lred fOJ::' '3 
Tlon-cu.l tu.red ulrla" "\fal'Llss c;.re 

pro.gression CCv11 be 

is co::r~a.r9.,b12 in. size to a stage 
'pres8!ltecl so tha.,t histological 

-r~Il'igUJ:-8s lD. -oa~~ent~~eses gi"'V8 tlle lJSrcerlta.g;e of tb.e total fixed length 
occupied by each zone. 

stand_ard d_8viations are left Otlt for' clari ty-, tl1.ey ran.ged ]forn I-7~0 of the 
lengt~n. 
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Table VI 'Total cell nL~mbers G! his-tologicc.,l Z·:)T18S of tl"18 uln2"Q 

Stage 

31 32 '"),":; 34 30-~,-3 cla,~Ts --'--' Zone 30 

759 i?c:.:t:: -Ij/'r-:' 15IC ..:----...;'0 1.(8! 

(22~ ( ?! ~ t: \ 
\.~-. <>v/ (20 e 3; ( ?L 

,_' 'l> 
2\ 

) 
(?:::. '7\ (Th ~,~ 
V-J': ' \~v _/ ./ 

558 1223 129'7 2055 
(?2 t:) "'>~ \ (23 ~ 13. 2-\ (22, \ ~-' ~ v G_J., , (26.J) 

756 IO:,]l 1726 25C_) 
( ?0, 
\, -....'J" J) (I9~ 3) (2501) (27 -1- ~) 

• .,L ) 

Flattened ~~!' 

))0 396 Q(' --..;8) 1068 1881 
(16 ,,\ (17 0,'\ (I5.5) (2'J~ L!, , v) .~I ) ) (I7.7) 

6I9 P"'7 l)), 1026 122:7 
(~9~ (16 (T,c, T', I 

I (T 9) \ ...... '-""-/ 

2J!72 3733 5196 

SlJ8cilT1SrlS as in TEl,ble II:I <> 

+ Fi;gu:res in :parer:ttJ.sses -v8 the nurn-ber' 01 cells in each. ZOy}8 as c" 

~ercerltage of trls total ce:'J_ ::1"~.r:n.De:r',. 

Stan.dari deviations J~a,nged fraIn 2-IIiS,. 



Table 'III 

Zone 

Rou.nded 

tI:y-:pert~cophic 

:1: __ l 
\Ja->-.118S 

Cell densities in 

3I 32 

TOO 
-// 

127 

ZOI182. of' t.lle ~:llna" 

':;':; ");1 30+3 d_ays /J 
..... )-'~ 

,~l-"' 

.l.J.J IL~5 123 

II~~ 71 

r; . ....., 
( '/ 61 

The area loo1-:ed 2",t \:Jas 
~,fere tak.e:J. frOTn eacb. ZO~1e 1) 

bet1"ye'sn p~::,oxima.l 3.,l1.d distal zones ~ therefore ~ tb .. e "\ral1)"es a:re 
togstller" 

zo~,e3 ~n 
of I7956rJJr~ , 
lookeo_ at arl.cl 

stag~8 Yl:Ld.iD8:1tS ~,fere too ~!ilall foy tV-TO ~ceac1irJ.gs 
J ~....... '"" ~-"? '-' (,.... '! / - ') I \ 

GhereIOrs 2..11 a,Y-ea OI' '/J..b..-..../CJ.ffi \J_;@O/Llrn x J..~L+/LUll) h,as 
the "I'lallles "Here 8xtral)olat.ed t.o fit the laJ~ger' area" ... 
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15.71.1-
(23)+5) 
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20.70 

"t-ier8 calculate~ frorn tl'!e same sect.i~YQS c.x3. __ ~1 ?a.ble VIII .. 

Standard deviat.ions from 

6 

compared ~~l ""[.11 'Table IV ~ these \ralues appear "\Ter::/ SlI11ll.ar wl1.ich 
suggest that the aclcli tiOIl of j'Ii-th:yrnid.i118 for sllort ~eriocis of -time 
dOes not affect cellL numbers. 
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I nt:::-oducti on 

Cartilage mo:::-phogenesis, unlike morphogenesis in early embryos, 

always associated with g:cowth. ~n the case of cartilage long 

bone rv.diments, g-.co~;Jth involves a mass ive increase in volume with 

little increase in width except at the ends of the rudiment, therefore, 

morphogenesis results in the formation of a long narrow diaphysis Hith 

epiphyseal swellings - the typical "dog-bone" shape. 

As mentioned in the General Introduction, cartilage morphogenesis 

could be controlled by various factors; cell division, cell hypertrophy, 

matrix secretion and organisation, cell configuration, .. ..l.. • 1 
apYOSlltlOna..L 

g-.c01fth and physical constrabts (Thorogood, 1983) Seve:cal of tl'1ese 

factors have already been studieQ in detail p e$g~ cell division 

'B· 'G ,~. Tr/' ) I.' 19gers ana Hat..l-ClYl, "->,oLl' , cell hype::::tro:phy (Biggers, 1957), cell 

orientation and config-l1ration (Holmes and Trelstad, 1980), vrhilst other 

factors, such as appositional g-.c01vth, have been difficult to cletermine 

and. probably playa minm:: role (Eiekle, 1975). Sux'prisingly, little 

attention has been paid to the roles played by matrix secretion, matrix 

organisation and physical constraints in the early morphogenesis 

lO:::1g bone rudiments. 

7he importaI1ce of matrix secr8tiorl cJncl organisa,tion in main-ca,i11in.,g 

the sha,ue of a cartilage element has been shoHn by Dieviert, in the 

developing rat mandible, ,men she added the teratogens 6-Amino-

nicotina:nide (6-lu-T) (Dievrert, 1979). Diazo-oxo-norleucine 

(Jiel\fert alJ.d ~C?ratt:r an.d :B .... aminopyoprioni trile f-ume:cate 

pregn2,11t Iflothe::r:."'s., TIle general conclllsion ItTC1S 

that all three teratogens produced a cleft palate, but that and 

DO}T both affected the g:'Co~V'Tth rate, ancl tr1e]~efore tl1.8 size li of r'~eckel v s 

cartilage '1 i'Jb.ereas Bi~~Pl~ affsctect the sl'1a]!e of l"flec}:el T s ca:~tilage 
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The orga"nisation or-' ca~·-t.ilage matrix n2:.s eLIsa "beer! SliOIr\fYl to 

play- an im.portant rolc " , ... 
Tilal11-C,3.lnll:g shape il1. yud.irn.ents" 

(T0'701 ,--/( / treated I2 day olc'L chick em-cryo tibiae cd th 

collagenase for 2 days, in vitro v ctm1 then retur:oed the D.ld.iments to 

enzyme-free medium. B~l 5 da~Jrs of culture, the cartilaginous 

regiorls had com~91etely lost tb.eir characteristic anatornical f·eatu~res 

although the size Has similar to that of controls. Tr1is result 

ilTas il1terpreted as i11dicating -Crlat th'e structural orgal1.isation of 

the collagenous componant of the extracellular matrix is a vital 

factor in maintaining the definite shape of a rudiment. 

The object of this chapter is to study the early formation 

of a cartilaginous long bone rudiment (the chick embryo ulna) and 

to evaluate the relative roles played by cell division, cell hypertrophy 

and matrix secretion in relation to the overall in.crease in -v-Ol1.1rne 

Particular attention will be paid to the 

role of the collagenous com:ponent of -c,r:.e extracellular matrix 

in the formation and. maintainance of the characteristic histological 

distribution of cells and the anatomical shape of the ulna. 

~"~aterials and I:Iethods 

The early formation of the 'J.lna (betl{een stages 24-27) l'iaS 

studied hisJc,ologically using I NiT; sections (see General I'lethods). 

