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Abstract—Urbanization and rapid population growth have in-
tensified vehicular traffic, leading to congestion, increased travel
times, and environmental challenges, particularly carbon emis-
sions. Addressing these issues requires innovative approaches
that can optimize traffic flow while minimizing environmental
impacts. Digital twin technology, a virtual replication of physical
systems utilizing real-time data, has emerged as a promising so-
lution in urban transportation management. This paper presents
DT-STOP (Digital Twin for Sustainable Traffic Optimization and
Planning), a novel framework leveraging computer vision and
edge computing to optimize traffic management in unstructured
traffic environments. DT-STOP is designed specifically for the
complex and often chaotic traffic scenarios seen in countries
like India, where lane discipline is minimal and vehicle diversity
is high. Through the integration of digital twins and advanced
AI-driven computer vision, DT-STOP enables dynamic traffic
management, and improves urban mobility. The effectiveness of
our approach is demonstrated through a case study in an urban
Indian setting, showcasing the efficiency of integrating computer
vision in unstructured traffic environments.

Index Terms—Digital Twin, Intelligent Transportation Sys-
tems, Traffic Management

I. INTRODUCTION

The unprecedented rise in urbanization and population
growth has resulted in severe congestion in urban road
networks, increasing travel times, and exacerbating environ-
mental challenges such as air pollution and climate change.
Transportation emissions, a major contributor to poor air
quality and global warming, have become a growing concern
for cities worldwide [1]. Consequently, there is an urgent
need for innovative technologies that can enhance traffic man-
agement and promote sustainability. Digital twin technology,
initially conceptualized by Grieves in 2003 [2] and further
refined in 2010 [3], has emerged as a transformative tool for
urban transportation. By creating virtual replicas of physical
systems, digital twins enable real-time simulation and opti-
mization, providing insights for efficient traffic management
and emission reduction [4].

Several existing works have demonstrated the potential of
digital twin systems for traffic management. Kusic et al. [5]
developed a Digital Twin for the Geneva motorway (DT-GM)
using the SUMO microscopic traffic simulator and real-time
traffic data, enabling dynamic flow calibration and rerouting.
Similarly, Tettamanti et al. [6] employed a Vehicle-In-The-
Loop (VIL) approach for autonomous vehicle testing, inte-
grating real-world and virtual traffic scenarios. Szalai et al. [7]
expanded on this with a mixed-reality framework combining
SUMO and Unity 3D for autonomous vehicle simulations,
providing valuable insights into vehicle behavior and system
performance. However, these studies predominantly focus on
structured traffic systems.

The Indian Driving Dataset (IDD) [8], [9] tailored for the
unique challenges of Indian roads, has been instrumental in
developing and validating these models. Varma et al. [10]
introduced IDD as a comprehensive resource for road scene
understanding, while Paranjape & Naik et al. [11] extended its
application with the DATS-2022, a dataset designed for object
detection in unstructured traffic conditions in India. Baheti et
al. [12] proposed Eff-UNet, a deep-learning model trained
on IDD for enhanced semantic segmentation, and Kolekar et
al. [13] applied Explainable AI (XAI) techniques to improve
scene interpretation.

Vehicular communication plays a crucial role in ensuring
reliable and efficient wireless connectivity in Intelligent Trans-
portation Systems (ITS). The development and validation of
small-scale Dedicated Short-Range Communication (DSRC)
systems have been explored in previous studies. For example,
Kamal et al. [14] and Rayamajhi et al. [15] demonstrated the
feasibility of Dedicated Short-Range Communication (DSRC)
and Cellular Vehicle-to-Everything (C-V2X) technologies for
real-time data exchange. Ali et al. [16] explored 5G and
massive MIMO systems to optimize vehicular networks, high-
lighting the role of RSUs in managing vehicle interactions.
Additionally, Norazmi et al. [17] emphasized the importance



