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ABSTRACT 

The objective of this thesis is to investigate the dynamic behaviour of road traffic 

flow based on theoretical traffic models. Three traffic models are examined: the 

classical car-following model which describes the variations of speeds of cars and 

distances between the cars on a road link, the logit-based trip assignment model 

which describes the variations of traffic flows on road links in a road network, 

and the dynamic gravity trip distribution model which describes the variations of 

flows between O-D pairs in an O-D network. 

Some dynamic analyses have been made of the car-following model in the 

literature (Chandler et al., 1958, Herman et al., 1959, Disbro & Frame, 1990, and 

Kirby and Smith, 1991). The dynamic gravity model and the logit-based trip 

assignment model are both suggested by Dendrinos and Sonis (1990) without 

detailed analysis. There is virtually no previous dynamic analysis of trip 

distribution, although there are some dynamic considerations of trip assignment 

based on other assignment models (Smith, 1984 and Horowitz, 1984). 

In this thesis, the three traffic models are considered as dynamical systems. The 

variations of traffic characteristics are investigated in the context of nonlinear 

dynamics. Equilibria and oscillatory behaviour are found in all three traffic 

models; complicated behaviour including period doubling and chaos is found in 

the gravity model. Values of parameters for different types of behaviour in the 

models are given. Conditions for the stability of equilibria in the models are 

established. The stability analysis of the equilibrium in the car-following model 

is more general here than that in the literature (Chandler et al., 1958, Herman et 

al., 1959). Chaotic attractors found in the gravity model are characterized by 

Liapunov exponents and fractal dimension. 

The research in this thesis aims at understanding and predicting traffic behaviour 

under various conditions. Traffic systems may be monitored, based on these 

results, to achieve a stable equilibrium and to avoid instabilities and chaos. 
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CHAPTER 1. INTRODUCTION 

1.1. BACKGROUND 

This thesis is concerned with the dynamic behaviour of road traffic flow. We all 

know that traffic characteristics such as speed and flow vary with time, but do 

we know how they vary? 

In order to understand road traffic behaviour, analysts have developed traffic 

models, in the form of mathematical equations in most cases, to replicate real 

traffic systems. Although these models are simplified representations of real 

systems, they may be very complicated from mathematical point of view, and 

often need to be tested by large amounts of data. The process of traffic 

modelling involves model development, model analysis, and model calibration 

and validation. Through this process we can learn a lot about both the 

properties of the model and the real traffic system. Traffic can thus be managed, 

controlled, and planned more sensibly. 

Traffic systems consist of roads, moving vehicles or traffic flows, and people 

(drivers and passengers). In traffic modelling, we may either concentrate on 

traffic flows on a stretch of road only or, more generally, look at the flows in a 

road network. Consider first traffic flow on a road link between junctions. Cars 

which move close enough may interact with each other. A driver receives visual 

information about the motions of neighbouring cars, particularly the car 

immediately in front. He or she makes judgements about the positions and 

speeds of his or her car and the car in front, and responds accordingly, but not 

necessarily immediately. There may be a short time for reaction. Drivers may 

accelerate or decelerate if the car in front does so. This system is modelled by 

the car-following model. In its simplest, linear form, the car-following model 

states that the acceleration of a car at time t is proportional to its speed relative 

to the car in front at time t-I, where I is the delay or the reaction time. More 

general car-following models are nonlinear and assume that the acceleration of a 

car depends not only on the relative speed to the car in front, but also on their 
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distance apart and its own speed. 

The traffic flow on a road link has also been modelled from a different 

perspective. Instead of treating each car individually like one does in the car­

following model, traffic is considered as a continuum and is characterized by 

aggregate variables such as the speed, flow, and density. The fluid model 

describes the relationship of these variables and their variations with time and 

space. 

The car-following model and the fluid model deal with the traffic flow on a 

stretch of road. There are other traffic models concerned with the allocation or 

the distribution of traffic flows in a road network or an area. Traffic flows are 

often referred to as numbers of trips in these models. 

In a road network, each driver is making a trip, or a journey from an origin, the 

place where a journey starts, to a destination, the place where the journey ends. 

Drivers often have more than one possible route (a chain of road links) to choose 

between a particular origin-destination pair (O-D pair). They naturally choose 

the best route or what they think is the best route. The main concern in route 

choice is travel time or some more general notion of travel cost. A cheaper route 

may become more crowded and so more costly to travel. In the meantime, 

different drivers can have different beliefs about the best route. As a result, 

different drivers travelling between the same two places often use different 

routes; the flow between each O-D pair is shared among the routes connecting 

the origin and the destination. The trip assignment model describes the ways in 

which the traffic flow between each O-D pair is allocated to the routes according 

to their travel costs. A user equilibrium is achieved when the flow on each route 

is such that no road user can improve his or her travel cost by changing routes. 

Not only can one choose which route to use in a road network, but also one can 

choose where to live and where to work, to do shopping, to travel, etc. The 

choices are again often made based on some kind of cost such as the distance, or 

the travel time. Consider a large area composed of several origins and 

destinations. The trip generation model determines the total number of trips 

generated from each origin and attracted to each destination from factors such as 

land use and socio-€conomic conditions in the area. Given the total number of 

trips from each origin and to each destination, the trip distribution model will 

determine the number of trips between each O-D pair, possibly according to the 
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travel costs between the two places. The best known trip distribution model is 

the gravity model, which originated from an analogy with Newton's gravitational 

law. It is assumed that the number of trips between an origin and a destination 

is proportional to the number of trips from the origin and the number of trips to 

the destination, and is inversely proportional to some measure of cost such as the 

square of the distance between the origin and the destination. 

Traffic models such as those mentioned above describe the relationships among 

traffic variables, and related factors such as travel costs. In reality, these traffic 

characteristics (the flow, speed, and density in traffic models at the road link 

level; and the number of trips on each route, or between each O-D pair at the 

network level) vary with time. But not all traffic models take this fact into 

account. 

Traffic models can be divided into two categories, static and dynamic, according 

to whether the time variation is included explicitly or not. Static models 

consider only one state of traffic which is implicitly assumed to prevail in a 

traffic system. The static trip assignment model is a typical example. Many trip 

assignment models have been developed so that their solutions satisfy the user 

equilibrium conditions. The user equilibrium is often formulated as the solution 

of a mathematical programming problem. Traffic flows are allocated to each 

route such that the travel cost of each driver is minimized. However, it may be 

doubtful whether traffic flows in a road network will stick to the equilibrium, 

although the underlying assumption that drivers try to minimize their own travel 

cost is natural and plausible. If the system is sensitive to various disturbances, 

which are inevitable in practice, then the equilibrium can hardly last in the 

system even if it exists. In other words, the equilibrium may not be stable. To 

seek an unstable equilibrium is just like trying to stand an egg on its end. 

Dynamic models describe the evolution of the system modelled. To check the 

stability of an equilibrium, we only need to simulate the model, starting 

somewhere near the equilibrium as if the system is perturbed a little from the 

equilibrium, and see if the system will stay nearby or even go back to the 

equilibrium eventually. 

The motion of traffic flows on a road link or a road network can be considered as 

a dynamical system. Dynamic models of traffic flow describe the time evolution 

of such variables as flow rate (traffic flow), and speed, which characterize the 
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state of the system. The time evolution of a dynamical system is normally 

modelled by (deterministic) differential or difference equations which relate the 

rate of change of the state to the current values of the state variables and 

necessary parameters. In practical applications, these equations will usually be 

nonlinear. A solution of the equations gives one history of the system, which 

traces out a trajectory or an orbit in the phase space of the system, or the 

(multidimensional) space of the variables of the system. Each point of the 

trajectory represents a state of the system at a certain time. 

Given an initial condition or a starting point, many dynamical systems exhibit a 

start-up transient, after which the motion settles down towards some form of 

long-term recurrent behaviour. Motions from neighboring initial values tend to 

converge towards the stable attracting solutions called attractors. There are 

basically four types of attractor: point attractors, which is a stable equilibrium 

where the variables of the system are constants, periodic attractors on which the 

state of the system varies periodically, quasi-periodic attractors on which the 

state of the system varies regularly but does not repeat itself exactly, and chaotic 

attractors on which the state of the system varies irregularly. Equilibria and 

periodic motions are familiar to us; chaotic motions are not fully understood yet. 

The car-following model mentioned above is an example of a dynamical system. 

It is a system of delay-differential equations describing the motion of a line of 

cars on a road link. The solution of the equations describes the speed of each car 

and the spacing between the cars as a function of time. It may settle down with 

time to an equilibrium where the speeds and spacings are constants. Similarly, a 

dynamic trip assignment model can be used to describe the (daily, weekly, etc.) 

variations of traffic flows in a road network. It would be very useful if the flow 

pattern in a dynamic trip assignment model approached the user equilibrium. 

However, an equilibrium in a dynamic trip assignment model mayor may not be 

the same as the user equilibrium, depending on how the system is modelled. If it 

is assumed that a driver would rather choose the route which may be longer but 

with a more scenic view, then an equilibrium in the model (if it exists) may not 

guarantee that all drivers travel at the minimum cost. The stability of an 

equilibrium is most important in traffic analysis. An unstable equilibrium is 

practically useless. Unless starting exactly at the equilibrium, a trajectory rarely 

heads for an unstable equilibrium. 

There has been a great interest in nonlinear dynamics since the 1960s, because of 
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the wide applications of powerful computers and rapid progress in geometric and 

topological methods in dynamics. Chaotic behaviour is a revolutionary discovery 

in deterministic systems. There is no widely accepted definition of a chaotic 

attractor. However, it may be more helpful to know how a chaotic system 

behaves than to define it. 

Although trajectories near a chaotic attractor converge to the attractor, two 

nearby trajectories on the attractor diverge exponentially fast with time. In other 

words, the system is extremely sensitive to initial conditions. It is this feature 

which distinguishes chaotic and non-chaotic behaviour. Practically we cannot 

deal with infinitely precise numbers; we normally have to predict the future of 

the system from imprecise initial conditions. The orbital divergence makes it 

impossible to tell conclusively what is going to happen next. The behaviour 

appears to be stochastic, yet in a deterministic system. With a deterministic 

system, such as motions of bodies described by Newtonian mechanics, it had long 

been believed that the future is uniquely determined from the past and that a 

small error remains small for all time. Today, this cannot be taken for granted 

any longer. In a chaotic system, an initially insignificant error, however small it 

may be, will eventually become significant and intolerable. 

Chaotic behaviour is irregular, unpredictable, and complicated. The 

unpredictability can be measured by Liapunov exponents, which tells how fast 

neighbouring trajectories diverge or converge exponentially. The exponential 

divergence cannot go too far: trajectories will wind back on themselves because 

the size of an attractor is finite. This stretching and folding makes a chaotic 

attractor very complicated such that it normally has a non-integer or fractal 

dimension. 

It may be surprising to know that many practical systems which seem to be 

stochastic can be modelled by deterministic models, such as the weather forecast 

models. Chaotic behaviour has been found in some of these systems (for 

example, Lorenz, 1963). Even a very simple mathematical equation can give rise 

to exceptionally complicated solutions. Although traffic phenomena seem 

stochastic, many traffic models are deterministic, partly because of their relative 

simplicity. A stochastic model can be very difficult to handle and to apply if 

they are made reasonably realistic. Many stochastic models have to be 

approximated by deterministic ones so that they are approachable. Queueing 

models, for example, are stochastic. They model a system in which customers 
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arrive, queue, and are served. They have been applied to model road traffic 

systems. Newell (1982) has observed, in his work on applications of queueing 

theory to traffic systems, that "deterministic approximations have found 

application to a much wider range of practical problems than the stochastic 

theory simply because the stochastic analysis of even the simplest systems which 

involve several servers or customer types is too tedious to be of much practical 

value". However, a deterministic model can give rise to stochastic behaviour, as 

we have seen. One would not be too surprised if chaos were found in 

(deterministic) traffic models. That would mean that apparently stochastic 

traffic phenomena could turn out to have a deterministic mechanism. In fact, it 

is almost impossible to determine if a given random appearing behaviour is 

pro babilistic or deterministic. The discovery of chaos has made the distinction 

between deterministic and stochastic behaviour much more blurred. 

The steady state of a dynamical system may depend on the initial state and also 

on other control conditions, which are normally represented by one or more 

parameters in the model. As these conditions change, the long term behaviour of 

the system may change, either quantitatively, or qualitatively. At a certain 

value of a parameter, an equilibrium may bifurcate into a periodic motion, or, a 

periodic orbit may become irregular or chaotic. If an equilibrium of a dynamical 

system occurs only under very strict conditions, represented by a narrow range of 

values of the parameters, then it may not be easy to maintain the equilibrium in 

the system. 

So far as road traffic flow is concerned, equilibrium and stability are always 

desired. An attracting equilibrium is highly desirable to road users, planners, 

and traffic engineers alike. In traffic studies, many traffic models are formulated 

and solved to obtain a user equilibrium without any stability analysis being 

carried out. What is more, these models are then used to give guidance to 

drivers in practice, aiming to get a smooth, efficient traffic flow. In real traffic, 

however, it is obvious that an equilibrium may not always be achieved. 

Instabilities inevitably exist, though their effects may be very weak. In dense 

traffic, where drivers follow each other very closely, small disturbances like the 

acceleration or deceleration of one vehicle might be preserved or amplified along 

the line of vehicles or over time. This sensitive dependence on initial conditions 

implies instability. These phenomena may raise problems in traffic management, 

and may even result in accidents when serious. 
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In traffic systems, initial conditions and values of parameters can never be 

determined with perfect precision. It is therefore necessary to treat traffic as a 

dynamical system and to examine the behaviour of the system under various 

circumstances. 

Computer technology has been developed in the form of artificial intelligence 

systems in cars (Bender and Fenton, 1970, and Kapur, 1971) and in automated 

route guidance systems (Watling and Van Vuren, 1993). The development of 

these control systems frequently suffers from the lack of dynamic modelling and 

analysis of traffic systems. Watling and Van Vuren (1993) quoted Smith and 

Ghali's comment (Smith and Ghali, 1991) to describe the situation: 

"technological developments are taking place at a much greater rate than 

improvements in the understanding and computer modelling of networks". One 

begins to wonder what would happen if the underlying traffic models in these 

control systems had instabilities or chaos built in. 

1.2. THE AIM 

The aim of this thesis is to investigate the dynamic behaviour of road traffic flow, 

based on deterministic, dynamic traffic models. It is intended to find out how 

traffic variables change with time under a governing equation and how the initial 

conditions and parameter values affect these changes. This knowledge is very 

important in both theoretical studies and applications. 

Traffic flows are described at different levels of scope: the road link level, the 

road network level, and the origin-ciestination network level. Accordingly, it will 

be attempted to achieve the following three specific objectives: 

(1) To investigate the variations of the speeds of the cars and the distances 

between the cars on a stretch of road. 

(2) To investigate the variations of traffic flows on the routes and links in a 

road net wor k. 

(3) To investigate the variations of traffic flows between O-D pairs in an 

O-D network. 
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One dynamic traffic model in each of these three areas will be selected for the 

purpose of dynamic analysis. The models will then be examined to identify all 

possible long-term behaviour of traffic flows under various conditions. In 

particular, the different possible kinds of attractor will be found and described. 

Conditions for the stability of equilibrium will be established. Where an 

attractor appears to be chaotic, the chaos will be established and quantified by 

calculating Liapunov exponents and fractal dimensions. 

One of the objectives of traffic modelling is to explain and to interpret traffic 

flow phenomena. By analyzing dynamic traffic models, the behaviour of traffic 

systems can be better understood. Dynamic analysis is also helpful in improving 

traffic models so that they are more realistic. The ultimate aim of traffic science 

is to achieve better traffic conditions. If it is found that there is more than one 

equilibrium in a system, which is not uncommon, then traffic can be monitored 

to achieve the desired equilibrium. If, on the other hand, unwanted behaviour 

such as instability or chaos is found for some values of parameters, then it may 

be possible to avoid it. 

1.3. A BRIEF LITERATURE REVIEW 

There has been much previous research on traffic dynamics. Many of them have 

focused on the stability of equilibrium solutions. On the other hand, the 

developments of chaos theory have stimulated traffic modellers. Some attempts 

have been made to identify chaos in traffic. Here, a brief review of the literature 

is given; a more detailed review can be found in Chapter 2. 

First, there are two different models for describing the motion of vehicles along a 

road link: the car-following model and the fluid model. Most dynamic 

considerations of traffic flow on a road link are based on the car-following model. 

Chandler et al. (1958) and Herman et al. (1959) investigated the stability of the 

linear car-following model. Unwin et al. (1967) examined a special nonlinear car­

following model, namely, the reciprocal model. Only two cars, a leader and a 

follower, were considered. More recently, two attempts have been made to 

identify possible chaotic behaviour in the car-following model. Disbro and Frame 

(1990) claimed to have found chaos in the model while Kirby and Smith (1991) 

found no evidence of chaos in the car-following model. This disagreement about 

the existence of chaos in the car-following model, together with the fact that only 
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the linear car-following model has been considered for stability (except Unwin et 

al., 1967), motivated the study of the model in this thesis. 

The fluid model is a system of partial differential equations. The dynamic 

behaviour of this model has been investigated by Kuhne (1991) and Kuhne and 

Beckschulte (1993). An apparently irregular behaviour was found; the authors 

did not conclude if the behaviour is chaotic or not. Dynamic study of partial 

differential equations is difficult both theoretically and numerically. 

Consequently, many dynamic models of partial differential equations are reduced 

to ordinary differential equations for the analysis. 

Secondly, for traffic flows at the network level, there are the trip distribution 

model and the trip assignment model. Most traffic models at this level are static. 

Dendrinos and Sonis (1990) proposed a dynamic gravity model, with its potential 

for showing chaos, but they made no detailed study of the model. This dynamic 

gravity model is another model to be examined in this thesis. 

As for the trip assignment model, two stability analyses are relevant here. 

Horowitz (1984) proposed a discrete-time assignment model for a simple road 

network of one O-D pair connected by two road links. The condition for the 

stability of the equilibrium in the model was provided. Smith (1984), on the 

other hand, suggested an assignment model consisting of a system of ordinary 

differential equations. The equilibrium of this dynamic system coincides with the 

user equilibrium, which Smith proved to be stable. One of the widely used trip 

assignment models is the logit choice model, first suggested by Dial (1971). This 

model is static. Dendrinos and Sonis (1990) proposed a dynamic logit choice 

model, which will be explored here for dynamic considerations in trip assignment. 

1.4. MAIN CONTENTS OF THE THESIS 

The dynamic behaviour of traffic flows at a road link, in a road network, and in 

an O-D network will be investigated based on, respectively, the car-following 

model, the dynamic gravity model, and the dynamic logit-based trip assignment 

model. The car-following model is a classical model while the dynamic gravity 

model and the logit assignment model are suggested by Dendrinos and Sonis 

(1990), as mentioned above. 
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The dynamic models of traffic flow will be analysed in the context of nonlinear 

dynamics. The time variation of characteristics of traffic flow is given by 

solutions of dynamic traffic models in the form of differential or difference 

equations. An equilibrium solution is one where these variables are constant over 

time. An equilibrium is said to be stable if the solutions converge to the 

equilibrium from any initial conditions sufficiently close to the equilibrium. As 

the value of a parameter in the model changes, the equilibrium may bifurcate to 

an oscillation or eventually to chaos. 

In general, dynamic models of nonlinear differential or difference equations 

cannot be solved analytically; theoretical analysis can be made only to a limited 

extent. Numerical integration or iteration, together with geometrical methods, 

are very useful here. The idea is to visualize the states of the system as points in 

the phase space, instead of dealing with symbols and formulae. Thus, the phase 

portrait of an equilibrium is a single point in the space; a periodic solution is a 

closed loop; a chaotic attractor is a complicated object full of irregular 

trajectories, which may be beautiful! Although it is not possible to view a space 

of a dimension higher than three, it can be projected to a two dimensional space 

so that two variables can be examined. Different variables may be selected and 

viewed. 

Equilibria are most important in traffic; their existence, uniqueness, and stability 

will be examined theoretically. More complicated behaviour will be examined by 

geometric methods such as time series plots, phase portraits projections based on 

numerical solutions. Sometimes it may be difficult to tell if a solution is regular 

or chaotic simply by viewing pictures of it. Spectral analysis may be helpful to 

differentiate periodic and non-periodic behaviour. If the behaviour appears to be 

chaotic, it will be examined further by calculating Liapunov exponents and 

fractal dimensions. 

This thesis consists of seven chapters. A general introduction has been given here 

in the first chapter. Traffic models are described and reviewed in Chapter 2, 

where all relevant traffic models are described and suitable ones selected. A brief 

introduction of nonlinear dynamics is given in Chapter 3. Descriptions in these 

two chapters are general; more details will be given in due course in the later 

chapters. The three traffic models are examined in turn in the subsequent three 

chapters. Finally, the conclusions are summarized in the last chapter. 

Introduction 10 



CHAPTER 2. DYNAMIC MODELS 
OF ROAD TRAFFIC FLOW 

The main objective of this research is to investigate the dynamic behaviour of 

theoretical models of traffic flow. In this chapter, traffic models concerned with 

traffic dynamics are described and reviewed. Particular models are chosen for 

the research; some models which are not suitable here are modified for the 

purpose of this research. A general outline of traffic modelling is given in the 

first section. Particular models of interest are discussed in the subsequent 

sections. 

2.1. TRAFFIC MODELS 

The motion of road traffic is often characterized by such variables as 

displacement, speed, acceleration, traffic density, traffic volume, and so on. 

These variables will be explained when they are met. Traffic models describe 

relationships among these variables and how these variables vary over time and 

space. The purpose of mathematical modelling of road traffic flow is to interpret 

and to understand traffic behaviour so that appropriate actions can be taken to 

make traffic operate efficiently, safely, and economically. In the short term, 

these actions might consist of traffic management and control measures. For 

example, traffic signals can be timed so that traffic can move more smoothly; and 

instructions and information can be provided to drivers so that they can drive 

safely and quickly. In the longer term, congestion can be avoided in advance by 

traffic planning. This aims to forecast traffic changes (normally as a result of the 

development of land use and socio--€conomic activities) and traffic flow 

distributions over an area or a road network; the planning of a future stretch of 

road or road network can be based on these forecasts. 

Like all other mathematical models, traffic models can be divided into 

deterministic models and stochastic models according to whether stochastic 

effects are considered. Traffic behaviour seems inherently stochastic, but many 
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traffic models are deterministic. One advantage of deterministic models over 

stochastic ones is that they are easier to deal with, as has been mentioned in 

Chapter 1. Traffic models can also be divided into static models and dynamic 

models according to whether time variations are involved explicitly. It is 

necessary to point out that many traffic models are static, despite the fact that 

traffic characteristics are bound to change with time. To investigate traffic 

dynamics a dynamic model is essential. Therefore, it is deterministic and 

dynamic traffic models which are of interest here, more specifically, traffic models 

in the form of differential or difference equations, which govern the time 

variation of traffic characteristics. 

Traffic flows can be described either at a link level or at a network level. At a 

link level, traffic flow on only one road link between junctions or even on a single 

lane is considered; characteristics such as speed, acceleration, flow, density are 

modelled. At a network level, a road network or a large area is considered; the 

model is concerned with flows on all the links, or on all the routes (a chain of 

links connecting two places), or even between each pair of zones (sub-areas of the 

whole area concerned). 

There are two main types of traffic model at the link level, the car-following 

model and the fluid model. They both describe the motion of traffic flow on a 

road stretch, but from different perspectives: the car-following model treats each 

car individually while the fluid model considers traffic flow as a continuum. For 

this reason, the car-following model can be regarded as a microscopic model and 

the fluid model as a macroscopic model. The two models are related in that one 

form of the fluid model can be derived from the car-following model (Payne, 

1979). 

At a network level, traffic flows are often referred to as trips. Two types of 

model are relevant to the dynamics of network traffic flow: trip (or traffic) 

distribution models and trip (or traffic) assignment models. These two types of 

model are normally used in traffic network planning and management to estimate 

the flow between each pair of zones of an area, or the traffic flow on each link of a 

road network. The four models and their relationships (the relationship of the 

car-following model to the fluid model, and that of the trip distribution models to 

trip assignment models) are described in detail below. 
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2.2. THE CAR-FOLLOWING MODEL 

2.2.1. The model 

The car-following model was developed to model the motion of vehicles following 

each other on a single lane without overtaking (for example, Wilhelm and 

Schmidt, 1973, Leutzbach, 1988). The model is based on the assumption that a 

driver responds to the motion of the vehicle immediately in front. 

Consider a line of cars numbered from 1 (the leading car) to N (the last car), 

shown in Figure 2.1. Let xn(t) denote the position of car n at time t. Then 

the derivatives x n ( t) and x n ( t) are the corresponding speed and acceleration. 

x (t) 
n 

x
n

_
1 
(t) 

---+ ---+ ---+ ---+ ---+ 

N n n-l 2 1 
0 0 0 0 0 
-- ... 

x (t) 
n x n-l (t) 

Figure 2.1 The car-following model 

It is assumed that the response of a driver to the vehicle in front is to accelerate 

(or decelerate) his or her vehicle. The resulting acceleration is assumed to equal 

the stimulus multiplied by a sensitivity. The stimulus is represented by the 

difference between the driver's speed and the speed of the vehicle in front and the 

sensitivity is a measure of the intensity of the response. A larger sensitivity leads 

to a greater change in acceleration for a given change in stimulus. In addition, a 

time delay or the reaction time is built into the model: the driver does not react 

immediately to changes in relative speed or spacing. Thus the equations of the 

car-following model are: 

x (i) = {3 (x l(i-T) - x (i-T)) , n = 2, 3, ... , N, 
n n n- n 

(2.1a) 

where {3 is the sensitivity of the nth car, and r is a constant, representing 
n 

the reaction time of the driver of the nth car. The sensitivity depends both on 
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the current speed of car n and on its distance from car n - 1 at the time T 

previously: 

(2.1b) 

where a is a positive parameter; m and l are non-negative parameters, not 

necessarily integers. When m = 0 and l = 0, the sensitivity is constant and 

the model is linear: 

x (t) = a (x 1 ( t-T) - X (t-T)), n = 2, 3, ... , N. 
n n- n (2.2) 

Otherwise, the model is nonlinear. 

2.2.2. Literature review 

There have been many previous studies of the dynamics of the car-following 

model. Chandler et al. (1958) and Herman et al. (1959) examined the linear car­

following model (2.2). Two types of stability were considered: local stability and 

asymptotic stability. Local stability is concerned with the time variations of the 

response of one car to a change in the motion of the car in front. Asymptotic 

stability, on the other hand, is concerned with the manner in which a fluctuation 

of the motion of the lead car is propagated down a line of traffic. Both forms of 

stability are defined in terms of safe driving: nonoscillatory, damped response 

represents the safest driving and is said to be stable, while oscillatory response 

with or without damping represents hazardous following conditions and is said to 

be unstable. Conditions for local stability were established using Laplace 

transforms and numerical analysis of singularities of the inversions of the Laplace 

transforms (Herman et al., 1959). The qualitative properties of solutions of (2.2) 

were found to be 

(1) if aT> 7r/2, the solution is oscillatory with increasing amplitude; 

(2) if aT = 7r/2, the solution is oscillatory with constant amplitude; 

(3) if lie < aT < 7r/2, the solution is oscillatory with damped amplitude; 

(4) if aT ~ lie, the solution is non-{)scillatory and damped. 
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The asymptotic stability of (2.2) was examined by Fourier analysis and Laplace 

transforms. The condition for a fluctuation to be damped as it is propagated 

down a line of cars was found to be CiT < 1/2. 

Unwin et al. (1967) investigated the so called reciprocal-spacing car-following 

model, that is, the model of (2.1) with m = 0 and l = 1: 

X (i) 
n 

X n-l ( t-T) X n ( i-T) 
- Ci ---------, 

Xn_ 1 (i-f) Xn(i-f) 
n = 2, 3, ... , N. 

This model is nonlinear. Only two cars were considered in their study with the 

motion of the first car being treated as a forcing term. The delayed terms in the 

model 

were expanded by Taylor series around t, so that the model was converted to a 

second-order ordinary differential equation by taking the first two terms of the 

Taylor series. The motion of the first car is assumed to be given. A following 

car was said to be stable with respect to a leading car in the sense of Liapunov if 

a small change in the initial conditions produces only a small change throughout 

the solution. The stability was investigated by the Liapunov direct method 

(Driver, 1977). 

There was not much work on the car-following model during the 1970s and 1980s. 

More recently, there have been two studies about dynamic and possible chaotic 

behaviour in the car-following model. Disbro and Frame (1990) claimed that 

chaos can definitely occur in the car-following model. Their conclusion was based 

on showing that the first Liapunov exponent is positive for certain values of the 

parameters. However, the existence of a positive Liapunov exponent is a 

necessary but not a sufficient condition for chaos (The concept of Liapunov 

exponent will be explained in Chapter 5) and the authors give no plots or other 

evidence of a strange attractor. On the other hand, Kirby and Smith (1991), in 

an exploratory study, found no evidence of chaos in the car-following model, 

though some features of non-linear dynamics related to chaos were found. 

Ferrari (1994) considered the stability of a linear two car model 
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His research is in the same line as that of Chandler et al. (1958) and Herman et 

al. (1959) mentioned above. Instead of a and 7, he considered the influence of 

the characteristics of the speed of the lead car on asymptotic stability. 

2.3. THE FLUID MODEL 

2.3.1. The model 

In contrast to the car-following model, the fluid model describes traffic flow on a 

road link in an aggregated way by an analogy with the theory of fluids and uses 

such quantities as flow, density, speed, etc. The fluid model was first suggested 

by Lighthill and Whitham (1955). Later developments include applications of 

statistical mechanics and hydrodynamic theory (Payne, 1979, Baker 1983, 

Leutzbach, 1988). Strictly speaking, models derived from statistical mechanics 

should be regarded as mesoscopic (the scale between microscopic and 

macroscopic) models rather than macroscopic ones as they are normally 

considered to be. The fluid theory is a system of (dynamic) equations describing 

the interrelationships of traffic flow, density, and speed. The definitions of the 

three variables are as follows. 

(1) Traffic flow Q - the number of cars passing a particular point of the 

road per unit time. 

(2) Density K - the number of cars per unit length of road at a point in 

time. 

(3) Speed V - the speed of the traffic stream. 

Normally these quantities all vary with both time and space; in the case of a 

traffic lane, space is only one dimensional. Thus Q, K, and V are functions of 

time t and the space coordinate x. The first equation in the fluid model is 

inherent in the definitions of Q, K, and V: if a traffic flow of density K 

travels at speed V, then the number of cars passing a fixed point of road per 

unit time or the flow is given by 

Dynamic Models of Road Traffic Flow 16 



Q = KV. 

The second equation is the continuity equation 

8K + 8Q - 0 or 7Jx- , 

(2.3) 

(2.-:1) 

which is derived from the law of conservation of cars in a section of a road. In 

fluid dynamics, the third equation would be a law of motion derived from 

Newton's equations. There is no "law of motion" for traffic flow, so some model 

has to be postulated. Several forms of the third equation have been suggested to 

complement the above two equations. In the classic fluid model (Lighthill and 

Whitham, 1955) the third equation is a steady-state relation of speed and density 

v = U(K). 

This equation together with (2.3) and (2.4) can describe some traffic phenomena 

such as kinematic waves in traffic flow. It can not, however, describe instabilities 

in traffic flow and is not suitable for dynamic analysis. Some dynamic models 

have therefore been developed by adding an acceleration equation to (2.3) and 

(2.4) in order to consider the time variations of speed. Different versions of the 

acceleration equation have been considered (Payne, 1979, Leutzbach, 1988, Ross, 

1988, Kuhne, 1987, 1991, and Kuhne and Beckschulte, 1993). Most of them are 

of similar form. A typical one is (Payne, 1979): 

(2.5 ) 

where U(K) is a steady-state relation of speed and density, T and v are 

constants and K =~. This model was "derived" by postulating terms which 
, :z: ux 

might affect drivers acceleration in different ways. The two terms on the right 

hand side are called the relaxation term and the anticipation term respectively. 

The relaxation term considers the effect of drivers adjusting their speeds to 

conform to the spacing 1/ K, with the reaction time T (not necessarily the 

same to the one in the car-following model); and the anticipation term considers 

the effect of drivers reacting to conditions downstream, for example, to slow 

down in anticipation of higher densities downstream (Kx>O). 
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2.3.2. Literature review 

Most investigations into the fluid model have concentrated on its development, 

its validation, and methods for solving it numerically. Not very much has been 

done about the analysis of the dynamics of this model. Kuhne (1987) considered 

the following acceleration equation: 

(2.6) 

where Co and Vo are constants. The first two terms on the right hand side of 

the equation are also referred to as the relaxation term and the anticipation term 

respectively by the author. The third term is added by the author and is called a 

viscosity term. 