Pa~.cticular attention 1-:ras paici. to tIle Sha])8, orieJtatioll arlQ distri-blJ.tioIl 

of the pre chondrogenic and chcnirogenic ~ -, ce.lJ..s. 111. acidi tion § 

in vivo from slightly G\:~er nIdiments (stage 3I-JLI-) 'ihen 3 distinct cell 

flatt8J18cl ant:: hyper-cropf1ic chondroc2ltes - 1-;8):'8 Dresen.t ~ 

The relative rcle of eacrl -paraTlleter -YVas eval-uatecl calculating t118 cell 

volume, "\T 0 lUffie of eacll cellv.lar~ 
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Tl'l2Se calcula~Fciol1.s 

°j-Tere perrorrneci as fol2.ov-JS =-

a) cell volurn.e - r'ol,lnd8d a.nQ llypertr'ophic cel..iS 'iv-ere corlsidered as 

spheres and therefore had .. a volume I ' J of Lj_/J 7r r ¢ 

;;\7ere corlsidered as ctiscs 1\T~~icrl appeared spherical in tra.nsverse 

section, similar to a coin, ancL therefore tIle v'"olu.me 1"ras calculated. 

as 7r abc, h~here a %- JC longitudinal axis, b t x trans-

verse axis and c SlnCe the cell ~c s~herical in 

transverse section, b c. (J. Levds w personal conmunication) 

number of calculated from the ecruation 

n = x/2r ~.:-, s, 1::rh8re X num.oer of area, r of 

nuclei (or cells in the case of hypertro~hic cells) and s the 

thickness of the section stuciie(i (L/um) (J. Levris w personal communication). 

c) volume of cellular zones - calculated directly from camera lucida 

dra,"rings of fiXed and sectioned ulnae. If the rudiment is consio .. ered 

as a cylind .. er ~1ri th a partial sphere at either end then the volume of 

the hypertrophic cell zone can be calculated as tile 

length of the zone and r = t x the mean Hidth of the zone, obtained 

by taking at least /;,. neas'Jrements of the "~idth at different regions of 

the zone for each rudiment. The volume of the flattened cell zone 

Has also calculated as 7r r2-h but in this case the mean. \(·ricltn. '(,fas 

determined by taking at least S measurements at different regions since 

the i,Jidth tapered in to"mrds the hypertrophic zone. 1'l,e volume of the 

rounded cell zone vias calculated by estimating what -oroDortion of a 

sphere the zone occupied and then performing the equation vol. 

7r r J , \{here a = the proportion of the S1JDere and r %- x maxim.um 

diameter of the zone. a Has estimated by measuring the distance from 

the Ii1.id- ofloint of t'ne maxiIluJ..m cliameter to at :east 12 points on the 

periphery of the zone and expressing the mean distance as a. nroportioD 

of the maXlTflum dialneter $ 



ca=;..culated from the equat:"on 

total volume of zone - total volume of cells 
total number of cells 

Hhere the total volume of the zone volume of uroximal zone plus 

volume of distal zone, total volume of cells mean volume of the 

cell x total number of cells in the hw zones total number of cells 

volume of the zones x 11UITtber of cells,/unit \l"oluffi.e., 

In the case of the hy-pert::'ophic zone only one set of ""(ralues y,ras 

In each case mean values for the -parameters "",rere obtained 

from 3 central I jUm 
, . 

sec-clons, 10 IJ_m a pa.:r:·t , from each of 4 different 

~:::udiments for 8a"cl1. s-c.age., 

The role of ths collagenous component of the Sell INas evaluated_ 

i) by culturing stage 32 ulnae in the presence of . -'- . "teravogenlc 

drugs (all Hhich affect collagen fo:c 3 

days continuously or for I day folloved by removal to cotrplete control 

mediuIll. 

ii) by treating stage 30 and stage 32 ulnae vii th the enzyme collagenase 

for ...... 0lme ill.telnvctls ranging from 15-60 m,inutes fol101·Jed 

l):'l cuI tu~re in. control mediuITl fOT 2 o.a:y-s .. 

The teratogenic drugs used vIers chosen because they \"ere knovrn 

to induce cartilage rnalformatio11S irJhen acl.ded to chick ernbryos in 0"'\[0 

azetic1ine -

2 - carboxylic acid ( 321 al1.alogue of L proline Hhich results 

in the s:yntl1.esis of al)norma.l collagen "Hhich cannot be secretecl f"rorn 

ttl .. e cell, B-3..Tr.il"J.oproprioni trile f'uDlerate 

fib~es after secretion, • -" "d - ( h and a a dl :9T£l Y 1. \ a a) - an iron chelating 

age11t \"Tllich inhibits proly-l al1C:' lysyl hjTctro:xylase (a2.1 fr'os Sigma) 
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I,nTas used iT:. concentratiOl"lS 01 1)) ) 3..::10. 10 

~esults from collagen 8xperilnen-cs 

be an orgar:ls8G. man~le2:" ~,\Ti t~:1i~ nO:~.:-tr·eat8d 

rudime~ts. therefore, this was locked for 

sections '(,[ere stai:1ec1 as 
~ .. ""< , 

CL8SCr'lOSQ in tne 

Ge~neral I.'letllocls., 

JesuIts 

I) Fcrma tion of the ear'l~i' cartilagil"lOllS ul!12. 

}l'igo.res I_L~~ sl1.0W histological 
, . 

SeCT..lOnS s cut lo~gitudin~llyp of 

the lJosi tioYl of the 111Ila i~1. elnb::-·~,Tos oetlAJeSn stages 2L~-27 reSD8cti 

sJ::.o"\.J.S an increasecc cell densi~ty in tl'18 }::'egion 

orierlta tion., At stage 25 these cells appear more densly packed but 

still no overt orientation is observed (:B'ig. 2). I"Ietaci'"'J.J:"orr.asia 

cannot be identified in the ulna at this stage but it can be observed 

in the humerus of 
. , 
-c.n.e same (Fig. Horever stage 

clist.inct metachromatic matrix can be ooserved bet-t.Js8n tIle li01:J orienteci 

cells of ., ., 
l..:'18 UJ..110 .... (For tl1.e remainder of this ., . 

~['DeSlS , 'a conden.satio11 

1:1 longi tudil'lal section -this OyieIltation 

long axis 

tr1e cells apjJear flattened (Fig. 3). This orientation lS mars 

'7JrOl101..,L~Ced lrl a stage 27 v.l:1a stage 

consists virt-o.ally of orle zone of flatterle(l~ cells ~V'ritb. c .. fe-v>: ::'ollnded 

ends It is also at stage 27 tl1.at the first clear ·oresen.Ce 
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llID is \lery' 

loose a11Q appears to -be coriipos~ci of T'Ol.rr .. c OT' ~)Ol:ygOl'lal cells lrl 

lOYlgi t-Lldi~al sectioll ( ~owever, l~ transverse ssct~on 

cells 2,~p-p8ar crese:nt sl'lar;ecl an.CL ar'e 

aro1."lncl tilC: circulnI-ererlce of the rudi1Tlsilt \ It should be 

ctnci t:'1erefore are really- 6.isc-s~1.a,:Jecl ( 

T'l'l8 v-er~'f early J:,ud_irnent at stage 26 is a cigar-sllaped tissue 

co,mprising of c3-~9P:rox:imately- 25=.2 cells aCJ:.'oss i t ~ s ~iiameteJ:' 3JICi 

cells along it's length (Fig. It shoulcl be noted that 

the 11.Urn-ber of cells across the "(rJidth at this sta,ge is gJ:'eat'2r' trlan 

the number of flattened chondrocytes across ths"ridth of a st2,ge 

:;::'udiment - 17+1 cells 
/ 

\ (It is also g-reate:c tho"?]. tl--:s rll.Enber 

stage i!l cb.apt8J:' IYlterestingl~r , 

of cells ma:dng up the early perichondrium is approximately LJ c'~ee-o 

on 8ac~n. sid.e of the diaph}rsis (}1'ig .. Thus it a:ppe2:cs that trle 

outer Cells of the cond8rlsation may forlTl the nerictloIliritlHL. 

Once the perichonclrium has formed the rudiment increases In 

c8ntre begin to h3Tpertropl1.;Y Cit stage 30 -j\Ti tli tl"le result tliat 

pericho:CK';_rial cells become stretched ln a longitudinal direction 

2) Fl1:cther groHth of the ulna 

assul:led it's bone n SIlane an.cl an~l future .g~coltftl~! is preciorninatel:y 

in a longitudinal direction (Fig. 7). This groHth -oroduces a large 

increase in volume Hhicfl illUSt be d.ue to a combination of the 3 main 

narameters involved in cartilage g-roifth - cell civisior", cell 



hJr~pertro?hy arld matrix secretio11v 

cell densi ~l- i") "..~ 
t •• d .... C cell volume and 

Table I presents values for the 

l ~, vo-,-um8 01 associated 

ea.cb. cell in fixed ulnae from. st.age J1 stage a ,2 

gTOwtrl period. ·~T~n.el'J. the ruG.irnent C011Sists solely of ro-~.u1cled ~ flattened 

and. hypertrophic chondrocytes) .?~lso shown are \lalues for the 

total "\Folurne of cellular zones :plus an estimate of the number of 

cells present In each zone. 

-Tlle finclings of' tr1is table carl -oe summarised. as follo1tTS 

i) There is a general tenciency for each cell type -e,o exhibit a 

decrease in tlle number of T,'Jith i:1.creasing age" 

Concomi tantl-:I eacb. cell type lJ!1dergoes a!"J: in.creas'3 in cell ".Tolume 

a~'1d an in.crease in the Iloll1rne of 2CI\': a~ssocia tecl v-ri tl'1 each cell .. 