Fig. 1: Proposed DT-STOP Framework

of RSU placement for accurate vehicle localization.
In this context, we propose DT-STOP (Digital Twin for

Sustainable Traffic Optimization and Planning) to address
the complexities of unstructured traffic using domain-specific
computer vision models. Unlike traditional traffic management
systems, which often rely on static data and centralized
decision-making, DT-STOP leverages real-time data from au-
tonomous vehicles, roadside units (RSUs), and sensors to dy-
namically optimize traffic flows. This approach is particularly
well-suited for unstructured traffic environments like those in
India, characterized by unpredictable vehicle behavior, diverse
vehicle types, and limited lane discipline. Moreover, by inte-
grating digital twins, computer vision, and edge computing,
DT-STOP offers a comprehensive solution for sustainable
traffic management in unstructured environments.

II. DT-STOP FRAMEWORK

The proposed DT-STOP framework is illustrated in Figure
1 and consists of three main layers: the Sense Layer, the
Communication Layer, and the Digital Twin Layer. Each
layer works collaboratively to ensure real-time traffic analysis,
optimization, and decision-making, specifically tailored to
manage unstructured traffic conditions.

A. Sense layer

It is essential to monitor and measure different parameters
of the vehicles in real time for the possible recommendations
of DT-STOP framework. Vehicles of different levels of auton-
omy are equipped with different types and ranges of sensors
[18], like RGB camera, LiDAR, RADAR, IMU (Inertial
Measurement Unit)s, GPS etc. Number of above sensors re-
quired for a particular vehicle depends on different parameters
like the level of autonomy, structured/unstructured traffic,
type of traffic environment (urban, semi-Urban, Highway,
congested, space etc.), geography, environmental conditions
etc. The Sense Layer of DT-STOP is planned to accommodate
most data collection from a heterogeneous nature of sensors.
The sensor layer of DT-STOP assumes the preliminary data
preprocessing and auto calibration of acquired data at the edge

node before the data is sent for any further processing to the
local AI/ML model or the communication layer to connect to
the cloud DT-STOP platform.

B. Communication Layer

The Communication Layer is powered by 6G-enabled
Road-Side Units (RSUs) that facilitate ultra-low-latency data
transmission. RSUs act as intermediate nodes for communi-
cation between autonomous vehicles, edge devices, and the
cloud. This enables real-time information sharing, allowing
rapid updates on traffic conditions within local areas. Ad-
ditionally, local edge AI-based models deployed at RSUs
provide preliminary traffic analysis and send optimized route
planning data to the vehicles and processed data to the digital
twin layer for further analysis.

C. Digital Twin layer

At the core of the DT-STOP framework is the digital
twin, a virtual representation of the urban traffic environ-
ment. It continuously receives data from the Communication
Layer, simulating traffic conditions using AI-driven predictive
models. The digital twin is equipped with a trained global
AI model that aggregates insights from various cities to
improve its predictions. By running multiple simulations, the
digital twin generates optimized traffic management strategies,
including real-time route adjustments and traffic light timing
optimization. These strategies are relayed back to the Sense
Layer for immediate implementation.

Unlike traditional traffic management systems, DT-STOP
operates on a feedback loop that enables continuous learning
and refinement. The local edge models periodically update
based on insights from the global AI model, ensuring accurate
and timely decision-making. Through this holistic and scalable
approach, DT-STOP not only aims at reducing congestion
and travel times but also aims at minimizing emissions,
contributing to sustainable urban development.

III. EDGE VEHICLE COMPUTER VISION

A key innovation of DT-STOP is its adaptive computer
vision algorithms, specifically trained on unstructured traffic



datasets such as the IDD. These models efficiently detect,
classify, and track vehicles under challenging conditions.
This section presents a detailed exploration of YOLOv8’s
architecture [19], focusing on its fundamental components,
including its backbone network, detection head, and YOLOv8-
Seg for semantic segmentation [20]. It thoroughly discusses
various aspects of model training, such as dataset selection,
preprocessing steps, and training methodologies aimed at
enhancing model efficiency. The approach begins with real-
time image capture from a camera sensor, which is subse-
quently processed by YOLOv8 to identify and classify objects
within the captured frames. The model extracts critical visual
features, such as shape, texture, and color, to distinguish
different objects, ensuring high-precision obstacle detection.