The fluid model using acceleration equation (2.6) together with (2.3) and (2.4) is 

analyzed by Kuhne (1991) and Kuhne and Beckschulte (1993). The model was 

converted to a system of three first-Drder ordinary differential equations by 

truncated expansion. The stability of a fixed point and a periodic solution found 

in the converted equations was analysed numerically. Liapunov exponents were 

calculated for the periodic solution (Kuhne and Beckschulte, 1993) and for some 

observed speed data (Kuhne, 1991). A solution which seems to be irregular was 

found in the converted model, but the authors did not conclude whether the 

irregular solution is chaotic or not. 

2.4. THE CAR-FOLLOWING MODEL VERSUS THE FLUID MODEL 

The car-following model and the fluid model both describe the motion of traffic 

flow on a road link, though in different ways. In this thesis the car-following 

model is chosen for the consideration of traffic dynamics at the link level for the 

following three reasons: 

(1) The car-following model is easier to deal with than the fluid model. The 

fluid model is a system of partial differential equations. Direct analysis of 

dynamics in partial differential equations is difficult because it inevitably 

involves the interplay of temporal and spatial behaviour and is normally 
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very time--consuming in a numerical analysis. Therefore, partial 

differential equations are often reduced to a system of ordinary differential 

equations in dynamic considerations. For example, the well-known Lorenz 

model (Lorenz, 1963) was obtained by truncating the partial differential 

equation modelling thermal convection between two infinite planes. 

Kuhne (1991) and Kuhne and Beckschulte (1993) in their study of the 

fluid model also reduced the model to a system of ordinary differential 

equations. 

(2) Many stability analyses of traffic flow on a road link have been based on 

the car-following model. On the contrary, very little progress has been 

reported of the dynamic behaviour on the fluid model. 

(3) Thirdly, there has been some research into the automatic control of 

driving (See for example, Bender and Fenton,1970, Kapur,1971). In these 

control systems each vehicle has a built-in driver aid and the vehicles are 

monitored by an electronic control system. The car-following model can 

provide a basis for these automatic control systems. Therefore, it is 

important to understand the dynamics of the model. 

The car-following model will be investigated in Chapter 4. 

2.5. BRIEF DESCRIPTION OF THE TRAFFIC PLANNING PROCESS 

Because the trip distribution model and the trip assignment model can both be 

used in traffic planning studies, it is worthwhile to give a brief description of the 

traffic planning process here. The purpose of traffic planning is to determine 

whether a new stretch of road should be built or whether a current road or road 

network needs to be improved by, for example, widening or introducing new 

traffic control strategies. A traffic planning process normally consists of three 

main steps: (1) a traffic survey, which investigates the current traffic conditions, 

road conditions, and other relevant socio-economic conditions; (2) traffic 

forecasting, which predicts the future traffic flows and their distributions on the 

road network in the study area based on the data from the traffic survey; (3) 

assessment, which examines the current road network to see if it can meet the 

needs of the predicted future traffic and, if necessary, to propose a new road 

network for the future. The steps (2) and (3) are often repeated because if the 
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road network is changed in step (3) then traffic flow distribution over the 

network needs to be predicted again. 

In traffic planning studies, the whole planning area under consideration is divided 

into smaller areas called zones. A journey from one zone to another is defined as 

a trip. The zone from which a trip starts is called an origin and the zone at 

which a trip terminates is called a destination. A particular zone can be both an 

origin and a destination if trips can both start and terminate there. The traffic 

survey is also called an origin-destination surveyor simply an 0-D survey. In 

transport modelling a zone is normally represented by a single point called its 

centroid. Trips from and to a zone are assumed concentrated at the centroid. 

There are four models used in step (2) mentioned above. These predict, by four 

successive steps, the distribution of traffic flow on a road network. (a) Trip 

generation, in which the numbers of trips generated from and attracted to each 

zone are determined given the socio--€conomic data in the planning area. (b) Trip 

distribution, in which the number of trips between each O-D pair is estimated. 

(c) Modal split, which splits trip makers into the alternative transport modes 

available, such as between private cars and public buses. (d) Trip assignment, 

which assigns trips between each O-D pair to alternative routes connecting these 

O-D pairs, so that the traffic flows on each road link can be obtained. Several 

points need to be addressed about the four steps. First, this may not be the only 

sequence. Some approaches have put the modal split before the trip distribution. 

Second, this sequence could also be iterative because some factors such as travel 

cost are unknown at an earlier stage (trip distribution) and have to be assumed. 

After the trip assignment is made, the assumed values of costs may need to be 

modified according to the assigned traffic flow. Third, now there are some 

approaches which combine two, or three, or even four steps into one step. 

Fourth, these four models need to be calibrated or validated from traffic survey 

data to determine the forms of model and values of parameters in the model so 

that they are suitable to the particular area considered. Fifth, the applications of 

the trip distribution model and trip assignment model are not limited to the 

traffic planning process. They are also used in traffic management schemes to 

estimate or to predict flows on a road network. 

The trip distribution model and the trip assignment model will be considered in 

this thesis. Although it might be possible to examine dynamic versions of trip 

generation models and modal split models, these two types of model will not be 
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considered here. In modal split models typically there are only two choice 

alternatives, that is, public transport and private transport. Therefore the model 

does not appear to be promising for interesting dynamic properties. As for trip 

generation models, the research may be in a much more general context, 

including socio-economic developments and land uses, than that of the dynamic 

behaviour of traffic flows. In addition, there is not enough time to include these 

two types of models in the thesis. The trip distribution model and the trip 

assignment model will be reviewed in the next two sections respectively. 

2.6. THE TRlP DISTRlBUTION MODEL 

2.6. L Definitions and notation 

It is now customary to represent the trip pattern in a study area by means of a 

trip matrix. It is essentially a two-dimensional array of cells where rows and 

columns represent each of the zones in the area, as shown in Table 2.1. 

Table 2.1 A general form of a trip matrix 

destination total 

1 2 J J ~.T .. 
J ZJ 

ongIn 

1 Tll T12 Tlj TlJ °1 
2 T2l T22 T2j T2J °2 
'I, Til Ti2 T .. TiJ 0. 

ZJ Z 

I Tn Tn TJj TIJ OJ 

total ~.T .. Dl D2 D. DJ ~ .. T .. =T 
Z ZJ J ZJ ZJ 

In this table, T .. is the number of trips from zone i to zone j, 0. is the total 
D Z 

number of trips originating in zone i, D. is the total number of trips attracted 
J 

to zone j, T is the total number of trips from all origins or to all destinations, I 
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is the number of origins, and J is the number of destinations. The sum of trips 

in the ith row should equal 0t The sum of trips in jth column should equal 

Dj' And the sum of all elements in the matrix should equal T. These marginal 

constraints can be written as: 

'£.Too= 0., 
J ZJ Z 

'£.Too=D., 
Z ZJ J 

,£ooToo = T. 
ZJ ZJ 

i = 1, 2, ... , I, 

j = 1,2, ... , J, 
(2.7a) 

(2. 7b) 

(2.7c) 

These constraints are expressed in terms of absolute values. In trip distribution 

modelling, trips are often normalized so that relative quantities can be used. Let 

too Too/ T, 
ZJ ZJ 

o. 0./ T, 
Z Z 

d. D./ T, 
J J 

where o. is the total relative number of trips originating from zone i, and d. 
Z J 

is the total relative number of trips terminating at zone j. Then the constraints 

in (2.7) become 

'£.t .. 
J ZJ 

'£.t .. 
Z ZJ 

~ootoo 
ZJ ZJ 

o. , 
Z 

d. , 
J 

= 1. 

i = 1, 2, ... , I, 

J' = 1, 2, ... , J, 

(2.8a) 

(2.8b) 

(2. 8c) 

The O.'s and D .'s are often obtained from trip generation models and are used 
Z J 

as inputs to trip distribution models, which in turn give the Too'S, the entries of 
ZJ 

a trip matrix. If a trip distribution model satisfies both (2.7a) and (2. 7b), in 

other words, the total number of trips originating and terminating in each zone 

given by the model equals the predetermined O.'s and D .'s respectively, then 
Z J 

the model is said to be doubly constrained. If a model satisfies (2.7a) or (2.7b) 

but not both then it is origin constrained or destination constrained. The origin 

constrained and destination constrained models are also called singly constrained 

models. If a model satisfies (2. 7c) only it is called unconstrained model. What 

kind of constraints should be involved in a model depends mainly on the 

availability of information about the O.'s and D .'s. Other considerations can 
Z J 

also be given in determining the kind of constraint to be included. For example, 

for work trips, both trip origins (for example, residence locations) and 

destinations (for example, work places) are based on long-term decisions. 
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Consequently, the total flow from and to each zone tends to be fixed and a 

doubly constrained model is appropriate. For non-work trips, the total number 

of trips from an origin may be regarded as fixed while the total number of trips 

to each destination is a result of daily travel choice of trip makers and should be 

considered to be variable. In this case an origin-constrained model is more 

suitable. That the total flow attracted to each zone is known does not necessarily 

mean that a doubly constrained model should be used. 

Associated with each O-D pair there is a travel cost. It may be considered in 

terms of distance, time or monetary units, or a combination of these. It 

represents the disutility of a journey and is normally referred to as the 

generalized cost of travel. Normally the travel cost between each O-D pair 

increases with the traffic flow between the O-D pair. Travel cost is an 

important factor in determining the distributions of trips in a trip matrix. 

In trip distribution models the number of trips between each pair of zones is 

estimated on the basis of any information available, such as the attractivity of 

destinations, the productivity of origins, and travel costs between O-D pairs. 

Different trip distribution models have been developed for different sets of 

problems and conditions. There are two types of model. The first type of model 

is the growth factor model. It is used for updating a trip matrix or for forecasting 

a future trip matrix. The information available here includes a basic trip matrix, 

perhaps obtained from a previous study or from a recent O-D survey, and some 

growth factors. It is assumed that the future number of trips between each pair 

of zones is the current number of trips multiplied by a growth factor. This type 

of model is irrelevant here. The second type of model is the synthetic model. 

These models estimate (often for the future) the number of trips between each 

pair of zones without directly using a known trip pattern. Instead, they consider 

trip-making behaviour and the way this is influenced by such factors as total 

number of trips in each zone and costs involved. Therefore, they are called 

synthetic models as opposed to growth factor models. The best known of these 

models is the gravity model. This model is of interest here and is described in the 

next subsection. 

2.6.2. The gravity model 

The aim of gravity models is to estimate the number of trips between each O-D 
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pair based on travel costs between zones and the total number of trips from 

and/or to each zone, or the total number of trips in the whole area under 

consideration. A family of gravity models in terms of relative quantities can be 

written in a general form 

t .. = ¢ f ( c .. ) , i = 1, 2, ... , I, j = 1, 2, ... , J, 
ZJ ZJ (2.9) 

where t .. is the relative number of trips from zone i to zone J' normalized so 
~ , 

tha t ~ .. t .. = 1, c.. is the corresponding travel cost, f ( c .. ) is called the 
~~ ~ ~ 

deterrence function which relates the number of trips to the travel costs, and 'IjJ 

is an appropriate normalizing factor which may depend on i and/or j. 

Three types of deterrence function are used in practice (Ortuzar and Willumsen, 

1990): (a) exponential function, (b) power function, and (c) combined function. 

They can be written as: 

f ( c .. ) = c. f1' exp (-(3 c .. ), 
ZJ ZJ ZJ 

where j.1 and {3 are constants. When j.1=0 and {3>0, f is an exponential 

function; when j.1<0 and {3=0 it is a power function; and when j.1>0 and {3>0 

it is a combined function. In the first two forms the number of trips is a 

decreasing function of cost, while in the third the number of trips first increases 

and then declines as cost increases; the location of the turning point of the 

function depends on the relative magnitude of j.1 and (3. 

The factor 'l/J in (2.9) is chosen so that the appropriate constraints (2.8a)-(2.8c) 

of an O-D matrix are satisfied. The form of 'IjJ for the unconstrained, singly 

constrained, and doubly constrained models are as follows. 

(1) Unconstrained model. Only (2.8c) is satisfied and 

¢ - 1 , 
~. f( c .. ) 

ZJ ZJ 

so that t .. -
ZJ 

f( c .. ) 
ZJ 

(2) Singly constrained model. For an origin-constrained model (2.8a) is met and 

'IjJ is replaced by a set of constants: 
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a.= 
Z 

1 
o. , 

Z ~.f ( c .. ) 
J ZJ 

so that 

For a destination-constrained model (2. 8b) is met and 'Ij; is replaced by another 

set of constants: 

1 b . = d. ,so that 
J J ~.f ( c .. ) 

Z ZJ 

(3) Doubly constrained model. Both (2.8a) and (2.8b) are satisfied and 'Ij; IS 

replaced by two sets of constants, or the balancing factors: 

1 a. - o. , 
Z z~.b.f(c .. ) 

J J ZJ 

1 b. - d.---
J J ~.a .f ( c .. ) 

Z Z ZJ 
And 

t .. = a. b.f(c .. ). 
ZJ Z J ZJ 

In the doubly constrained model, the two sets of balancing factors depend on 

each other; calculations of t .. need a special iterative method. This will be 
ZJ 

described in Chapter 5. 

2.6.3. A dynamic gravity model 

Most gravity models in the literature are static and the travel costs are assumed 

to be independent of the number of trips. A dynamic model is needed to study 

the O-D flow dynamics in an area. Dendrinos and Sonis (1990) proposed an 

iterative version of the gravity model by assuming that the future number of 

trips depends on the current travel cost which, in turn, is a function of the 

current number of trips. That is, 

t .. (n+l) = ¢(n) f(c .. (n)), 
~ ~ 

(2.10a) 

[ [
t .. (n)]'] c .. ( n) = cq. 1 + a ZJ , 

ZJ ZJ q .. 
ZJ 

(2.10b) 

where cq. is the uncongested travel cost from zone z to zone ), q .. is the 
lJ ~ 
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corresponding capacity of the roads (the ability that roads can accommodate 

traffic flows), and (1, and 'Yare positive constants. For example, the dynamic 

unconstrained gravity model can be written as 

t .. ( n+ 1) -
Z] 

f( c .. ( n)) 
Z] 

with c .. ( n) being given by (2.10b). 
Z] 

Dendrinos and Sonis suggested that chaotic behaviour may exist in this model, 

but did not give any further results. The dynamic model (2.10) will be 

investigated in Chapter 5. Although they suggested the particular form of 

function for c .. ( n) in (2.10b), other increasing functions may also be used. This 
Z] 

will be considered in Chapter 5. 

2.7. THE TRIP ASSIGNMENT MODEL 

In the trip distribution process, the number of trips between each pair of zones is 

determined without specifying on which particular route these trips are made. In 

the modal split process, trips are allocated to different travel modes, normally 

between private transport mode and public transport mode. It is the task of trip 

assignment models to allocate trips between zones to one or more particular 

routes connecting the zones. A route can be a chain of road links of a road 

network in the case of private transport, or a route of a public transport service 

in the case of public transport. Normally, trip assignment is carried out for 

private transport and public transport separately; in the former traffic flows are 

assigned to a road network and in the latter passengers are assigned to a transit 

network. In this project, only private transport assignment is considered. 

Therefore, the trip assignment here means to load a trip matrix of road traffic 

onto a road network. 

Trip assignment models are more complicated than trip distribution models 

because they deal with the spatial distributions of traffic flows on a more detailed 

scale. The representation of a road network is introduced in the next subsection. 

Trip assignment models are described and reviewed in the subsequent two 

subsections. Finally, a dynamic model to be investigated in this thesis is outlined 

in the last subsection. 
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2.7.1. Representation of a road network 

A typical road network consists of junctions and road links through which traffic 

moves. It can be represented naturally by a directed graph, that is, a system of 

nodes and links joining them. A node represents a junction in most cases and a 

link a homogeneous stretch of road between junctions. A node can also be a 

centroid, representing an origin or a destination. These special nodes can be 

considered as "source" and "sink" nodes where trips originate and terminate. 

Each centroid is attached to the road network by one or more dummy links which 

represent the average travel distance of joining the transport system for trips 

from and to that zone. These dummy links are chosen to connect a centroid to 

one or more neighboring nodes of the network. A route is a chain of links from 

an origin to a destination. An O-D pair may be connected by more than one 

route. In fact, in a large road network, the number of routes connecting an O-D 

pair can be so large that it is often hardly possible to enumerate all of them 

explicitly. Many trip assignment algorithms and software packages are therefore 

link based procedures, though others are route based. 

In a road network, each link has a travel cost associated with it: link cost. This 

can represent travel time, distance, etc. Normally a generalized cost is used. A 

link cost depends on the link length, link capacity (the ability of a link to 

accommodate traffic flow), and above all, traffic flow. In some traffic assignment 

models congestion is not considered and link costs are assumed to be independent 

of link flows. When the congestion effect is considered, the link cost is assumed 

to be a function of the link flow, called a link performance function. It is 

normally assumed to be a monotonically increasing function. Several types of 

function have been used (Branston, 1976). Clearly, the travel cost on each route 

is the sum of the costs on all links comprising that route; the flow on each link is 

the sum of flows on all routes using that link. 

2.7.2. Trip assignment models 

Given a trip matrix, and the layout and characteristics such as travel costs of a 

road network, trip assignment models allocate trips to alternative routes. The 

outcome of a trip assignment consists of flows on each route and each link, or a 
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flow pattern in the road network. The main factor affecting the assignment is 

drivers' route choice behaviour. Although drivers tend to choose the cheapest 

route, different drivers travelling between the same two points often choose 

different routes. This fact can be accounted for by two types of reason. (1) 

Stochastic effects in route choice: different drivers may have different definitions 

and perceptions of the "best" or the" cheapest II route and hence may choose 

different routes; (2) capacity constraints: congestion makes an initially cheaper 

route less attractive and causes drivers to switch to alternative routes. 

Trip assignment models can be roughly categorized as shown in Table 2.2 

according to whether or not the stochastic effect and the congestion effect are 

considered. 

Table 2.2 Classification of trip assignment models 

Capacity 
Constraint 
Included? 

Stochastic Effects Included? 
No Yes 

No All-or-nothing 
assignment 

Yes User equilibrium 
assignment 

Multi-routein~ 
(or stochastic) 
assignment 

Stochastic user 
equilibrium 
assignment 

Trip assignment models which do not consider stochastic factors in route choice 

are deterministic. Deterministic models assume that drivers are homogeneous 

and have perfect knowledge of road and traffic conditions, and hence travel costs. 

Route choice in these models is based on real or measured travel costs. 

Stochastic assignment methods, on the other hand, allow for variations in drivers' 

judgments of travel costs, and route choice is based on perceived travel costs. 

The perceived travel costs are random variables. Different stochastic assignment 

models differ in the assumption about the distribution of the random component 

in the perceived cost. There are two main types of stochastic assignment 

method: the logit-based method and the probit-based method. The random term 

of the perceived cost is assumed to be an independently and identically 

distributed Gumbel variable in the logit model and a normally distributed 

variable in the pro bit model. The logit model is much easier to use because the 
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choice probability (the probability that a particular route will be chosen) can be 

expressed analytically. With the probit model, however, the choice probability 

can only be approximated analytically. Alternatively, it can be obtained by 

computer simulations. These methods are very time consuming, especially for a 

general network in which the numbers of routes between O-D pairs can be very 

large. 

If the congestion effect is not considered then trips are assigned to a road network 

according to a set of predetermined link travel costs. The all-or-nothing method 

assigns all trips between each O-D pair to the cheapest or the shortest route; 

while the multi-routeing method splits flows between alternative routes according 

to perceived costs. In both cases, some links may be overloaded and may become 

congested. Equilibrium assignment methods take congestion effects into account 

by assuming that link costs depend on link flows. Thus congested links will 

become more expensive to travel and flows may be diverted to other routes. A 

user equilibrium (UE) or a stochastic user equilibrium (SUE) is reached when the 

cost for every traveller is the minimum (in UE assignment) or is thought to be 

the minimum (in SUE assignment). The UE and the SUE will be explained 

below. It should be pointed out that the route or link flows used to define the 

SUE are deterministic variables. Therefore, the SUE assignment models are 

deterministic in nature although it is often referred to as "stochastic" models. 

The choice probability in these models should be considered as the choice 

proportion, that is, the fraction of the trip between an O-D pair that uses a 

particular route. The equilibrium assignment models are of interest here and a 

literature review is given below. 

2.7.3. Literature review 

There have been many studies of equilibrium assignment in the literature (See, 

for example, Fernandez and Friesz, 1983, and Friesz, 1985 for reviews). Almost 

all these studies have concentrated on finding an equilibrium solution first 

proposed by Wardrop (1952). The equilibrium is a flow pattern on a road 

network that satisfies conditions derived from certain behavioural principles of 

drivers. One of the Wardrop equilibria is the user equilibrium. It is a flow 

pattern under which no driver can reduce his or her travel cost by changing a 

route. Earlier methods for finding the user equilibrium were heuristic. The two 

most commonly used heuristic methods are the capacity restraint method and the 
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incremental assignment technique (Sheffi, 1985). Both of them are iterative 

methods. It is often found, however, that the simple heuristic iterative methods 

may not converge because of oscillations, or even when they do converge, they 

may produce a flow pattern which is different from the user equilibrium. 

More recently, the problem of finding the user equilibrium has been formulated 

as other equivalent problems, including nonlinear complementary problems, 

nonlinear variational inequality problems, and mathematical programming 

problems (Friesz, 1985). In these approaches the user equilibrium is defined and 

formulated. The existence and the uniqueness of the equilibrium is established. 

Then an algorithm is developed to solve the problem. Among these methods, the 

most widely used method is to formulate the equilibrium assignment problem as 

a mathematical programming problem whose solution gives the user equilibrium. 

All these methods are static: they deal with only a steady-state of traffic flows. 

The time variation of flow patterns in the network is not involved. 

It was not until the 1980s that attempts were made towards understanding 

dynamic network equilibrium. There are two approaches to the problem of 

dynamic trip assignment. One is to consider explicitly the time-dependence of 

road network characteristics, such as travel costs, and traffic flows. Dynamic 

link performance functions are used to consider queueing and congestion effects 

on links; the distribution of departure times of O-D trips is assumed to depend 

on the temporal distribution of travel costs over the network so that the O-D 

flows vary with time. Another type of dynamic approach is to model the process 

of adjustment of the flow pattern in a network from one time instant to another 

for a given O-D matrix. This second type of study has received much less 

attention and is in the same line of research as that of this thesis. 

Horowitz (1984) investigated the stability of a "stochastic" equilibrium in a 

discrete-time assignment model for a network of one O-D pair connected by two 

links. It is assumed that in each time period, drivers choose the link that is 

currently perceived to be cheaper. The perceived cost in each period of time is 

taken to be a weighted average of the costs in previous time periods. Three 

different ways of weighting are proposed. Horowitz proves that the dynamic 

process of adjustment will approach the stochastic user equilibrium if the relative 

weights for the costs of recent past and the distant past are properly balanced. A 

deterministic model is also mentioned, which is the same as the "stochastic" 

model except that drivers know perfectly the link costs and choose the link that 
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is measured to be cheaper. He indicates that the conditions of stability for the 

"stochastic" model do not suit the deterministic model and so the stability of the 

equilibrium can not be assured for the deterministic model. 

Smith (1984) proposed a continuous-time adjustment mechanism modelled by a 

system of ordinary differential equations. He assumed that the rate of change of 

route flows depends on route flows and on relative costs on alternative routes. 

The equilibrium of this dynamical system coincides with the user equilibrium. 

Using a method due to Liapunov, Smith was able to prove that the equilibrium is 

stable if the cost-flow function (functions describing the dependence of route costs 

on route flows) is monotonic and smooth. 

It can be seen that all the studies, static, or dynamic, seek to obtain a solution 

representing the user equilibrium. It is somewhat amazing that, as Friesz (1985) 

pointed out, "despite the fact user equilibrium has been employed as the key 

behavioral assumption in most urban transportation network models, little effort 

has been expended to determine whether real world network flow patterns are 

actually described as user equilibria". 

2.7.4. A dynamic logit-based trip assignment model 

To consider the dynamics of trip assignment, a dynamic assignment model is 

essential. The kind of dynamic model suitable here is that which describes, for a 

given trip matrix and a road network, how the flow pattern in the network 

changes with time. Therefore, the second type of dynamic consideration (to 

consider the time adjustment of one flow pattern to another) is relevant here. 

Unfortunately, very little experience or knowledge is available to determine even 

a plausible adjustment mechanism. Here we base the consideration of the 

dynamics in trip assignment on the logit assignment model. The model is 

modified for dynamic considerations. The modified model considers both drivers' 

differences in route choice and congestion effects, as we shall see below. 

The logit-based model was first suggested by Dial (1971). It is assumed that an 

individual driver chooses alternative routes according to the route cost in the way 

modelled by the logit discrete choice model. For a network of one O-D pair 

connected by two links, for example, the model can be written as 
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exp (-()e .) 
z 

x. = , 
z ~ .exp( -()e .) 

J J 

i = 1,2, 

where x. is the assigned flow on route i, e. is the travel cost on route i and 
z z ' 

() is a positive constant. The flows in this equation have been normalized so that 

xl + x2 = 1. This model is static and does not consider congestion effects. An 

iterative dynamic model can be constructed in the similar way to that for the 

gravity model. The cost on each link can be associated with the flow on that link 

by the link performance function; the link flows can be calculated from the link 

costs in the previous time period. That is 

exp ( - () e . ( n) ) 
x.( n+ 1) = z, i = 1, 2, 

Z ~ .exp( -()e .( n)) 
(2.11a) 

J J 
and 

e.(n) = g.(x.(n)), i = 1,2, 
Z Z Z 

(2.11b) 

where x.( n) is the flow on route i at the nth time period, e.( n) is the travel 
Z Z 

cost on route i at the nth iteration, g.( x.) is the link performance function, 
Z Z 

and () is a positive constant. Dendrinos and Sonis (1990) actually suggested the 

idea of this kind of extension, though to a general individual discrete-choice 

model and without any further analysis. The dynamic model for a general road 

network is much more complicated than the one for a two-link network. The 

route choices are route based while the link performance function is link based. 

These will be discussed in more detail in Chapter 6, where the dynamic 

assignment model will be examined. 

2.8. SUMMARY 

It has been proposed that the following three traffic models will be examined to 

study the dynamics of traffic flow. 

(1) The car-following model (2.1), which is a system of delay-differential 

equations modelling a line of cars moving on a stretch of road. 

(2) The dynamic gravity model (2.10a) and (2.10b) suggested by Dendrinos 

and Sonis (1990), which is a iterative model describing the dynamics in 

trip distribution process. 
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(3) The logit-based dynamic trip assignment model (2.11a) and (2.11b) 

suggested indirectly by Dendrinos and Sonis (1990), which is also a 

iterative model describing the dynamics in trip assignment process. 
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CHAPTER 3. NONLINEAR DYNAMICS: 
CONCEPTS AND METHODS 

This thesis is concerned with the dynamics of traffic models. The variations of 

traffic flows are investigated in the context of nonlinear dynamics, that is, the 

mathematics of dynamical systems governed by nonlinear equations. In this 

chapter, some basic concepts and methods of nonlinear dynamics are introduced; 

methods to be used in the thesis are outlined. 

3.1. BASIC CONCEPTS OF NONLINEAR DYNAMICS 

3.1.1. Dynamical systems and attractors 

A dynamical system is a system whose state varies with time. The state of the 

system is characterized by a system of state variables, xl' X
2

' ... , X m' where m 

is the number of variables. This set of variables is chosen so that it can 

characterize the state of the system completely and throughout its evolution. 

One history of the evolution of the system is defined by the time series x( t) = 

[xl(t), x
2
(t), ... , xm(t)], O~t<m, the path of which is a trajectory in an m 

dimensional space, or the phase space of the system. The trajectory is also called 

an orbit. The time evolutions of a dynamical system can be modelled by a set of 

evolutionary equations in terms of the state variables. A typical form of 

evolutionary equations is a system of ordinary differential equations 

d at x( t) = F(x( t)), x( t) E S, 

where S ~ [Rm is the phase space of the system. Given an initial condition 

Xo E S, then a function 

is a solution of the equation if it satisfies the equation such that 
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The solution is a continuous curve through Xo, which traces out a trajectory in 

the phase space. 

Dynamical systems whose states and evolutions can be described by finite 

numbers of variables are finite dimensional. The system (3.1) is of this kind. 

More complicated systems can be modelled by partial differential equations, such 

as the fluid traffic flow model (2.4), or by delay-differential equations, such as the 

car-following equation (2.1). These dynamical systems are infinite dimensional 

because the evolutions of the system depend on initial junctions which involve 

infinite numbers of initial values. 

Dynamical systems defined by differential equations are continuous systems: the 

state of the system varies with time continuously. A different type of dynamical 

system is the discrete system, modelled typically by finite difference equations or 

iterated maps (functions) 

x(n+1) = f(x(n)), x(n)ES, (3.2) 

where n is the discrete time and S ~ IR m is the phase space. In this kind of 

system, the state of the system changes with time in discrete steps. By iterating 

the above equation given an initial point x(O) E S, one gets a solution 

x( 0), x( 1 ), ... , x( n), ... , 

which is a sequence of points in the phase space. This sequence of points defines 

the trajectory through x(O). The dynamic gravity model (2.10a-2.10b), and the 

dynamic logit based trip assignment model (2.11a-2.11 b) are both discrete 

systems. 

A dynamical system is linear if the evolutionary equations are linear (The 

equations are linear means that the function F or f is a linear function). 

Otherwise, it is nonlinear. Most dynamical systems in practice are nonlinear. 

The three traffic models to be studied in this thesis are all nonlinear. Generally 
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speaking, nonlinear differential or difference equations such as those mentioned 

above cannot be solved analytically; theoretical analysis of the dynamics can only 

be made to a limited extent. Many theoretical analyses are made by ad hoc 

methods. On the other hand, these equations can be integrated or iterated 

numerically to get the solutions or the trajectories, which can then be examined 

geometrically by time series plots (the solutions against time) or phase portrait 

plots (the trajectories in the phase space). In fact, these geometrical methods are 

major tools in the analysis of nonlinear dynamical systems. 

Usually, for an arbitrarily chosen initial point x(O) E 5, trajectories of many 

dynamical systems exhibit first a transient, and then settle down to some form of 

steady-state solution in a bounded subset of the phase space. This subset is called 

an attractor for it "attracts" neighbouring trajectories. If the system starts 

outside but close enough to the attractor, the trajectory will always converge to 

the attractor. What is important is the steady-state solutions rather than 

transients. This is because the steady-state solutions represent the long term 

behaviour of the system, or the behaviour as time goes to infinity and when 

initial transients have died away. Steady-state solutions must be bounded in 

order to make sense. More will be said about steady-state solutions in 3.1.3. 

There are basically four types of attractor. The simplest form of an attractor is a 

point attractor. It is a stationary point towards which trajectories go and where 

motion stops. It is also called a stable equilibrium or a stable fixed point. A 

stationary point or an equilibrium x e is defined by 

F(xe) = 0 in the continuous system (3.1), (3.3) 

or by 

in the discrete system (3.2). (3.4) 

An equilibrium is not necessarily a point attractor because it may not be stable 

(See 3.1.3). 

The next type of attractor is a periodic attractor, on which the system repeats 

itself perpetually once it reaches the attractor. A periodic attractor is defined by 

a periodic solution of the evolutionary equations. Such a periodic orbit is 

topologically a circle in continuous systems, or a finite set of points in discrete 

systems. The simplest periodic orbit in a discrete system is composed of two 

points and is called a period-2 orbit; the state of the system oscillates between the 

Nonlinear Dynamics: Concepts and Methods 36 



two points. More general periodic orbits are a period-K orbit containing K 

points, on which the system visits each point in turn before returning to the first. 

As for equilibria, a periodic orbit need not be an attractor. 

The third type of attractor is a quasi-periodic attractor, which is defined by a 

quasi-periodic function. A quasi-periodic function is a function that can be 

expressed as the sum of a countable number of periodic functions, each of whose 

frequency is an integer combination of a finite set of linearly independent base 

frequencies. Topologically, a quasi-periodic attractor is a p-torus, where p is 

the number of the base frequencies. Unlike a periodic solution, the trajectory of a 

quasi-periodic solution does not repeat itself exactly. It moves on the surface of 

the torus and will eventually cover the torus. Again, a quasi-periodic orbit may 

not be an attractor. 

As an example, we shall show a quasi-periodic solution of the forced Van der Pol 

equation (Parker and Chua, 1989) 

x = y, 

y = (1 - i) y - x + 0.5 cos (1.1 t). 