(No difference -:,ras fO"Jnd in any parameter between proximal and distal 

zones). 

ii) Assuming that every hypertrophic cell originates from a rounded 

cell, then the process of cell hypertrophy from stage stage 

involves a 27 - fold increase lTI 
~ -, -, 

ceJ..~ \lO-Lu.me c 

iii) If the volume a rounded cell plus its associat'ecl 

at stage a hY2!ertrOyr1ic 

cell ulus associated ~CI< ~ at stage then trlsre is approximately 

a 9 fold :lilation g::owthQ 

i I)uring clev-elo-pment the ratio: of ~Cl1 volume cell volume changes 

little for rounded anc,- flattened cells but the roles for hypertrophic 

cells :ce"\Te:::,ses e 

increases in volu~me, t,he h:ypertro2!hic cell \TOI-LlTIle increa .. ses b}7" a 

greater amount so J 1 ~ cna:.., flattene:i cells, h}Tpert:ropllic 

cell volume at stage JLI: is greater than the volume of Eel;; associated 
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an.d cells is not so marked. 

fole't (',('/ x' 
\u( TO tbe total ce1l onl:y 

inc~eases J-fold (107058'-319030) ~ 

J):::'rroTfith of the T~,lna in vitro 

stage 32 Ulnaj8 increase ill le11gttl 

g-.cO'im in vitro for J days (Table II). Histologically· it ca:n. be 

seen that cell hypertro:ohy and sub-periosteal bone formation has 

continued to spread aloll.g the G.:'a,yhy-sis but no in'vasion of' -b,lood 

\resSels or resorption of cartilage is o-bs8:::.. .... '"8cl (Irl trLis l;\Tay tr18 

rUJ3.ilnent :.s similar to of a st,age 30 r1Jdiment cultured fer' tr~e 

same ti.Ttle period see cll.3.:pter I) ~ The s-ca.ge 32 cD_ltur'eci u.lna lias 

one rnajor d_ifference from tr18 stage 30 cultured. ulna =-n that, the 

(7able it lS found that fo~ each cell 

the~re is a ct8creaS8 in cell de:-:sity- C011colni tar~t 'iJi tJ1. all i11c~eaSe lTl 

eacll cell (Table II) The la::cgest increase in cell volllme lS found 

greater- tha:::. tb.at f'Oll11ct in ,stage 3L~ l'"l~r~ertro~hic SeIls i11 \livo <) 

'l'he ratio of I~CT:; \Tol-LEi,S cell \/oluID,e of rounc.8c_ and fla.tte~ned ce2.1s 

lS viy-ce.ally uncf'la::1ged st,age , 1 -c.n.e ratio 

for hy'per·trophic cells has bee::. ::ev'sTse:i, that lS the ratio b.as 

changed from 52: (~a:Jles T and II) .. the cellLJ.laJ~ 

distribt:~ions of Cl1:lturei ulnae al:'8 stu.diecl (Ta-ole 

enci to ce2.1s 

across the 1Jidth of the ronndecl 201;.eS and a greater total cell Dusber 

tharJ. :'1on-cllltu.recl rucliments (Ta,tIs I tJ"lis chantey and Ira'ols3 IiI-V'!" 
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The eff'eet of -Geratogen:2.c C~'llgs 011 stag'e 32 u:n.ae cu~ltured i11 \litr"o 

T'a"bles II-IV present d.ata fo~ the cell de rlSi-cy- ~ t[~e cell v"olurne ~ 

the volur;le of' ~:;CL associated ,.;i th each Cell and the oVerall increase 

of 
, , 
~cn.e ter'atogenic drugs or a a either continuously or 

for I eta:\[ fOllOirJed. b::l remo-val to control J1edium~ The reslJ~lts of 

tl'1ese tables can. be sumrnarised 2.S follo"lArs 

Img/rnl Ulrlae g:cown lTI LP .. C"A for J d.a~rs increased in 

le!1gth by a mean of approxima,telJT of control ulnae) 

(Ta"ble II) 0 The rudiments appear normal in histological section 

and clear distinctions can be observed hehTeen cellular zones, 

Several mitotic figures can be seen in the rounded. cell z,ones, 

Clossr eX2-I;'lination u~r.J.cler higl"lsr power Sh01ATS that marlY' flattsned cells 

enclosed in large rounded lacunae rather than la8u~ae 

outlin.ing tlLe shape of celJ.. ( 01 
/ / Q 

'elhen cellular p2..L'amete~LS are cultured 

controls it is found that each cell type exhibits a decrease in the 

number of' cells/tlnit vol~ume (T2..b:Le II) ~ To compensate for t~iSt 

ll1 volu_me 

but no change In th'3 volume of 

~~cn association -vJi tIl. eacll cell; flattened cells retain the same cell 

volume but the volume of SeE/cell increases (P< 0.05); anc. hY:Q8:::-trophic 

cells sho" increase in both Cell volume and volume 

<0., rhe ratio of :SCI voluille cell "\Tolun8 clecJ:,eased for 

cells (T~ble I~)~ (?or the rerriainder of tll.8 res-tllts ~ . ~ 
II ll'1CrSaSe s 

G::'e decreases in parameters are mentioned, statistical significance 

referring to Tables II-VII). 



i'or J 

tr18 :;"ac~: of £la.:cterlsd ce.lJ..S (; 

rO~L-u1deci a.Let are fyo:~T!. cells in t,[le r"ounc1e<I ce II 

zan:::; ( IO)~ 

8011trols it lS fOl,lnd. tl:at the D.uln-ber of cells/ 

for eacn. cell 

cell increases. 

i11CrS2,Se in. cell -v-oluIile -blXt flattsl'1eci cell \lolulne Clecr8ases" 

cell volume decreases for rounde~ cells 

(i .. e" cells are OeCOITling ~rof'Oj~·tionallJr ~_arge~') but in.crs:a .. ses for 

-Doth flatterI8d a,lid 

( \ 
, C' 
\ ........ ) :m.l 

cells ble n:;, 

ci mean. of 

and many laClll'1ae cOYltaini~lg r:.o cells at all \ 

measured_ ll1 tnese rlldilTlents Ii> 

iYlcrease 

II) ~elll).lay 

?lus 2 claJrs contro~ - Ulnae treatf3cl \tritrl L;\CP~ at 

for ..:.. 

a mearl of (Table III) ~ Histologica"ll::r til.s r1.1d=-::ner.:.t 

isv-ery similar to culb.2.rec. controls ( 12) . 

;,Jhen cellular parameters are sb.::.died it lS found that rour;.ded 

and hypertrophic cells both sho1;' a c1ec;rease i::1 the number of cells/unit 

the of :-;lr'C· 
'.~)'v;.::' assooiatecL 

ar: lDcrsase 

cell. cel~s on 

tl"le :lum"':Jer of V~OI"Llf11e 
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ce1_ volume decreases 

(Table III) 

ii) (a) - Uln.as grO~E1 for :3 day's ltlCY8aSS 

in a :nea.n of (Table II) HistclogicallJT ~ rll:ii:merlts 

a:ppeay q:J.i te different Trom c~J..l tt,-cced. controls i!1 that several cells 

a J!pe or dead!1 empty lacurlae are :9Y8S8;:1t 

and con.tains vacuolated cells is 

I3) 

cell 

'"" ... 
O.SYlSl L~i in each zone clecreases., T!n.8 

lor 

-eli.ese 

flattened Z0:18S a ~9ycnotic l1.uclsi '\ 

(c) - Ulnae 

a mean. of 

1:Ji th toluidine "blu.e (see 

10:C 

T 

lSrJ.gtll a ;:',ean. of ('rable III) !-~istologisa,ll~T 



follo:rTed ~ c \ 
C8J.....LS) 

are alij,:-ays TY~C8C8eGeQ a~(ld 

cell" 

8ell8 T -\ 
~J) 

~2"S ir-lcreaSeO. <I< 

':!:'he ratio of 

2CL volume cell '\Tolum8 has remained constant for rour.tded cells has 

lJlc:reaSed fo:c flattened cells but has decreased for :nyyertr'opllic cells 

(\Table TTT) ----'-I 

in.crease le:'1gt!:1 a rnea=:1 of 2950:0 (cr'ahl ;:;, TI) \ _ u_~ _ 

YT.2c;_i:ne:nts looi~ different IYOITl cOYltrols J~~1. tl'1at l~O In~:.. totic iigtl:res Etrs 

( 
\ 16), 

l;.fi th ell: t~Tec3" controls it 

is fOl:~nd_ tll.at roulJ.d eel.. cel~s sll.OV\~ a decrease ~ i1 ce 11 clsTIsi t:y-, ~cetain 2.., 

PIa ttened 2~ncl hypertrophic cells ooth snOirJ ail lncrease ; -n cell c1er:si t:l s 

and a decrease iTl cell ')'"ol-;.1rne cf ~~Cl·.'=/ c8~1 to tJla-c 0: cor:trolE; ~ 

ratio of ~:crl voLm8 

but l!1CreaSes Ior -both flattened 

an.cl (e) 
\ , for 

J da~ls c~_id 110t lTICrease irl 

hy:?8:Ct:co~)hic cells are 

( 
\ 
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Table II The effect of making a small incision into the cartilage 
of developing ulnae. 