1) Input data acquisition: A camera sensor was utilized
to acquire real-time image or video data, mounted on an ego
vehicle platform (e.g., an autonomous vehicle) as part of an
IDD dataset.

2) Frame Extraction from Video: Frames from the IDD
dataset are extracted for a specific road stretch in Hyderabad.
This process utilizes OpenCV or similar video processing
libraries to convert the video stream into individual frames,
enabling object detection.

3) Object Detection and Classification: YOLOv8 Nano is
optimized for edge computing, striking a balance between
efficiency and accuracy. Its lightweight design reduces compu-
tational demands, making it ideal for low-power devices while
maintaining real-time detection capabilities. Unlike larger
models, it delivers fast inference without compromising detec-
tion quality, ensuring reliable object recognition in dynamic
environments. This makes it well-suited for applications like
autonomous driving and smart surveillance, where real-time
processing on resource-limited hardware is crucial. Unlike
traditional object detection pipelines, YOLOv8 processes full
images in a single evaluation, bypassing the need for re-
gion proposal networks, which speeds up real-time inference.
Built upon prior YOLO versions, YOLOv8 improves feature
extraction by employing a Darknet-based backbone. This
ensures robust detection in complex environments, such as
Indian roads, where diverse vehicle types, high pedestrian
density, and fluctuating lighting conditions create detection
challenges. The model incorporates PANet (Path Aggregation
Network) to enhance multi-scale feature extraction, allowing
better recognition of objects regardless of size variations
and occlusions. Feature fusion improves the detection of
small or partially obscured objects, which is critical in dense
urban traffic scenarios. YOLOv8 optimizes real-time perfor-
mance through: Feature Pyramid Networks (FPNs), Anchor-
free detection, Improved bounding box regression, High-speed
inference techniques These enhancements significantly reduce
computational overhead, enabling fast object detection in real-
world driving conditions.

YOLOv8 offers multiple model variants, ranging from
high-capacity large models for detailed feature extraction
to lightweight Nano models, which are optimized for low-
memory, low-power devices. Performance metrics commonly
used to evaluate these models include Parameter count
(Params): indicates model complexity, inference time and

detection accuracy. Large and medium-sized YOLOv8 models
excel in controlled environments but may struggle with effi-
ciency and real-time execution in real-world scenarios. Nano
and small YOLOv8 models demonstrate higher robustness
in real-life testing, particularly in challenging, unstructured
Indian road conditions, where rapid detection is critical. Once
objects are identified, bounding boxes are placed over detected
elements in the scene. Confidence scores accompany the
bounding boxes, indicating the reliability of the detection
results. This ensures that the autonomous system can process,
interpret, and respond to real-time road environments within
critical time constraints, enabling edge-based inference with-
out relying on cloud models in certain scenarios.

4) Semantic Segmentation: For this task, we utilized the
Masked YOLO framework for semantic segmentation, inte-
grating alternating convolutional layers and a coarse-to-fine
strategy to enhance feature extraction and refinement. To op-
timize performance, we applied transfer learning, initializing
the model with pre-trained COCO weights and fine-tuning it
on the IDD Segmentation dataset. The model was trained for
10 epochs with a learning rate of 0.001, ensuring efficient
adaptation to road segmentation tasks while maintaining high
pixel-wise accuracy.

5) GIS Mapping: Geographic Information System (GIS) -
based mapping techniques are employed to integrate object
detection results with geolocation data, enabling spatial visu-
alization of traffic patterns. Folium, a Python-based interactive
mapping library, is used to overlay detected objects onto
a base map, providing an intuitive representation of traffic
congestion along a predefined route. Polyline representations
are utilized to illustrate vehicle movement, offering a struc-
tured way to depict changes in traffic density across different
locations.