This system is a little different from the system (3.1) in that the time t occurs 

explicitly on the right hand side of the equation. This kind of system is said to 

be non-autonomous because the evolution of the system depends on time. While 

a system like (3.1) whose evolution does not depend on time is autonomous. A 

non-autonomous system can be converted into an autonomous system by 

introducing an artificial new variable z = t. For example, the Van der Pol 

equation can be written as 

x = y, 

y = (1 - i) y - x + 0.5 cos (1.1 z), 

z=l , 

which is an autonomous system in the three-dimensional space of x, y, and z. 

However, the solution of this system is unbounded since z will tend to infinity 

eventually. There cannot be an attractor in this kind of system for an attractor 

must be bounded. To overcome this, observe that the Van der Pol equation is 

periodic with period T = 27r/1.1. In other words, the equations remain the 

Nonlinear Dynamics: Concepts and Methods 37 



same if z is replaced by z+ T. Thus instead of z = t, we introduce a periodic 

function 

() = 27rt/ T mod 27r 

or 

() = 1.1t mod 27r 

to the system. In this, X mod 27r means 27r times the fractional part of 

X/ (27r). That is 

X mod 27r = X - 27r x [X/(27r)], 

where [11 denotes the integer part of Y or the greatest integer less than or 

equal to Y. Then 0 ~ () < 27r, and the Van der Pol equation becomes 

x = y, 

y = (1 - x2
) Y - x + 0.5 cos (), 

B = 1.1. 

This system is autonomous and is in the cylindrical phase space of x, y, and (), 

where () is measured in radians. Figure 3.1 shows the phase portrait projection 

in the (x,y)-plane of a quasi-periodic solution of the Van der Pol equation. It can 

be seen that the trajectory moves within an annular-like region of the phase 

space. 

The final type of attractor is a chaotic attractor which is a new type of attractor. 

Although the discovery of chaos may be traced back to the beginning of the 

century due to the research of Henri Poincare in geometric dynamics, it was not 

until the past twenty or thirty years that chaos has grown into a major and 

exciting topic of research. Chaotic attractors and chaos deserve a separate 

subsection and are described below. 

3.1.2. Chaotic attractors 

There is not yet a widely accepted definition for chaotic attractors; one may say 

that a chaotic attractor is neither a point attractor, nor a periodic attractor, nor 
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a quasi-periodic attractor. However, it suffices, at least for the purpose of this 

thesis, to state that chaotic attractors are attractors on which solutions have 

sensitive dependence on initial conditions (Eckmann and Ruelle, 1985). The 

sensitive dependence on initial conditions is referred to as chaos or strangeness. 

A chaotic attractor is also called a strange attractor. A dynamical system is said 

to be chaotic or to have chaos if it possesses one or more chaotic attractors. Not 

all dynamical systems modelled by differential or difference equations have 

chaotic solutions. In particular, chaos cannot occur in linear systems. It mayor 

may not occur in a nonlinear system. 

Sensitive dependence on initial conditions means that two initially close 

trajectories on a chaotic attractor can diverge so quickly that they soon appear 

very different. Suppose the two trajectories start at slightly different points 

separated by 8x( 0), which will become 8x( t) at time t. For deterministic 

systems modelled, for example, by differential equations, one might expect that 

8x( t) remains small if 8x(0) is small. For chaotic attractors, however, the 

initial separation may grow exponentially: 

(3.5) 

where A is a measure of average rate of change. Of course, if the two 

trajectories start at precisely the same point, then they will always stay together 

since the system is deterministic. In practice, however, the initial state of a 

system can only be specified with limited precision. The exponential growth of 

small separations makes it impossible to predict even the near future of the 

system; the behaviour appears stochastic. Therefore chaos may also be referred 

to as apparently stochastic behaviour in deterministic systems. The time 

variation of the state of the system is irregular on chaotic attractors; it is regular 

on non-chaotic attractors. 

A chaotic attractor is, nonetheless, an attractor. It attracts trajectories 

surrounding the attract or. Therefore the exponential divergence of adjacent 

trajectories on the attractor cannot go on forever: the trajectories will fold back 

at some point since the attractor is bounded. This exponential divergence and 

folding back (stretching and folding) makes chaotic attractors very complicated 

geometrically. Chaotic attractors are not simple geometrical objects like a circle 

or a torus. The trajectories move on the attractor irregularly and without 

repeating themselves so that they become densely distributed on the complicated 
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object as time goes by. However, chaotic attractors are not completely 

unstructured; they have their own patterns. 

These features of chaotic attractors can be seen in the following two examples 

also discussed, for instance, by Thompson and Stewart (1988). Probably the 

most well-known chaotic attractor is the attractor found in the Lorenz equations 

(Lorenz, 1963) 

x = -0- (x-y), 

if = -xz + px - y, 

z = xy - f3z, 

where 0-, p, and f3 are positive parameters. This is a three dimensional 

continuous system. With 0- = 10, P = 28, and f3 = 8/3, the system has a 

chaotic attractor. Figures 3.2a-3.2b show the time series and the phase portrait 

projection on the (x,z)-plane of the attractor. To see the sensitivity to initial 

conditions, two time series with slightly different initial conditions are plotted in 

Figure 3.2c, where the solid line and the dashed line are the solutions starting at 

(x, y, z) = (8.8070, 0.7247, 35.3542) 

and 

(x, y, z) = (8.8071,0.7247,35.3542) 

respectively. Both initial conditions are on the attractor, so there is no transient. 

It can be seen that the solutions seem to stay together for a while and then 

become completely different. 

Another well-known chaotic attractor is that of the Henon map (Henon, 1976) 

x( n+ 1) = -a [x( n) ] 2 + y( n) + 1 , 

y(n+1) = b x(n), 

where a and b are positive parameters. This is a two dimensional discrete 

system. There is a chaotic attractor when a = 1.4 and b = 0.3. Figure 3.3a 

shows the phase portrait of the chaotic attractor. The sensitive dependence on 

initial conditions is shown in Figure 3.3b, where the solid line is the solution 
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starting at 

(x, y) = (0.6715, 0.1806) 

and the dashed line starting at 

(x, y) = (0.6714, 0.1806). 

Here again, an initial run is made to let the transient pass by and the orbit 

plotted is on the attractor. The trajectories begin to separate after only 10 

iterations. 

The sensitive dependence on initial conditions can be characterized by Liapunov 

exponents, which measure the average rate of growth of small separations on an 

attractor. An intuitive definition of a Liapunov exponent may be given by A in 

(3.5). The definition will be refined. A positive Liapunov exponent indicates 

expansion of nearby trajectories and a negative exponent contraction of nearby 

trajectories. Chaotic attractors are characterized by positive Liapunov 

exponent ( s). Non-chaotic attractors do not have positive Liapunov exponents. 

Typically (although not necessarily), chaotic attractors are fractals, or 

complicated geometric objects which can be regarded as having a fractional (non­

integer) dimension (Parker and Chua, 1989). Liapunov exponents and fractal 

dimensions will be described in detail in Chapter 5, where both measures will be 

calculated for chaotic attractors found in the gravity model. 

3.1.3. Stability 

We have referred to the long-term behaviour of a dynamical system as the steady 

state, though the motion of the system need not be time-independent, except in 

the case of an equilibrium state. In general, a steady-state solution is recurrent: 

that is, it will return arbitrarily close to its initial point an infinite number of 

times in the future. Such a recurrent solution may be an attractor. However, 

not all recurrent solutions attract; some of them may repel in at least one 

direction: the orbit of a point close to the solution may move away from it. In 

other words, the solution may not be stable. Stability of a steady-state solution 

is concerned with the robustness of the solution to small disturbances. Roughly 

speaking, a steady-state solution is stable if all trajectories starting nearby stay 
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nearby. Otherwise, if at least one nearby trajectory moves away from the steady­

state solution, then the steady-state solution is unstable. The definition can be 
formalized. 

An equilibrium xe is stable if, for every open neighborhood [2 of xe in the 

phase space, there is a smaller neighbourhood n 1 of xe in n, such that every 

trajectory that starts in n 1 remains in n for all future time. In addition, the 

equilibrium is asymptotically stable if there is an open neighbourhood no of xe 

in the phase space such that every trajectory starting in no tends to xe as time 

tends to infinity. An equilibrium which is not stable is said to be unstable. This 

means that there is at least one trajectory starting arbitrarily close to xe which 

goes away from xe. The largest possible no for which all solutions tend to xe 

is called the basin of attraction of xe; any trajectory starting from a point in the 

basin of attraction converges to the equilibrium. If the basin of attraction of xe 

is the entire phase space, then the equilibrium is globally asymptotically stable. 

In practice, however, the stability or the asymptotic stability of an equilibrium in 

a nonlinear dynamical system may be investigated only locally by linearization. 

Direct analysis of the stability of an equilibrium in a nonlinear system is difficult 

in general, although it may be possible to prove the existence and the uniqueness 

of the equilibrium in the system. Normally a nonlinear system is linearized by 

taking the first order terms of Taylor expansion round the equilibrium. Then the 

resulting linear system is examined for the stability or the asymptotic stability of 

the equilibrium. The linear system can represent the original nonlinear system 

only when the disturbances to the equilibrium are small. Therefore, the stability 

or the asymptotic stability of the equilibrium in the linear system corresponds to 

the local stability or the local asymptotic stability of the equilibrium in the 

nonlinear system, although in some cases the equilibrium may be globally stable 

and may be proved to be so in the nonlinear system. 

It should be pointed out that the local stability and the asymptotic stability 

described here are not the same ideas as those in the car-following model 

mentioned in Chapter 2. This distinction will be clarified in Chapter 4. 

The main concern about stability in this thesis is the stability of equilibria. 

However, it is worth mentioning that the above definition of the stability of 

equilibria may be extended to discuss the stability of other types of steady-state 

solutions. Consider first a periodic-2 orbit defined by two points, x(l) and x(2), 
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in the discrete system (3.2) such that 

It can be observed that the periodic-2 orbit corresponds to a fixed point x(l) (or 

equivalently x(2)) in the system 

x(n+2) = f(f(x(n))) == r2)(x(n)) 

with 

Therefore, the stability of the fixed point in the second system implies that of the 

periodic orbit in the original system (3.2). Similarly, the stability of a period-K 

orbit in (3.2) is equivalent to that of a fixed point in the system 

x( n+ 10 = f( ... ( f( x( n) ) ) ... ) == r K) (x( n) ), 

* with the fixed point x given by 

* _ *. _.iK) * x - f( ... (f(x )) ... ) = t' (x). (3.6) 

* Note that x can be anyone of the K points on the periodic orbit. 

Considerations of the stability of a periodic orbit in the continuous system (3.1) 

need a little more treatment. A useful technique to examine the phase space of a 

continuous system is to consider the intersections of a trajectory with a suitably 

chosen hyperplane, or the Poincare section. Imagine a trajectory in a three­

dimensional phase space intersected by a two-dimensional plane. The trajectory 

may hit the plane repeatedly (though not necessarily with equal time intervals) 

and so may produce a sequence of intersecting points. In this way, the 

continuous system is converted to a discrete system represented by a mapping of 

the two-dimensional plane to itself and the continuous trajectory replaced by the 

set of intersecting points. Clearly, a periodic orbit in the continuous system may 

be replaced by one point or a finite set of points and so corresponds respecti vely 
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to a fixed point or a periodic orbit in the discrete system. Thus the stability of 

the fixed point or periodic orbit in the discrete system reflects that of the periodic 

orbit in the continuous system. To examine the stability of a periodic orbit in 

the continuous system, we can simply inspect the intersections of adjacent 

trajectories in the continuous system with a Poincare section and consider the 

stability of the resulting fixed point or periodic orbit in the discrete system. The 

idea is the same in the case of higher dimensional systems, although an 

appropriate hyperplane needs to be employed. More details about the technique 

can be found in Parker and Chua (1989). The analysis of the stability of a quasi­

periodic or chaotic orbit is much more difficult and is outside the area of this 

thesis. 

Attracting steady-state solutions are of practical interest since unstable steady­

state solutions do not occur naturally, that is, when the system is running in 

practice or in computer simulations. Unless starting from the solution itself 

exactly, the trajectories usually diverge from an unstable solution. 

3.1.4. Bifurcations and bifurcation diagrams 

Normally any dynamical system contains at least one parameter. Parameters 

have values which are fixed in any particular application of a dynamical system, 

but which may be different in other applications. For example, the reaction time 

'T, the constants land m are parameters in the car-following model (2.1). If 

the values of parameters are changed, the steady state of the system may also 

change. For a small change in the value of a parameter, there may be only a 

small quantitative change in the steady state, such as a small change in the 

position, shape, or size of an attractor. The steady state may also experience 

qualitative changes as the parameter value changes. For example, an attractor 

may lose its stability, or a new attractor may begin to emerge. Such a 

qualitative change is called a bifurcation. The parameter concerned is called the 

control parameter, or the bifurcation parameter. The value at which a 

bifurcation takes place is the bifurcation value. 

As the value of a parameter varies, the steady state of a system may undergo a 

series of bifurcations. This bifurcation sequence may be best shown by a 

bifurcation diagram, which is a plot of the steady states against the values of a 

parameter. Figure 3.4a shows the bifurcation diagram for the logistic map 
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(Thompson and Stewart, 1988) 

x( n+ 1) = J-l x( n) (l-x( n) ) , 

where J-l is the parameter considered. For a given value of the parameter J-l, 

one point in the diagram means a stable fixed point solution, two points mean a 

stable period-2 orbit, and so on. A chaotic attractor is signified by infinite 

numbers of points. Note that only steady states are plotted. When J-l is less 

than 3, the system has a stable fixed point. When J-l is 3, the fixed point 

bifurcates into a period-2 orbit. As J-l is increased gradually, this period-2 orbit 

becomes a period-4 orbit, which then turns into a period-8 orbit. The process 

continues until the steady states become irregular. This sequence in which the 

period doubles itself as the parameter varies is called period doubling and is a 

typical route to chaos (Thompson and Stewart, 1988). Here, it can be seen that 

chaos begin to occur when J-l is between 3.5 and 3.6. Another feature in this 

diagram is that there are some periodic solutions in the regime of chaos. These 

are the periodic windows. To show that the irregular behaviour is chaotic, 

Liapunov exponents are plotted against J-l in Figure 3.4b, where it can be seen 

that they are negative for non-chaotic attractors and positive in the regime of 

chaos. Where there are periodic windows, the exponents become negative. 

Bifurcation diagrams require a large amount of computer time and memory to 

produce. The logistic map is very simple. Models such as the gravity model and 

the trip assignment model are much more complicated. 

3.2. Methods for studying nonlinear dynamical systems 

Analysis of a dynamical system normally involves identifying possible steady 

states of the system and finding out how these states and their stability change 

with the values of parameters, so as to get a general view of the dominant, if not 

complete, dynamic behaviour of the system. Particular attractors of interests 

may be examined further. On the one hand, it may be desirable to investigate 

the physical (practical) meaning of a point attractor. It is not very unusual for a 

system to have more than one point attractor; one of them may be better than 

the other from the practical point of view. On the other hand, it may also be 

desirable to examine chaotic behaviour if there is evidence that it exists in a 

system. As mentioned above, not all dynamical systems are chaotic. When an 
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attractor is apparently chaotic, it should be characterized by Liapunov exponents 

and fractal dimensions to show that it is chaotic. Meanwhile, research in chaos is 

still developing. It is interesting to apply the new concepts and techniques to 

investigate chaotic behaviour. 

A dynamical system modelled by differential or difference equations may be 

analysed both theoretically and numerically. As mentioned above, dynamical 

systems such as (3.1) and (3.2) generally cannot be solved analytically. However, 

it may be possible to investigate the existence, the uniqueness, and the stability 

of an equilibrium without solving the equations. Methods used in theoretical 

analysis are often different for different models and they will be described when 

they are met in the thesis. 

Numerical analysis can be used to deal with more complicated situations where 

theoretical analysis is not possible. For example, it can locate and examine any 

kind of attractors, particularly the chaotic ones. The main task of numerical 

analysis of a dynamical system is to find all possible attractors for various initial 

conditions and values of parameters. This is a daunting task, especially for 

multi-dimensional models with several parameters. Clearly, it is not possible to 

exhaust all possible initial conditions, values of parameters, and their various 

combinations in the system. In practice, however, the main concern is the 

typical or the dominant behaviour that prevails in the system for most of the 

time. Numerical calculations can be made to find these dominant forms of 

behaviour in the system. Methods for numerical calculations are described 

below. 

3.2.1. Finding steady-state solutions 

Steady-state solutions can be found by solving the evolutionary equations 

numerically (integrating differential equations for continuous systems or iterating 

difference equations for discrete systems) for given initial conditions and values of 

parameters until the system reaches a steady state. This method has the 

advantage of being straightforward to program and of being able to find any kind 

of attractor. It also has some drawbacks. First, the transients may be very long 

so that it may take time for the system to reach a steady state. Secondly, the 

method can only find stable solutions; it fails for unstable steady-state solutions 

since they are repelling. Thirdly, it is difficult, if not impossible, for a program 
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(and often the user) to tell when a steady state has been achieved. A manual 

monitoring is often needed, making the computing inefficient. 

Another way to find a steady-state solution is by use of a zero finding algorithm. 

For example, an equilibrium can be found by solving the nonlinear equations 

(3.3) or (3.4) by a zero finding algorithm. In principle, one can also use a zero 

finding algorithm to find a periodic orbit by applying the algorithm to (3.6) in 

the discrete case, or to a Poincare section in the continuous case. See Parker and 

Chua (1989) for more details. The advantage of the zero finding method is that 

it is quite efficient and can find both stable and unstable equilibria. However, it 

is subject to the usual drawback of any zero-finding algorithm: the initial guess 

must be sufficiently close to the actual value. 

The three traffic models to be considered are all very complicated. The zero­

finding method is less feasible. In addition, it is the stable steady-state solutions 

that are of greatest interest. Therefore, the integration or iteration method is 

used in most cases. The zero-finding method is used only as an assistance in the 

bifurcation analysis to identify unstable equilibrium points when their existences 

and approximate values are indicated. 

3.2.2. Examination of particular attractors 

Once an attractor is found, it may be viewed by time series plots and phase 

portrait plots. An equilibrium may be recognized without any plot. On the 

other hand, there may be situations where it is difficult to tell if an attractor is 

periodic, quasi-periodic, or chaotic by simply viewing the plots. Spectral analysis 

may be used to determine the periodicity of a time series. The power spectrum 

of a periodic solution contains spikes at integer multiples of the fundamental 

frequency of the solution; the power spectrum of a quasi-periodic solution consists 

of spikes at integer multiplies of the frequencies which are various sum and 

differences of the set of base frequencies of the solution; the power spectrum of a 

chaotic attractor is a broad band, though there may be spikes. In principle, it is 

possible to distinguish periodic and quasi-periodic solutions by spectral analysis 

because the spectrum for the former has spikes at integer multiples of one 

particular frequency while the spectrum for the latter has spikes at integer 

multiples of more than one frequency. In other words, the peaks of the spectrum 

of a quasi-periodic solution may not be spaced at frequencies whose ratios are 
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rational. In practice, however, it is hardly possible to differentiate the two types 

of solution by spectral analysis because of the difficulty in determining whether 

two particular frequencies in a spectrum have a rational or irrational ratio. The 

usefulness of spectral analysis is that it can indicate stochastic behaviour or chaos 

by a broad-band, continuous spectrum. In this thesis, spectral analysis is used to 

test the periodicity when the time series of an attractor appears to be irregular. 

Liapunov exponents and fractal dimensions are calculated for the attractor if the 

spectral analysis indicates that the attractor is chaotic. 

3.2.3. Calculation of bifurcation diagrams 

Calculation of bifurcation diagrams involves increasing the value of a control 

parameter step by step and finding the steady state of the system at each step by 

integrations or iterations. The integrations or iterations are made in two stages. 

In the first stage, the system is integrated or iterated for a period of time so that 

transients have decayed. In the second stage, the system is integrated or iterated 

for another period of time; the solution is assumed to be the steady state and is 

plotted on the bifurcation diagram. To ensure that a steady state is reached, the 

calculations in the first stage must be very long, making the calculation very 

time consuming. Initial conditions may be taken to be the same for all steps of 

parameters. Alternatively, the final state for the previous parameter value can 

be used as the initial condition for the current step, leaving only the initial 

condition for the first step to be specified. In this way, the length of transients 

may be reduced. In this thesis, both methods will be used in choosing the initial 

conditions for producing the bifurcation diagrams for the gravity model. 

Different steady states and so different bifurcation sequences may be found by 

using different initial conditions. 

3.2.4. Analyses in this thesis 

Given a dynamic traffic model, the research in this thesis tries to answer the 

following questions: Is there an equilibrium in the model? If there is one, is it 

stable? What other types of attractor does the model have? Is there chaos in the 

model? Equilibria are examined theoretically wherever possible; the methods 

used may differ for the three models. Other types of dynamic behaviour are 

investigated numerically. The analysis to be made for the three models are 
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outlined below. 

The car-following model 

The stability of an equilibrium in a linear car-following model is examined 

theoretically by analyzing the roots of the characteristic equation of the model; 

an equilibrium in a nonlinear model is examined by linearization. Numerical 

analysis involves integration of the car-following equations. There is not a 

standard algorithm for integrating delay-differential equations, so the Runge­

Kutta algorithm for integrating ordinary differential equations has been modified 

to deal with the car-following model. A program was developed to integrate the 

car-following equations, and the program is used to identify possible attractors in 

the model for various initial conditions and parameters values. 

The gravity model 

The existence, the uniqueness, and the stability of an equilibrium is investigated 

theoretically. The practical implications of an equilibrium are explored. 

Numerical calculations are made by iterating the model. The initial conditions 

and the values of parameters are "scanned" so as to find almost all possible 

attractors. The calculations were often made in a batch mode on a computer 

because the amount of computation is very large. 

The logit-based trip assignment model 

This model is mathematically similar to the gravity model with the exponential 

deterrence function. Therefore, it is examined in similar way to that for the 

gravity model. 
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Figure 3.2 Chaotic attractor of the Lorenz equations. (a) Time series. 
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Figure 3.3 Chaotic attractor of the Henon map. (a) Phase portrait; (b) 
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CHAPTER 4. THE DYNAMIC BEHAVIOUR OF 
THE CAR- FOLLOWING MODEL 

In this chapter the dynamic behaviour of the movement of traffic flow on a road 

link is investigated based on the car-following model. The investigation aims to 

find out how the speed of each car and the spacing between the cars vary with 

time, and how disturbances such as accelerations or decelerations of a leading car 

affect the cars behind. 

4.1. INTRODUCTION 

The car-following model (2.1) consists of a system of delay-differential equations 

modelling a line of cars following each other on a single lane of a stretch of road. 

It is assumed that a driver responds, through accelerations or decelerations and 

with a reaction time, to the relative speed to the car in front. Let x (i) be the 
n 

position of nth car in the line at time i. Then the car-following equations can 

be written as 

x (i) = f3 (i) (x 1 ( i-I) - X (i-I)), n = 2, 3, ... , N, 
n n n- n 

(4.1) 

where f3 (i) is the sensitivity of car n and is given by 
n 

a (x (t))m 
n n = 2, 3, ... , N. 

In these equations, dots denote time derivatives. 'T is the reaction time. a is a 

(positive) coefficient of proportionality; m and l are non-negative constants, 

not necessarily integers. The motion of the first car, defined by xl (i) and 

xl (t), is normally taken to be given. It can be considered as a forcing term. 
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When xl == 0 and xl == constant, the model is autonomous, otherwise it is non­

autonomous. On the other hand, if m = l = 0, the model is linear and the 

sensitivity j3 n reduces to (x, otherwise the model is nonlinear. Consequently, 

we may have four types of model: linear autonomous model, linear non­

autonomous model, nonlinear autonomous model, and nonlinear non-autonomous 

model. 

Although it is a system of simultaneous equations, the car-following model has a 

special feature: each equation contains only the variables (speed and position) of 

two adjacent cars; the output of each equation can be considered as the input of 

the next equation. Therefore, given the motion of the first car, the equations can 

often be dealt with one by one successively both in theoretical analysis and in 

numerical studies. 

The car-following model (4.1) is a system of second-order delay-differential 

equations, which can always be converted to a system of first-order equations by 

introducing extra variables u (t) = x (t), n = 2, 3, ... , N. Therefore, the 
n n 

state variables of the model are x , and x , n = 2, 3, ... , N, and the solution 
n n 

the position and speed of cars as functions of time. In general, the solution is 

unbounded since x will usually go to infinity as t tends to infinity. 
n 

Consequently, the theory and the methods of nonlinear dynamics described in 

Chapter 3 cannot be applied to examine the model. This is because the 

unbounded solutions cannot tend towards an attractor, which must always be 

bounded. 

This difficulty can be overcome by re-€xpressing the car-following model in terms 

of relative quantities, or the relative spacing and the relative speed between cars, 

so that the solutions can remain bounded. Denote the spacing between adjacent 

cars by 

where b can be considered as a desired headway that drivers would follow under 

steady state or equilibrium conditions. See Figure 4.1. Then 

and x l(t) -x (t). 
n- n 
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Denoting the relative speed iJ n ( t) by v n ( t), the car-following model (4.1) 

becomes 

x (t) = fl (t) v (t-T), n = 2, 3, ... , N, n n n 

where 

f3 (t) = a (xn(t))m /' 
n (y (t-T) + b) 

n 

n = 2, 3, ... , N. 

Writing the equations in terms of v (t) and y (t) gives 
n n 

V 2 ( t) = xl ( t) - fl 2 ( t) v 2 ( t -T ) , ( 4.2 a ) 

V n (t) = f3 n-l (t) v n-l ( t-r) - f3 n (t) v n ( t-r) , n = 3, 4, ... , N, 

iJ (t) = v (t), n = 2, 3, ... , N, 
n n 

where 

a (x1(t) - v2(t) v (t))m 
fln(t) = ________________ ~--_n----

(y (t-T) + b) 1 
n 

n = 2, 3, ... , N. 

(4.2b) 

(4. 2c) 

A solution of the car-following model (4.2), v (t) and y (t), n = 2, 3, ... , N, 
n n 

should satisfy the following essential conditions to make sense: 

(1) The spacing between cars should be positive to avoid collision, that is, 

y (t) + b > O. In fact, at least for l > 0, the solutions break down if 
n 

y (t) + b becomes o. Although in practice it is normally required that 
n 

y (t) is non-negative for safety reasons, the first condition will be used in 
n 

numerical analysis in order to find all possible types of behaviour in the 

model. 

(2) The spacing between cars should also be small enough to guarantee that 

the car-following model is applicable. When traffic flow is sparse the 

spacing between cars may be so big that the motion of the leading car has 

little effect on the following car. It can be seen from the car-following 

equations that for l > 0 the sensitivity and so the accelerations of each 
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car will tend to zero if y (t) + b goes to infinity. 
n 

(3) The speed of each car should be non-negative. The speed of the leading 

car is assumed non-negative, so the reverse motion of the following car is 

considered to be unreasonable. 

(4) The speed of each car should also be bounded for obvious reasons. Thus 

the relative speed between the cars is bounded as well. 

Using the car-following model (4.2), we can consider steady states such as 

equilibria and periodic motions. For example, in the autonomous system where 

xl == 0 and xl == constant, we can find an equilibrium solution by setting 

v (t) = 0, and if (t) = 0, n = 2, 3, ... , N 
n n 

in the equations (See Chapter 3). From this we get the equilibria 

e e 
V =0 Y = a n=2, ... ,N, 

n 'n n' 

where the a are constants, and the superscripts "e" denote equilibrium. The 
n 

cars all move at the same speed, keeping the relative spacing constant. Such an 

equilibrium exists for any set of values an ~ 0: there is a continuum of 

equilibria. 

Stability of a steady-state solution is an immediate concern in a dynamical 

system once the solution is found. The stability concepts used in the literature of 

the car-following model are a little different from those in nonlinear dynamics. 

As mentioned in Chapter 2, two types of stability in the car-following model have 

been discussed in the literature, namely, local stability and asymptotic stability 

(Chandler et al., 1958 and Herman et al., 1959). Local stability was defined for 

the equilibrium solution where the speed of each car is equal and the spacing 

between the cars constant. The equilibrium is (locally) stable if disturbances in 

the speeds of cars are damped with time. Asymptotic stability, on the other 

hand, is concerned with whether or not the disturbances in the acceleration of the 

first car are damped along the line of cars. 

The concept of stability, including both local stability and asymptotic stability, 
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of equilibria in a general (nonlinear) dynamical system has been described in 

Chapter 3. This description is repeated here very briefly. An equilibrium is 

stable if all trajectories starting near the equilibrium point stay nearby for all 

time. It is asymptotically stable if all nearby trajectories approach the 

equilibrium point as time tends to infinity. For nonlinear systems, these are both 

local forms of stability: solutions not starting sufficiently close to a stable 

equilibrium may move away from it. 

Clearly, the local stability in the car-following model is similar to the asymptotic 

stability in nonlinear dynamics in that they both deal with time variations of 

disturbances, although the former is less general than the latter. The asymptotic 

stability in the car-following model, however, is essentially different from either 

concept in nonlinear dynamics. 

In this chapter, the terms local stability and asymptotic stability in the literature 

of car-following model will be abandoned and those in nonlinear dynamics used to 

characterize the time variations of small disturbances for the car-following model. 

The stability of equilibria in the linear model will be investigated; the local 

stability of equilibria in the nonlinear model will be examined by linearization. 

The variations of disturbances along the line of cars will also be considered and 

will be referred to as stability over cars. A line of cars is said to be stable over 

cars if small fluctuations in the movements of the first car are not amplified as 

they pass from one car to the next in the line. Otherwise, if the fluctuations are 

amplified, then the system is unstable. 

In studies of the car-following model in the literature, the coefficient of 

proportionality ex and the reaction time 'T have been assumed to be the same 

for all drivers in the line. In this thesis, the situation where different drivers can 

have different ex and 'T will be considered. If ex and 'T are the coefficient of 
n n 

proportionality and reaction time, respectively, for the nth driver, then the car-

following model can be written as 

v2(t) - xl ( t) - f3 2 ( t) v 2 ( t-T 2) , (4. 3a) -

v (t) = f3 n-l ( t) v n-l ( t-T n-l) - f3 n ( t) v n ( t-T n) , n=3,4, ... , N, 
n 

(4.3b) 

Yn(t) - v (t), n = 2, 3, ... , N, Ct 3c) - n 
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where 

n = 2, 3, ... , N, 

v (t-T ) = ± (t-T) 
n n n-l n ± n ( t-T n) , n = 2, 3, "', N, 

y (t-T ) = x 1 (t-T ) - X (t-T ) - b n = 2, 3, "', N. n n n- n n n ' 

In the next section, theoretical analyses are made of the linear model, both 

autonomous and non-autonomous, and the nonlinear autonomous model to 

investigate the stability of the equilibria and the stability over cars. The 

nonlinear non-autonomous model is more difficult to analyze theoretically and 

numerical methods have to be employed. The nonlinear model is studied 

numerically in section 4.3 to identify possible types of attractors in the model. 

The results obtained are summarized in the last section. 

4.2. THEORETICAL ANALYSIS 

The car-following model is a system of delay-differential equations. The 

theoretical analysis of such equations is difficult. In general, they cannot be 

solved analytically, not even the simplest delay-differential equation such as a 

first order, linear, autonomous equation. It must be pointed out that the theory 

of delay-differential equations is not just a simple extension of the theory of 

ordinary differential equations, although there are some similarities. The initial 

conditions for ordinary differential equations are initial values of the variables at 

one time instant, while the initial conditions for delay-differential equations are 

initial functions over the interval of delay time. As a result, delay-differential 

equations are infinite dimensional systems. However, finite-dimensional 

attractors can exist for systems of delay-d.ifferential equations, and some such 

systems are believed to possess finite-dimensional strange attractors (See, for 

example, Farmer, 1982). 

One possible way to deal with delay-differential equation is the method of steps 

(Driver, 1977). This can be illustrated by a simple example. Consider a linear, 

autonomous 2-car model 
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with an initial condition 

v(t) = O(t), -7 ~ t ~ o. 

It has been assumed that the relative speed over -, ~ t ~ 0 is O( t). To make 

the problem simple here, let O( t) be some constant 0
0

. With this constant 

initial condition, it is easy to solve the equation on 0 ~ t ~,. For there the 
equation becomes 

V
2 

( t) = a {J - vO' o ~ t ~ 7 

with 

The solution to this equation is 

Consider, next, the interval , ~ t ~ 2, where the equation becomes 

with 

The solution now is 

We can then consider the interval 2, ~ t ~ 3" etc. This procedure can, in 

principle, be continued as long as desired. It gives an explicit solution up to any 

finite time t. In this particular case, we get a polynomial solution of degree k 

for (k-l), ~ t ~ k,. In general, however, the solution will quickly become 

accumulated and complicated; it is difficult to draw any general conclusion about 

the solution. For example, if the solutions are bounded, or oscillate, or if they 

tend to some constant as t -1 m. It is these qualitative properties of the steady-
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state solutions that is of interest here. In the following subsections, the linear 

autonomous model, the linear non-autonomous model, and the nonlinear 

autonomous model are investigated in turn to identify possible steady-state 

solutions and their stabilities both with time and over cars. 