Treatment Number Position of nick No. of swellin~s % 

Intact 20 Epiphyseal region 0 0 

Cut in two 40 Epiphyseal region 22 55 

Cut in two 10 Diaphyseal region 0 0 

Cut in two 10 2 in epiphyseal region I 10 

Rudiments were removed from embryos aged between stage 32 - stage J4 
and a small incision was made, with irredectomy scissors in the 
epiphyseal region at a point close to the junction between rounded 
and flattened cells. The incision was judged deep enough to cut 
through the perichondrium and just pierce the cartilage itself. 

Rudiments were cultured for up to 3 days, but if a swelling did 
appear, it did so within 24 hours of the incision. 

stage 30 ulnae proved too small to make an accurate incision into 
without damaging the cartilage too much. 

stage 36, or older, ulnae produced no swelling no matter what 
position the incision was made in. 
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I ntrod ucti on 

The expression of a cartilage phenotype by determined limb bud 

mesenchyme in vitro has been shown by several authors to be a density 

depend.ant phenomenon (Umansky, 1966; Caplan, 1970; Ahrens et aI, 

1977). If cells are plated out below confluence they become 

fibroblastic and fail to secrete a cartilaginous matrix, whereas cells 

plated at high densities remain rounded or polygonal, and secrete a 

metachromatic extracellular matrix (ECl'1) "l-Ihich stains positively 

"l-lith alcian blue at pH 1.0 (Lev and Spicer, 196L~). One interpretation 

has been that a high cell density facilitates cell-cell contacts and 

it is these "histogenic interactions" "l-Ihich are responsible for 

chondrogenesis (Solursh, Ahrens and Reiter, 1978). It is also 

thought that the requirement of a high cell density in vitro may be 

similar to the increase in cell density (the pre chondrogenic 

condensation) observed at the region of the presumptive cartilage 

rudiment in vivo (Gould et aI, 1972; Thorogood and Hinchliffe, 1975). 

An important observation has been that during the process of 

chondrogenesis, both in vivo and in vitro, presumptive chondroblasts 

are always present in a rounded cell shape (Gould et aI, 1972; 

Thorogood and Hinchliffe, 1975; Solursh et al, 1978). In addition, 

cell shape has also been sho"I-In to play a fundemental role in the 

control of proliferation in vitro of a number of cell types (Folkman 

and fiIoscona, 1978). and a rounded cell shape has recently been shown 

to maintain phenotypic expression in already differentiated human 

chondrocytes (Glowacki, Trepman and Folkman, personal communication, 

now in print, 1983). The shape of cells in culture can be changed 

by altering the adhesivity of the substratum. Cells will readily 

attach, spread and flatten on an adhesive substratum Hhereas, on a 

less adhesive surface, cells attach less, spread little and take 
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up a rounded configuration. Folkman and his colleagues have used 

the plastic poly(2-hydroxyethyl methacrylate) - poly(HEVLA) which, 

when coated onto petri-dishes at various concentrations, alters 

cell shape in a seqential manner (Folkman and fiIoscona. 1978). 

At high concentrations it is non-adhesive to cells but on dilution 

with ethanol and subsequent polymerisation it gradually becomes 

more adhesive allowing cells to attach and exhibit various degrees 

of cell spreading. The mechanism of attachment in this system is 

unclear. However. the results obtained imply that cells with 

different morphologies in culture behave differently and that the 

in vitro shape of a cell may determine the phenotype expressed. 

This chapter has two main aims -

i) to investigate the role of cell shape in the differentiation of 

early limb mesenchyme into cartilage in vitro, and 

ii) to determine whether cells which have similar phenotypes but 

different morphologies in vivo, e.g. rounded, flattened and hyper-

trophic chondrocytes of long bone rudiments, also behave differently 

in vitro. 

Haterials and Hethods 

i) Cell cultures 

a) Limb mesenchyme 

Chick limb mesenchyme vras obtained from wings of 3%--4 day old 

embryos (stage 23/24). dissociated. as in General Nethods and plated 

out at 2x105 cells/35mm tissue culture dish. The cultures were 

maintained in Hams F12 containing 10% foetal calf serum plus 5% 

chick SerUill. 

b) Chondrocytes 

Ulnae were removed from embryos aged 7/8 days and 16 days 



(stage 32-34 and stage 1+2). Individual cell zones, rounded, 

flattened and hypertrophic, were isolated and dissociated as described 

in the General Hethods. Cells Here plated out in tissue culture disheS 

at high (2x105cells/10;ul drop), medium C5xI0
4 

cells/IOjUl drop) and 

low (2xI05 cells/35 mm dish) cell densities. 

Chondrocytes from stage 32 Neckel' s cartilage and vrrist elements 

were also plated out, at the same densities, for comparison. Heckel's 

cartilage is composed almost totally of flattened chondrocytes whereas 

"rrist elements contain mainly rounded chondrocytes. 

All cultures were maintained in complete Hams FI2 medi~m with 

either foetal calf or chick serum for 7-10 days when they were fixed 

as described in the General filethods. 

ii) Treatment of culture dishes 

stock solutions of poly(HEIvlA) were made up by dissolving 6g 

of poly(HEfiiA) powder (Hydron Labs. Inc .• New Jersey) in 50 ml of 95!~ 

ethanol and gently rotating the mixture overnight at 37°C. The 

solution was clarified by centrifugation at 2500 r.p.m. for 30 min. 

and the supernatent was harvested. This 12,/0 stock solution was 

diluted with 95% ethanol until dilutions of 6xIO-3 and 8xIO-3 vrere 

obtained. 35mm tissue culture dishes were then coated vii th O. 2ml 

of either of these dilutions and allowed to dry at 37°C for at least 

2 days. Once dry, stage 23 limb mesenchyme or stage 32 rounded 

chondrocytes 1-rere plated onto the dishes. 

iii) Incorporation of radioisotopes 

i'ledium was removed from limb mesenchyme cultures after 2 days 

and replaced by fresh medium containing either 3H-thymidine (2fUCi/ 

ml) or Na
2 

35S04 (2 uCi/ml) for 16 hours. After the labelling 

period cultures were processed for incorporation of isotope as 

described in the General r1ethods. Radioisotope incorporation was 
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determined for both normal tissue culture plastic ante poly 

coated dishes, 

Results 

I Cell shape and cartilage differentiation. 

i) shape 

vIhen stage 23 limb mesenchyme cells were plated out (at 2xI05 

cells/dish) onto normal tissue culture dishes, many cells became 

flattened and fibroblastic by I day of culture (Fig. I). Cells 

plated onto dishes coated with a 6xIO-3 dilution of poly (HEII1A) , 

attached but only partially spread (Fig. 2). At the slightly 
_':< 

higher concentration of 8xIO j poly(HErr,A), the cells attached but 

remained rounded (Fig. 3). It must be noted that in all cases, 

on normal tissue culture plastic and on :poly(R8IilA), many cells 

failed to attach at all. 

ii) 3H-thymidine incorporation 

.3 .l..1 "C \'Then the degree of cell division T"as assessed, by H- t-nymldlne 

incorporation, it was found that rounded cells incorporated much less 

label than flattened cells. Cells grown on 6xIO- J poly(HENA) and 

8xIO- J poly(HElvlA) exhibited a 46% and 57;10 reduction respectively 

in the amount of JH-thymidine incorporated when compared with cells 

grovm on normal tissue culture plastic (Fig. 4). 

iii) Production of sulphated glycosaminoglycans. 

The amount of sulphated GAG's produced by the cells, under 

the various conditions, had to be evaluated in 2 ways, 

a) those deposited as an extracellular matrix and 

b) those released into the culture medium in a soluble form. 

a) Cells grov.rn on poly (HEI;lA) ,,,ere found to produce more sulph\,\r-

containing ECN than cells gro"m on tissue culture plastic - the 
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greater the concentration of poly (BElVIA), Le. the rounder the cell 

the more sulphated matrix produced (Fig. 5). 

b) Cells groHn on poly (HEl'!lA) "lvere also found to secrete more 

cetylpyridinium chloride-precipitable 35S04 into the medium than 

cells grown on tissue culture plastic (Fig. 6). 