To classify traffic congestion levels, the total count of
important road objects within a given spatial region was ana-
lyzed. Based on these counts, traffic density was categorized
into distinct levels, ensuring a clear distinction between low,
medium, and high congestion zones. This grouping method
provided a structured approach to assess traffic flow variations,
allowing for more effective congestion analysis and manage-
ment.

IV. EXPERIMENTAL SETTINGS AND EVALUATIONS

A. Computer Vision

In this study, computer vision (CV) plays a crucial role
in capturing and analyzing real-time traffic data, including
vehicle detection, and congestion monitoring. By leveraging
CV techniques, the proposed DT-STOP framework can dy-
namically optimize traffic flow, reduce emissions, and enhance
urban mobility.

1) Dataset: The Indian Driving Dataset (IDD) [10] com-
prehensively captures the complexities of unstructured traffic
environments prevalent in India, encompassing diverse road
conditions, heterogeneous traffic compositions, and pedestrian
interactions across both urban and rural regions of Bangalore
and Hyderabad. IDD is structured into multiple subsets, each
curated to facilitate specific computer vision tasks. The IDD-
Detection subset comprises 46,588 images, annotated with



15 traffic-related classes, designed to support object detec-
tion applications. The IDD-Segmentation subset consists of
10,003 images extracted from 182 driving sequences, fea-
turing polygon-based annotations to enable precise semantic
segmentation. Additionally, the IDD-Multimodal subset inte-
grates GIS location data with sequential frames, facilitating
advanced spatial analysis.

Fig. 2: Class Distribution for Detection

A total of 5,052 images from the IDD-Detection dataset
were used for object detection. Annotations covered 10 traffic-
related classes: animals, autorickshaws, buses, cars, motorcy-
cles, persons, riders, traffic signs, trucks, and vehicle fallbacks,
with class distribution shown in Fig. 2. The dataset was
processed in Roboflow and split into 70% training, 20%
validation, and 10% testing.

For IDD-Segmentation, only the road class was extracted
from the polygon-based annotations. Binary masks were gen-
erated for each image and converted to YOLO .txt format. The
dataset was partitioned into 80% training and 20% validation.

2) System Configuration: All training and implementation
were conducted on a dedicated server built by Middlesex Uni-
versity, running Debian 6.1. The system is equipped with an
Intel Xeon Platinum 8268 processor and an NVIDIA Quadro
RTX 8000 GPU with 46GB VRAM. CUDA 12.8, cuDNN,
and PyTorch were installed to enable high-performance deep
learning training and inference.

3) Model Training and Implementation: Both object de-
tection and semantic segmentation models were trained using
YOLOv8. The Ultralytics YOLOv8 package was utilized for
training, employing the SGD optimizer with an initial learning
rate of 0.01. The models were trained on the dataset and
evaluated on the validation set.

For object detection, an extensive simulations was carried
out to compare the performances of different versions of
YOLOv8 were trained, including nano, small, medium, and
large. Each variant differed in complexity, balancing detection
accuracy and inference speed. For segmentation, YOLOv8s-
seg was used for training, and the model was trained for 10
epochs. The training process for object detection was initially
conducted for 50 epochs and later extended to 100 epochs. A
batch size of 16 and an input image size of 640 × 640 were
used to optimize computational performance while ensuring
high detection and segmentation accuracy.

Once trained, the models were applied to the IDD multi-
modal dataset for inference. Object detection produced multi-

class predictions, identifying various objects within each
frame, while semantic segmentation generated a binary road
mask, isolating road pixels. For traffic route optimization, only
on-road objects were considered important, as they directly
influenced vehicle movement and congestion, while off-road
objects were excluded from the analysis.