4.2.1. The linear autonomous model 

As mentioned in chapter 2, Herman et al. (1959) investigated the stability of a 

linear car-following model using Laplace transform and numerical analysis of the 

inversions of the Laplace transforms. The parameters a and T were assumed 

to be the same for all drivers in the line of cars. Their conclusions have been 

described in Chapter 2. Here, the stability of the equilibria in the linear 

autonomous model will be examined by theoretical analysis of the characteristic 

equation of the model and a and T are allowed to be different for different 

drivers. The theoretical basis used in this subsection comes from Gyori and 

Ladas (1991) and Kuang (1993). 

In (4.3), let m = l = 0, and Xl = o. Then a linear autonomous model is 

v
2
(t) - - a

2 
V

2
(t-T

2
), (4.4a) 

v n (t) - an_
l 
v n-l (t-T n-l) - an v n (t-T n) , n = 3, 4, ... , N, 

y (t) = v (t), n = 2, 3, ..., N. 

(4.4b) 

(4.4c) 
n n 

It can be seen that (4.4a) and (4.4b) can be dealt with independently of (4.4c) 

which is just an integration. We will consider first (4.4a) and (4.4b), and then 

deal with (4.4c). But first of all, we consider (4.4a) alone. Omitting the 

subscripts on a and T for simplicity, (4.4a) becomes 

(4.5) 

which is the same as the equation considered above when the method of steps is 

introduced. There is an equilibrium v~ = 0 in this equation. We will examine 

its stability and other possible solutions. 
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If we seek an "exponential" solution of the equation in the form (t) )..t v
2 

= e ,we 
are led to the following characteristic equation 

-T).. ).. + 0: e = O. ( 4.6) 

Suppose ).. = /-L + iw (where /-L and ware real) is a root of the characteristic 

equation, then 

is a solution of (4.5). And both 

are real solutions of (4.5). By the principle of superposition, which is valid for 

any linear systems including delay-differential equations, linear combinations of 

the exponential solutions are also solutions of (4.5). The problem is that the 

characteristic equation (4.6) has, in general, infinitely many (complex) roots 

(Driver, 1977), and cannot be solved analytically. However, the qualitative 

properties of the solutions of (4.5) and those of the roots of (4.6) are related and 

both depend on values of 0: and T. First, it is known (Gyori and Ladas, 1991) 

that the solutions of linear delay-differential equations are exponentially 

bounded. In other words, if Real).. < /-La for every root of the characteristic 

equation, then there exists a constant M> 0 such that 

/-La t 
I v2( t) I ~ Me. 

It follows immediately that if no root of the characteristic equation has a positive 

real part then v
2

( t) will tend to zero as t -1 (I) and the zero solution or the 

equilibrium of (4.5) is asymptotically stable. The equilibrium is unstable if any 

root has a posi ti ve real part. In this case, the corresponding solution of ( 4.5 ) 

tends to infinity as t -1 (I). 

Secondly, according to Gyori and Ladas (1991), every solution of equation (4.5) 

oscillates if and only if the characteristic equation has no real roots. Gyori and 

Ladas (1991) also give an explicit condition for oscillations: every solution of 

equation (4.5) oscillates if and only if O:T > lie. 
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In the following, the roots of the characteristic equation are examined both 

theoretically and numerically. To simplify the analysis, let A I = AT, which is 

equivalent to changing the time scale in (4.5) from t to t/ T such that (4.5) 
becomes 

V~(tl) = - a l v~(tl-l), 

where tl = t/ T, and al = aT. Then the characteristic equation (4.6) becomes 

A I + a l e -A I = O. (4.7) 

For the purpose of the analysis, substitute A I = /-1 1 + iwl into (4.7), and set 

both the real and imaginary parts to be O. Then we have 

/-1 1 + a l e _/-11 cos WI = 0 
I 

WI - a l e -/-1 sin WI = 0 

where /-1 1 = /-1T, and WI = WT. 

(4.8a) 

(4.8b) 

First of all, from (4.8b) because a l > 0, the root of the characteristic equation 

must be such that 

WI E [0, 7r)U(27r, 37r)U( 47r, 57r)U· .. u( -7r, O]U( -37r, -27r)U( -57r, -47r)u· ... 

The root of the characteristic equation is the point where (4.8a) and (4.8b) 

intersect in the (/-11 ,WI )-plane. It can be easily verified that the equations and 

roots are symmetric with respect to the /-1 1 axis of the (/-11 ,WI )-plane. 

Therefore we need initially consider only positive WI. The intersections of the 

curves for a l equal to 0.5 and 50 and for WI within (-7r, 7r), (27r, 37r), and 

(47r, 57r) are shown in Figure 4.2. It can be seen that, for the same value of 

/-1 1 decreases if WI is increased by 27r. This is because, from (4.8b), 

a l 

/-1 1 = In ( 
s in WI) 
WI , WI * O. 

Increasing WI by 27r changes /-1 1 to 
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In (a lsi n ( WI + 2 71'-)) < In (a lsi n WI) 
WI +271'" WI, 

although in (4.8a) f.L1 is unchanged. Clearly, this feature will not change if WI 

is negative and changed to WI -271'". Therefore, for given a', larger values of f.L1 

appear when I WI I is small. Thus, given at, then f.L1 is the biggest when 

o < I WI I < 71'". It can also be seen in Figure 4.2 that as the value of a l 

increases, the curves and so the intersection points move from left to right, which 

means, at least for the values plotted here, that f.L1 increases with a'. In fact, 

this is true for all values of a l provided that I WI I > 0 because (4.8b) can also 

be written as 

( sin WI) f.L I = In a I + In I w 

which shifts from left to right in the (f.L1 ,WI )-plane as a l increases. 

We can find out more about how f.L1 and WI vary with a'. When w' * 0, 

from (4.8) we get 

f.L1 = -WI cot WI , 
I 

a' = WI ef.L Isin WI, 

(4.9a) 

(4.9b) 

where WI * ±k7l'", k = 1, 2, While if w' = 0, then from (4.8a) we have 

(4. 9c) 

Thus given values of WI we can calculate f.L1 and then a
l

. In (4.9a) and 

(4.9b), if WI -+ 0, then f.L1 -+ -1, and a l -+ lie. But if WI -+ 2k7l'"+0 then 

f.L1 -+ --m, and a l -+ o. While in (4.9c) a l has one maximum value lie at 

f.L1 = -1, and f.L1 must be negative since a l > o. All these can be seen in 

Figures 4.3a and 4.3b, which show both f.L1 and WI versus a
l for WI E [0, 71'") 

and WI E (271'", 371'"), respectively. 

Now we can find the critical value of a l at which f.L1 and WI change 

qualitatively. First, suppose that f.L1 > 0, and so e-
p
/ < 1. Then we have 

cos WI < 0 and I WI I < a' 
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from (4.8a) and (4.8b), respectively. Clearly, when 0 < (XI < 7r/2, cos WI > 0 

and no root of positive III exists. The equilibrium v~ = 0 in (4.5) is therefore 
asymptotically stable. 

Secondly, suppose that III = O. Then we have 

(X I = I w I I and WI = ± (2 k7r + ;), k = 0 1 ... " . 

That is, when (XI = 2k7r+7r/2, there is a pair of roots III = 0, WI = 
± (2k7r+7r/2), where k = 0, 1, . . .. To see how III changes at these points as 

(XI varies, find the derivatives of III with respect to (XI at A I = ±iw' in (4.7). 

We obtain 

dill I [dA/JI ~ A I =±iW' = Real '(f'(7 A I =±iwl 

= Real [ WI 2 ± i WI] 

(XI (1 + WI 2) 

I 2 w 
-----2-> O. 
(XI(l + WI ) 

This implies that the real part of all the roots increases at III = 0 as (XI 

increases. In other words, III changes from negative to positive at WI = ±7r/2 

when (XI = 7r/2, at WI = ±57r/2 when (XI = 57r/2, and so on. Therefore, when 

(XI = (XT > 7r/2, there is at least one root of (4.7) with a positive real part and 

the zero solution of (4.5) is unstable. Unless we start from the equilibrium 

exactly, the solution tends to infinity eventually. When (XT = 7r/2, there is a 

periodic solution 

with a frequency 7r/(2T). This is a neutrally stable period solution or a center: a 

deviation from the equilibrium in initial conditions is conserved; the system has 

no transient. The system bifurcates from the equilibrium at (XT = 7r/2; a slight 
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change in the value of aT can cause the solution either to tend to infinity or to 

approach the stable equilibrium. 

Thirdly, consider under what condition there is no imaginary root in (4.8) and so 

there is no oscillatory solutions in the equation (4.5). Although Gyori and Ladas 

(1991) provided the necessary and sufficient condition for all solutions of the 

equation (4.5) to oscillate, we are more concerned here about when the solutions 

do not oscillate. We have seen that if WI = 0 then 

I -1 
a l = -J.1/ eM ~ e , 

which is a necessary condition for the solution of the equation (4.5) to be non­

oscillatory. To investigate the sufficiency of the condition, we get from (4.9a) 

and (4.9b) 

WI MI WI -WI cot WI 
a l =. e =. I e SIn WI sIn w WI * ±k7r, k = 0, 1, .... 

We have shown that a l -+ lie when WI -+ O. If 0< I WI I <7r, then WI cot WI <1 

WI 
and. I >1. So we have SIn w 

WI -WI cot WI 
• Ie> lie, o<lw/ l<7r, SIn w 

-1 
which means that, for 0< I WI 1< 7r, a l must be larger than e . Thus there is 

no root with 7r> I WI I >0 when a l ~ e-1
. It is interesting, although not 

necessary, to show that a l actually increases monotonically with I WI I, where 

0< I WI I <7r. We find the derivative 

d n,1 sI'n WI - WI cos WI -WI cot WI WI -WI cot WI WI ) 
u; =-=-=-_______ e + e (-cot WI + 2 
~ = . 2 I sin WI sin WI 

SIn w 

WI -WI cot WI [(sin WI _ cos WI) + ( . WI I - cos WI)] . 
. 2 e WI SIn w 

SIn WI 

WI > sin WI I I bt . Sl'nce > cos WI where 0< WI < 7r, we 0 a1n 
sin WI WI 

~~: > 0 if WI E (0, 7r), and ~~: < 0 if WI E (-7r, 0), 
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which is what we claimed. In addition, if w' ~ ±7r then 11' ~ m and a' -! m. 

Therefore a' ~ e -1 is a necessary and sufficient condition under which there is 

no oscillatory solution with I w' I < 7r. It can be easily verified numerically, or 

at least it can be seen in Figure 4.3b, that there are non-zero solutions of 

where w' > 7r, or rather w' > 27r, when a' ~ lie. 
w' , 

The above discussions about the solutions of the linear autonomous 2-car model 

(4.5) can be summarized as follows in terms of ar and wr rather than a' and 

w' . 

(1) When ar> 7r/2, the equilibrium v~ = 0 is unstable. The solution 

oscillates and its amplitude increases with time for all initial conditions 

except at the equilibrium itself. 

(2) When ar = 7r/2, there is a neutrally stable periodic solution with a 

frequency 7r1 (2r). 

(3) When lie < ar < 7r/2, the equilibrium is asymptotically stable. The 

solutions are damped oscillations. 

(4) When ar ~ lie, the equilibrium is asymptotically stable. There is no 

oscillatory solution with angular frequency I wi < 7r1 r, but there are 

oscillatory solutions of higher frequencies. 

The car-following equation (4.5) is a first order, linear, homogeneous delay­

differential equation with constant coefficient. The oscillating solution in the 

equation is a significant feature distinguishing from a first order, linear 

homogeneous ordinary differential equation with constant coefficient, which 

cannot have an oscillating solution. 

The discussions of the 2-car model can be generalized to consider more than two 

cars. The equations (4.4a) and (4.4b) can be written in matrix form as 

(4.10) 

where 
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v(t) = (V2(t), V3(t), ... , VJt))T, 

V(t-Ik) = (V2(t-Tk) , V3(i-T k) , ... , VN(i-Tk))T, 

and Bk is a matrix with only two nonzero elements: 

[B 1 .. 
k} ZJ 

[B 1 .. 
k} ZJ 

-(} 
k i = k-1, j = k-1, 

i = k, j = k-l. 

For example, a 4-car model can be written as 

[ 
0 0 0 1 [V2! t-

/4ll + 0 0 0 V3 t-/4 

o 0 -(}4 V4 t-/4 . 

The equation (4.10) has a zero solution or an equilibrium ve = 0, the stability of 

which can be examined in the same way as that used for the 2-car model. 

Suppose (4.10) has a solution of the form 

At v( t) = c e , 

where c is a constant vector, A is a constant, both to be determined. 

Substituting v( t) into to (4.10), we have 

Since eAt is nonzero and can be canceled, 

where E is the identity matrix. For c eAt to be a solution of (4.10), A must 

N -Alk 
be the eigenvalue of the matrix ~ k=2 Bk e ,and c the corresponding 
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eigenvector. For c to have nonzero solution, there must be 

(4.11) 

This is the characteristic equation for equation (4.10). If A = f-L + iw (where f-L 

and ware real) is a root of the characteristic equation, and c = c + ic 
(1) (2) 

(where c(1) and c(2) are real vectors) is the corresponding eigenvector, then 

and 

are real solutions of (4.10). Furthermore, qualitative behaviour of the solution of 

the equation (4.10) depends on the roots of the characteristic equation in the 

same way as a single equation such as the 2-car model described above (Gyori 

and Ladas, 1991). First, since the solutions of linear delay-differential equations 

are exponentially bounded, the equilibrium of the equation (4.10) is 

asymptotically stable if the real part of all roots of the characteristic equation is 

negative. Otherwise, it is unstable. Secondly, every solution of every component 

of v( t) oscillates if and only if the characteristic equation has no real roots. 

To examine the root of the characteristic equation, expand (4.11) to obtain 

-AT -AT -AT 
2 3 N) (A + a

2 
e ) (A + a3 e ), ... ,( A + a Jf = 0, 

or 

-A .T. 

A . + a.e Z Z = 0, i = 2, 3, ... , N. 
Z Z 

Each of the equations has the same form as the characteristic equation (4.6) for 

the 2-car model. From the above analysis, it can be concluded that the 

equilibrium of (4.10) is asymptotically stable if 

a.T. < 7r/2, 
Z z 

i = 2, 3, ... , N, 

so that 

Real A. < 0, 
z 

i=2,3,···,N. 
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Moreover, there is no oscillatory solution in (4.10) with a frequency lower than 7r 

if 

air i ~ 1 Ie, i = 2, 3, "', N, 

although there are oscillations of higher frequencies. 

Now we can deal with (4.4c), which is 

iJ (t) = v (t), 
n n n = 2,3 ... N , ,. 

The solution to this is simply an integration of v (t), or 
n 

y (t) = Jot V (s) ds + y (0), n - 2, 3, "', N, n n n 

where y (0) is the initial condition. If v (t) has a solution of the form eA t 
n n 

then y (t) will be of the form 
n 

eAtl A + Y (0) - (II A), 
n 

correspondingly. Therefore, if v~ = 0 is asymptotically stable, then 

y (t) == some constant is also stable. But it is not asymptotically stable because n 
the solution y (t) depends on the initial condition y (0) and will become a 

n n 
constant whenever v (t) == O. Further, if v (t) is a periodic solution, so is 

n n 
y (t), with the same frequency but different amplitude which, again, depends 

n 

on the initial condition y (0). 
n 

The above conditions for the stability of the linear autonomous model are similar 

to those of Herman et al. (1959) listed in Chapter 2. The criteria there are given 

in terms of ar; here they are replaced by a.r" i = 2, 3, "', N, which is more 
t z 

general. Besides, Herman et al. (1959) did not consider explicitly oscillations of 

frequencies higher than 7r and so concluded that there is no oscillatory 

behaviour if ar ~ lie, Here, we have shown that if a{i ~ lie, i = 2, 3, "', 

N, there can be oscillations with frequency higher than 7r although there are 

none with lower frequencies. 

It must be pointed out that the above stability conditions are concerned only in 
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the way in which the movement of each individual car varies with time. They 

may not guarantee the stability over cars. In other words, disturbances may be 

amplified along cars, even though they are damped with time. The problem of 

stability over cars will be considered in the next subsection. 

4.2.2. The linear non-autonomous model 

A linear, non-autonomous model is (putting m = l = 0 in (4.3)) 

V 2 ( t) - xl ( t) - (}:2 v 2 ( t-T 2) , 

V n (t) - (}:n-l V n-l (t-T n-l) - (}:n V n (t-T n) , n = 3, 4, ... , N, 

if (t) = v (t), n = 2, 3, ..., N. 
n n 

(4.12a) 

(4.12b) 

(4.12c) 

The stability over cars of the linear car-following model with (}: and T being the 

same for all drivers was investigated by Chandler et al. (1958); their results have 

been described in Chapter 2. In what follows, the stability over cars is considered 

with (}: and r being different for different drivers. The method used here is 

similar to that in Chandler et al. (1958), but the analysis is more rigorous. 

To consider the stability over cars, we take the forcing term to be oscillation 

(4.13) 

where F>O is the amplitude, p is the (angular) frequency, not necessarily 

positive, and 'PI the initial phase. All three are assumed to be known constants. 

We will examine how this oscillation is conveyed from car to car in the line. To 

start with, consider the first equation (4.12a). Substitute the forcing term into 

(4.12a) to get 

(4.14a) 

This is a non-homogeneous equation. The associated homogeneous equation is 

(4.1~b) 
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which has been considered in the last subsection. According to Theorem 6.1 in 

Hale and Lunel, 1993, the general solution of (4.14a) has the form 

t 
V 2 ( i) = Wo ( i) +! W( i-s) g( s) ds, 

o 

where Wo (i) is the solution of the corresponding homogeneous equation with a 

given initial condition, W( i) is the fundamental solution of the homogeneous 

equation, and g( s) is the forcing term. We have seen in the last subsection 

that the solution of the homogeneous equation can be expressed as linear 

combinations of (infinite number of) exponential solutions. So we assume 

A .t 
W( i) = ~. c.e Z 

Z Z 

where A. are roots of the characteristic equation of the homogeneous equation, 
z 

and c. are constants. Substituting this solution and the forcing term into the 
Z 

general solution gives 

t A .( t-s) 
v (i) = wo(i) +! ~. c.e Z F sin (ps-Y?l) ds 

2 0 Z Z 

A .t t -A .s 
= W (i) +~. c.e Z! Fe Z sin (ps-Y?l) ds. o Z Z 0 

The integration can be found to be 

where 

t -A .s -A .t ! Fez sin (ps-Y?l) ds = e Z (Aisin pi + Bicos pi) - Bi' 
o 

F 2 ( -A .cos y? 1 - P sin y? 1 ) 
+ P Z 

F 2 (-p cos y? 1 + A is in y? 1) . 
+ p 

Thus the general solution becomes 
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A.t -A.t 
v2 ( t) = Wo ( t) + h. c.e Z [e Z (A.s in p t + B .cos P t) - B .1 

Z Z Z z iJ 
A .t 

= Wo ( t) - h. B.c.e Z + h. c. (A .s in p t + B .cos P t ) . 
Z zz Z Z Z Z 

This solution consists of two parts. The first two terms are linear combinations 

of solutions of the homogeneous equation, which will die out as hm if 

a
2 
/2< 1r/2, as has shown in the last subsection. The third term is not damped 

with time and so might be considered as the steady state. The steady state is the 

linear combination of oscillations with no other frequency than that of the forcing 

term. Thus for the non-homogeneous equation we can seek a solution which is an 

oscillation with the same frequency as the forcing term, as follows 

where rand s are constants to be determined. Then, 

v2(t) = rp cos (pt-¥\) -sp sin (pt-~l), 

v2(t-/ 2) = r sin (p(t-r2)-~1) + s cos (P(t-/2)-~1) 

- r sin (pt-~l) cos P'2 - r cos (pt-~l) sin P'2 

+ s cos (pt-~l) cos P'2 + s sin (pt-~l) SIn P'2 

- (r cos P'2 + s sin P'2) sin (p t-~l) 

- (r sin P'2 - s cos P'2) cos (pt-~l)' 

Substituting these to (4.14a) and equating the coefficients of cos (pt-VJ1) and 

sin (pt-VJ1) respectively give 

- ps + a2r cos P'2 + a2s sin P'2 = F, 

pr - a2r sin P'2 + a2s cos P'2 = O. 

Sol ve this set of equations to obtain 
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Therefore, the solution to (4.14a) is 

pT2-p) cos (pt-¥?l) 

2 
cos pT 2 

To gain a clearer physical meaning of the solution, write the above solution as 

(4.15 ) 

where 

1 K2 =---------------------------
j (a2sin PT2- p)2 + a; COS 2PT2 

and 

This solution has the same period to that of the forcing term but different 

amplitude and phase. Besides, when Cl212 = 7r/2, we know the corresponding 

homogeneous equation has a undamped oscillatory solution with a frequency of 

7r/(212). In solution (4.15), when Cl212 = 7r/2, and when p --1 7r/(212), that is, 

when the frequency of the forcing term approaches the generic frequency of the 

model, the amplitude of the solution tends to infinity and the system will 

collapse. This phenomenon is similar to undamped, forced oscillations governed 

typically by a non-homogeneous linear ordinary differential equation. 

Now with the same method as above we can proceed to solve (4.12b), making use 

of the recurrence relation. First, when n = 3, the equation is 

Substituting (4.15) into this equation yields 
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It is easy to see that the solution of this equation is 

where 

1 
K3 =----------------------------

j (a
3
sin PT3- p)2 + a~ cos2PT3 

and 

Thus, for n = 3, 4, "', N, the solution can be written as 

V n ( t) = K n a n-l ... K3a2K2F sin (p t-'P1-'P2 -PT 2-'P3 - ... -PT n-l-'P n) , 

(4.16) 

where 

K.= _____________ 1 ____________ _ 

t j 2 2 2 (a .sin pT.- p) + a. cos pT. 
z z z z 

and 

a .sIn pT. - P 
'P. = arctan (_ z t), 

t a.cos pT. 
t t 

for i = 2, 3, "', N. 

The linear car-following model can be expressed as 

x (t) = a (x 1 (t-T ) - X (t-T )) = a v (t-T ), n - 2, 3, ... , N. n n n- n n n nn n 

From (4.15) and (4.16), we have 

Xn(t) = anKn'" a2K2F sin (pt-'P 1-'P2-PT2-'P3-" ·-'Pn-pTn) , 
n = 2, 3, ... , N. 

Let 
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L.=a.K. 
1 Z Z 

and for i = 2 3 ... N " ,. 

Then 

n=2 3 ... N 
" " 

( 4.17) 

where 

a. 
L. - Z 

Z 

and 

tan tp. + tan pT. 
tan ¢. = tan (tp.+ pT.) = 1 t 1 t 1 

1 1 1 - an tp. an pT.' 
1 1 

or 

p cos pT. 
¢. - arct an ( . 1 ) 

1 a.- p SIn pT. 
1 1 

for i = 2, 3, ... , N. 

By comparing the output X n ( t) in (4.17) with the input xl ( t) in (4.13) it can 

be seen that the oscillation of the first car is conveyed from car to car with a 

amplitude coefficient of L and a speed of 'IjJ per car. The stability over cars 
n n 

can be assured if 

Li~l, i=2,3, ···,N. 

That is 

a. 
_______ 1 _______ ~ 1, 

j 2 2 2 (a.sin pT.- p) + a. COS pT. 
1 1 1 1 

or 

p2-2alsinpTi~O, i=2,3, ···,N. 

Multiplying both sides by T. gIves 
1 
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p2 r ._ 2a.rp sin pro > 0 
z z z z -

or 

This will automatically be satisfied if p and sin pr. have different signs so that 
z 

p sin pr i is negative. If p and sin pr i are both positive or both negative, 

then we must have 

pro 
z 

ar'<2' ,i=2,3, ···,N. i z - SIn pr. 
z 

This is the condition for stability over cars. However, in order that the general 

solution of the equations tends to the oscillating solution found as t--+m, we must 

have 

a.r. < 7r/2, 
t t 

i=2,3, ... ,N, 

as well. Otherwise, if a.r. > 7r /2 for any i, then the general solution of the 
t z 

corresponding equation goes to infinity eventually and there is little point in 

considering stability over cars. Therefore, to ensure stability over cars, it is 

necessary that both the above conditions are fulfilled. To get an explicit 

condition for stability over cars, consider the function 

where pl. = pr.. Because p and sin pr. are both positive or both negative, 
z z z 

h(p'.) must be positive, which implies that 
z 

Within this domain, the following properties of the function can be easily 

verified: 

(1) If p'. --+ 0, 
t 

then h(p'.) --+ 1/2 < 7r/2; 
t 

(2) dh o < p'. < 7r; <IO':" > 0, p. t 
t 

(3) If p'. --+ 7r-O, 
t 

then h(p I.) --+ m > 7r /2; 
t 
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(4) 
(5) 

h(2.3138) = 1.5708 ~ 7r/2; 

h(pl.) > 7r/2 if pl. > 27r. 
z z This is because if pl. is increased by 27r, then 

~ 

h(pl.) changes to 
z 

pl. + 27r pl. 
~ z 

2sin pl. = 2sin 
z 

27r 
pl. + 2sin pl. > 1/2 + 7r> 7r/2. 

z z 

These properties mean that 

h(pl.) < 7r/2 if pl. < 2.3138, 
~ z 

h(pl.) = 1.5708 ~ 7r/2 if pl. = 2.3138, z - z 
and 

h(pl.) > 7r/2 if pl. > 2.3138. 
~ ~ 

These properties have been listed for pl. > O. With obvious modifications, the 
z 

properties and the conel usions still hold if pl. < 0 because the function is 
z 

symmetric about P~ = O. Thus the explicit condition for the stability over cars 

can be stated as follows. 

p7. 
~ 

a.7. < 2' , 
~ ~ - SIn p7. 

z 
a.7. < 7r/2, 

z z 

for i = 2, 3, ... , N. 

if I pi·l < 2.3138; z 

A sufficient condition which is simpler and stronger can also be obtained by 

observing that 

So the two conditions for the stability over cars will all be satisfied if 

a.7.<1/2, z z- i=2,3, ···,N. 

This sufficient condition for the stability over cars is similar to that in Chandler 

et al. (1958), with ai~1/2 being generalized here to a/
i 
~ 1/2, i = 2, 3, ... , 

N. However, in Chandler et al. (1958) different values of pi. was not 
z 

considered explicitly; only the case where p --1 0 was considered, based on which 

only the sufficient condition was obtained. 
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The condition for stability over cars for the non-autonomous model can be 

extended to consider the stability over cars for the autonomous model. From the 

last subsection we know that oscillations, both damped and undamped, are 

typical solutions in the autonomous model. The oscillation of one car can be 

considered as an input or a forcing term to the next car. Since the frequency of 

the oscillations may be of any value, the condition a/
i 
~ 1/2, i = 2, 3, "', N 

can be used as a sufficient condition for the stability over cars for the linear 

autonomous model. This sufficient condition for the stability over cars is 

stronger than the condition for the stability (with time) of the equilibrium in the 

linear autonomous model (a / i ~ 7f /2, i = 2, 3, "', N). Therefore, it can 

guarantee the stability with time as well. 

Having derived the conditions for the stability over cars, it should be commented 

that the instability over cars also depends on the number of cars concerned: it is 

the oscillation in the motion of the last car that has the biggest amplitude when 

the system is unstable over cars. If there are only two or three cars in the line, 

then the system may still run steadily even if the criterion for stability over cars 

is violated. 

4.2.3. The nonlinear autonomous model 

Setting xl (t) = 0 in (4.3) we get the nonlinear autonomous model 

v2(t) = -(J2(t) V2(t-T2), 

V n ( t) = (J n-l ( t) v n-l ( t -T n-l) - (J n ( t) v n ( t -T n) , 

- v (t), 
n 

n = 2, 3, ... , N, 

where 

a (xl(t) - v2(t) v (t))m 
(J (t) =_n~~ __________ ~ ___ n __ __ 

n (y (t-T ) + b) l 
n n 

In this model, there is an equilibrium where 

(4.18a) 

n = 3, 4, ... , N, 

(4.18b) 

(4.18c) 

n = 2, 3, ... , N. 
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e e 
V =0 Y -a n=2, ... ,N, n 'n - n' (4.19 ) 

where a is some constant, the superscripts "e" denote equilibrium. This is a 
n 

continuum of equilibria because it exists for any value of an ~ 0; the limiting 

relative spacing depends on the initial conditions. We consider the stability of 

the equilibria in this subsection. 

Stability analysis is difficult for nonlinear systems, especially for delay­

differential equations. There are hardly any stability analyses of the nonlinear 

car-following model. An ordinary way to investigate the stability of an 

equilibrium in a nonlinear system is to consider the local stability by linearizing 

the model at the equilibrium (Kuang, 1993). This method will be used here. 

First of all, we can write (4.18) as 

112 (t) - - x
2 
(t), -

11 (t) - x l(t) -x (t), n = 3, 4, ... , N, -
n n- n 

Y
n 
(t) - v (t), n = 2, 3, ... , N, -

n 

where 

x (t) = f (v2 ( t), ... , v (t), v (t-T ), Y (t-T )) 
n n n n n n n 

= (J (t) v (t-T ) 
n n n 

Consider a small disturbance, 8v (t) and 8y (t), superimposed on the 
n n 

equilibrium: 

v (t) = ve + 8v (t), n = 2, 3, ... , N, 
n n n 

y (t) = ye + 8y (t), n = 2, 3, ... , N. 
n n n 

To see how these small disturbances evolve, substitute these into (4.18) and 

linearize round the equilibrium point by taking the first order terms of the Taylor 

expansion of the equations. Then 
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- .6 fe -.6 fe 
n-l n' 

n = 3, 4, ... , N, 

8v (i), 
n 

n = 2, 3, ... , N, 

where 

.6fe = [8V2 (i) -J- + ... + 8v (i) -:t.- + 8v (i-7 ) B a 
n U v2 - n u V n n V ( i -7 ) 

n n n 

+ 8 (i ) a ] fe y n -7 n By ( i-7) n 
n n 

and 

The derivatives can be found to be 

af· z 
Ov. 

J 

man ( xl ( i) - v 2 ( i ) v . ( i ) ) m-l 
-----------=-z--z--- v.( i-7.), 

( y . ( i -7 .) + b) Z Z 
Z Z 

... , 'l,; i = 2, 3, ... , n, 

af 
n 

v (i))m 
n n = 2, 3, ... , N, Bv (i-7 ) 

n n 

af 
n 

v (i))m 
n v (i-7 ), 

n n By (i-7 ) 
n n 

n = 2, 3, ... , N. 

Evaluating the derivatives at the equilibrium (4.19), we have 

n=3,4 .... ,N 
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by (i) = bv (i) 
n n n=2,3, ... ,N 

Denote the value of sensitivity of nth driver at the equilibrium point by 

fJe -
n 

Then 

b v 2 ( i) - - fJ~ b v 2 ( i-T 2) , 

bVn(i) - fJ:_1 bVn_1(i-Tn_ 1) -fJ: bvn(i-Tn), n=3, 4, ... , N 

(4.20) 

by (i) = bv (i), 
n n 

n = 2, 3, ... , N. 

This set of equations has the same form as that of the linear autonomous model 

(4.4) and so has an equilibrium 

bv (i) == 0, by (i) == some constant, n = 2,3, ... , N 
n n 

(4.21 ) 

The local stability of the equilibrium in the nonlinear model follows from that of 

its linearized model. From the analysis in 4.2.1, the local stability of the 

equilibrium can be summarized as follows: 

(1) When max (fJe T ) > n/2, disturbances are amplified oscillations and the n n n 
equilibrium is nonstable. 

(2) When max (fJe T ) = n/2, disturbances are conserved and the equilibrium n n n 
is neutrally stable. 

(3) When lie < max (fJe T ) < n/2, disturbances are damped with n n n 
oscillations and the equilibrium is stable. 

(4) When max (fJe T ) ~ lie disturbances are damped with oscillations of 
n n n 

frequencies higher than 7r only and the equilibrium is stable. 
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WillIe m~x /3:7 n can determine the stability of the equilibrium, it is not a single 

constant since /3: depends on y:, willch in turn, depends on initial conditions 

(Note that for an autonomous model, the speed of the first car, xl' is a known 

constant). Therefore, the values of parameters for an equilibrium to become 

unstable are different for different initial conditions. 

4.3. NUMERICAL ANALYSIS 

4.3.1. The algorithm 

The essential part of numerical analysis is the integration of the car-following 

model. There is no standard algorithm to integrate a delay-differential equation. 