Occasionally, rounded chondrocytes from stage 32 epiphyses 

Here also groHn on poly (HEjVjA). Preliminary findings Here that 

growing chondrocytes on poly(HENi\) resulted in a larger and more 

deeply stained halo around the cells when stained with alcian blue 

(pH 1.0) and toluidine blue. This suggested that maintaining the 

already differentiated chondrocytes in a rounded configuration also 

increased the amount of sulphated ECfil produced, but since this 

resul t Has very similar to that obtained by Glm,racki et al (1983) 

the experiment was not taken further. 

2 Chondrocyte cell culture 

. ) l Stage 32-34 cells 

a) Rounded (e?iphyseal) cells 

After 24 hours high density cell cultures of rounded chondrocytes 

produced a central sheet of cartilage surrounded by layers of fibro-

blasts at the periphery (Figs. 7 and 8). The central sheet consisted 

of tightly packed, rounded cells separated by a refractile Eel"! Hhich 

in histological section stained metachromatically with toluidine blue 

(Fig. 9). During a 7 day culture period the size of the central 

cartilage mass did not increase much but the layers of peripheral 

fibroblasts did expand greatly in a radial fashion. Clusters, or 

nodules, of chondrocytes were occasionally found amongst the fibro-

blastic outgrO\Nths closest to the central mass (Fig. 10). 

Hhen plated at medium density the cells formed areas of cartilage 

(cartilage nodules) interspaced by fibroblast-like cells (Fig. II) 
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by 3 days of culture. The appearance of these cultures hardly 

changed during the culture period. 

Low density cultures contained rounded cells during the first 

day of culture (Fig. 12) but these rapidly became fibroblastic 

by 3-4 days so that by 7 days the entire culture was fibroblastic 

Occasionally, giant cells liere found amongst the 

fibroblasts (Fig. I4-) , especially in areas of low cell density. 

but the nature of these cells is unYu~own. 

Foetal calf serum was ahTays used in subsequent experiments 

because cells, particularly at 101i density, 'trere found to contain 

large vacuoles if grown in IO% chick serum (data not shown). 

The nature of these vacuoles is unknown but they may be full of 

lipid droplets as observed in other systems - see Discussion. 

b) Flattened cells 

By 1-2 days in vitro, high density cultures of flattened 

cells produced a sheet of rounded/polygonal cells interspaced by 

a refractile ECh (Fig. 15). The perinheral cells of these cultures 

Here also poly-gonal (Fig. 16) and no fibroblast-like cells viere 

observed untE 4-5 days when a feV[ began to appear (Fig. 17). 

The behaviour of cells in medium and 1m.\[ density cultures Has 

similar to those in high density culture in that the cells remained 

polygonal, even if totally isolated (Fig. 18). Once again fibroblas~ 

like cells did not appear until at least 4 days. Giant cells, 

similar to those in low density rounded cell cultures, also appeared 

at this time. 

c) Hypertrophic cells 

Very feli viable hypertrophic cells were obtained from young 

ulnae, therefore. only medium and 101i cell density cultures 'r.ere 

set up. In both cases the cells remained large and polygonal 



throughout the culture period (Fig. 19). Individual hypertrophic 

cells were different in that some were surrounded by a refractile 

ECH whilst others were not, also, some cells contained small vacuoles 

(Fig. 20). No fibroblasts were present after 7 days. Occasionally 

giant cells were found, but the most remarkable observation was that 

small groups of hypertrophic cells grew into large groups of hyper­

trophic cells during the culture period (Fig. 21), i.e. hypertrophic 

cells were dividing and giving rise to more hypertrophic cells. 

d) Meckel's chondrocytes 

Cells from Heckel's cartilage behaved in a similar manner 

to flattened cells no matter what density the cells were plated out 

at (Fig. 22). 

e) \{rist chondrocytes 

Cells from wrist elements behaved in a similar ma~~er to rounded 

epiphyseal cells no matter what density the cells were plated out at 

(Fig. 23). hOHever. no giant cells were observed even after 10 

days of culture. 

ii) stage 42 cells 

On the Hhole, all 3 types of long bone chondrocytes behaved 

similarly to the equivalent cell type from stage 32 ulnae (Fig. 24) 

but some differences viere observed. Fibroblast-like cells If~ere 

not observed in rounded cell cultures until 2-3 days, nor in flattened 

cell cultures until 6-7 days. 

observed. 

Discussion 

Also, very few giant cells were 

The general conclusion from the results presented in this 

chapter is that the expression of a cartilage phenotype in vitro 
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If a is largely dependant on the morpholog'J of the cell in culture. 

differentiated chondrocyte, or a determined mesenchyme cell, is 

maintained in a rounded configuration, whether by plating at a high 

cell density or by plating onto poly(HENA), it 1fill secrete 1fhat 

appears to be a cartilage EClY!. (Since an assay for cartilage 

specific type II collagen has not been performed it is not possible 

to state that the matrix produced is defin\tely cartilage). However, 

if the cell is allowed to spread and become fibroblastic it will 

or not attain, the cartilage phenotype. These results are 

consist~t with the findings of several authors, e.g. Umansky (1966), 

Caplan (1970), Huller et al (1977), Solursh et al (1982), Glowacki 

et al (1983) and have already been published in part - Archer, Rooney 

and vJolpert (1982). 

Studies on differentiated chondrocytes suggest that each type 

of chondrocytes within a long bone rudiment essentially behaves in 

a similar manner (Levenson, 1969). As has already been mentioned, 

the shape of a chondrocyte in vitro is determined by the initial 

plating density, therefore, what role, if any, does chondrocyte 

morphology play in vivo? Chondrocyte morphology in vivo can be 

regarded simply as a reflection of the stage of maturation attained 

by the cell. The results presented here show that the stage of 

maturation attained by a chondrocyte in vivo determines the timing 

of dedifferentiation in vitro. Therefore, the morphology of a 

chondrocyte in vivo determines at what time, if at all, that cell 

will dedifferentiate in vitro. It should be noted that, under the 

inverted microscope, dedifferentiation can only be observed at the 

periphery of a high density culture (Fig. 7 and 8) which suggest 

that dedifferentiation will only occur if a chondrocyte is allowed 

to flatten and assume a fibroblast-like morphology. If this is so 
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then dedifferentiation should occur anywhere throughout low cell 

density cultures (Fig. 13). 

lrlhen plated at low density, the least mature chondrocyte, 

the rounded cell, dedifferentiates during the first 1-2 days (Fig. 13) 

whereas chondrocytes from the flattened cell population take at 

least 4 days (Fig. 18) and the most mature chondrocytes, the 

hypertrophic cells, do not dedifferentiate at all (Fig. 19). These 

times are similar to the time-course of dedifferentiation, of 

chondrocytes derived from embryonic mouse long bone rudiments, 

presented by Grundmann et al (1980), however, these authors state 

that mouse hypertrophic cells die off by 4 days of culture and this 

is clearly not the case in chick hypertrophic cells (Fig. 19). In 

fact, chick embryo hypertrophic cells were found to survive and 

divide for atleast 7 days (Fig. 21) - as has also been reported 

by Levenson (1969). 

It is interesting to note that chondrocytes from Neckel's 

cartilage, which are primarily flattened in vivo, behaved identically 

to flattened cells from long bone rudiments when g£own in vitro 

(Figs. 18 and 22). The g£01·rth characteristics of Heckel' s 

chondrocytes outlined here are similar to those reported by Levenson 

Similarly. wrist cells, which closely resemble long bone 

rudiment rounded cells, were found to behave almost identically to 

epiphyseal cells in vitro (e.g. Figs. 7 and 23). The only difference 

noted between these cultures was that wrist cells failed to produce 

giant cells. It is tempting to associate the production of giant 

11 b d d d -"'1 tt ' ., 1 ° • t (qo I" \ ° -!-h +' ce s y roun,e an .l a enea ce.L s In Vl ro l'lg. '-l') Wl,," "he 

process of maturation in vivo, whereby large, i.e. hypertrophic, 

cells are produced. Hypertrophic cells in vitro also form giant 
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cells but Hhether this is due to the lack of an in vivo growth 

constraint allowing cells to continue increasing in size or is due 

to some property of the culture system is not known, Cultures 

,<rere not maintained for longer than 10 days in these experiments 

simply because the important morphogenetic events observed in 

long -bone rudiments in vivo occur within a short time period. 

The observation that chick cells grow abnormally in medium 

containing certain types of sera appears to be widespread, e.g. 

chick cells cannot be grown in medium containing mouse serum (they 

produce many lipid vacuoles), therefore, horse or foetal calf 

serum is normally used instead (Parker et al, 1980). 