To filter objects based on road presence, a bounding-box-
based overlap filtering approach was used. The proportion of
road pixels within each detected object’s bounding box was
computed as:

IoU =

(
Aoverlap

Aobj

)
× 100 (1)

where Aoverlap represents the number of road pixels inside
the bounding box and Aobj is the total area of the bounding
box. If overlap percentage exceeded a predefined threshold τ ,
the object was classified as important. This method ensured
that only objects physically present on the road were retained
for further analysis.

The final output from the object filtering layer, consisting
of frame-wise detections and the count of important objects,
was mapped using Folium to visualize traffic conditions. The
mapping process involved overlaying object detection results
onto a base map centred on the mean latitude and longitude
of the dataset. To represent the vehicle’s trajectory, GPS
coordinates were extracted and connected using polylines.
Each polyline segment was color-coded to indicate traffic
density, determined by summing the number of detected
objects at each GPS coordinate. The classification thresholds
for traffic density were predefined, with low-traffic areas
displayed in green, medium-density areas in orange, and high-
traffic zones in red. This visualization provided a spatial
overview of congestion levels and vehicle movement, aiding
in route optimization and traffic analysis.

4) Evaluation Metrics: To assess the detection perfor-
mance of our enhanced model, we utilize several evaluation
metrics: precision, recall, Mean Average Precison (mAP), and
the inference time. The specific formulas for these metrics
are provided in this section. mAP represents the average
AP value across all categories, indicating the model’s overall
detection performance across the entire dataset. Precision is
the metric that represents the ratio of true positives to the
total predicted positives. Recall is a measure of the ratio
of correctly predicted positive samples to all actual positive
samples.

B. Results and Observations

1) Computer Vision: Fig. 3 illustrates the process of object
detection, road segmentation, and filtering road-only objects
in a traffic scene. Fig. 3 (a) showcases YOLO-based object
detection, where various objects such as vehicles, motorcycles,
and pedestrians are identified using bounding boxes. Fig.
3 (b) applies road segmentation, highlighting the road area
while darkening the rest of the scene to distinguish objects
positioned on the road. Finally, Fig. 3 (c) combines both
processes, retaining only objects within the road boundaries
while filtering out background elements like pedestrians on



(a) (c)(b)

Fig. 3: (a) Object Detection, (b) Road Segmentation and (c) Filtering road-only objects

sidewalks. This approach enhances traffic analysis by en-
suring only road-relevant objects are considered, improving
autonomous driving, smart traffic monitoring, and accident
prevention systems.

The evaluation of YOLOv8 variants for object detection, as
shown in Table I, highlights the trade-offs between accuracy
and inference time. Larger models provided higher accuracy
but required more processing time, whereas smaller models
offered faster inference with a slight reduction in precision.
YOLOv8s emerged as the most balanced option, optimizing
both speed and accuracy for real-time detection.

TABLE I: Experiment Results

Object Detection

Model mAP50 Precision Recall Inference
Time(ms)

YOLOv8n 0.593 0.774 0.526 1.0
YOLOv8s 0.636 0.775 0.581 1.9
YOLOv8m 0.649 0.809 0.574 4.3
YOLOv8l 0.648 0.791 0.580 6.5

Semantic Segmentation
YOLOv8s-seg 0.975 0.983 0.965 2.5

For semantic segmentation, YOLOv8s-seg demonstrated
high precision and recall while maintaining efficient process-
ing. It achieved strong segmentation performance while ensur-
ing computational feasibility. The identified important objects
from live detection were utilized for traffic route optimization,
allowing real-time analysis of congestion patterns and vehicle
movement. This approach enables more effective navigation
strategies by considering dynamic traffic conditions and road
occupancy. The results suggest that a model like YOLOv8s
is well-suited for real-time object detection in dynamic traffic
environments and is particularly advantageous for deployment
on edge devices due to its balance of computational efficiency
and accuracy.