However, an algorithm for integrating ordinary differential equations can be 

modified to solve delay-differential equations. 

There are three types of commonly used algorithms for integrating ordinary 

differential equations, the Runge-Kutta methods which are one step methods, the 

multistep methods, and the predictor corrector methods. They all have different 

advantages and disadvantages; no one type of method performs uniformly better 

than another type for all purposes. The multistep methods and the predictor 

corrector methods are more efficient and give error estimates. However, they are 

not self-starting; an independent method is needed to obtain starting values, and 

to obtain necessary values for predictor corrector methods when the step size is 

doubled or halved. Besides, the multistep methods are more complicated to 

program and may be subject to numerical instability. The Runge-Kutta methods 

have an important advantage that they are self-starting and consequently are 

straightforward to program. In addition, they are numerically stable. They 

provide good accuracy and occupy relatively a small amount of computer storage. 

To solve the car-following model, a standard algorithm for ordinary differential 

equations has to be modified to deal with the delay term. So, a simpler method 

is desired. Therefore the fourth order Runge-Kutta method will be considered, 

though there are higher order methods. Farmer (1982) modified the standard 

Runge-Kutta algorithm to solve a delay-differential equation. The modification 

used here is the same as Farmer's (Farmer,1982), but the algorithm is adapted so 

as to integrate the system of car-following equations. The Runge-Kutta method 
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and its modifications can be found in Appendix A. The algorithm is coded in 

FORTRAN and the program is listed in Appendix B.1. In order to test the 

program, it is used to integrate the delay-d.ifferential equation modelling blood 

production due to Makey and Glass (Farmer, 1982) 

0.2 X 
I 

X = ----1-0 - 0.1 X, 
1 + X 

I 

where X is the concentration of blood, I is the delay, and X == X( t-/). There 
I 

is a strange attractor in this model when I = 23 (Farmer, 1982). The model is 

integrated for the strange attractor and the solution plotted in Figure 4.4. The 

attractor has the same pattern as that in Farmer (1982). Note that on a strange 

attractor two solutions follow the same trajectory only if they have exactly the 

same initial conditions. 

The program is also used to integrate the linear non-autonomous 2-car model 

(4.14a) for which the analytic solution has been found in 4.2.2. The numerical 

and analytical solutions are compared in Figure 4.5, where the circles are the 

analytical solution and the solid line is the numerical solution. Good agreement 

can be seen clearly in this diagram. 

In the next two subsections the nonlinear car-following model (4.2) is 

investigated numerically. The model is copied here: 

v
2
(i) = xl (i) -fl

2
(i) v

2
(i-T), 

V n (i) = (3 n-1 (i) v n-1 ( i-I) - (3 n (i) v n ( i-I), n = 3, 4, ... , N, 

if (i) = v (i), n = 2, 3, ... , N, 
n n 

where 

a (x
1
(t) - v

2
(t) v (t))m 

fln ( t) = _---=-______ -;-__ n --
(y (t-T) + b) 1 

n 

n = 2, 3, ... , N. 

The forcing term considered here is (4.13), used in the theoretical analysis of the 

linear non-autonomous model. The initial phase is not significant, so we take 
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Then speed of the first car is 

where u is the average speed of the first car. If F = 0, then xl (t) == 0, 

Xl (t) == u, and the model is autonomous. If F > 0, then the model is non­

autonomous. In the numerical study, the car-following equations are integrated 

until a steady state is approached. The solutions can then be visualized by 

plotting the time series and the phase portrait projections. 

4.3.2. The dynamic behaviour of the nonlinear model 

In this analysis, different initial conditions and values of parameters are tested to 

identify possible attractors and to find out how they change with values of 

parameters. The autonomous and the non-autonomous models are tested 

respectively. The results of calculations can be described as follows. 

The autonomous model 

When there is no forcing term, two types of attractor are found: a continuum of 

equilibria where the relative speed is zero and the relative spacing constant, and 

periodic attractors. The values of the parameters determine which attractor the 

solutions approach. It seems that the product of the sensitivity at the 

equilibrium and the reaction time, or 

- (ye + b)l'T 
n 

functions as a whole to determine qualitative properties of the behaviour of the 

model. This is consistent with the theoretical analysis in section 4.2.3. Of course 

rl r is unknown before each run of the system because ye is unknown. 
n n 

However, ye depends on initial conditions which can be controlled in the 
n 

experiments. For given initial conditions, if rl r is small, as a result of smaller 
n 
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(X, T, m, and 'il, or bigger l, and b, the solutions always approach stable 

equilibria. As /3:7 is increased gradually (through increasing of (x, T, m, and 

'il, or decreasing of l, and b), the equilibrium becomes unstable and a stable 

periodic orbit emerges. Figure 4.6 shows the convergence of one such periodic 

solution in the autonomous model. 

The frequency of the periodic solutions in the autonomous model is examined 

numerically. It can be seen in Figure 4.6 the frequency of the periodic solution is 

7r/(2T). Note that a frequency of 7r/(2T) is equivalent to a period of 4T 

seconds; the unit of time is second in this figure. In fact, it has been found from 

a lot of calculations that the frequencies of oscillations are all round 7r / (27), 

independent of value of parameters and the initial conditions. Only amplitudes 

depend on these factors. 

The ranges of values of parameters and initial conditions for the model to have a 

periodic attractor are rather narrow in most cases experimented. Increasing 

sensitivity and/or reaction time often causes the system to break down with the 

speed of the last car being negative, even before a periodic solution occurs. The 

break down is caused by the instability over cars: when disturbances are 

amplified along cars it is always the solution of the last car that has the largest 

amplitude and so collapses first. 

Figures 4. 7a-4. 7b are produced to show the amplification of disturbances along 

cars. In these two figures, the solid line is the relative speed of the second car to 

the first car, the dashed line is the relative speed of the sixth car to the fifth car, 

and the dotted line is the relative speed of the tenth car to the ninth car. It can 

be seen that although disturbances are damped with time for each car, they are 

amplified along cars. In addition, the amplification is more serious when (X is 

larger (Figure 4. 7b). In the theoretical analysis in the last section, we showed 

that for the linear autonomous model the stability over cars may need a stronger 

condition than the stability with time does. Here in Figure 4.7 we have a 

nonlinear autonomous model that is stable with time but not stable over cars. 

The breaking down can be removed by taking away the last car, but it will be 

bound to occur at further increases of sensitivity or reaction time. It may also be 

"introduced" by increasing the number of cars in the line, with or without 

increasing of sensitivity or reaction time. The reason for this is obvious. The 
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stability over cars depends on the sensitivity and the reaction time; the 

occurrence of instability over cars depends on the number of cars in the line as 

well. If the number of cars is small, the amplitude of the oscillation of the last 

car may not cause the system to break down even though it is larger than that of 

the car in front. 

The non-autonomous model 

When the forcing term is introduced, the model behaves in a very similar way to 

that of autonomous model. If the reaction time and/or the sensitivity is small 

enough, then the stable equilibria in the autonomous model are replaced by 

stable periodic orbits with the same period as that of the forcing term. The 

amplitudes of the oscillations depend on the initial conditions, the reaction time, 

the sensitivity, and the position of the car in the line. It seems that for small 

values of the reaction time or the sensitivity the disturbances are damped with 

time, leaving the forcing oscillations as the steady states. This feature is similar 

to that of the linear non-autonomous car-following model considered in 4.2.2. 

When the reaction time or the sensitivity is larger, we know that at some point 

the autonomous model has a periodic solution with a frequency of about 7r/(2T). 

If a forcing term is added in this situation then the model has a more complicated 

behavior. Most of the steady-state solutions, however, are still periodic, although 

the frequency of the solutions may not be the same as that of the forcing term. 

Figures 4.8 to 4.10 show three seemingly complicated solutions of the non­

autonomous model. However, in each case, examination of the power spectrum 

and a longer plot showed that the solution is periodic. Figure 4.11 shows another 

solution found in the non-autonomous model. The relative speed and spacing of 

the third car to the fourth car are plotted here. This solution, though it looks 

complicated, is not chaotic: it appears to be quasi-periodic, or possibly periodic 

with a very long period. As mentioned in Chapter 3, in practice it is impossible 

to be sure that a solution is quasi-periodic rather than periodic. 

The seemingly complicated behaviour in the non-autonomous model may occur 

only when the corresponding autonomous model has a periodical solution and 

only for limited ranges of values of parameters and initial conditions. Again, 

increasing the sensitivity or reaction time often causes instability over cars in the 
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system: the system collapses in the same way as that for the autonomous model. 

Figures 4.12a-4.12b show the convey of disturbances along cars in a nonlinear 

non-autonomous model. In these two figures, the solid line is the relative speed 

of the second car to the first car, the dashed line the relative speed of the third 

car to the second car, and the dotted line the relative speed of the fourth car to 

the third car. In Figure 4.12a, ex = 110 and the oscillation of the forcing term is 

damped along cars. In Figure 4.12b, ex = 130 and the oscillation is amplified. 

Summary of numerical calculations 

Many calculations have been carried out and have shown that the phenomena 

outlined above about the nonlinear model, both autonomous and non­

autonomous, are typical in the car-following model. No other feature has 

emerged. 

Table 4.1 shows the results of experiments on the parameters ex, T, m, and l 

with a 2-car model. Each parameter was tested separately with all the other 

parameters fixed. The values of parameters tested ranging from the value at 

which driver's reactions are very weak and the system is mild, to the value at 

which the system is excited and then collapses afterwards. The table can give a 

general view of the dynamics of the car-following model. 

In this table, the upper half shows the values of parameters experimented and the 

lower half the values of parameters (ranges or points) for different behaviour in 

the car-following model. The average speed of the first car u is chosen to be one 

of a typical value of driving speed; the minimum spacing b is determined from 

u according to driving regulations (The Department of Transport, 1988). The 

tests are made for both absence and presence of the forcing term. The results of 

the Table can be summarized as follows. When the value of parameter is small 

for ex, T, m, or large for l, the steady-state solutions are equilibria for the 

autonomous model and periodic with the same frequency as that of the forcing 

term for the non-autonomous model. As parameters increase (or decrease in case 

of 0 such that PT is about 7f/2, the solutions become periodic for autonomous 

model. (This stability property of the equilibria in the autonomous model is 

similar to the local stability property found in the theoretical analysis, which 

implies that the linearization gives a good approximation of the nonlinear model). 
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When the forcing term is added in this situation, the solutions are still periodic in 

most cases although they may be more complicated. The range of parameters for 

autonomous models to have periodic solutions and for the non-autonomous 

models to have more complicated solutions are very limited; the system soon 

collapses because of the instability over cars if parameters continue to increase 

(or to decrease for 0. 

4.4. SUMMARY AND COMMENTS 

In this chapter, the car-following model has been investigated both theoretically 

and numerically. The stability (with time) and the stability over cars in the 

linear model, both autonomous and non-autonomous, are examined theoretically. 

The local stability of the nonlinear autonomous model is considered by 

linearization. The analyses are extended to allow the sensitivity coefficient a 

and the reaction time T to be different for different drivers. Criteria for the 

stabilities are established. The stability conditions for the linear model are more 

general than those in the literature. Oscillatory solutions with higher frequencies 

than 1r/2 are considered explicitly in stability analysis of the linear autonomous 

model; different values of the frequency in the forcing term are considered and 

the condition for stability over cars found is sufficient as well as necessary. The 

nonlinear model is investigated numerically. The results of the nonlinear 

autonomous model agree well with the theoretical analysis, indicating that the 

linearization gives a good approximation to the nonlinear model. 

Typical steady states in the car-following model are equilibria and periodic 

solutions in the autonomous model, and periodic solutions in the non-autonomous 

model. It is shown that the dynamic properties of the model depend on the 

sensitivity and the reaction time. This is not unexpected and has its theoretical 

reason and practical implications. From the car-following equations it can be 

seen that drivers try to match their speeds with that of the cars in front with a 

reaction time: they accelerate when they are slower and decelerate when they are 

faster. When the sensitivity or reaction time is larger, the differences of speeds 

tend to be over compensated and oscillations emerge. If it is even larger, 

oscillations can never die down and can even be amplified, either with time or 

along cars. A moderate and quick reaction to changes of motion of the 

proceeding car corresponds to a normal and safe driving, while a reaction that is 

too strong and too slow is a typical behaviour of drinking driving. 
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Theoretically, the car-following model is complicated because it has a delay time 

built in and it is nonlinear. The dynamic behaviour of the model, however, is not 

as complicated as one would expect. As mentioned in Chapter 2, Disbro and 

Frame (1990) calculated (positive) Liapunov exponents of solutions of the car­

following model without showing a chaotic attractor. This is not sufficient to 

prove that the solutions are chaotic. Here, many numerical calculations have 

been made in an attempt to identify chaos in the model. In none of the 

investigations carried out has any evidence of chaos, such as a chaotic attractor, 

or bifurcation sequences which may lead to chaos, been found. This outcome 

agrees with that of Kirby and Smith (1991). Of course, no general conclusion can 

be reached from numerical experiments which can be comprehensive but are 

necessarily limited. However, at least chaos does not appear to occur typically 

in the model. Although the periodic solutions in the autonomous model may lead 

to complicated behaviour when a forcing term is added, they may occur only for 

small ranges of values of parameters and initial conditions and only when the 

sensitivity or reaction time is large enough. In most cases, there is not much 

room for values of parameters to change before the occurrence of collapses. 

The car-following model may not be a satisfactory model to describe a car­

following process. The real car-following process is very complicated. It involves 

human behavior and psychological effects which are difficult to model. The car­

following model has some unreasonable implications. First, the following driver 

reacts only to differences in the speeds. If the relative speed is zero then they pay 

no attention to spacing, however large or small it is! Secondly, drivers' reaction 

in accelerations is the same as that in decelerations. In reality, one would expect 

that the response of the following car may depend on whether it is accelerating or 

decelerating. There have been only limited numbers of empirical studies of the 

car-following model (Chandler et al., 1958, Gazis et al., 1961). Gazis et al. (1961) 

concluded from some experimental studies that a nonlinear car-following model is 

necessary to account for the observed traffic flow behaviour, but no particular 

model had been found to be better than all others. Therefore, empirical studies 

are needed to find out the values of parameters in the car-following model or even 

better forms of a car-following model so that any method for the automatic 

control of driving based on the car-following model can have a sound basis. 
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Table 4.1 Summary of the behaviour of the car-following model 

parameters tested 

ex , m l 

ex 2.0s 3.0 1.0 1.0 
other , 1.0 0.5s 1.0 1.0 
para- m 1.5 1.5 LOs 1.5 
meters l 1.5 1.5 1.5 3.0s 

u 22 22 22 22 
b 53 53 53 53 
F 1 1 1 1 
P 27r)10 27r/10 27r/10 27r/10 

results 

autono- equl 2.00-5.70 0.50-1.85 1.00-2.06 3.00-1.06 
mous cep 5.70-5.75 1.85-1.86 2.06-2.08 1.06-1.05 

model {f, 1.552 1.544 1.537 1.554 
per a 5.75-8.30 1.86-2.15 2.08-2.12 1.05-0.95 
cpc 8.35 2.16 2.14 0.96 

non-auto pern 2.00-5.85 0.50-1.96 1.00-2.06 3.00-1.06 
nomous cpq 5.85-5.90 1.96-1.98 2.06-2.08 1.06-1.05 
model qup. 5.90-7.80 1.98-2.16 2.08-2.12 1.05-0.97 

cqc 7.85 2.18 2.14 0.98 

Notation: 
The superscript s means the minimum value tested, beyond which the 
response of the following car is very weak. 
equl - equilibria in the autonomous model. 
cep - changing from an equilibrium to periodic orbits in an autonomous 
model. 

{f, - the product of sensitivity and the reaction time at the equilibria in 
an autonomous model. 
pera - periodic orbits in the autonomous model. 
pern - periodic orbits in the non-autonomous model, whose frequency are 
the same as that of the forcing term 
c12q - changing from periodic solutions with the same frequency as that 
ot the forcing term to a more complicated periodic solution whose 
frequency may not be the same as that of the forcing term in a non­
autonomous model. 
cpc - breaking down in an autonomous system. 
qup. - more complicated, but still periodic, solutions. 
cqc - breaking down in a non-autonomous model. 
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Figure 4.12 Conveyance of a disturbance along cars in the nonlinear non­

autonomous car-following model, with N = 4, 1 = 2.3, m = 1.1, b = 30, U = 15, 
F= 1, P = 1, r= 1. (a) a= 110; (b) a= 130. 
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CHAPTER 5. THE DYNAMIC BEHAVIOUR 
OF THE GRAVITY MODEL 

In this chapter, the variations of the flow pattern in an Origin-Destination 

network (O-D network) are investigated based on the dynamic gravity model for 

trip distribution. The dynamic gravity model is suggested by Dendrinos and 

Sonis (1990). To the knowledge of the author of the thesis, there is not any 

previous study of this model. Here, the model is examined both theoretically and 

numerically to identify all possible dominant dynamic behaviour in the model. 

5.1. INTRODUCTION 

The gravity model has been developed for trip distribution, which deals with the 

pro blem of determining a non-negative trip matrix t = [t i)' i = 1, 2, ... , I, 

j = 1, 2, ... , J satisfying certain marginal constraints. In the dynamic gravity 

model, it is assumed that the number of trips at each stage, such as each day, 

each week, and so on, depends on the travel cost at the previous stage, and that 

the travel cost is a function of the number of trips. Let S be the set of all 

possible values of t. This will be defined by non-negativity constraints on the 

t .. and appropriate marginal constraints. Then the dynamic gravity model is 
tJ 

defined by a mapping F: S -I S, 

F .. ( t) = ¢ .. ( t) f ( c .. ( t .. )) , i = 1, 2, ... , I, j = 1, 2, ... , 1. 
lj lj lj lj 

(5.1) 

Here, ¢ .. ( t) is an appropriate normalizing factor determined from the marginal 
tJ db. . 

constraints, c .. is the travel cost which is normally assume to e an Increaslllg 
tJ 

function of t .. , and f(·) is called the deterrence function which relates the 
tJ 

number of trips to the travel costs. The map (5.1) defines a discrete-time 

dynamical system. If n is the discrete time, and t( n) the O-D flow pattern at 

time n, then t ( n+ 1) = F (t( n)) is the O-D flow pattern at time n+ 1. An 

equilibrium t e (if it exists) in this system is given by t
e 

= F(t
e
). Similarly, a 
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period-two orbit (if there is one) is defined by two points, say t 1 and t 2, in the 

phase space such that 

Three types of deterrence function are usually considered (Ortuzar and 

Willumsen, 1990): (a) exponential function, (b) power function, and (c) combined 

function. They can be written as: 

f (c .. ) = c.? exp (-{J c .. ), 
ZJ ZJ ZJ 

where f.1 and {3 are constants. When f.1 = 0 and {J > 0, f is an exponential 

deterrence function; when f.1 < 0 and {J = 0 it is a power deterrence function; 

and when f.1 > 0 and {3 > 0 it is a combined deterrence function. The 

exponential and the power deterrence function are both decreasing functions of 

costs. The combined function is not a monotonic function of the cost; the 

number of trips increases at first and then decreases with the cost. The analysis 

of this chapter will show that this difference between the deterrence functions 

leads to very different kinds of model behaviour. 

The normalizing factor 'l,b .. ( t) in (S.l) is chosen so that one or more of the 
ZJ 

following marginal constraints of an O-D matrix are satisfied 

(a) 

(b) 

(c) 

}:; .. t .. = 1, 
ZJ ZJ 

}:;.t .. - 0., 
J ZJ Z 

}:;.t .. = d., 
Z ZJ J 

i = 1, 2, ... , I, 

j = 1, 2, ... , J. 

(S.2a) 

(S.2b) 

(S.2c) 

Replacing 'l,b .. ( t) by appropriate factors we then have three types of models with 
ZJ 

different constraints, as follows. 

(1) Unconstrained model. In this model, only (S.2a) is satisfied and 

'lj; .. ( t) == 'lj;( t) = 1 ,i = 1, 2, ... I, J' = 1, 2, ... J 
ZJ }:;k/( c k Z (tkZ)) 

so that 
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t .. > 0, ~ .. t .. = 1. 
Z) - Z) Z) (S.3a) 

In this case, 'ljJ .. ( t) does not depend on i or j. 
Z) 

(2) Singly constrained model. There are two kinds of constraints, origin 

constraint and destination constraint. For an origin-constrained model (S.2b) is 

met and 'ljJ i/ t) depends on i only. Denote the factor by a / t). Then 

a.(t) = 
Z 

1 
o. , 

Z ~ .f ( c .. ( t .. ) ) 
) Z) Z) 

i = 1, 2, ... I, 

so that 

f(c .. (t . .)) 
F .. (t) = o. Z) Z) , t .. > 0, ~.t .. = 0 .. 

Z) Z Z) - ) Z) Z 
~lf(cil(til)) 

(S.3b) 

While for a destination-constrained model (S.2c) is met and 'l/J .. ( t) depends on J 
Z) 

only. Denote the factor by b.( t ). Then 
) 

1 b .( t) = d. , j = 1, 2, ... J, 
) )~.f(c .. (t .. )) 

Z Z) Z) 

so that 

t .. > 0, ~.t .. = d .. 
Z) - Z Z) ) 

(S.3c) 

(3) Doubly constrained model. In this model, both (S.2b) and (S.2c) are satisfied. 

The normalizing factor is replaced by two sets of constants, a.( t) and b.( t), 
Z ) 

satisfying the equations 

1 
a .( t) = o. , i = 1, 2, ... I, 

Z Z ~ .b .( t ) f ( c .. ( t .. ) ) 
) J ZJ ZJ 

and 

1 b .( t) = d. , j = 1, 2, ... J. 
J J ~.a.( t) f ( c .. ( t .. ) ) 

Z Z ZJ ZJ 
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The model is 

F .. ( t) = a.( t ) b .( t ) f ( c .. ( t .. ) ) ) t .. ~ 0) ~. t .. = 0., ~. t .. = d .. 
ZJ Z J ZJ ZJ ZJ J ZJ Z Z ZJ J 

(5.3d) 

The factors a / t) and b / t) are called balancing factors. These two sets of 

factors are inter-dependent: calculation of one set of factors require the values of 

the other set of factors. A special algorithm is needed in numerical calculations. 

The domain or the phase space S is different for the three types of model. The 

unconstrained gravity model is a map of the set 

S= {[t . .]: t .. ~ 0, ~.f1 E. J
1
t .. = 1} 

ZJ ZJ z= J= ZJ 

into itself. This is the standard simplex in IJ dimensional space, and has 

dimension IJ-1. The origin-constrained model, on the other hand, is a map on 

a product of sets 

S=SxSx xSp 
1 2 

where 

S. = {( t '1' t·2 , "" t 'J): t. . > 0, E. t . . = o.}, i = 1, 2, "" I, 
Z Z Z Z ZJ - J ZJ Z 

so that 

S= {[t . .]: t .. > 0, ~.t .. = 0., i=l, 2, .. " I}. 
ZJ ZJ - J ZJ Z 

It can be seen that in the origin-constrained model t .. ( n+ 1) depends only on the 
ZJ 

elements of the ith row of a trip matrix. Therefore the model consists of I 

independent equations, each on S. and with a dimension J-1. The set S. is a 
Z Z 

simplex in J dimensional space, and can be converted to a standard simplex by 

dividing each t .. by 0.. Thus each component of the origin-constrained model, 
ZJ Z 

after further normalization, is equivalent to the unconstrained model. Similarly, 

the destination-constrained model consists of J independent equations on 

S.={(t
1

·, t
2

·, .'" t
f
.): t .. >O, ~.t .. =d.} 

J J J J ZJ - Z ZJ J 

and with a dimension of I-I. Again each component of the model can be 

normalized to get a model equivalent to the unconstrained model. 
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The doubly constrained model, however, is different from the unconstrained or 

the singly constrained model. The phase space for the doubly constrained model 

IS 

s = {[i .. ]: i .. > 0, ~.i .. = 0., i=l, 2, "" I, ~.i .. = d )·=1 2 J} 
tJ tJ - J tJ t t tJ j' " ... , 

This phase space has a dimension of (I-1)(J-1) and is more complicated than 

that for the unconstrained model. Another complication of the doubly 

constrained model is, as mentioned earlier, that the two sets of normalizing 

factors are inter-dependent. This feature can pose difficulties in both theoretical 

analysis and numerical analysis of the doubly constrained model. Therefore, this 

model often has to be treated separately from the unconstrained and singly 

constrained models. 

The gravity model (5.1) is examined theoretically in the next section, where the 

existence, the uniqueness, and stability of an equilibrium in the model are 

analyzed. Also discussed in the next section is the existence of the user 

equilibrium and the stochastic user equilibrium in the model. These two 

equilibria are special flow patterns in a road network used in trip assignment 

studies (See Chapter 2). In this chapter, the concepts are extended to O-D flow 

patterns. Numerical analysis is made to find other possible attractors in the 

model in section 5.3. Liapunov exponents and fractal dimensions are calculated 

to characterize chaotic attractors found in the model; these are described in 

sections 5.4 and 5.5 respectively. The chapter is summarized in the last section. 

5.2. THEORETICAL ANALYSIS 

5.2.1. The existence of an equilibrium 

The existence of an equilibrium or a fixed point in (5.1) can be assured by 

Brouwer's fixed point theorem (Griffel, 1981) which, for the purposes of this 

thesis, can be stated as follows. 

Brouwer's fixed point theorem If n is a closed convex set, any continuous map 

F: n -1 n has at least one fixed point. 

The map defined by (5.1) is continuous and the phase spaces for all three types of 
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model are closed convex sets. Therefore, in all three cases the map has at least 

one fixed point in the phase space. 

As mentioned in the last section, an equilibrium t e in the gravity model (5.1) is 

given by 

'lj; .. (te) f(c .. (t.~)), i = 1,2, ... , I, j=1, 2, ... , J, 
ZJ ZJ ZJ 

or 

The equilibrium cannot be found analytically unless F is one dimensional and is 

such that the above equation is linear or quadratic. However, it can be obtained 

by numerical calculations. 

5.2.2. The uniqueness of the equilibrium 

The uniqueness of the equilibrium in (5.1) is examined through a related 

mathematical programming problem, although other methods of proof may be 

possible. For the exponential and power deterrence function, the condition for 

uniqueness is established by showing that the equilibrium coincides with a 

stationary point which is the unique minimum of a convex objective function. 

By the same method, a sufficient condition for the uniqueness of the equilibrium 

is obtained for the model with the combined deterrence function. 

The problem to be considered is 

too 

Minimize z(t) = ~ .. t.ln t .. + ~ .. f OZJ [(3 c .. ( s) - J.dn c .. ( s)] ds 
ZJ ZJ ZJ ZJ ZJ ZJ 

subject to 

~.t.. o. 
J ZJ Z 

~.t.. d. 
Z ZJ J 

t .. ) 0 
ZJ -

Vi 

Vj 

Vi,j 

( 5.4a) 

(5.4b) 

(5.4c) 

( 5.4d) 

We have considered the doubly constrained model here. The unconstrained and 

the singly constrained models can be considered by simply replacing the 
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constraints (S.4b) and (S.4c) by the appropriate one in (S.2a)-(S.2c). When 

t .. = 0, the expression t .. In t .. in the objective function is defined to be zero 
2J 2J 2J . 

The Lagrangian for the above problem is 

L(t, u, v) = z(t) + ~.u.(o.-~.t .. ) + ~.v.(d.-~.t .. ) 
2 2 Z J 2J J J J 2 2J ' 

where u and v are vectors of Lagrange multipliers. Let t* be a stationary 
point. Then we must have 

8 * * * ~L(t ,u ,v ) 0, Vi,j, 
2J 

or 

* * * In t .. + 1 + f3 c .. ( t .. ) - J1ln c .. ( t .. ) - u. - v. 0, Vi,j. 
2 J 2J 2 J 2J 2 J 2 J 

From this we obtain the stationary point 

* - * J1 * t .. - c .. (t .. ) exp(-f3 c .. (t .. )) exp(-l+U.) exp(v.), Vi,j. 
Z J 2J 2 J 2J 2 J 2 J 

The factors exp(-l+u.) exp(v.) determined from the constraints (S.4b) and 
2 J 

(S.4c) are exactly the same as the normalizing factor in the doubly constrained 

model. So the stationary point in the programming problem (S.4) is identical to 

the fixed point in the doubly constrained model (S.3d). If the objective function 

is strictly convex at t*, then t* is a local minimum. If the objective function is 

convex elsewhere in the feasible region defined by the constraints (S.4b )-( S.4d) 

and if the region is convex as well, then t* is a global, or unique, minimum in 

the region, and so is the equilibrium in the phase space of dynamic gravity 

model. Now the feasible region is convex since it is defined by linear equalities 

and inequalities. Also it follows from Theorem 1 in Evans (1973) that the first 

term of the objective function is strictly convex in the feasible region. It remains 

to be proved that the second term of the function is strictly convex at t* and is 

convex elsewhere. Denote this term by z2· Then 

t .. 

z (t) = ~ .. J 2J [f3 c .. ( s) - J1ln c .. ( s)] ds. 
2 2J 0 2J 2J 

The elements of the Hessian matrix for this function are given by 
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a z (t) { c. '. ( t .. ) [f3 - ~t ], for k l= i j a ( 2 ) _ 1 J lJ C i} t ij) 
~kl at.. -

lJ ° , otherwi s e 

This means that the Hessian is a diagonal matrix. The condition for the 

objective function to be (strictly) convex is that the derivatives are (strictly) 

positive so that the Hessian is positive semi-definite (positive definite), that is 

, * [ 11] c .. (t .. ) f3- * >0, 
ZJ lJ () c .. t .. 

lJ lJ 

and c/(t .. ) [f3 - ~t ] ~ 0, Vt ... 
J lJ c;...l t.:J ZJ 

ZJ ZJ 

Since c .. is an increasing function of t .. , the above conditions can be reduced to 
~ ~ 

[f3 - cib] ~ 0, Vtij 
ZJ ZJ 

(5.5) 

These are automatically satisfied if the exponential or the power deterrence 

function is used for in the former f3 > 0, 11 = 0, and in the latter f3 = 0, 11 < 0. 

In both cases, there is equality only when t .. = 0, that is, at the boundary of the 
ZJ 

feasible region. Therefore, when the exponential or the power deterrence function 

is used, the stationary point is a unique minimum in the feasible region and the 

equilibrium in the gravity model is unique. With the combined function, if the 

values of parameters are such that the above conditions are satisfied then the 

optimum solution and so the equilibrium is unique. Otherwise, the solution and 

the equilibrium is not necessarily unique. An example in which the equilibrium 

is not unique in the model with the combined deterrence function will be shown 

in the numerical analysis. 

5.2.3. The stochastic user equilibrium 

In this section we will show that the unique equilibrium in the gravity model 

with the exponential deterrence function is equivalent to the stochastic user 

equilibrium (SUE), with the user equilibrium (UE) as its special case. The UE 

and the SUE are two notions of flow patterns in trip assignment; these have been 

introduced in Chapter 2 and will be described in detail in Chapter 6. Here, the 

extension of the idea to trip distribution is outlined. 
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The dynamic process of trip distribution is the same as that of trip assignment in 

that they both deal with problems of selection among alternatives, although in 

the former the alternatives are O-D pairs and in the latter they are the routes. 

Therefore, the notions of the UE and SUE in trip assignment models can be used 

to describe the equilibria in trip distribution models. 

In trip distribution, it is plausible to assume that trip makers choose the O-D 

pair in an area with the minimum cost. The cost between each O-D pair varies 

with the flow between the O-D pair; the cheapest O-D pair may become more 

expensive because of congestions. In addition, the appropriate marginal 

constraints of trip matrix must be satisfied. Consequently, trips in the area may 

be spread among more than one O-D pair. A flow pattern may be reached when 

the cost of all trip makers is the minimum and no trip maker can reduce the cost 

by changing to another O-D pair. This flow pattern is the user equilibrium in an 

O-D network. In this UE definition, however, it is assumed implicitly that trip 

makers know the travel cost between every O-D pair and they are identical in 

their choice behaviour. This presumption can be relaxed by introducing a 

perceived travel cost between O-D pairs, which can reflect the difference or the 

randomness among trip makers in their choice behaviour. Each trip maker may 

perceive a different travel cost for the same O-D pair. An equilibrium will be 

reached when the cost of all trip makers is thought to be the minimum and no 

trip maker can reduce the perceived cost by changing to another O-D pair. This 

is the stochastic user equilibrium in an O-D network. Note that this equilibrium 

is called stochastic user equilibrium simply because the variations in drivers' 

perception of travel cost is included. This is where the user equilibrium differs 

from the stochastic user equilibrium. The flow variables used to define the 

stochastic user equilibrium, however, is deterministic variables rather than 

stochastic ones. 