THO major points concerning chondrogenesis, in vitro and 

in vivo, arise from the results using poly(P3IVl.A) coated,dishes :-

"Histogenic interactions" as proposed by Solursh et al (1978), 

may not be a prerequisite for chondrogenesis in vitro. Individual 

mesenchyme cells, when maintained in a rounded configuration, 

secrete sulphated :SCI!I Hithout coming into contact Hi th any other cell 

(Figs. 3, 5 and 6). This result has already been published (Archer 

et al, 1982) and a similar conclusion has recently been reached 

independantly by Solursh et al (1982), who also found that the 

initiation of cartilage specific type II collagen is also dependa."'1t 

on cell shape. 

ii) The observation that when pre-chondrogenic mesenchyme cells 

flatten they become fibroblastic and secrete less sulphated ECrvl 

then rounded cells (Figs. 5 and 6) may help to explain iNhy 

perichondrial cells, which initially were part of the condensation 

(see chapter 3), do not secrete cartilage matrix. Gould et al 

(I97Lj-) have shown that. during the initial stages of matrix 

secretio:'l, centrifugal forces flatten the outer cells of the condensation 



to form, eventually. the perichondrium. Thus the flattening and 

elongation of the cell may s"ldtch off the expression of the cartilage 

phenotype and instead induce the secretion of type I and type III 

collagens. This phenomenon has also been shc~~ to occur in 

mature chondrocyte cultures 1-,here peripheral cells are fibroblast-

like and secrete collagen type I (Huller et al, 1977), and this 

presumably is what is occuring during the chondrocyte dediffer~tiation 

process mentioned above. Also, cells which spread on tissue culture 

plastic show a higher degree of ~q-thymidine inco::::?oration (Fig. 4, 

also see Folkman and Ivloscona, 1978) a.'1d this is reflected in the 

fact that perichondrial cells have a higher labelling index than 

chondrocytes (see chapter 6). 

If the hypothesis that rounded cells promote high matrix 

secretion but 10vl cell division, and flattened cells show the reverse 

situation is extended to cover differentiation in vivo then nroblems -.--- ~ 

arise. An apparent anomaly arises in that chondro(;ytes in the 

flattened cell region secrete much matrix (and may be important 

in longitudinal growth - chapter 2) and have a lower mitotic index 

than rounded cells (chapter I). How·ever. if flattened chondrocytes 

are looked at in both longitudinal and transverse sections, it is 

found that they are in fact disc-shaped and are not similar to 

fibroblast-like cells. Also, chondrocytes in vivo are held under 

pressure and this may play some role in the proliferation of these 

cells (Rodan et aI, 1975). It must be noted, therefore, that 

flattened chondrocytes in vivo are totally different from flattened 

cells in vitro and that chondrogenesis and differentiation in vitro 

may differ considerably from chondrogenesis and differentation in vivo. 

(This topic Hill be covered in more detail in the folloHing chapter). 

The finding that the maintenance of a rounded cell shape in vitro 
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is conducive to matrix secretion but d.minishes cell division has 

been shmm by several authors, but the conclusion has not always 

been the same, e.g. Bjornsson and Heinegard (1981) and Rifas et al 

(1982) both showed that chondrocytes gro~~ in the absence of serum 

secreted sulphated ECE but did not divide. Bjornsson and Heinegard 

concluded that glycosaminoglycan synthesis did not require serum 

but DNA synthesis did, whilst Rifas et al concb.ded that they had 

specially selected a population of pure chondrocytes. Hov,ever, 

both these o-bservations can be explained by the fact that cells 

grown in the absenceof serum attach but do not spread (just as on 

poly (rf8I'!A) ) and it may be that the shape of the cell was the 

controlling factor in the results obtained. 

In conclusion, in vitro culture of chondrocytes "id th different 

morphologies in vivo has shown that each type of cell behaves quite 

similarly to each other in culture and that the in vivo morphology 

only controls the timing of dedifferentiation. Also, if a 

differentiated chondrocyte, or an undifferentiated mesenchyme cell, 

is maintained in a rounded cell confi~xration, the production of 

sulpYlated ~Cl1, and thus presumably cartilage matrix, is increased. 

This increase is observed even when cells are cultured at low densities 

so that cell-cell contacts do not occur, therefore, histogenic inter­

actions may not be a prerequisite for cartilage differentiation. 
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extensi vely covered. by Solursh and his colleagues (see review by 

Solursh, 1980). Initially (1-2 days) the cells fDrmed concentric 

aggregates with the centre of most aggregates acting as a focus for 

cartilage formation which was detectable, by alcian blue and toluidine 

blue staining, at 3 days (Fig. 5). The foci of cartilage enlarged 

to form whorled nodules which by day 5 had begun to coalesce (Fig. 6). 

Immunofluorescent labelling to type II collagen was found predominately 

within the nodular regions (Fig. 7) and is consistent with the 

findings of Solursh (1982). 

In contrast, medium density limb mesenchyme cultures rarely 

became chondrogenic. Numerous fibroblasts were present by 2 days 

and these rapidly overgrew the entire culture (Fig. 8). Some small 

areas remained polymorphic but these did not exhibit a refractile 

ECE and, invariably the whole culture T/ras fibroblastic after 5 days 

in vitro. No marked fluorescence of type II collagen was observed 

(not shown). In addition. these cultures showed a complete absence 

of metachromasia upon staining with toluidine blue and reacted 

negatively with alcian blue at pH I. 

3) Chondrocytes 

High density scleral and high density epiphyseal chondrocytes 

both gave rise to flat sheets of cartilage which ,·rere ver'J similar 

in appearance (Figs. 9 and 10). ~'lhen plated at medium densities. 

both types of chondrocytes produced discrete nodules of cartilage 

separated by non-chondrogenic fibroblast-like cells (Figs. II and 12). 

The histological appearance of these cultures are reminiscent of the 

morphology observed in cultures of limb bud mesenchyme (cf. Fig. 6) 

and to a lesser degree of medium density scleral mesenchyme (Fig. 4). 

4) Flixed cell cultures 

Chondrogenesis was dramatically reduced in both high density 
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chondrogenesis observed seem to reflect the behaviour patterns of 

the mesenchyme prior to matrix secretion, i.e. limb bud mesenchyme 

formed numerous concentric aggregates in which the foci normally 

becomes chondrogenic Ahrens et al, (1977) whereas scleral mesenchyme 

remained as a sheet of rounded/polygonal cells from plating to the 

onset of overt chondrogenesis. 

A central question is whether these cellular arrangements 

represent a morphogenetic response to an intrinsic property of the 

cell or whether the cellular arrangement produced - can be influenced 

by enviro~mental factors. For instance, can scleral mesenchyme, 

uno.er appropriate conditions, ever form whorled aggregates or limb 

mesenchyme form a flat sheet of cartilage? The answer is yes since 

Allrens et al (1979) have show~ that central core limb mesenchyme 

cultured at high density forms a flat sheet of cartilage and the 

above results show that scleral mesenchyme is capable of forming 

whorls. The two systems, however, are not directly comparable 

for the following reasons. 

Scleral mesenchyme, from 7 day old embryos is comprised of a 

homogenous population of cells all of which are determined to become 

chondrogenic in vivo and give rise to a cup of cartilage surrounding 

the eye. (Scleral cartilage appears between 8-9 days in vivo). 

These cells axe in close association with the basement membrane of 

the retinal pigmented epithelium whose presence is required for their 

determination (Ne1-mome. 1976). Therefore, once determined, plating 

at high density onto a flat surface such as tissue culture plastic 

merely mimics the surface of the PRE, so that, when the chondrogenic 

phenotype is expressed. a flat cartilage sheet 1-rill result (Fig. I). 

In contrast, stage 23-24 limb bud mesenchyme comprises of a 

number of cell types which include presumptive chondroblasts, myoblasts, 

vascular elements and uno_etermined mesoblasts. In fact Le1-ris (1977) 
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has calculated that as fef,r as 5% of the cells in the chick wing bud 

will give rise to cartilage. Therefore, unlike scleral mesenchyme 

cultures, cartilage differentiation from limb mesenchyme in vitro 

must occur in close association with a large majority of non-chondrogenic 

cell types. (Ho-wever, if the central core regions of stage 24 wing 

buds, which presumably have a high proportion of pre-chondrogenic cells, 

are cultured under I'licromass conditions, virtually a flat sheet of 

cartilage is produced (Ahrens et aI, 1979)). 

The ,{hole issue of tissue specific morphogenesis as proposed 

by Heiss and Hoscona (1958) revolves around the similarity betvreen the 

concentric cell aggregates and subsequent cartilage nodules observed 

in limb mesenchyme cultures and the concentric cellular orientation 

seen in early long bone rudiments when viewed in transverse section 

(Gould et aI, 1974). The crucial question is are these two events 

homologous or is the similarity coincidental? 