V. DT-STOP FOR RSU PLACEMENT OPTIMIZATION

This section presents a use case scenario to demonstrate
how the DT-STOP framework can optimize the placement
of RSUs for efficient vehicular communication using digital
twin technology. By leveraging communication network data,
DT-STOP ensures seamless connectivity with minimal infras-
tructure deployment, especially in urban environments with
unstructured traffic.

A. Proposed Methodology

1) Virtual Environment Generation: DT-STOP creates a
Unity-based Digital Twin that models real-world urban en-
vironments using GIS data. The virtual environment enables
detailed simulation of traffic movement and wireless connec-
tivity scenarios.

2) Path Planning: Vehicle trajectory data is collected using
sensors and edge devices. Real-time data from the communi-
cation layer is integrated into DT-STOP to simulate various
traffic scenarios and determine optimal RSU placements. DT-
STOP’s adaptive models ensure accurate path representation,
accommodating unstructured traffic characteristics.

3) RSU Placement: The DT-STOP framework employs
a combination of computer vision-based vehicle classifica-
tion and network connectivity analysis. Utilizing the Friis
transmission equation, it evaluates wireless coverage under
varying transmission powers, frequencies, and antenna gains.
The iterative algorithm simulates multiple RSU configurations
to achieve maximum Line-of-Sight (LOS) coverage with min-
imal overlap, ensuring reliable communication and reducing
infrastructure costs.

4) Visualization and Output: The DT-STOP generates vi-
sual heatmaps to display coverage quality. LOS regions are
highlighted in cyan, handoff zones in yellow, and Non-Line-
of-Sight (NLOS) regions in red. Through continuous analysis,
DT-STOP recommends optimal RSU placements and suggests
real-time adjustments based on emerging traffic patterns.

B. Experimental Settings

A simulation environment was created using DT-STOP to
evaluate RSU placement along a selected urban road segment.
Real-time vehicle path data sourced from the IDD Multimodal
dataset was utilized to reflect actual driving behaviors in
India. The simulation area covered 100 hectares with Class-C
RSUs, operating at 5920 MHz with a nominal range of 400
meters. Each simulation run tested different RSU placements,
adjusting for dynamic NLOS scenarios and maintaining a
10% overlap between adjacent RSUs to mitigate link failures.
The best placement strategy was identified by minimizing the
number of RSUs while maximizing coverage.

C. Results and Analysis

The DT-STOP framework effectively optimized RSU place-
ment using communication data and computer vision insights.
By analyzing LOS, NLOS, and handoff scenarios, it identified



the most efficient network configuration. To visualize cover-
age, heat maps are used to determine LOS, NLOS and optimal
signal thresholds to better understand the effect of buildings
on the wireless link as demonstrated in Fig. 4. An example
path of vehicle in the considered IDD dataset is shown with
placement of the RSU and vehicle trajectory as shown in Fig.
5. In a representative simulation, the system achieved full
coverage using four RSUs after evaluating ten configurations.
Visualizations generated by DT-STOP illustrated improved
network reliability and reduced deployment costs.

Fig. 4: Coverage Visualization in the form of Heatmap

Fig. 5: An Instance of RSU Placement

VI. CONCLUSIONS

This paper introduces DT-STOP (Digital Twin for Sus-
tainable Traffic Optimization and Planning) as an advanced
solution for addressing the complexities of unstructured traffic.
A key aspect of DT-STOP is its use of computer vision,
which plays a crucial role in vehicle detection and congestion
monitoring. By leveraging datasets like the Indian Driving
Dataset (IDD), DT-STOP can process complex traffic scenes,
ensuring that only relevant road objects are analyzed, enhanc-
ing traffic optimization and vehicle movement management.
Moreover, integrating digital twins, computer vision, and
edge computing, DT-STOP offers a sustainable and efficient
approach to traffic management, improving urban mobility and
reducing emissions in unstructured environments.
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