In trip assignment studies in the literature, the problem of finding the UE or 

SUE has been formulated as equivalent mathematical programming problems. 

For trip distribution, we can have similar results. Consider the program (5.4) 

with /.l = 0 

t .. 

J ZJ 
~ .. t.In t .. + {3 ~.. 0 c . .( s) ds, 

ZJ ZJ ZJ ZJ ZJ 

subject to 
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~.t .. o. Vi 
J ~J t 

~.t .. d. Vj t ~J J 
t .. > 0 Vi,j. 

tJ 

Clearly, the solution of the program is the same as the equilibrium of the 

dynamic gravity model with the exponential deterrence function. The objective 

function of the program has the same form as that of the mathematical 

programm formulated by Fisk (1980) to solve the logit-based SUE traffic 

assignment (See Chapter 6). In that objective function, the variables are the 

route flows and link flows on a road network, while here they are O-D flows of 

an O-D network. The unique minimum point of that objective function gives 

SUE for trip assignment; the unique optimum here is the SUE for an O-D 

network, which is also the unique equilibrium in the dynamic gravity model with 

the exponential deterrence function. 

The above objective function consists of two terms with a weighting coefficient 

{3. The first term is the entropy of the O-D matrix. If the costs are constants 

and do not depend on the flow, the entropy of the O-D matrix is maximized with 

the cost constraint (Ortuzar and Willumsen, 1990), and the solution is the same 

as that given by the static classical gravity model (the model obtained by 

omitting the time n in the dynamic gravity model with the exponential 

deterrence function. See, for example, Ortuzar and Willumsen, 1990). The 

second term, though does not seem to have a clear physical meaning, is the same 

as the objective function of the program formulated by Beckmann et al. (1956) to 

find the UE for trip assignment (Again, see Chapter 6). Thus, if {3 is very large, 

the above objective function tends to the second term and the solution tends to 

the UE for an O-D network. 

Therefore, the equilibrium in the dynamic gravity model is the stochastic user 

equilibrium, in which both the flow pattern given by the static gravity model 

with the exponential deterrence function and the user equilibrium are special 

cases. 

5.2.4. The Stability of the equilibrium 

Generally speaking, an equilibrium in a dynamical system is not necessarily 

stable. The stability normally depends on the values of parameters in the model. 
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The stability of the gravity model is examined in this section. 

A general analysis of the stability and the bifurcation of the gravity model is 

difficult, especially for the doubly constrained model. Therefore, here, the 

stability of equilibria is investigated for the unconstrained and singly constrained 

models only. The doubly constrained model will be considered in the numerical 

analysis. 

The unconstrained and singly constrained models (5.3a) - (5.3c) can be written 

in the more general form, using single subscripts for simplification, 

f(c.(t.)) 
F . ( t) = z Z , i = 1, 2, ..., K, 

Z ~.f(c.(t.)) 
J J J 

(5.6) 

where 

f ( c .) = c.1i exp (-,8 c.). 
Z Z Z 

When K = IJ the equation represents an unconstrained gravity model; while 

when K equals I or J the equation represents one component of a singly 

constrained model with o. or d. being set to 1 for normalization. 
Z J 

We will consider first a one dimensional model, and then move onto multi­

dimensional models. A one dimensional model can occur where there are one 

origin and two destinations, or vice versa. The model is 

A fixed point is locally asymptotically stable if the derivative at the point is 

within (-1,1) (Parker and Chua, 1989). From (5.7), we have 
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where the primes stand for derivatives and i
2
=1-i

1
. At the fixed point t e , 

The equilibrium is stable if 

(S.9) 

Since i1 + i2 = 1, we have ir i2 ~ 0.2S. Therefore, 

So, a sufficient condition for stability of the equilibrium can be given by 

(S.10) 

For the power deterrence function, /3 = 0 and f.L < 0, the stability condition 

reduces to 

(S.10a) 

while for the exponential deterrence function, /3 > 0 and f.L = 0, the condition 

reduces to 

(S.10b) 

In both cases, the equilibrium is unique. It can be seen that when the power or 

the exponential deterrence function is used, the equilibrium is more likely to be 

stable if 11 or /3 is smaller, although the stability depends on the cost and their 

derivatives at the equilibrium as well. With combined deterrence function, 

however, the stability of the equilibrium depends on the relative magnitude of f.L 

and /3, as well as the costs and their derivatives. 

It can be observed from (5.8) that if the deterrence function is exponential or 

power function, the derivative is negative in the whole phase space, which means 
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that F 1 (tl' t2) = F 1 (tt, I-tt) in (5.7) is a decreasing function of tl. It can be 

easily shown (Zhang, 1994) that if a one dimensional map is a decreasing map; 

there are only two possible stable steady states: fixed points and period-2 orbits. 

If the condition (5.9) is violated, as a result of changes of values of parameters, 

the equilibrium will become a period-two orbit. Therefore, in the one­

dimensional model with the exponential or the power deterrence function the 

fixed point and period-two orbits are the only possible steady states; trajectories 

starting from any initial conditions in the phase space approach one of the steady 

states. 

In a multi-dimensional model the local stability of an equilibrium can be 

determined by the eigenvalues of the Jacobian matrix at the equilibrium. An 

equilibrium is locally asymptotically stable if the magnitude of all the eigenvalues 

is less than 1 (Parker and Chua, 1989). Since it is not possible to evaluate the 

eigenvalues of the Jacobian matrix of F analytically, a sufficient condition for 

the stability of the equilibrium can be given by bounding the eigenvalues of the 

Jacobian matrix. There are several ways of bounding eigenvalues of a matrix. 

Here the norm of a matrix is used as a bound, based on the following theorem 

(Lancaster, 1969, page 201). 

Theorem If A E lR
nxn 

and A A = maxil Ail (1 ~ i ~ n) then for any matrix 

norm, A A ~ IIAII· 

It is desired that the type of norm to be used is small in magnitude and has a 

simple form. Based on these considerations, the p-norm is used with p = 1. 

The partial derivatives of F at the equilibrium in (5.6) are: 

-J-t.F..(te
) = te. (b.:-te.) cl.(te.) [~c t e -(3], 

u ~ j . J ZJ Z J J C / t j) 

where 

ij j 

1,=) 

Let J denote the Jacobian matrix of F at the equilibrium, with elements 

a~.Fi(te). Then the I-norm of this matrix is 
J 
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where jm is the index at which the sum is maximum. Again, since 

we have 

According to the above theorem, no eigenvalue of the Jacobian matrix is bigger 

than the I-norm. Therefore, 

(5.11) 

can serve as a sufficient condition for the stability of the equilibrium. It can be 

observed that this condition bears some resemblance to (5.10), the condition for 

the stability of the equilibrium in the one dimensional model. Again, with the 

power and the exponential deterrence function, the equilibrium is unique. For 

the power deterrence function, (3 = 0 and f-l < 0, (5.11) reduces to 

(5.11a) 

while for the exponential deterrence function, {3 > 0 and f-l = 0, the condition 

becomes 

(5.11b) 
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The stability of the equilibrium in the gravity models depends on the values of 

parameters Il, {3 and the cost at the equilibrium in the similar way to that for 

the one dimensional model. With the power and the exponential deterrence 

functions, the smaller Il or {3 is, the more likely that the equilibrium is stable. 

With the combined deterrence function, however, the stability depends on both 

J.l and {3. These points, together with the effects of parameters in the cost 

function will be considered in the numerical analysis. 

Further analysis of the gravity model cannot be made theoretically; numerical 

analysis is necessary to identify other possible steady-state behaviour in higher 

dimensional models and in the doubly constrained model. 

5.3. NUMERICAL ANALYSIS 

In this section, the gravity model (5.1) is investigated numerically to identify 

other possible attractors, besides the point attractor mentioned in the theoretical 

analysis. Numerical calculations involve iterations of the equation t (n+ 1) = 

F(t(n)) defined by (5.1) for given initial conditions and values of parameters. 

The iteration is made until a steady state, or an attractor, is reached. If an 

attractor is more complicated than a fixed point or a period-two orbit, it can be 

examined by, for example, time series and phase portrait plotting. It can also be 

examined by spectral analysis when it is necessary to check the periodicity of the 

attractor. The behaviour of a dynamical system can be best shown by 

bifurcation diagrams. These are diagrams of steady states of a system against 

the value of a parameter, or the bifurcation parameter. The bifurcation diagrams 

are produced by increasing the bifurcation parameter step by step and obtaining 

the attractors at each step by iterating the model. Only steady states are 

plotted; transients are removed. 

The cost function c .. ( t .. ) used for the numerical analysis is (2.10b) (Dendrinos 
ZJ ZJ 

and Sonis, 1990), which, by the notations here, can be written as 

c .. ( t .. ) = cQ .[1 + a [qt ijl "fl. 
~ ~ ~ .. 

ZJ 

(5.12) 

The model (5.1) is investigated with different numbers of origins and 
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destinations, using each of the three forms of the deterrence function. Different 

initial conditions and different values of parameters are tried. The unconstrained 

and singly constrained models are described in the next subsection, which is 

followed by the descriptions of the doubly constrained model. 

5.3.1. The Unconstrained or singly constrained model 

The analysis of the unconstrained and the singly constrained models is based on 

the generalized form (5.6) of the two models: 

f(c .(t.)) 
F . ( t) = z Z , i = 1, 2, ..., K, 

Z ~ .f(c .(t.)) 
J J J 

where 

f ( c .) = c.J1 exp (-,8 c.). 
Z z z 

Using single subscripts, the cost function (5.12) can be written as 

c.(t.) = cq [1 + a[t
i
]']. 

Z z z q. 
z 

Since it has been found that models with the power or the exponential deterrence 

function have very different behaviour from those with the combined deterrence 

function, they will be described separately. 

Models with the power or the exponential deterrence function 

In section 5.2.4. it has been shown that a one dimensional model with the 

exponential or the power deterrence function could only have point attractors 

and period-two attractors. Numerical calculations seem to show that this is true 

for higher dimensional models as well. When the values of parameters are small, 

a stable equilibrium is always approached. When they become larger, the 

solutions become a stable period-two orbit. Figure 5.1 is a bifurcation diagram 

for ex in a model of two origins and two destinations with CO = (c~ c~ c~ c~) = 

(1.4 1.2 1.8 1.6) and q = (ql q2 q3 q4) = (0.170.150.250.23). For each value of 

parameter, the state of a single point means a point attractor and the state of 
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two points a period-two attractor. Bifurcation diagrams for all other parameters 

(,)" (3, and /l) are also produced and they all look very much the same as Figure 

5.1. 

The above behaviour in the gravity model is not unexpected. The trip rates at 

each iteration depend on the costs at the previous iteration by the deterrence 

function (with the parameter (3 or /l), while the cost depends on the trip rate by 

the cost function (with the parameters a and ')'). The former is a decreasing 

function and the latter an increasing one. Therefore, a reduction in trips between 

an O-D pair at one iteration will cause the cost to decrease. This O-D pair will 

attract more trips at the next iteration. When the values of parameters are small 

enough, certain changes of flow in one iteration will cause smaller changes of 

costs and so flows at the next iteration and the process may converge to an 

equilibrium. When the values of parameters are large, however, changes of flows 

may become larger and larger at each iteration and may cause oscillations. 

Models with the combined deterrence function 

When the combined deterrence function is used and when the number of 

dimensions is 1 or 2, again, only fixed points and period-two orbits are found. 

When the dimension is higher (3 or more), however, more complicated behavior 

occurs in the model. Period doubling and apparently irregular behavior or chaos 

are found to be quite typical. Results of calculations of a model with two origins 

and two destinations will be shown first. The same values of CO and q as those 

in Figure 5.1 are used. Figure 5.2 shows one of the chaotic attractors found in 

the model. Three projections of the phase portrait (Figures 5.2a-5.2c) are 

plotted here, which show that the attractor is geometrically a very complicated 

object. The power spectrum (Figure 5.2d) is continuous, indicating stochastic 

behavior. When the initial condition is changed slightly, the orbit will soon 

diverge. The sensitive dependence on the initial conditions is shown in Figure 

5.2e, where the solid line is the series starting at t = [0.0300 0.3521 0.5313 

0.0866], while the dashed line is the series starting at t = [0.0301 0.3520 0.5313 

0.0866]. The starting time is n=1000. It can be seen that the orbits distinguish 

themselves after less than 50 iterations. 

To show more features of the dynamic behaviour in the model, bifurcation 

diagrams were produced, using all parameters as bifurcation parameters. \Yhen 
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producing these diagrams, the initial conditions were taken in two ways. One 

way is simply to use the same initial values for all steps of the parameter. There 

may be a long transient to remove in this way. The other way is to use the final 

states of the previous step of the parameter. Transients can thus be shortened. 

By starting from different points, different attractors may be detected if there is 

more than one attractor for the same values of the parameters. 

Figures 5.3-5.4 are two sets of bifurcation diagrams for {3 but with different 

values of I-L. Plotted on the diagrams are the number of trips from origin 1 to 

destination 1. In both cases, different starting points lead to different bifurcation 

sequences and different sets of attractors, implying that there is more than one 

attractor for the same value of {3. Some of these diagrams are a little coarse. It 

needs to be pointed out that these diagrams use large amounts of computer time 

to produce. Figures 5.5-5.6 are local enlargements of Figures 5.3-5.4, 

respectively, showing the bifurcation sequences in more detail. 

Several features can be seen in these diagrams. First, as values of parameters 

vary, the steady states often change from fixed points to period-two orbits, and 

then period 4, and then period 8, etc. This is a period doubling sequence which 

is a typical route to chaos (Thompson and Stewart, 1988). However, not all 

periodic doubling leads to chaos; there may be only several doublings, followed 

for example by period undoubling or by other bifurcations. What is more, 

chaotic behaviour is often followed by periodic undoubling sequences as well. For 

example, in Figure 5.5a, where {3 is the bifurcation parameter, the period 

doubling leads to chaos, followed by periodic undoubling. On the other hand, in 

Figure 5.5b, there is the period doubling up to 16 and then undoubling to period 

2 without going through chaos. Secondly, there are some periodic windows, or 

stable periodic orbits in the chaotic regimes. See, for example, Figure 5.6a. 

Thirdly, there are many discontinuous points in these bifurcation diagrams. This 

may because more than one attractor coexists in the phase space for the same 

value of parameter. This is confirmed by iterations starting from different initial 

conditions with the same values of parameters. Different attractors are 

approached from different initial conditions, producing different bifurcation 

diagrams. 

In section 5.2.2, we concluded that with the combined deterrence function, the 

equilibrium in the model is not necessarily unique. Here we have an example for 

this conclusion. In Figures 5.3a and 5.3b when {3 is between 1 and 1.5. we 
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have different equilibria from different initial conditions. 

Similar calculations are made with other parameters, j.L, (1, and 'Y, and to 

models with more origins and destinations. Similar behavior to those described 

above are found. It can be seen that the unconstrained or singly constrained 

models with the combined deterrence function exhibit a very rich dynamic 

behaviour. The chaotic behaviour will be examined further in section S.4. 

5.3.2. The doubly constrained model 

In this subsection, the doubly constrained model (S.3d) with the cost function 

(S.12) is examined numerically. The model is 

F .. ( t) = a.( t ) b .( t ) f ( c .. ( t .. ) ) , t. ~ 0 , ~. t .. = 0., ~. t .. = d .. 
~J ~ J ~J ~J ~J J ~J ~ ~ ~J ) 

(S.13a) 

where the a.( t) and b.( t) satisfy the equations 
Z J 

1 
a .( t) = o. , i = 1, 2, ... I, 

Z Z ~ .b .( t ) f ( c .. ( t . .) ) 
(S.13b) 

J J ZJ Z) 

and 

1 b .( t) = d. , f = 1, 2, ... J. 
J J ~.a.( t ) f ( c .. ( t . .) ) 

(S.13c) 

~ Z ~J ZJ 

This model cannot be iterated directly like the unconstrained or singly 

constrained model, because it contains two sets of parameters ai( t) and b / t) 

which are interdependent. The calculation of one set needs the values of the 

other set. This suggests an iteration process. The method from Ortuzar and 

Willumsen (1990) will be used here. Given the values of deterrence functions for 

each O-D pair, f (c .. ), the algorithm in outline is as follows: 
ZJ 

(1) Set all bit) = 1.0 and find ai(t)'s by (S.13b) that satisfy the origin 

constraints ~.t .. = 0., i = 1,2, ... I; 
J ZJ Z 

(2) With the latest a/t)'s and by (S.13c), find b/t)'s which satisfy the 

destination constraints ~.t .. = d., f = 1, 2, ... J; 
Z ZJ J 
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(3) Keeping the b/t)'s fixed, calculate ai(t)'s, again by (5.13b); 

(4) Repeat steps (2) and (3) until convergence is achieved. 

Once ai(t)'s and b/t)'s are determined, the Fi}t)'s can be obtained by 

(5.13a). Thus the numerical calculations of the doubly constrained model involve 

two nested iterations. The inner iteration is the one outlined above to obtain 

ai(t)'s, b/t)'s so as to get Fi}t)'s; the outer iteration is t(n+1) = F(t(n)), 
made for n. 

Numerical calculations have shown that the dynamic behaviour in the doubly 

constrained models is very similar to that in the unconstrained or singly 

constrained models. When the exponential and power deterrence functions are 

used, there are only point attractors and period-two attractors. When the 

combined deterrence function is used and when the dimension is lower, there are 

still only point and period-two attractors. 

When the dimension is higher (4 or more) and when the combined deterrence 

function is used, the behaviour is more complicated. Chaos has been found to 

exist widely in the model. Experiments with a model of three origins and three 

destinations will be described here. The uncongested travel costs and capacities 

between the zones are as follows 

C~l c~2 c~3 
CO = c~l c~2 c~3 

c~l c~2 c~3 

qll q12 q13 

q = q21 q22 q23 

q31 q32 q33 

[ 

1.00 1.00 1.50 ] 
1.20 1.40 1.80 , 
1.50 0.90 0.50 

[ 

0.01 0.11 0.07] 
0.09 0.09 0.11 . 
0.10 0.09 0.07 

The total numbers of trips from and to each zone are 

0= (°
1 

02 03) = (0.35 0.35 0.30), and d = (d1 d2 d3) = (0.30 0.30 0.40), 

respectively. Figures 5. 7a-5. 7b show one of the chaotic attractors found in the 

model. The time series appears to be even more irregular than that for the 

The Dynamic Behaviour of the Gravity Model 122 



chaotic attractor in the unconstrained or singly constrained model (Figure 5.2e). 

The power spectrum is continuous, implying the motion is chaotic. 

Bifurcation diagrams are produced for all the parameters in the model. These 

diagrams are even more time consuming to produce than those for the 

unconstrained or singly constrained model because each iteration of the equation 

involves a subiteration to solve the model. 

Figure 5.8 is a bifurcation diagram for J.l. It appears that there is no obvious 

periodic doubling sequence or any other clear bifurcation route in the diagram. 

Another feature of this graph is that there are a lot of broken points. This means 

that two or more attractors coexist in the phase space for the same values of 

parameters. Bifurcation diagrams are also made for all other parameters and 

they are similar to Figure 5.8. 

Models with four origins and four destinations are also examined and similar 

behaviour found. It seems that the behaviour in the doubly constrained models is 

a little more complicated than that in the unconstrained or singly constrained 

models. This may because the phase space in the doubly constrained model is 

more complicated, as mentioned in the introduction of this chapter. 

5.4. CALCULATION OF LIAPUNOV EXPONENTS 

In this and the next section, chaotic behaviour found in the gravity model is 

examined further. As mentioned in the introduction of the thesis, chaos is a new 

kind of irregular behaviour found in deterministic systems. It is not yet fully 

understood. Therefore, it is of theoretical interest to find out if a model possesses 

chaos and to examine chaotic attractors. 

Chaotic attractors are the attractors with sensitive dependence on initial 

conditions (Eckmann and Ruelle, 1985). A tiny difference in initial conditions 

can grow exponentially with time so that the state of the system is essentially 

unknown after a short time because of the uncertainties in the initial state. The 

divergence of neighbouring trajectories can be measured by Liapunov exponents. 

Liapunov exponents will be introduced first and then calculated for chaotic 

attractors of the gravity model. The theoretical basis of this section comes from 

Eckmann and Ruelle (1985). 

The Dynamic Behaviour of the Gravity Model 123 



5.4.1. Definition and algorithm 

A Liapunov exponent is a measure of the average rate of change of small 

separations on an attractor. Consider the one dimensional discrete time 

evolution equation 

x ( n+ 1) = 9 ( x ( n) ) , x( i) ErR, 

where n is the discrete time. The small initial separation bx(O) after time N 
is then 

b x (N) = gN ( x ( 0 ) + 8 x ( 0)) - gN ( x ( 0 )) 

[d N 
~ ax(g )(x(O))] bx(O), 

N 
where 9 (x) = g(g( ... g( x) ... )), N times. By the chain rule of 

differentiation, we have 

d N d d d ax(g ) (x(O)) = ax g(x(N-l)) x ax g(x(N-2)) ... ax g(x(O)). 

Suppose that the separation grows (or decays) exponentially with N, that is, 

Then the average rate of change or the Liapunov exponent is defined as 

(Eckmann and Ruelle, 1985) 

In the case of multi-dimensional systems, the derivative (d/ dx)g is replaced by 

the Jacobian matrix. The definition of Liapunov exponents for multi-dimensional 

systems will be explained using the gravity model t(n+1) = F(t(n)). 

Let J( t) be the Jacobian matrix of F( t) at the point t E S: J( t) = 8F( t)/ at :: 

[8F/t)/8t)- DenotetheJacobianmatrix 8Fn(t)/at of the nth iteration Fn(t) 
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by J;. Then 

J; = J(Fn-l(t)) ... J(F(t)) J(t) (5.14) 

by the chain rule of differentiation. Here the superscript n denotes the number 

of iterations, not a power, and J(Fr(t)) is the Jacobian matrix of F evaluated 

at the point F
r (t). Let (]". be the ith eigenvalue of the matrix 

z 

Lim [J;* J;11/2n, 
n--+m 

~ n 
where Jt stands for the transpose of J t . Then the ith Liapunov exponent is 

defined as (Eckmann and Ruelle, 1985) 

A. = Log I (]"·I . z z 

There are as many Liapunov exponents as the dimension of the phase space of a 

dynamical system. A positive exponent indicates expansion of the neighbouring 

trajectories and a negative exponent indicates contraction. The largest exponent 

is positive for chaotic attractors; it accounts for the sensitive dependence on 

initial conditions. A non-chaotic attractor does not possess positive exponents. 

There are two methods for calculating Liapunov exponents, suggested by Wolf et 

al. (1985) and Eckmann and Ruelle (1985) respectively. The second algorithm is 

usually preferred (see, for example, Conte and Dubois, 1988) and is used here. 

The basis of the algorithm is to calculate the product (5.14) by QR factorizations 

(Hager, 1988). Let 

Q
1 
Rl = the QR factorization of J (t) , 

Q2R2 = the QR factorization of J(F(t)) Ql' 

k-l 
QkRk = the QR factorization of J(F (t)) Qk-l' 

...... , 

where Q
k 

is an orthogonal matrix and Rk an upper triangular matrix with nOIl­

negative diagonal elements. Then 
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J(Fn-1(t)) ... J(F(t)) J(t) = Q R ... R 
n n 1 

The diagonal elements (V n) ii of the upper triangular matrix product Rn··· Rl 

lead to the exponents (Eckmann and Ruelle, 1985) 

A. = lim!. Log 1 diagonal elements (v ) .. 1 
t n n n ' 

n--+m 

where n is the number of iterations. 

To implement the algorithm, the gravity model is iterated. At each iteration, 

the Jacobian matrix is calculated and is multiplied by the previous orthogonal 

matrix. The product is then decomposed by the QR factorization to get the 

upper triangular matrix, from which the eigenvalues are obtained. The iterations 

are continued until a convergence to the Liapunov exponents is achieved. The 

algorithm was programmed in FORTRAN, making use of NAG routines (The 

NAG Ltd., 1987). See Appendix B for the program listing. 

The program was tested by calculating the Liapunov exponents of the chaotic 

attractor of the Henon map shown in Figure 3.3 in Chapter 3. The Liapunov 

exponents for this attractor are known to be Al = 0.42, A2 = -1.6 (Conte and 

Dubois, 1988). The first 2,000 steps of calculation of the Liapunov exponents 

for this attractor are shown in Figure 5.9, where it can be seen that they converge 

quickly. The result after 20,000 iterations is [0.4168 -1.6208]. 

5.4.2. Calculation for the gravity models 

The algorithm described in the last subsection can be used directly to calculate 

the Liapunov exponents for the unconstrained or the singly constrained gravity 

model. Liapunov exponents for the chaotic attractor shown in Figure 5.2 were 

calculated. The first 5,000 iterations are shown in Figure 5.10; the convergence 

is apparent. The three exponents after 30,000 iterations are [0.20 --D.02 --D. 70], 

with the first one being positive. Shown in Figures 5.11 is the first Liapunov 

exponents calculated as a function of {j, in company with the bifurcation 

diagram in Figure 5.5a. The second and the third exponents are all negative. By 

comparing Figure 5.11 with Figure 5.5a it can be seen that the first exponents are 

negative for non-chaotic attractors and are positive for chaotic ones. 
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For the doubly constrained gravity model, the calculation of Liapunov exponents 

needs a little more treatment. Because the two sets of normalizing factors in the 

doubly constrained model are interdependent, the partial derivatives in the 

Jacobian matrix are not directly available. These, however, can be found 

indirectly, as we shall see now. 

Consider the doubly constrained model (5.13) 

F . .( t) = a.( t ) b .( t ) f ( c .. ( t . .) ) , t .) 0 , ~. t .. = 0., ~. t .. = d., 
ZJ Z J ZJ ZJ zr J ZJ Z Z ZJ J 

where a.( t) and b.( t) satisfy the equations 
Z J 

1 
a .( t) = o. , i = 1, 2, ... I, 

Z Z ~ .b .( t ) f ( c .. ( t .. ) ) 
J J ZJ ZJ 

and 

1 b .( t) = d. , J' = 1, 2, ... J. 
J J ~.a .( t ) f ( c .. ( t .. ) ) 

Z Z ZJ ZJ 

The partial derivatives can be found to be: 

aF.. a a () 
~tJ= b.(t)f(c .. (t .. )) ~a.(t) + a.(t)f(c .. (t

iJ
·)) 7Jf::.b

J
.t 

U&kl J tJ ZJ U&kl Z t tJ kl 

a + a.( t ) b .( t) ~f ( c .. ( t .. ) ) , 
t J U& k I tJ ZJ 

(5.15 ) 

where 

d 

{-:r:r
f ( c .. ( t .. )), a U&ki ZJ tJ 

~f(c .. (t . .)) = 
U& k I tJ ZJ 0 

if i=k, j=l 

otherwise 

By (5.13a) and (5.13b), ~a a.(t) and aI:. b .(t) should satisfy 
U& k I Z k I J 

2 
[a (t)]2 a [ai(t)] a 

a (t)=- i ~.f(c .. (t .. ))~b.(t)- ~.b.(t)7Jf::.f(c .. (t .. )) 
~ a . 0 J ZJ tJ ut.. J 0 . J J k I lJ lJ u/'kl tikI 1 

and 
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8 _ [b/t)]2 8 [b.(t)]2 
'r b .( t) - - d ~ .f ( c .. ( t .. )) -rrr a .( t) - ) d ~ .a .( t) ~ f ( c .. ( t .. ) ) 
v~ k l ) j Z Z) Z) v~ k l Z j Z Z vt k l Z) 1) 

for i, k= 1,2, ... , I, and j, l= 1, 2, ... , 1. 

There are (I+J)xIx 1 equations which are linear with respect to the same 

8 8 
number of unknowns, ~ a .(t), ~ b .(t). So they can be solved numerically 

kl Z kl ) 

to obtain aI:. a .(t), aI:. b .(t). The partial derivatives can then be found by 
kl Z kl ) 

(5.15) to get the Jacobian matrix. The above algorithm can now be used to 

calculate the Liapunov exponents. Liapunov exponents are calculated for the 

chaotic attractor shown in Figure 5.7. The first 5,000 iterations are shown in 

Figure 5.12. The final result after 20,000 iterations is 

[0.1248 -0.1449 -0.3597 -0.9477]. The first one is positive, which confirms the 

attractor is chaotic. 

Sensitivity to initial conditions is a fundamental character of a chaotic attractor. 

Trajectories on the attractor expand in the directions with positive Liapunov 

exponents and contract in other directions with negative exponents. The 

directions of expansion and contraction are different at different point on the 

attractor. As a result, two closely spaced points are soon found very far apart. 

The diverging trajectories will fold back at certain point since the attractor is 

bounded. Therefore, a chaotic attractor is very complicated and normally 

possesses a fractal dimension. Fractal dimension is considered next. 

5.5. CALCULATION OF FRACTAL DIMENSIONS 

5.5.1. Definition and algorithm 

Fractal dimensions are used to characterize the geometric feature of chaotic 

attractors. The dimension of an attractor is a lower bound to the number of 

state variables needed to describe a steady-state behaviour. It can quantify the 

complexity of an attractor. A strange attractor normally possesses non-integer 

dimension, called a fractal dimension. Several types of fractal dimension have 

been defined in the literature (Parker and Chua, 1989). However, it should be 

mentioned that fractal dimension is still an active research area, and the 

relationships and the meanings of different definitions of dimension are unclear, 
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especially in experimental settings and when applied to simulations. The main 

use of dimension here is to characterize the chaotic attractors by giving the 

minimum number of variables needed to describe the dynamics on the attractor. 

Bearing these facts in the mind, and considering that different definitions of 

dimension give values close to one another, there seems no theoretical reason for 

choosing one type of dimension over another. The main reason for choosing one 

type of dimension over another is the ease and accuracy of its computation. A 

commonly used algorithm for computing fractal dimension is the box-counting 

algorithm. However, it is very inefficient. For a system of dimension greater 

than three, the memory requirements are extensive and a large amount of data is 

needed. The algorithm for computing the correlation dimension due to 

Grassberger and Procaccia (1983) is more efficient and is therefore employed here 

to estimate correlation dimension for chaotic attractors in the gravity models. 

The correlation dimension is defined based on the correlation function of an 

attractor. A correlation function is the average fraction of points within a certain 

radius r on the attractor. Let the sequence of N points 

{t(l), ... , t(n), ... , t(N)} 

be an orbit on an attractor in the system (5.1). Then the correlation function 

C( r) of the attractor is given by (Parker and Chua, 1989) 

C(r) - 1 iID!.2 { the number of points (t( i) , t(j)) such that 
N-1rJj N 

It ( i) - t U) I < r}. 

The correlation dimension D is defined as (Grassberger and Procaccia, 1983) 
C 

D = l' loy C( r) . 
C lIDO og r 

r-1 

This definition may be interpreted geometrically. If r is the diameter of a 

volume element in the attractor, then the correlation function, C( r), IS 

proportional to rDc, and the above definition follows immediately. 

To calculate the dimension, the model is first iterated and the transient removed 

to get an orbit on the attractor. Then the correlation functions are calculat ed for 

different values of r. For a given r, estimating C( r) involves computing all 
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the inter-point distances, It ( i) - t (j) I, counting the number of points which 

are within the distance r for all points on the attractor, and dividing this 

number by N2 to get C( r). The correlation dimension is the slope of the plot 

of log( C( r)) versus log( r). There may be only a limited range of the graph 

which is straight with an approximately constant slope. Only this range of data 

is used to estimate the dimension. The log-log plot of C( r) versus r was made 

by the MATLAB software (The MathWorks Inc., 1993) and the slope is 

estimated by least squares, also in MATLAB. The algorithm requires the 

calculation of inter-point distances. Given N points, there are about N2/2 

distances that need to be computed. Since N = 10,000 is not uncommon, the 

distance calculations are the most time consuming part of the algorithm. 

The program for this algorithm is tested by calculating the correlation dimension 

of the chaotic attractor in the Henon map mentioned in Chapter 3. Figure 5.13 is 

the log-log plot of the correlation function versus the distances from the 

calculation. The slope or the correlation dimension estimated is 1.256, which 

agrees well to that in the literature, 1.261 (Grassberger and Procaccia, 1983). 

5.5.2. Calculation for the gravity models 

Consider the dimension for the chaotic attractor (Figure 5.2) found in the 

unconstrained or singly constrained gravity model. The log-log plot is shown in 

Figure 5.14 and the dimension estimated is 1.8251, though the attractor lies in a 

three dimensional phase space. 

Also calculated is the dimension for the chaotic attractor shown in Figure 5.7 for 

the doubly constrained gravity model. The phase space of this model is four 

dimensional. Figure 5.15 shows the correlation function of the attractor. The 

slope, or the correlation dimension, is found to be 1.653. 