Ahrens et al (1977) demonstrated that limb bud mesench)~e from 

stages 20-2Lj· Hill form aggregates and subsequent cartilage nodules 

vrhen cultured under f'Iicromass conditions. An important point is 

that the electron microscope evidence of these authors shows con­

vincingly that aggregation occurs in the absence of matrix secretion 

(Ahrens et aI, 1979; see also Ede, 1980; Solursh et al, 1982). 

Aggregation in vitro is believed to come about by active cell migration 

of peripheral cells towards a central, "founder" cell CEde and 

Agerbak, 1968; Ede et aI, 1977; Ede 1983) in a manner similar to 

the aggregation phase of the slime mould CEde, 1983). However, as 

discussed in the General Introduction, there is no direct evidence 

for such centripetal movement in the limb and other evidence :points 

against it (Gould et aI, 1972). 

~fhat does seem clear is that the concentric arrangement of 

core cells in the limb is only observed after matrix secretion has 
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Introduction 

Data already presented have shown that cell shape plays an 

important role in the degree of cell division exhibited by cells 

in ~itro (chapter 4), and preliminary studies suggest that the location 

and degree of cell division 1dthin an intact long bone rudiment may 

also be determined by cell shape (chapter I). Cell division has been 

studied_ in many systems and the duration of the cell cycle has been 

calculated for various cell types but very few studies have concentrated 

on embryonic chondrocytes. filurison (1972) cultured chondrocytes 

from the vertebral trunks of 10 day old chick embryos and calculated 

a cell cycle time of approximately 18 hours. An important finding 

was that the cell cycle time was similar whether it was calculated 

from cells exposed to a short pulse of tritiated thymidine (producing 

a Frequency of Labelled Ei tosis curve - FLlil) or from cells cultured 

continuously in the presence of the label. 

Very little has been published concerning the cell cycle of cells 

within_along bone rudiment either in vivo or in organ culture. The 

most closely related work has been performed by Kember (1972, 1973. 

1978) when he studied the cell kinetics of chondrocytes within the 

epiphyseal grm<Tth plates of young rats. The rates of proliferation 

of the entire growth plates have been calculated but the cell cycle 

times of the individual chondrocytes within the growth plates have not 

been clearly stated. 

The objects of this chapter are as follows: 

i) to determine the cell cycle times of chondrocytes within an 

intact long bone rudiment in organ culture, 

ii) to examine the relationship between cell shape and division 

rate or cell cycle time T/Ti thin an intact rudiment ~'1d 

iii) to determine the cell cycle time of chondrocytes freed from the 
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the roundec, cell zone and groy-rn in cell culture to give an indication 

of hO;rr closely cell culture studies can be related to organ culture 

studies. 

Baterials and ]\'iethods 

Ulnae I'Tere removed from stage 33 embryos and maintained in 

culture as described in the General Hethods. After I hour, the 

"cold" medium was reylaced with medium containing 3H-thymidine at a 

concentration of 15 IUCi/ml. Rudiments were incubated continuously 

in medium containing 3H-thymidine for up to 28 hours. Samples 

were removed every 4 hours, fixed, sectioned and processed for 

autoradiography as described in the General I'lethods. A mean 

labelling index (L.l.) was obtained for each time period by counting 

the total nUll1ber of cells/cellular zone and the number of cells 

within each zone which had incorporated JH-thymidine. Cell counts 

were performed on 3 central I fUm sections, each 10 tum ayart, from 3 

different rudiments for each lebelling period. 

Cell cultures 1 .. "ere obtained by isolating the rounded cell 

zones from stage 3J ulnae and dissociating them as described in the 

General Nethods. Cells Here plated onto 35 mm tissue culture dishes 

at a concentration of 2xl05 cell/dish and cultured in Hams F-I2 

medium for I day. After I day the "cold n medium "\-1as replaced vd th 

~ h d" t"' 3u -l.- 'd'';' 't".1;>- ""/1 rres. me lUID con alnlng ""- t.,hyml ·lne a" a concen<:.ra lon 0.1. 1 /U'vl! m_. 

Cells were cultured continuously in the yresence of JH-thymidine for 

up to 28 hours. Samnles were removed at 2 hour intervals, fixed, 

exnosed to nuclear emulsion and processed for autoradiography as 

described in the General hethods. The labelling index IBS obtained 

by counting the number of lebelled nuclei in at least 500 cells in 

each of J dishes for each ,J..- 0 "l t.,lme perlOQ. 



Results 

I) Organ culture 

i) Rounded cells 

The labelling indices of proximal and distal rounded. cells vri thin 

an intact rudiment over a 28 hour period are shovrn in Fig-u.re I. 

Distal rounded cells tend to have a higher L.I. than proximal cells 

vrith a maximum of approximately after 28 hours. In both zones, 

the accumulation of labelled cells increased almost linearly for about 

I2-IL:. hours v-Then it began to plateau. According to l'lurison (1972) 

the cell cycle time can be taken as the breakpoint of the ascending 

curve and the plateau - in lJoth zones this occurs behJeen 12-16 hours 

and can be centred on I5±I hours (Fig. 1). 

of cells in each zone are shovrn in Table I. 

ii) Flattened cells 

The L.I. and the number 

The L.I.'s of proximal and d.istal flattened cel2.s within an 

intact rudiment over a 28 hour period are shOHYl in Figure 2. 

Proximal flattened cells tend. to have a higher L.I. than distal cells 

Hith a maximUIll of approximately 20:% after 28 hours. In both zones, 

the accumulation of labelled cells increased linearly for about 16-

18 hours vJhen it began to plateau. If the brea~point of the curve 

is taken as an estimate of the cell cycle time then a figure of 

approximately I~I hours is obtained (Fig. 2). 

number of cells counted is shown in Tab2.e I. 

iii) Hypertrophic cells 

Again, the actual 

No labelled hypertrophic cells "I'Jere observed in stage JJ ulnae 

until at least 12 hours of culture. The cells are at the boundary 

between the flattened and hypertrophic cell zones (Fig. 3) and are 

probably more accurately described as hypertrophying flattened cells. 

Over a 28 hour time period only about J% of hypertrophic cells shoHed 
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any label, therefore. no cell cycle time could be obtained. The 

L.I. and the number of cells counted are shoHn in Table 1. 

iv) The intact rudiment 

An estimate of the L.I. of the intact rudiment can be obtained 

by expressing the total number of labelled cells as a :percentage 

of the total number of cells found in each section (Table I). 

(The number of labelled cells in each cellular zone can be calculated 

by multiplying the L.I. of that zone by the number of cells ~dthin it). 

The curve produced (Fig. is of a similar pattern to that found 

in rounded and flattened cell zones and shows a breakpoint at 

approximately I6±I hours. 

II) Cell culture 

The L.I. of cells freed from the rounded cell zone and grOim 

in cell culture is shown in Figure 5. As in the above cases there 

is an almost linear accumulation of labelled cells for about 16-18 

hours when the increase slo1'rs dO"lm. If the breakpoint of the 

curve is looked at, a cell cycle time of 16+1 hours is obtained. It 

is noticable that the maximum percentage of labelled nuclei is only 

83% after 28 hours; a 100% L.I. was never observed. 

Discussion 

The cell cycle times presented in this chapter are all calculated 

from sraphs of labelling indices of continuously labelled cells. Cell 

cycle times in most other systems have been evaluated using F'LE curves 

example see Quastler and Sherman, 1959; Steel and Haines, 1971 

and Gilbert, 1972) Hhich involve exposing cells, or tissues, to a short 

pulse of label folloHed by culture in unlabelled medium. HOI-rever, 

FLL studies ',rere not utilised in this system for several reasons: 

i) In the case of a long bone rudiment, rounded cells divide but 



they also mature into flattened cells. This implies that the 

amount of label incorporated into the rounded cell zone during the 

pulse would not only be diluted by cell division but a proportion 

would continuously be lost from the zone entirely making accurate 

studies of cell division vdthin the zone impossible. 

ii) Recent studies have stated that in certain cases FLH curves 

give inaccurate values of the cell cycle (Hudson and Hahn, 1977; 

Hamilton and Dobbin, 1983). 

iii) llurison (1972) showed that continuous labelling curves gave 

a similar value of cell cycle time in chondrocytes as Fll"i curves 

and therefore, if only the total cell cycle time, and not the times 

of the individual cell cycle phases, is required the simpler 

continuous labelling curve is sufficient. 

The results presented in this chapter shm1" that a higher 

proportion of rounded cells are capable of incorporating 3H-thymidine 

than flattened cells. It seems surprising that a maximum LI. of 

only 40% is obtained l'fithin the rounded cell zones whilst a L.1. of 

20~0 is observed within the flattened cell zones (Fig. I and 2) 

but it must be remembered that rounded cells are continuously 

maturing into flattened cells and therefore, the L.I. of the rounded 

cells (Fig. I) is artificially low whilst the L.I. of the flattened 

cells (Fig. 2) is made ~~tificially high. If a stage 33 ulna is 

labelled for a short period of time, e.g. 2 hours, the L.I. of the 

flattened cells is found to be less than 10% (see Table XIII, 

chapter I) which implies that very soon after removal from the 

embryo, only about 10% of the initial flattened cell population lS 

dividing. Over a 2L hour culture period the number of cells in 

the proximal flattened cell zone of a I(Um section increases from 

938-1613 cells (Table I), an increase of approximately 650 cells. 
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HOI-Jever, if only 10;;; of the existing flattened cell pO:iJulation is 

dividing (assuming there only one complete cell cycle of 18 

hours durb_g the .21+ hour study period) this implies that only 

about 100 of these cells are derived from existing flattened cells, 

the remaining 550 cells must arise from maturing round.ed cells. 

The data in Table I shows an increase in proximal rounded 

cell nu.rrlber, in a I um section, from 1193-1892, approximately 700 

cells, during the culture period. If a further 550 flattened cells 

have also been produced from rounded cells this implies that the 

total number of new cells produced. by the proximal rounded cell 

zone is closer to 1250 during the culture period. If this is the 

case, then the initial rounded cell population, of approximately 

1200 cells, has doubled during the 24 hour study period. Assuming 

that there is only one cell cycle of 15 hours during the culture 

period, this implies that every rounded cell has divided. Therefore, 

the actual L.l. of the proximal rounded cell zone should be closer 

to 100%. and. the L.I. of the flattened cell zone should. be closer 

to 10% over the zLr hour period. Similar calculations can be obtained 

for distal rounded and flattened cell zones. 

This is the first report of differences in the cell cycle times 

of chondrocytes Hithin different zones of the same long bone ruiiment. 

Rounded cells have a mean cell cycle time of I5.±.I hours ';"ihilst 

flattened cells have a cell cycle time of 18+1 hours (Figs. I and 2). 

Al though significant in that it does occur, it "Tould perhaps be 

expected since flattened cells are more mature (and therefore older) 

than rounded cells and evidence suggests that the proliferative ability 

of chondrocytes decreases ,dth age e.g. 'Jalker and i{ember, (1972) 

have shmm that, d-uring maturation of the proximal tibial grm"th plate ~ 

the rate of chondrocyte :proliferation and the 1.1. of the chondrocytes 



is reduced by at least 50%. Also, chondrocytes from vertebrae 

of neonatal rats have a mean cell cycle time of 22 hours (Dixon, 

1971) whilst chondrocytes from 6 week old rat tibial epiphyses 

have a cell cycle time of 55 hours (l.Jalker and Kember, 1972) 

however, it is not known how much of this difference is due to 

location rather than age. 

No cell cycle time could. be obtained for hypertrophic cells 

since only about J% of the cells incorporated label by 28 hours 

(Table I). It is unlikely that these labelled hypertrophic cells 

were originally labelled flattened cells since histological exam­

ination shows that the distribution of labelled flattened cells is 

not uniform. There is a higher percentage of labelled flattened 

cells close to the junction vTi th the rounded cell zone than there 

is close to the hypertrophic cell zone - even after 16 hours of 

incubation (Fig. J). There is a distinct gap of at least 10 cell 

diameters with absolutely no label between the last labelled 

flattened cell and. the first labelled hypertrophic cell. This 

would not be expected if the labelled hypertrophic cells l",ere 

originally labelled. flattened cells (Fig. J), This observation 

implies that the onset of cell hypertrophy may -be associated with 

a phase of DNA synthesis. 

The non-uniform distribution of label within the flattened 

cell zones suggest that as a flattened cell matu.res it ~-ri thdraws 

from the cell cycle. Since it is only the most mature flattened. 

cell which becomes hypertrophic and since the first labelled 

hypertrophic cell does not appear for at least 12 hours (Table I) 

this implies that the time taken for a mature, non-dividing 

flattened cell to become hypertrophic is at least 12 hours. HOH 

long a flattened cell is capable of dividing before it fully matures 
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and what causes it to stop dividing once mature are not knoi-m. 

~'Jhen the entire rudiment, as a whole, is considered a mean 

cell cycle time of approximately 16 hours is obtained i, \ 
-r) • 

This figure fits remarkably well "lfith the data obtained by counting 

the number of cells within a 1IUffi section of an ulna (see Table 

VI, chapter I). The time period between stage 30 - stage 32 

(6/6t days - 7 deWS) is approximately 16 hours (Hambvrger and 

Hamilton, 1951) and during this time the number of cells within 

the sectioned ulna increases from 1896-3733, an increase of 

approximately 100%. Similarly, the time period beb-feen stage 31 

stage 33 C(J./7 days 7t days) is also about 16 hours and dLrring 

this time the total number of cells increases from 2472-5196, once 

again, an increase of approximately 100%. 

The 1.1. of the perichondrium was not determined but it Has 

observed that a uniform intense label If as found throughout the 

perichondrium. Figure 3 shoviS that the lJerichondrium ",as heavily 

labelled even at areas Hhere no cartilage was labelled. 

~ihen rounded cells were freed from their extracellular matrix 

and grown in cell culture a mean cell cycle time of 16.±.1 hours lfas 

obtained (Fig. 5). This value is similar to the cell cycle time 

of I5±.1 hours ol::Jtained for rounded cells within an intact rudiment 

and is close to the cell cycle time of 18 hours recorded by ~(iUrison 

(1972) using chick embryo vertebral cartilage. Also, the maximum 

L.1. of 83% is similar to that of 82}b recorded for vertebral 

cartilage. A L.1. of 100% vms never obtained, but this is not 

unusual and may be explained by damage to cells during the diss-

ociation process or by some of the cells maturing into "flattened" 

chonclrocytes (not flattened, fibroblastic cells) and withdraTrfing 

from the cell cycle. 
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Iv_urison (1972) cultured his cells for J days prior to labelling 

and found hw cell types produced - polygonal cells y surrounded by 

a metacb.Iomatic extracellular matrix, 2,nd fibroblastic cells. 

However, he noticed that the cell cycle time T,{as identical whether 

the cell .,ras polygonal or fibroblastic and this l1"oulc'L imply that the 

dedifferentiation event occurring in rounded cell cultures during 

the first 1-2 days (see chapter 4) can be ignored for the purpose of 

this study. 

The general conclusions from this chapter are as follows: 

i) every rounded cell is capable of dividing whilst only about 

105~ of the flattened cell population can, or does divide, 

ii) rounded cells have a shorter cell cycle time than flattened 

cells, 

iii) the process of cell hypertrophy may require a phase of DNA 

synthesis, 

iv) the mean cell doubling time ,oTithin an intact rudiment is 

approximately 16 hours, and 

v) the cell cycle time of rounded cells is similar whether the 

cell is grown in organ or cell culture. 
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Table 1 

Zone 

LP- n' ~ ) 

Round. 

IJ11at. 

IijTIJ .. 

F11at. 

Hound. 

Total 

Hean labelling indices observed in the histological zones 
of a stage 33 ulnae, 

Labellin~ . " + 
lnct8X 

(Total no. -1 \ oe..L s) 

Hours labelled 

L 8 12 16 20 24 28 

21.96 25·42 29.55 32.02 33.59 34.04 34 AI 
(II93) (138I) (IL62) (1593) (I676) (1757) (1892) 

12.26 13.36 15.83 18.93 19.38 20.08 20~I5 
(938) (1078) (1194) (1305) (1403) (1524 ) (1613) 

0 0 0.13 0 .. 57 0.72 2.19 3031 
(1271) (I395) (IL82) (1590) (1665) (I7 8L1-) (1902) 

IO.II 12.45 14.99 17.36 ,.-/ 19.64 20.03 • .)0 

(910) (940) {TOiLl (1083) fTT64 \ (T2":/' (1298) \- -' I \-'--'- ) \..l.. J-) 

20.86 27·92 3L~.05 37.30 38.37 39.43 40.18 
(858) (985) (i06~\ 

:,- J) (1166) (II99) (T?631 
\ -- I 

(T ':iLea) 
\--....)1/ 

12.59 15·35 18.29 20·52 21.53 22.26 22.86 
(5170) (5779) (6215) (6697) (7107) (7560) (8054) 

+Values are presented as a percentage of the total number ::;f cells. 
Values Here calculated from '3 central I/Um sections, 10 Aun apart 
from 3 different rudiments for each labelling :period. 

Standard deviations are omitted for clarity -but ranged from 3-13>~. 
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