The dynamic gravity model is a dissipative system: the phase volume shrinks 

with time. The phase space of the models considered above is three or four 

dimensional, but the evolution of the system is such that the final variations are 

confined within a region with a dimension of 1. 7 or 1.8. 
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5.6. SUMMARY AND COMMENTS 

In this chapter, the dynamics of the gravity model have been investigated. The 

existence, and the conditions for the uniqueness and the stability of the equilibria 

in the model were established theoretically. The equilibria in the models with 

the power or the exponential deterrence function were found to be unique. The 

unique equilibrium in the model with the exponential deterrence function gives 

the stochastic user equilibrium (SUE) for an O-D network. With the combined 

deterrence function, the equilibrium is unique if the condition (5.5) is satisfied. 

Numerical calculations were made to find other types of dynamic behaviour. 

Point attractors and period-two attractors have been found to be the main 

feature in the models of lower dimensions with any of the three types of 

deterrence function, and in the models of higher dimensions with the power or the 

exponential deterrence function. When the dimension is higher (3 or more for 

unconstrained or singly constrained model, and 4 or more for the doubly 

constrained model), and when the combined deterrence functions is used, period 

doubling, chaos, and other complicated bifurcations were found in the gravity 

model. Liapunov exponents and correlation dimensions were calculated for the 

chaotic attractors and were found to be positive and fractal respectively. 

The steady-state behaviour of the model depends on the inter dependence of flows 

and costs. The mechanism is that trip makers make their choices of origins and 

destinations based on travel costs, while the travel costs change with flows. If 

the values of the parameters are such that the interactions between flows and 

costs are mild enough, then an equilibrium can be reached. When the inter­

actions become stronger, the behaviour of models becomes more complicated; 

oscillations and even chaos may occur. 

It needs to be stressed that chaotic behaviour has been found in the gravity 

model with the combined deterrence function, which, according to (Ortuzar and 

Willumsen 1990) can fit the observed data better than the other two forms of , , 
function. The difference between this function and the other two is that it is not 

monotonic while the other two are. This might be the reason why the combined 

function causes complicated behaviour in the gravity model. A drawback of the 

combined function, however, is that it has two parameters for calibration 

(determination of parameter values so that the model can fit the observed cost 

distribution as well as possible); the other two forms of deterrence function have 
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only one parameter to determine. 

In practice, the values of parameters in the dynamic gravity model may be very 

different for different geographical areas. For a particular area, empirical studies 

are needed, preferably with the considerations of dynamic trip distributions, to 

determine the type of model and the values of parameters in the model. Then we 

could find out if the equilibrium would be stable and if the behaviour would be 

chaotic. In addition, these studies are also useful to find out whether the 

assumed dynamic model is realistic or not. 

The Dynamic Behaviour of the Gravity Model 132 



c 
0 .;:: 
co 
c .;:: 

'" II) 

"0 
0 .-

c 
·50 
.t: 
0 

E 
0 

r.!::: 
'" Q.. 

.t: 
fo-

1 

0.9 

0.8 

0.7 

0.6 

O.S 

0.4 

0.3 

.... 
0.2 

0.1 

00 2 

.................................. ... 

... . . . . . . . . . . . . . . . . . . ....... , ......... . 
4 6 8 10 

a 

l 
I 

Figll!e 5.1 Bifurcation diagram of the unconstrained or singly constrained 
gravIty model for Cl::, with f3 = 0, f.L = -1.0, 'Y = 1.5. 

N 

UBi 

u 

"1 
c 
0 
N 

9 

u c 
0 
N 

c"~ '; .:: ..... . 
t; 

.... ! . 

e 

0'1 
0 

ol:l .. c-.t: 
f-

0.2!... 

o 

. ,' .', 

'~~sj ... ~j;~~~~ffi;: ";',',.> 

o 0.2 0.4 0.6 0.8 

Trips from zone 1 to ZODe 1 

( a) 

Figure 5.2 Chaotic attractor of the unconstrained or singly constr~ined ~ra\:ity 
model, with f.L = 8.0, ,3 = 3.25, Cl:: = 1.0, 'Y = 1.0. (a) Phase portraIt proJectIOn. 

The Dynamic Behaviour of the Gravity Model 133 



u c 
~ 
.9 
N 

U 
C 

~ 
e o 
.t:l ... 
c. 

"t:: 
f-o 

'I 
0.8 

N 

1:! 0.6 
~ 
g 

1:! 
~ 
6 0.4 
,g .. 
c. 
·c 
f-o 

0.2 

o 

0.8 

0.6 f-

0.4 t-

0.2f-

o 

o 0.2 0.4 0.6 

• Trips from lIme 2 to zone 1 

(b) 

"". 

~. 

:.- .. .....,. .. " 
.~: ~:. ~ ; .. ~::J. 

o 0.2 0.4 0.6 0.8 

Trips from zone 1 to zone 1 

(c) 

Figure 5.2 continued. (b )-( c) Phase portrait projections. 

The Dynamic Behaviour of the Gravity ~Iodel 

I 
l 

0.8 1 

134 



:: 

-;;; 
(,) 

"0 

E 

'::0 
;: 
0 

0 c 
OIl 
Q. 
';: 
f-

10"' 

1~ 

10"70~' ______ ~-------,------~I ______ ~I ______ ~I ______ -LI ______ J 
0.5 1.5 2 2.5 3 3.5 

angular frequency 

(d) 

0.6 ~----------r----'-------r----'-----r----'-----"---' 

0.5 ~ 

I i 
0.4 ;.. 

I 
0'; \ : vv JI,j 
r 

Qli 

I 

1<fXxi 1005 1010 1015 1020 1025 

iteration 

(e) 

1030 

, , 
, , 
. , 

~ 
i 

1035 1040 

'. '. 
" 

1045 

. , 

1050 

Figure 5.2 continued. (d) Power spectrum for the number of trips from origin 1 
to destination 1; (e) sensitive dependence on initial conditions. 

f"J"L ~ rL_ -;-:cn." Pehaviour of the Gravit:; \lodel 135 



1 

0.9 

0.8 
= 0 .;:: 
~ 0.7 .5 ... 
<Il 
Q) 

"0 
0.6 0 ... 

= 0.5 '50 
.t: 
0 

E 0.4 
0 

<.l:: 
<Il 
0. 0.3 .t: 
f-

0.2 

0.1 

~.5 

0.9 

0.8 

= 0 
';:: 0.7 ~ 

= ... 
<Il 
Q) 

0.6 "0 
0 ... 
= 0.5 

'50 
.t: 
0 

E 0.4 
0 

<.l:: 
<Il 0.3 0. 

't: 
f-

0.2 

0.1 

~.5 1 

1 1.5 2 2.5 

. ,"' 

1.5 2 2.5 

'II' I, 
,I I' 

· ':! I 
.: ':': i I 

II " I : I . 

" 

Iii 

. . : . ~ : 
· .::: 

'ij 

3 

p 

( a) 

'. : 

i " 

· . ::'" 

3.5 

,'. 
'1 •• " .: '" 

3 3.5 

P 

(b) 

4 4.5 5 5.5 

...... 

4 4.5 5 5.5 

Figure 5.3 Bifurcation diagram of the unconstrained or singly constrained 
gravity model for /3, with J1 = 7.0, (} = 1.0, , = 1.0. (a) Initial conditions are 
the same for all values of /3; (b) initial conditions are the final states of the 
previous step of {J. 

The Dynamic Behaviour of the Gravity Model 136 



1 

0.9 

0.8 

c 
.2 - 0.7 ~ 

.~: 

C /-:~ 
''::: ~ !.: 
'" v ,,:, J' 
~ 0.6 .., 
0 -
c 0.5 

'50 
'C 
0 

E 0.4 
0 

r.l:: 
'" 0.3 0-
'c 

'----f-

0.2 

0.1 

0
1 1.5 2 2.5 3 4 4.5 5 5.5 6 

P 
( a) 

0.9 

0.8 

c 
0 

''::: 0.7 
~ 

.:: -'" v 0.6 " 0 -
c 0.5 

'50 
'C 
0 

0.4 E 
0 

t!:: 

'" 0.3 0-
'c 
f-

0.2 

0.1 

O
2 2.5 3 3.5 4 4.5 5 

13 

(b) 

Figure 5.4 Bifurcation diagram of the unconstrained or singly constrained 
gravity model for {3, with J-L = 8.0, a = 1.0, ,= 1.0. (a) Initial conditions are 
the same for all values of {3; (b) initial conditions are the final states of the 
previous step of {3. 
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destination 1; (b) power spectrum. 
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CHAPTER 6. THE DYNAMIC BEHAVIOUR 
OF THE LOGIT-BASED 

TRIP ASSIGNMENT MODEL 

In this chapter, the variations of traffic flows in a road network are investigated 

based on the dynamic logit-based trip assignment model. Trip assignment has 

been one of the major subjects in traffic science. It is still an active research 

area. It concerns the formulation, analysis, and solution of large-scale models 

representing the complex interrelationships between flows and costs on the routes 

and links in a road network. A general road network can be very large and 

topologically complicated. Assigning O-D flows to such kind of network requires 

specially designed software packages, such as SATURN (Van Vliet, 1982) among 

others developed. The objective here, however, is to examine the dynamic logit­

based assignment model so as to gain an understanding of the dynamic behaviour 

of the model. 

6.1. INTRODUCTION 

Given a trip matrix and a road network, trip assignment models allocate trips 

between each O-D pair to the routes connecting the O-D pair based on drivers' 

route choice behaviour. Before introducing the trip assignment model which will 

be examined, it is necessary to describe the notation that will be used. 

6.1.1. Road network notation 

A road network consists of a set of nodes, N, and a set of directed links L 

joining the nodes with each other. The set of nodes contains the origin nodes, the 

destination nodes, and intermediate nodes (intersections). The set of origin and 

destination nodes is denoted by M, where M ~ N. Each O-D pair (r,8) is 

connected by a set of routes (a chain of one or more links), P rs· The set of all 

routes in the network is denoted by P, P = U rsEM P rs· The topological 
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relationship of routes and links is represented by 8rs ., where 8rs . = 1 if link 1 
Z,l 1,1 

is in the route i joining O-D pair (r,s), and 8r
z
s . = 0 otherwise. 
, t 

The trip matrix is denoted by t with t being the number of trips in a unit 
rs 

time period from origin r to destination s. Associated with each link there is a 

flow and a travel cost. Denote the flow on link l by Yz' and the corresponding 

cost, which is a function of YZ' by de Then d~ yz) is called the link 

performance function for link l. Similarly, for each route there is also a flow and 

a travel cost. The flow on each link is clearly the sum of the flows on those 

routes that use the link; while the cost on each route is assumed to be the sum of 

the costs on the links that form the route. Let the flow and the cost on route i 

joining O-D pair (r,s) be x~s and 
t 

rs 
c., respectively. Then link flows and route 

t 

flows are related by 

y = ~ ~ Z rsEM iEp 
rs 

f:rs rs 
V

z 
. x. , 

,t t 
tEL. 

The route costs and link costs are related by 

rs ~ f:rs d' M 
ci = LlZEL vZ,i Z' 'lEPrs' rsE . 

Sometimes vector notation is used for simplification. Given a particular order of 

the routes joining O-D pair (r,s), the vector of route flows on these routes is 

denoted by xrs. The vector of route flows on all routes in the road network is 

( ... , x rs
, ... ), which is denoted by x. The notations for a road network are 

summarized in Table 6.1. 

6.1.2. The model 

The dynamic logit-based trip assignment model describes, for a given O-D 

matrix, the adjustments of the flow pattern in a road network from one time 

instant to another (for example, from day to day). The assignment at each time 

period is modelled by the logit model. It is assumed that a drivers' route choice 

is based on the travel costs in the previous time period and that the travel cost 

on each link depends on the flow on that link. 
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The flows assigned to each route must be nonnegative. They must also satisfy 

the O-D flow constraints. In other words, the sum of flows on all the routes 

joining an O-D pair must equal the number of trips between the O-D pair. 

Thus the flow x~s on route i joining O-D pair (r,s) must satisfy 

and 

rs 
x. > 0, 

z 

~ rs 
LI'E x. z p z 

rs 

iEp , rSEM, 
rs 

t 
rs' rSEM. 

Let U be the set of x that satisfies the above conditions. Then 

where 

so that 

U {( ... , x
rs

, ... ): x:s ~ 0, ~'E x~s = t , rSEM}. 
• z p z rs 

rs 

(6.1a) 

(6.1b) 

( 6.2) 

This set defines the phase space for the dynamic assignment model. The model 

can now be written as 

where 

G: U -I U, 

Yz = ~ ~ rsEM iEp 
rs 

exp (-Be~S) 
- t t, 

rs ~ 'E exp ( -Be ~S) 
J P rs J 

iEp , rSEM, 
rs 

~rs rs 
V

z 
. x. , 

,t t 
lEL, 

iEp , rSEM, 
rs 

(6.3a) 

(6.3b) 

(6.3c) 

and B is a positive parameter. The map G defines an adjustment mechanism 

in the dynamic assignment process: the flow pattern x at one time period will 

become G(x) at the next time period. Let n be the discrete time. 
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Then 

x(n+l) = G(x(n)), x(n) E U. (6.4) 

This assignment model has some similarities to the gravity model with the 

exponential deterrence function. In the assignment model, the current flow on 

route i joining O-D pair (r,s), x~s (n+ 1), depends on the previous costs on all 
t 

the routes joining the O-D pair, e~s, jEp . While each e~s depends, in turn 
J rs J ' 

on the costs on all the links in route j. It is very common for a network to have 

one particular link used by more than one route which may well join different 

O-D pairs. If there is no route overlapping another route connecting a different 

O-D pair (overlaps of routes between the same O-D pair are not ruled out), then 

(6.3b) and (6.3c) become 

rs ~ frs d (~ frs rs) rs ( rs) e. = LJ ZEL v z ' Z LJ'
E 

v z ' x. :: e. x . 
t ,t t P ,t t t 

rs 

Clearly in this case, x~s (n+ 1) will depend only on those x~s (n) with j E P . 
I J rs 

As a result, the assignment model (6.3) can be divided into several independent 

maps on Srs, each of which may be written as 

iEp . 
rs 

Further, if there are no overlapping routes on any link at all, then the right hand 

side of (6.3c) will have only one term. In other words, the flows on all the links 

in each route are equal to the flow on that route. Consequently, <s will 

depend on x~s only and the assignment model for each O-D pair may be written 
I 

as 

- trs rs( rs))' 
~ . exp (-Oe. x. 

JEp J ] 
rs 

iEp , 
rs 

(6.5 ) 

where 
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rs( rs) ~ 5:rs d ( rs) 
e i Xi == [j lEL U l, i r- Xi' 

It can be seen that each component of the original model (6.3), that is, the 

assignment model for a single O-D pair, is now mathematically the same as the 

unconstrained gravity model with the exponential deterrence function. The only 

difference is that the cost <s here is the sum of several increasing functions of 

x~s rather than a single function. 
~ 

The assignment model will be examined in the similar way to that for the gravity 

model. The existence, uniqueness, and the stability of an equilibrium in the 

model are investigated theoretically in the next section. Numerical analysis is 

made in the subsequent section. The chapter is summarized in the last section. 

6.2. THEORETICAL ANALYSIS 

6.2.1. The existence of an equilibrium 

The existence of a fixed point in the dynamic assignment model (6.3) can be 

assured by Brouwer's fixed point theorem mentioned in Chapter 5. The model 

defined by (6.3) is a continuous map on the closed convex set, U, so according 

to Brouwer's fixed point theorem it has at least one fixed point. A fixed point 

xe 
E U is given by xe = G(xe), or 

exp (-Be~S) 
rs ~ 

x. - t rs ' 
~ rs ~ 'E exp ( -Be. ) 

J P rs J 

where 

iEp , rSEM, 
rs 

(6.6) 

Here, the superscript "e" representing the equilibrium has been omitted. The 

equilibrium cannot be found analytically because it is the solution of a set of 

nonlinear equations. However, it can be obtained by numerical calculations. 
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6.2.2. The uniqueness of the equilibrium 

Before considering the uniqueness of the equilibrium in the dynamic assignment 

model, it is important to review two notions of equilibrium discussed in the 

traffic assignment literature. They are the user equilibrium (UE), also called the 

Wardrop equilibrium, and the stochastic user equilibrium (SUE). In Chapter 2, 

it was pointed out that traffic assignment methods that consider congestion 

effects, normally by using link performance functions, are equilibrium assignment 

methods. These methods seek to find a flow pattern that satisfies the UE or SUE 

criteria. The majority of the researches consider steady-state (static) conditions 

and the equilibrium assignment problems are transformed to equivalent 

mathematical programming problems. 

The user equilibrium is a flow pattern under which no driver can reduce his or her 

travel cost by changing routes. More specifically, at user equilibrium, for each 

O-D pair, the travel cost on all used routes is equal, and is not greater than the 

travel cost on any unused route if a driver would use that route. 

Beckmann et al. (1956) formulated the problem of finding the user equilibrium as 

the following mathematical programming problem: 

Minimize z(x) 

subject to 

'"' rs t M LI'
E 

x. = ,rsE, 
z p z rs 

rs 

x~s > 0, iEp , rSEM, 
z - rs 

Y -- '"' 5:
rs rs l L ~ EM LI 'E U l . x. , E . l rs z p z z 

rs 

(6.7a) 

(6. 7b) 

(6.7c) 

(6.7d) 

It is shown (Beckmann et al., 1956) that a flow pattern that minimizes the 

objective function is identical to the user equilibrium and that there is only one 

minimum in the problem. 

The UE assignment assumes that drivers have perfect knowledge of travel costs 

in the network and that all drivers react in the same way in their route choice. 

The stochastic equilibrium assignment, on the other hand, assumes t hat route 
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choice is based on the perceived travel cost rather than the real cost or the 

measured cost. The perceived cost is, in general, different for different drivers. 

Stochastic user equilibrium is a flow pattern under which no driver can reduce his 

or her perceived cost by changing a route. At the equilibrium, the real travel 

costs on all used routes between each O-D pair are not necessarily the same but 

they are such that each driver believes that his or her travel cost is minimized 

and cannot be improved by changing a route. As has been pointed out in 

Chapter 2 that the SUE assignment models are deterministic because the route or 

link flows used to define the SUE are deterministic variables. 

One type of stochastic assignment method is the logit-based model. It has been 

shown by Fisk (1980) that the logit-based stochastic user equilibrium is the same 

as the unique solution of the following convex programming problem 

Minimize z(x) 

subject to 

~ rs M 
L.J 'E x . = t , r sE , z p z rs 

rs 

x~s > 0, ViEp , rSEM, 
z - rs 

Yz = ~ M~'E rsE z p 
rs 

s::rs rs 
V

z 
. x. , 

,z z 
lEL. 

The solution to the problem can be written implicitly as (Fisk, 1980) 

exp ( - () c ~ s ) 
rs z 

x. - t rs ' 
z rs ~ . exp ( -()c . ) 

JEp J 
rs 

where 

iEp , rSEM, 
rs 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

(6.9 ) 

Further if link costs are constant (flow independent), the flow pattern defined by , 
the solution will be identical to that produced by the static logit-based 
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assignment model first suggested by Dial (1971). Dial's model may be written as 

where 

rs 
X. 

z 
t 
rs ~ ( () rs)' 

L.J 'E exp - c. 
J P rs J 

rs ~ s;rs d 
C i = L.J IE LUI, i r 

iEp , rSEM, 
rs 

Note that here dz is independent of Yr As () --1 00, the importance of the second 

term of the objective function becomes dominant and the solution tends to the 

user equilibrium (the solution to (6.7)). See Fisk (1980) for detailed discussions. 

It can be seen that the fixed point (6.6) in the dynamic model (6.3) is exactly the 

same as the solution (6.9) to Fisk's program (6.8). The phase space (6.2) of the 

dynamic assignment model is convex and is the same as the feasible region 

defined by (6.8b-6.8c) in this program. Therefore, the equilibrium in the 

dynamic assignment model is unique as well. The optimum solution (6.9) gives 

the stochastic user equilibrium (SUE) assignment, so does the fixed point in the 

dynamic assignment model. Both the flow pattern by Dial's model and user 

equilibrium are included as special cases of the equilibrium of the dynamic model. 

Being unique and giving the SUE, the equilibrium in the dynamic model is rather 

favourable. An immediate concern is its stability, which is considered next. 

6.2.3. The stability of the equilibrium 

There have been relatively few studies on the stability of an equilibrium in trip 

assignment, partly because of the lack of suitable dynamic models. Equilibrium 

assignment models that consider only a steady state assume implicitly that the 

equilibrium is stable. To consider the stability of an equilibrium, it is necessary 

to model the adjustment of flow patterns over time. The studies by Horowitz 

(1984) and Smith (1984) described in Chapter 2 are in this line. In Horowitz 

(1984) the stability of an equilibrium in a discrete model for a network of one 

O-D pair connected by two links is considered, while in Smith (1984) the 

stability of user equilibrium in a continuous model is analyzed. Here, the 

stability of the equilibrium in the dynamic model (6.3) will be investigated. 
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Consider, first, a simple case in which there is one O-D pair joined by two routes 

with no common link. In (6.5), putting trs = 1 and using subscripts only, then 
the model becomes 

exp(-Oc .(x .)) 
2 Z 

~ . exp ( - 0 c . (x .)) 
, i = 1, 2, (6.10) 

J J 2 

where 

= {I if li nk l is in route i 
D

Z 
. 

,2 0 otherwi se 

and dz(Yz) is the link performance function for link l. The equilibrium in this 

model can be written as 

xe. -
exp(-Oc .(x~)) 

2 2 i = 1,2, , 
~ . exp ( - 0 c . ( x~ ) ) 

J J 2 

where 

Since model (6.10) is mathematically the same as the one-dimensional gravity 

model with the exponential deterrence function, the results of the stability 

analysis of the gravity model in section 5.2.4 can be applied here. In (5.9), 

setting f.1 = 0, replacing (3 by 0, t~ by x~, and Cl.(t~) by CI.(X~), the 
Z 2 2 Z 2 l 

condition for the equilibrium in model (6.10) to be stable is 

(6.lla) 

where 

Cl. (x~) = ~IEL Dz .4 [dl(xe.)], i = 1,2. 
2 2 ,2UX. Z 

Z 

It needs to be borne in mind here that c I. (x~) ~ 0 because the link performance 
z Z 

functions are normally assumed to be increasing functions. Similarly, from 

(5.10b), a sufficient condition for the equilibrium to be stable can be given by 
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(6.11b) 
where 

c '. ( x~) = ~ ZE L 8z .;1- [dZ( ~ ) ], i = 1, 2. 
t z ,z uX. z 

z 

Also from the analysis of the one-dimensional gravity model in 5.2.4 it can be 

concluded that the fixed point and period-2 orbits are the only possible 

attractors that could occur in model (6.10); any trajectory in the phase space will 

be attracted to the stable fixed point, or a stable period-2 orbit if the fixed point 

is unstable. 

The stability of the equilibrium in the general model (6.3) is investigated in the 

same way as that used in the last chapter. The unique equilibrium in (6.3) is 

locally asymptotically stable if the magnitude of all eigenvalues of the Jacobian 

matrix of G at the equilibrium is less than 1 (Parker and Chua, 1989). The 

eigenvalues cannot be evaluated analytically. A sufficient condition for the 

stability of the equilibrium can be obtained by bounding the eigenvalues of the 

matrix by the p-norm, where p = 1, based on the theorem used in section 5.2.4. 

Denote the Jacobian matrix of G evaluated at the equilibrium xe by D. Then 

from (6.3), the elements of the matrix are given by 

where 

D .. 
z) 

~ rs 
uC. 

z 
!:) uv 
ux. 

J 

_0_ G~s(x) 
~ uv z 
uX. 

) 

[ 

~ rs !:) rs 1 uc. uC 
() xrs __ z_ + ~ ~ xrs _k_ 

i !:) uv t kE p k!:) uv ' 
uX. rs rs ux. 

) J 

iEp rs' JEP uv' rs, uVEM, 

L IEL 8~: i (d,/ YI)) [ :::vl 
J 

= L lEL 8~:i 8~~YI(Yl)) 
Here, the superscripts "e" implying the equilibrium are omitted and will be 

throughout the rest of the section. The superscripts uv are used to signify that 

the routes i and j do not necessarily join the same O-D pair. The I-norm for 
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the matrix is 

max·EP ~ EM~'E I D··I J N Z P ~ TS 

a TS acTS 
TS c i 1 TS k 

max'EP~ EM~'E ()x. ---+-t-~k x J TS Z P Z a uv Ep k a uv TS X . TS TS X . 
J J 

According to the theorem in section 5.2.4, none of the eigenvalues of the Jacobian 

matrix has a magnitude greater than the above norm. A sufficient condition for 

the stability of the equilibrium can therefore be given by 

a TS a TS 
c. 1 Ck ~ ~ () TS Z ~ TS 

max·EP LJ EMLJ'E x. - -- + -t- kE Xk J TS Z PTS Z ax~v TS TS ax~v 
< 1. 

J J 

In the special case where there is not any route overlapping, we have 

where 

a TS 
C. 

Z 

a uv 
X. 

J 

a uv 
C. 

~ .. _J_ 
ZJ a uv x. 

J 

if j 

'l=), 

Note that i = j implies rs = UV. So 

a uv [ UV] c. x. 
_a_ G~S(x) = () x~v ~v - ~i' + f-
a uv Z J ax. J uv 

Xj J 

if routes i and j both join the same O-D pair, and 

_a_ G~S(x) 0 
a uv Z 

X. 
J 

otherwise. The norm now becomes 
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a uv 
c. UV 

x. 
~ B uv J max·EpLJ.E x.--

J 2 P J a uv rs x. 
-Ll.·+-t

2 

2J 

J 
uv 

a uv [ uv 1 c. x 
maxjEP 2 B x;v a ~V 1 - l-

x. uv 
J 

a uv UV[ uv 1 c. x. x 
= max. 2 B t _J __ J_ 1--L 

JEP uv a uv t t· x. uv uv 
J 
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The sufficient condition for the stability of the equilibrium is then reduced to 

a uv 
c. 

max.EP B t _J_ < 1/0.5 = 2. 
J uv a uv x. 

J 

(6.13) 

Clearly this condition is similar to the sufficient condition (5.11b) for the 

stability of the equilibrium in the gravity model with the exponential deterrence 

function. See section 5.2.4. This similarity agrees with the fact that when there 

is no route overlapping, the trip assignment model (6.3) is mathematically the 

same as the gravity model with the exponential deterrence function. 

From the conditions (6.11) to (6.13) it can be seen that the stability of the 

equilibrium in the dynamic model depends on the values of parameter B and the 

derivati ves of the link performance functions at the equilibrium. Clearly, the 

larger B is, the less the chance is for the equilibrium to be stable. In conditions 

(6.11) and (6.13), where there are no overlapping routes in the network, the 

larger the derivative of the link performance function is, the less likely that the 
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equilibrium is stable. This is because larger derivatives imply stronger 

dependence of link costs on link flows so that small variations of link flows can 

cause large changes in link costs and so in link flows at the next time period. 

The situation in which there are overlapping routes is more complicated and is 

investigated numerically in the next section. 

6.3. NUMERICAL ANALYSIS 

In this section, the assignment model is studied numerically for other possible 

attractors in addition to the equilibrium. Given a road network and a trip 

matrix, numerical analysis of the model involves iterating the equation (6.4) 

x(n+l) = G(x(n)), x(n) E U. 

until a steady state is reached. At each iteration, the link flows are calculated 

first from the route flows by 

y = ~ ~ 
Z rsEM iEp 

rs 

f:rs rs 
V

z 
. x. , 

,t t 
lEL, 

from which the link costs are obtained by the link performance functions. Then 

the route costs are calculated by 

iEp , rsEM. 
rs 

Finally a new set of route flows is obtained from 

exp (-Be~S) 
t 

t rs ' 
rs ~ 'E exp ( -Be. ) 

J p rs J 

iEp , rsEM. 
rs 

The iterations may continue as long as desired. 

Two commonly used link performance functions (Branston, 1976) are considered. 

The first one is the BPR (Bureau of Public Roads) function, or the power 

function. The BPR function is one of the most widely used link performance 

functions. It may be written as 
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(6.1-1 ) 

where dzo is uncongested travel cost, qz is link capacity, 0: and I are positive 

constants. The second link performance function is the exponential function 

(6.15) 

where dzo is uncongested travel cost, qz is link capacity, 0: and '"Yare positive 

constants, 0: > 1. 

It has been pointed out at the beginning of the chapter that assigning O-D flows 

to a general road network involves large amount of calculations and requires 

special software packages such as SATURN (Van Vliet, 1982). Therefore, here, 

some simple artificial networks are used for numerical calculations for the 

purpose of finding out typical dynamic behaviour in the assignment model. 

Several networks are tested, using the two link performance functions and various 

values of parameters and initial conditions. In all the calculations made, only 

point at tractors and period-2 attractors are found in the model. This outcome is 

not too surprising because it is consistent with the numerical analysis of the 

gravity model with the exponential deterrence function in Chapter 5. As has 

been mentioned, the two models are similar. 

In the rest of tills section, the results of the calculations for two networks with 

the two link performance functions are demonstrated; some typical values of 

parameters used in practice are examined to see if the equilibrium is stable when 

these values are used. Instead of showing the bifurcation diagrams willch will all 

look very much the same as Figure 5.1 (the bifurcation diagram for the gravity 

model with the power deterrence function), the behaviour in the assignment 

model is summarized in the diagrams of attractor regimes in the parameter space. 

There are three parameters in the assignment model, 0, 0:, and f. The 

diagrams will therefore be three dimensional, showing regimes of point attractors 

and period-2 attractors. 
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Computations for Network 1 

Figure 6.1 shows the first network considered (Potts and Oliver, 1972, page 72). 

This network has one O-D pair, nine routes, and ten links. The chain of links for 

each route is listed in Table 6.2. The capacities and the uncongested travel costs 

on all links are shown in Table 6.3. The O-D flow t = 9 
11 . 

Figures 6.2 and 6.3 show the attractor regimes in the parameter space calculated 

for this network with the two link performance functions. In these diagrams the 

region beneath the surface is the point attractor regime and the region above the 

surface is the period-2 attractor regime. The curves in the (a, ,)-plane are 

contour lines of the surface. It can be seen that for smaller values of parameters, 

the equilibrium in the model is stable. When the values of parameters become 

larger, the point attractors change into period-2 orbits. 

Computations for Network 2 

Network 2 is shown in Figure 6.4. This network is from Potts and Oliver (1972, 

page 113) but is modified slightly by adding one link (link 7) and by removing 

one node. The modified network has 4 O-D pairs, 12 routes, and 11 links. 

The topological structure of the network is summarized in Table 6.4 and the link 

data in Table 6.5. The trip matrix for the network is given in Table 6.6. 

The attractor regimes for network 2 with the two link performance functions are 

shown in Figures 6.5 and 6.6 respectively, where the region underneath the 

surface is the point attractor regime and the region above the surface is the 

period-2 attractor regime. It can be seen that the diagrams for this network are 

very much the same as that for network 1, although the two networks are 

completely different. This suggests that the behaviour described so far is very 

typical in this trip assignment model. 

Some practical considerations 

Naturally, it is desirable to know if the equilibrium would be stable when 

commonly used values of parameters are used. In the BPR link performance 

function, typical parameter values are a = 0.15 and ,= 4.0 (Branston, 1976), 
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respectively. While in the exponential link performance function, 'Y = 1.0 and 

a ranges from 1.0 to 2.0 (Branston, 1976). 

The parameter 0 in the logit model is related to the standard deviation of the 

distribution of perceived route costs. Larger values of 0 correspond to smaller 

variations in the perceived route costs and so in the route choice. In the limit , 
when 0 --'t CD, all drivers' perceived costs are the same, and they choose the 

cheapest route (in terms of measured cost). On the other hand when 0 --'t 0 , , 
every route is chosen with the same probability and the flow between each O-D 

pair is equally shared among the routes between the O-D pair, regardless of 

measured route costs. It is therefore important to consider different values of O. 

In the following calculations, different values of 0 are considered. Calculations 

are made for the above two networks, using the typical values of parameters in 

the two link performance functions. 

When the BPR function is used, the calculations showed that the equilibrium in 

network 1 is stable if 0 < 0.45 and that the equilibrium in network 2 is stable if 

o < 0.15. The critical value of 0 may depend on how congested the network is. 

In network 1, if the O-D flow is 12 rather than 9, calculations showed that the 

equilibrium loses its stability at 0 = 0.15. 

With the exponential performance function, two parameters are variable, a and 

O. The attractor regimes in the a - 0 plane for the two networks are shown in 

Figures 6.7 and 6.8, respectively. The region below the line is the regime in 

which the equilibrium is stable. In these two diagrams, the region for the 

equilibrium in network 1 to be stable is larger than that in network 2. This is 

consistent with the result of the BPR link performance function. 

In the dynamic assignment model, the relationships between the flows and the 

costs in the network affect the dynamic behaviour of the model in a similar way 

to that in the gravity model. Consider first the situation where there are no 

overlapping routes. If, at one time period, the flows on some routes or links are 

smaller these routes or links will become cheaper to travel and will attract more , 
flows at the next time period. If the values of parameters are small so that the 

compensation is mild, the dynamic process will converge to the equilibrium. If, 

on the other hand, the values of parameters are too large and the differences in 

route costs are over-compensated, oscillations will occur and may not die down. 
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The mechanism is similar in the case where there are overlapping routes because 

the logit assignment model treats overlapping routes as independent routes. If 

two or more routes overlap on a link, then this link tends to be heavily loaded. 

Suppose this is the case at some stage, then the overlapping routes will be very 

expensive and a large part of the flows will be diverted to alternative routes at 

the next stage. It is clear that the existence of overlapping routes tends to make 

oscillations of flows more serious. It has long been known that the logit-based 

model may produce unreasonable flows on overlapping routes (Sheffi, 1985). One 

way to overcome the deficiency is to consider the dependence of link costs on link 

flows. This is just what the dynamic model accommodates. However, the 

dynamic process can approach the equilibrium only if the values of parameters 

are not too large. 

6.4. SUMMARY AND COMMENTS 

The dynamic logit-based trip assignment model has been investigated 

theoretically and numerically. The equilibrium in the model is found to be 

unique and is the same as the optimal solution of the Fisk's mathematical 

programming problem, which gives the logit-based SUE in a road network. Both 

the flow pattern given by Dial's model and Wardrop's user equilibrium are 

special cases of the equilibrium in the dynamic model. A sufficient condition for 

the equilibrium to be stable is established. If the values of parameters are small 

so that the flows and costs vary moderately, the dynamic process will converge to 

the equilibrium. If, however, the values of parameters are too large so that the 

flows and costs depend on each other too much, the flows may oscillate 

perpetually and never approach the equilibrium. Empirical studies are needed to 

determine, for a particular road network, the values of parameters in link 

performance functions and the route choice functions (logit model) so that one 

can know if the equilibrium will be stable. Empirical studies may also be used to 

validate the model to see if the model is realistic or not. 

The assignment model considered in this chapter has some advantages. It 

accounts for both variations in drivers' route choice behaviour and congestion 

effect. It has a unique equilibrium which is identical to the logit-based stochastic 

user equilibrium. Meanwhile, it is dynamic and so allows for stability analysis. 

It seems plausible to assume that drivers choose their routes, say, today based on 

the travel costs they experienced yesterday. Apparently, this may not be the 
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only adjustment mechanism of the flow pattern over time. Dynamic traffic 

assignment is still an active subject, particularly the type of dynamic 

considerations used here. The general problem of dynamics and stability of trip 

assignment is difficult. One reason is the lack of knowledge of how current route 

choices depend on past costs and how costs vary with flows, particularly when 

congestion effects are involved. The other reason is that even very simple 

relationships between network flows and costs may produce highly nonlinear 

dynamic models. 
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Table 6.1 Road network notation 

N 
L 
M 
p 

P TS 

set of nodes 
set of links 
set of origin and destination nodes; M ~ N 
set of all routes 
set of routes connecting origin r and destination s' pcp· r, s E M , TS - , 

t total flow from origin r to destination s; t = ( ... , (S, ... ) TS 

x~S flow on route i joining O-D pair (r,s) 
z 

x
TS 

vector of route flows on all routes joining O-D pair (r,s); 
x

TS = ( ... , x~s, ... ) 
z 

x 
TS 

C. 
z 

vector of route flows on all routes in the network; x = ( ... , XTS, ... ) 
cost on route i connecting O-D pair (r,s) 
flow on link l 

cost on link l 

link performance function for link l 

link-route indicator: 

{
Ii f Ii nk l is in route 

b
TS

. = 
l, z 0 otherwi se 

z between O-D pair (r,s) 

Table 6.2 The structure of network 1 

O-D pair Route number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

link chain 

1,3,6,8,10 
1,3,6,9 

1,3,7,10 
1,4,8,10 

1,4,9 
1,5,10 

2,6,8,10 
2,6,9 

2,7,10 
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Table 6.3 The link data of network 1 

link number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

link capacity 

6 
4 
4 
6 
1 
3 
4 
6 
4 
6 

Table 6.4 The structure of network 2 

Table 6.5 

O-D pair & flow Route number 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

The link data of network 2 

link number link capacity 

1 20 
2 30 
3 20 
4 20 
5 25 
6 40 
7 20 
8 40 
9 45 

10 40 
11 43 

link cost 

1 
5 
1 
3 
7 
1 
6 
3 
6 
3 

link chain 

1,6,8,10 
2,4,6,8,10 
2,5,9,10 
1,6,8,11 

2,4,6,8,11 
2,5,9,11 

3,4,6,8,10 
3,5,9,10 
7,9,10 

3,4,6,8,11 
3,5,9,11 
7,9,11 

link cost 

3 
1 
5 
1 
5 
2 
7 
1 
1 
1 
3 
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Table 6.6 Trip matrix for network 2 

destination 

1 2 

origin 

1 35 20 

2 15 30 

total ~.t .. 50 50 
Z ZJ 

~ .t .. 
J ZJ 

55 

45 

total 

~ .. t .. =100 
ZJ ZJ 
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Figure 6.1 Road network 1 (Potts and Oliver, 1972, page 72). 
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Figure 6.2 Attractor regimes in the parameter space for the assignment model 
for network L with the BPR link performance function. 
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Figure 6.3 Attractor regimes in the parameter space for the assignment model 
for network 1, with the exponential link performance function. 

Figure 6.4 Road network 2 (modified from Potts and Oliver, 1972: page 113). 
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Figure 6.5 Attr~ctor regimes ~n the parameter space for the assignment model 
for network 2, wIth the BPR lInk performance function. 
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Figure 6.6 Attractor regimes in the parameter space for the assignment model 
for network 2, with the exponential link performance function. 
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Figure 6.7 Attractor regimes in the a - 0 plane for the assignment model for 
network 1, with the exponential link performance function. 

2 

1.8 

1.6l 

1.4l 

I 
1.2r 

I 

CD 

'r 0.8 r 

I 
0.6 t-

0.4l 

0.2 

0 
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

a 

Figure 6.8 Attractor regimes in the a - 0 plane for t~e assignment model for 
network 2~ with the exponential link performance functIOn. 
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CHAPTER 7. CONCLUSIONS 

The aim of this thesis was to investigate the time variation of traffic 

characteristics, including the speeds of cars and the spacing between the cars on a 

road link, the flows on the routes or links in a road network, and the flows 

between O-D pairs in an O-D network. Traffic flows on road links and in road 

networks have been treated as dynamical systems modelled by differential or 

difference equations. In this final chapter, the dynamic behaviour found in the 

three traffic models is summarized; some limitations and possible extensions of 

the present research are discussed. 

7.1. TRAFFIC DYNAMICS REVEALED 

The dynamic behaviour of road traffic flows both at the link level and at the 

network level has been investigated based on the car-following model, the gravity 

model, and the logit-based trip assignment model. The behaviour of the three 

models is summarized in turn first. Some general conclusions and practical 

implications follow next. 

7.1.1. The car-following model 

The car-following model is a system of delay-differential equations describing a 

line of cars moving on a single lane of a road link. The model assumes that each 

driver responds to the variation in the motion of the car in front. The model was 

investigated under two assumptions about the motion of the first car. The first 

assumption is that the first car moves at a constant speed; the model is then 

autonomous. The second assumption is that the speed of the first car is a 

sinusoidal wave· the motion of the first car then serves as an input disturbance. , 
The car-following model is non-autonomous in this case. 

The stability of the linear car-following model was analysed theoretically: the 
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local stability of the equilibrium in the nonlinear autonomous model was 

investigated by linearization. The car-following model was integrated 

numerically for various values of parameters in an attempt to identify all possible 

types of dynamic behaviour in the nonlinear model. 

Typical behaviour in the autonomous model was found to be an equilibrium 

where the speed of each car is the same and is equal to the speed of the first car, 

and the distances between the cars are constant, not necessarily equal to each 

other. The equilibrium is stable if the sensitivity or the reaction time is small. 

As the sensitivity or the reaction time increases, the equilibrium becomes 

unstable and the speeds and spacings oscillate. When a forcing term is 

introduced, most steady-state solutions are periodic, though one of them seem to 

be quasi-periodic. When the sensitivity or reaction time is small, small 

disturbances in the first car are damped along the cars and stability over cars is 

assured. Otherwise, the disturbances are amplified and rear-end collisions may 

occur as a result. 

No evidence of chaos has been found in the car-following model, although other 

authors claimed to have found chaos solely by calculating a positive Liapunov 

exponent of a solution of the model (Disbro & Frame, 1990). Chaos should be 

indicated first of all by irregular motions on a chaotic attractor; Liapunov 

exponents can only show how fast neighbouring trajectories diverge exponentially 

and cannot be used to identify chaos on its own. Here, in the numerical analysis 

in Chapter 4, only equilibria and periodic solutions as attractors have been found 

in the autonomous system. Introducing a forcing term when the autonomous 

system has a periodic solution may complicate the behaviour. However, 

instability over cars occurs for values of parameters which may be smaller than 

that for the autonomous model to have periodic solutions. When instability over 

cars occurs, cars collide with each other and the system collapses. It is strongly 

believed, from the experience of the investigations in this thesis, that chaos is 

unlikely to occur in the car-following model. 

Unfortunately, it has not been possible to prove theoretically that there is 

definitely no chaos in the car-following model. Generally speaking, if chaos (or 

any other kind of behaviour) is a typical kind of behaviour in a model, then it can 

normally be found by numerical calculations. Otherwise, if chaos exists only for 

some particular values of parameters, then the chances for it to be identified 

numerically are very small. In addition, it is generally very difficult to prove 
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that a dynamic model does not have chaos. From the practical point of view, on 

the other hand, it is probably more important to know when the equilibrium is 

stable than to show that the model does not possess chaos; the latter is only of 

theoretical interest, especially when chaos is not a typical kind of behaviour in 

the model. 

7.1.2. The gravity model 

The gravity model is a system of difference equations (iterated maps) modelling 

the variations of the number of trips between each O-D pair at discrete time 

periods, given the number of trips from each origin and to each destination. The 

number of trips between each O-D pair at current time period is determined 

from the travel cost at the previous time period; the travel costs are assumed to 

increase with the number of trips. Thus there is an interaction between the costs 

and the flows. It is this interaction which dominates the long term distribution 

of trips in an O-D network. 

The existence, the uniqueness, and the stability of an equilibrium in the model 

were examined theoretically. Numerical iterations were made under various 

conditions to find other types of attractors. 

With the power or the exponential deterrence function, the distribution of O-D 

flows approaches a unique equilibrium if the interactions are mild, that is, if trip 

makers are not too sensitive to changes of travel costs or if the dependence of 

costs on the flows is not too strong. Otherwise, the equilibrium is unstable and 

the O-D flows oscillate. The unique equilibrium in the gravity model with the 

exponential deterrence function gives the stochastic user equilibrium in an O-D 

network. At the equilibrium, no trip maker can reduce his or her perceived 

travel cost by changing origins and/or destinations. 

When the combined deterrence function is used, changes of the values of a 

parameter can result in very complicated bifurcation sequences. Irregular 

behaviour is typical rather than exceptional. Period doubling bifurcations and 

chaos were found in the model. Sensitive dependence on initial conditions was 

measured by (positive) Liapunov exponents. In the chaotic regime, the final 

variations in three or four dimensional systems were found to settle duwn in the 

phase space to a region of dimension between 1 and 2, which is neither a one 
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dimensional line, nor a two dimensional surface. 

7.1.3. The logit-based trip assignment model 

The logit-based trip assignment model describes the adjustments of flow patterns 

through a road network at discrete times for a given O-D matrix. The current 

route flows are determined from the travel costs at the previous time period by 

the logit choice model; the costs depends on the flows though the link 

performance functions. Here again, there is an interplay between the flows and 

costs, like there is in the gravity model. This model was investigated in the same 

way as that used for the gravity model. 

There is a unique equilibrium in the assignment model. The equilibrium is 

identical to the stochastic user equilibrium. The equilibrium is stable when the 

inter-dependence between the costs and the flows is not too strong, indicated by 

smaller values of parameters. It becomes unstable and route flows oscillate as the 

values of parameters increase. 

The dominant forms of behaviour in this model are the stable equilibrium and 

oscillations. No evidence of more complicated behaviour or chaos has been found 

in the model. 

7.1.4. General conclusions 

In Chapter 1 and Chapter 3, we have seen that a very simple dynamic model 

such as the logistic equation can give rise to very rich dynamic behaviour. 

Equally, a very complicated model can exhibit rather simple behaviour such as a 

stable equilibrium. The complexity of the dynamic behaviour of a system is not 

necessarily proportional to that of the equation of the model. Here, the car­

following model and the logit trip assignment model are complicated, but they 

behave in a simple way. However, the dynamic gravity model does possess a 

variety of behaviour, from equilibrium to complicated bifurcations and chaos. 

Chaos is fascinating to analysts, but it is definitely undesirable in practice. 

Identifying chaos in a traffic model is essential in understanding and avoiding 

chaos in practice. 
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The values of parameters for different kind of dynamic behaviour in the three 

traffic models were given in relevant chapters. What behaviour the system would 

exhibit depends on ranges of values these parameters might take in practice. For 

each particular system, only when we know the actual values of parameters in 

practice, can we know the behaviour of the system through model analyses. 

There have been only a limited number of empirical studies of the car-following 

model (Chandler et al., 1958, Gazis et al., 1961). Although the authors concluded 

that a nonlinear car-following model is necessary to account for observed traffic 

flow behaviour (Gazis et al., 1961), no particular model was found to be better 

than all others. It appears that much more is known about the car-following 

model theoretically than practically. To test the car-following model, the 

histories of the speed and the position of each car need to be recorded, from 

which relative quantities can be obtained. This kind of data is difficult to collect 

in natural traffic flows. 

There has been virtually no empirical study of the dynamic gravity model. The 

values of parameters in the gravity model are normally different for different 

areas. Some typical values of parameters in the logit trip assignment models 

were tried and both stable equilibrium and oscillatory behaviour were found. 

Traffic data related to trip distribution models and trip assignment models is 

even more difficult to collect. This kind of data is normally obtained from an 

O-D survey which is a large scale traffic survey and involves asking each trip 

maker about their origins and destinations. Clearly, empirical investigations can 

be more complicated if dynamic considerations are involved. 

Both the gravity model with the exponential deterrence function and the trip 

assignment model considered here have the stochastic user equilibrium as a 

unique fixed point; this is an attractive property. Sufficient conditions for the 

equilibria to be stable were provided here. A condition that is both sufficient and 

necessary is desirable, but it has not been possible to derive such a condition. 

The difficulties for doing this were explained in the relevant chapters. In 

addition, the effects of the values of parameters on the stability of the 

equilibrium in the two models were examined by numerical analysis. 

Traffic systems are highly variable and irregular because human behaviour is 

involved. Therefore we may expect to see more chaos than steadiness in traffic 

models. However, it is important to remember that traffic models are not real 
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systems after all. They can only be approximate representations of the system. 

The variations of traffic flow can be considered to consist of two parts, 

deterministic variations of average values and random noise. The behaviour 

found in deterministic models should be considered to explain the variations of 

average values of the system, or the systematic variations of the system, rather 

than the random fluctuations. However, in a chaotic regime, it is almost 

impossible to distinguish deterministic chaos from random noise, as has been 

mentioned in Chapter 1. 

7.2. POSSIBLE EXTENSIONS OF THE RESEARCH 

The research in this thesis has been based on theoretical models of traffic flow, 

selected from the limited number of dynamic traffic models available. It has 

concentrated on model analysis rather than model development, calibration and 

validation; the latter three parts are in a much wider area of research. In this 

section, some possible extensions of the research in this thesis are discussed. The 

potential of dynamic study based on traffic data is also introduced. 

7.2.1. A better equilibrium in the car-following model 

We have seen that the equilibrium in the car-following model is not unique; there 

is a continuum of equilibria. In the car-following model, drivers respond only to 

the relative speed. Whenever the relative speed becomes zero, the relative 

spacing will remain constant. The spacing between different cars in the line at 

an equilibrium is generally different. What is more, these spacings may be very 

big or very small, which makes traffic either inefficient or dangerous. A further 

study could be to develop a model that gives an equilibrium where the speed of 

all cars are equal and the spacing between the cars are equal, too, at some 

desirable spacing. A favourable driving condition may be achieved when such a 

car-following model is used in computer-aided driving. 

One possible way to derive such a model is to introduce to the car-following 

model a second term of the form 

9 [x n-l ( t-r) - x n ( t-r) - d], n - 2, 3, ... , N, 
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where 9 is an appropriate function, x n ( t) is the position of nth car in the line 

at time t, d is the desired spacing, and r is the reaction time. Then a new 

car-following model can have the form 

x (t) = f [x 1 ( t-r) - x (t-r)] + 9 [x (t-r) - x (t-r) - d] 
n ~ n ~1 n ' 

n = 2, 3, ... , N. 

The first term is a function of relative speed. By choosing suitable forms of f 
and 9 a model may be constructed such that it has an equilibrium at which the 

relative speed is zero and spacing d. In fact, Chandler et al. (1958) considered 

the linear form of this model. However, the second term was found insignificant, 

using limited car-following data, and was therefore discarded. Further research is 

needed to find out whether any nonlinear form of the model would be more 

suitable. 

7.2.2. Combined trip distribution, assignment, and modal choice 

The gravity trip distribution model determines the O-D flows without specifying 

which route these flows will go through. In the trip assignment model, the route 

or link flows are determined for a given trip matrix, which in practice may well 

be variable. In transport studies, these two models are often used consecutively 

with the output of trip distribution being used as the input of trip assignment. 

Before trip assignment is performed the travel costs are unknown and have to be 

assumed. After the assignment is made the travel costs between O-D pairs are 

generally different from the ones assumed for trip distribution, since the costs 

depend on the flows. What is more, the travel cost between an O-D pair in the 

trip distribution model is rather a vague concept because it is not associated wi th 

any particular route. One way round all this is to combine the two processes into 

one model. The combination may be extended to include modal choice as well, so 

that the choice of routes, origins or destinations, and travel modes can be made 

simultaneously. There have been some studies in this direction (Evans, 1976, 

Florian & Nguyen, 1978, Erlander, 1990, Lam & Huang, 1992), although almost 

all of them are made in a static context. The kind of dynamic considerations 

used in this thesis may be used in the combined trip distribution, assignment, 

and modal choice. Traffic models in this context will be much more complicated 

since they involve two or three dimensions of choice. 
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7.2.3. Empirical dynamics in traffic data 

As an alternative to a theoretical model, a dynamical system may be described 

by observed data of one or more state variables of the system, normally in the 

form of a time series. A phase-space picture, or an attractor, may be 

reconstructed from a time series of one single variable of the system (Packard et 

al. 1980). Empirical chaos, or chaos in observed data, can be detected (if it 

exists) by calculating Liapunov exponents (Wolf et al., 1985, Eckmann et ai., 

1986, Conte & Dubois, 1988) and fractal dimensions (Grassberger & Procaccia, 

1983) from the reconstructed attractor. No existing study has been made on 

empirical chaos in traffic systems, but empirical chaos has been found in some 

other dynamical systems, such as in economic systems and in chemical reaction 

systems (Roux et al., 1983, Swinney, 1983, Frank & Stengos, 1988). 

However, to carry out this kind of investigation, the time series needs to be long, 

measured with adequate precision and with little random noise. A suitable time 

series for study might contain 40,000 points with a precision of four effective 

numbers. Such kind of data often has to be collected in carefully controlled 

experiments in order to reduce noise. The collection of traffic data is inevitably 

subject to disturbing factors such as traffic incidents, weather conditions, and so 

on. Some of the factors are not predictable and so cannot be controlled. 

Therefore, traffic data collected under natural conditions can contain very large 

stochastic components. Dynamic analysis based on this kind of data may be 

meaningless and even misleading. However, there is a potential area for 

obtaining this kind of data, namely, the car-following process. Car-following 

experiments may be made under controlled conditions. In fact, some early 

empirical studies of car-following mentioned in this thesis were made under 

controlled conditions (Chandler et al., 1958, Gazis et al., 1961). However, the 

data collected is far too short for investigating empirical dynamics in the car­

following process. With the development of car-following simulators it may be 

possible in the near future to obtain the data needed. It will then be possible to 

test for the presence of empirical chaos in the car-following process. 

As a side product of this thesis, programs for calculating Liapunov exponents and 

fractal dimensions from time series data have been developed based on the 

algorithms by Eckmann et al. (1986) and Grassberger & Procaccia (1983). The 
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programs have been used successfully by two undergraduate students (Peters~ 

1993, Unlu, 1995) in Middlesex University to analyze time series data of 

economic systems. See Appendix B for listings of the programs. 

7.3. A final comment 

To conclude, let us go back to the title of this thesis - The dynamic behaviour 

of road traffic flow: stability of chaos? Traffic is often chaotic in the ordinary 

sense. Whether or not it is chaotic in terms of nonlinear dynamics may be a 

different matter altogether. Stability and equilibrium are desirable; instability 

and chaos in any way are to be avoided. In order to achieve the desired traffic 

state, we need first of all to understand and to predict traffic behaviour. 

In this thesis, the dynamic behaviour of traffic flows on a road link, in a road 

network, and in an O-D network of an area has been identified for various 

conditions. A future step could be to modify the performance of traffic systems 

by better dynamic modelling, based on sound empirical analysis, and probably 

complemented by optimum control methodology. With these perfected models, 

we may then be able to monitor and control real traffic systems so that they 

operate in the desired state. 
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APPENDIX A. THE ALGORITHM FOR 
INTEGRATING THE CAR-FOLLOWING EQUATIONS 

In this appendix, the algorithm used for integrating the car-following equations in 

Chapter four is described. The car-following model is a set of delay-differential 

equations. The fourth order Runge-Kutta method for solving ordinary 

differential equations is modified so as to deal with delay-differential equations. 

The modification used here is the same to Farmer's (Farmer, 1982), but the 

algorithm is adapted so as to integrate the system of car-following equations. 

The Runge-Kutta method is described first and then modifications to it follow. 

Consider an initial value problem of a system of two ordinary differential 

equations 

X= P (t,X, y), 

y= Q (t,X, y), 

X(to) Xo' 
Y( to) - yo· 

In numerical integrations the time t is normally discretized as 

t( i+ 1 ) = t( i) + h, i = 0, 1, . . . , 

where h is the step length. The solution at time t( i+ 1) by Runge-Kutta 

algorithm is (Conte and Boor, 1980) 

where 

X( i+1) 

Y( i+1) 

X(i)+~(k1 +2k2 +2k3 +k4), 

Y( i) + ~ (11 + 212 + 213 + 14), 

,j - 0 1 ... 
~ - " , 

k = h P[ t( i), X( i), Y( i)], 
1 

1 = h Q[ t( i), X( i), Y( i)], 
1 
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k2 = h P[ t( i) + h/2, X( i) + k1/2, Y( i) + ll/2], 

l2 = h Q[ t( i) + h/2, X( i) + k1/2, Y( i) + ll/2], 

k3 = h P[ t( i) + h/2, X( i) + k2/2, Y( i) + l2/2], 

l3 = h Q[ t( i) + h/2, X( i) + k2/2, Y( i) + l2/2], 

k 4 = h P[ t( i) + h, X( i) + k3' Y( i) + l3], 

l4 = h Q[ t( i) + h, X( i) + k3' Y( i) + l3]' 

The standard Runge-Kutta method for integrating ordinary differential equations 

can be extended to integrate delay-differential equations. We will illustrate the 

extension by an example first. Suppose the delay-differential equation to be 

integrated is 

Z H( t, Z, Z( t-r)) , 
where 

Z = (Zl' Z2' ... , ZM)T, 

Z(t-r) = (Zl(t-r), Z2(t-r), ... , ZJ.t-r))T, 

and the superscripts "T" denote transpose. In this kind of differential equation 

the evolution is determined by the function Z on the time interval [t, t-r]. 

This function can be approximated by T points taken at intervals h = r/(T-I). 

Thus, Z( t) and Z( t-r) can be expressed as Z( i) and Z(i- T) respectively 

when discretized in the Runge-Kutta formulae, as follows 

(A.I) 

n = 1,2, 000, M, i = 0 1 000 " , 
where 

k1 (i) = h H [t( i), Z( i) , Z( i-T)], 
n n 

k2(i) = h H [t(i) + h/2, Z(i) + k1(i)/2, Z(i-T) + k1
(i-T)/2]' 

n n 

k3(i) = h H [t(i) + h/2, Z(i) + k2(i)/2, Z(i-T) + k2(i-T)/2]' 
n n 

k 4 (i) = h H [t( i) + h, Z( i) + k\ i) , Z( i-T) + k3 
( i-T) ] . 

n n 

Here, the superscripts are notations and do not stand for powers. This notation 

will be used in all Runge-Kutta formulae throughout this appendix. The vectors 

in the above formulae are 
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Z(i) = (Zl(i), Z2(i), ... , ZJi))T, 

Z(z"-T) = (ZlU-T), Z2(i-T), ... , ZJi-T))T, 

~ (i) = ( k{ ( i), k~ ( i), "., k~ ( i) ) T , 

~ ( i-T) ( ki' ( i-T), k~ (i-T), ... , k~ (i-T) ) T , 

for ) = I, 2, 3, 4, and i = 0, 1, .... 

To simplify the expression of the formulae for kJ (i)'s, let 
n 

Zl (i) == Z (i), 
n n 

Z2( i) == Z (i) + kl( i)/2, 
n n n 

z! (i) == Z n (i) + k~ ( i) /2, 

z4(i) == Z (i) + k3(i), 
n n n 

t1 (i) == t( i), 

t
2

( i) == t( i) + h/2, 

t3( i) == t( i) + h/2, 

t4 (i) = t( i) + h. 

Then the formulae for kJ(i)'s in (A.l) become 
n 

k~ (i) = h H n [ t!( i), ZJ'( i), ZJ'(z"- T) ], ( A. 2 ) 

) = 2, 3, 4, n = 1, 2, ... , M, and i = 0, 1, .... 

The initial conditions are given by specifying Z(i) and kl(i) for i = -T, -T+l, 

... , 0, and ) = 1, 2, 3, 4. Given an initial condition, the integration can be 

proceeded as follows. For each i, calculate kJ (i) for n = 1, 2, ... , M, and 
n 

) = 1, 2, 3, 4, from which Z( i+ 1) can be obtained. Repeat the process until 

the desired integration time is reached. 

In the standard Runge-Kutta method for integrating ordinary differential 

equations, only the solution at the ith step is needed for calculating the solution 

at the (i+ 1 )th step. In the case of delay-differential equations, however, the 
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the values of ZJ( 1) £ . 1 2 3 4 d £ I . or J= , , , ,an or = 2, i-I, i-2, ... , i-T have to 

be saved for further calculations, which works out an array of the size lUx Tx-±. 

Now consider the car-following model (4.2) in Chapter 4 

V 2 ( t) = xl ( t) - (J 2 ( t) v 2 ( t -7 ) , 

vn(t) = (3n_l(t) vn_1(t-T) - (3n_l(t) Vn_1(t-T) , n = 3,4, ... , N, 

if (t) = v (t), n = 2, 3, ..., N, 
n n 

where 

a (x1(t) - v2(t) v (t))m (In(t) = _____________________ n __ ___ 
(y n ( t-7 ) + b) l 

n = 2, 3, ... , N. 

The car-following model is a set of recursive equations; each equation contains 

only the variables of two adjacent cars. Therefore, there will be lots of 

unnecessary repeating calculations if the modified Runge-Kutta formulae (A.I) 

and (A.2) are applied directly to integrate the model. This can be avoided by the 

following changes. 

Let 

u (t) = x (t), 
n n 

n = 1, 2, ... , N. 

Then 

and so 

u = x (t) - v (t) - . . . - v ( t) , n = 3, 4, ... , N. 
n-l 1 2 n-l 

The car-following model can now be written as 

v (t) = X 1 ( t) - x (t), n = 2, 3, ... , N, n n- n 
if (t) = v (t), n = 2, 3, ... , N. 

n n 

where 
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n = 2, 3, ... , N. 

Here, we have used f to denote the acceleration of car n 
n 

a( u 1 ( t) - v (t)) m 

f (u l(t), v (t), v (t-'T) , y (t-'T)) = n- n I V (t-'T) 
n n- n n n (y (t-T) + b) n 

n 

(A.3) 

When the formulae (A.I) and (A.2) are applied to the above equations, we obtain 

v (i+l)=v (i) +-61 (kl(i) +2k2(i) +2k3 (i) +k4(i)), 
n n n n n n 

y (i+1) = y (i) + -61 (Zl(i) + 2Z2(i) + 2Z 3(i) + Z4(i)), 
n n n n n n 

n = 2, 3, ... , N, and i = 0, 1, 

where 

kj(i)=h(x j l(i)-xj(i)) j=1,2,3,4, 
n n- n 

Zj(i)=hvj(i) j=1,2,3,4. 
n n 

By (A.3), we have 

xl(i) = / (u 1 l(i), v (i), v (i-T), Yn(i-T)), 
n n n- n n 

x2 (i) =/ (u2 (i), v (i)+kl(i)j2, v (i-T)+kl(i-T)j2, 
n n n-l n n n n 

y (i-T)+Zl(i-T)j2), 
n n 

x3 (i) = / (u 3 (i), v (i)+k2(i)j2, v (i-T)+k2(i-T)j2, 
n n n-l n n n n 

y (i-T)+Z2(i-T)j2), 
n n 

x4(i) =1 (u4 (i), v (i)+k3(i), v (i-T)+k!(i-T), 
n n n-l n n n 

y (i-T) + Z3 ( i-T) ) , 
n n 

or simply, 

where 
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vl(i) = V (i), 
n n 

v~(i) = vn(i)+k~(i)/2, 

v!(i) = vn(i)+k~(i)/2, 

v!(i) = vn(i)+k!(i), 

yl(i) = y (i), 
n n 

y2 ( i) = y (i) + Zl ( i) /2, n n n 

y3(i) = Y (i)+Z2(i)/2, n n n 

y4(i) = Y (i)+Z3(i). n n n 

Defined by the motion of the first car we have 

and 

x~(i) = xl (t(i)), 

x~(i) = x~(i) = x
l
(t(i)+h/2), 

x~(i) = Xl (t(i)+h), 

u~(i) = xl (t(i)), 

u~(i) = u~(i) = Xl (t(i)+h/2), 

u~ ( i) = Xl ( t ( i) +h), 

for i=l, 2, 

The initial functions are given by specifying v (i), kJ (i), y (i), and ZJ (i) for n n n n 
n = 1,2, 000, N, j = 1,2,3,4, and i = -T, -T+1, 0 • 0, O. 

In this algorithm, xJ (i) and uJ (i) are calculated and stored explicitly so that 
n n 

they can be saved for calculating kJ l(i) and so v l(i+1) to avoid repetitive n+ n+ 
calculations. In this way, computer time can be reduced. 
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APPENDIX B. LISTINGS OF SOURCE PROGRAMS 

The programs used in this thesis are all written in FORTRAN. Six major 

programs are listed in this appendix. They are: 

(1) program CARFL, which integrates the car-following equations; 

(2) program UNCLE, which calculates Liapunov exponents of an attractor of 

the unconstrained or singly constrained gravity model; 

(3) program DBCLE, which calculates Liapunov exponents of an attractor of 

the doubly constrained gravity model; 

(4) program CORDIM, which calculates the correlation function of an 

attractor; 

(5) program TSLE, which calculates Liapunov exponents from time series 

data of a single variable of a dynamical system; 

(6) program TSDIM, which calculates the correlation function of an attractor 

reconstructed from time series data of a single variable of a dynamical 

system. 

The algorithm, the input and the output data used in each program are 

introduced in that program. The method for calculating Liapunov exponents of 

an attractor of unconstrained or singly constrained gravity model is significantly 

different from that for the doubly constrained gravity model, as we have seen in 

Chapter 5. Therefore, the programs are coded separately. Programs CORDIM 

and TSDIM produces the logarithms of both the distances and the values of 

correlation functions. These are ready to be used to obtain correlation dimension 

of an attractor by, for example, MAT LAB (The MathWorks Inc, 1993). The 

method for doing this has been described in section 5.5.1. 

It has been mentioned in Chapter 7 that a dynamical system may be described by 

observed data, normally in the form of time series, of the system. Liapunov 

exponents and correlation dimension can be calculated from time series data of 

one single variable of the system (Packard et al. 1980, Grassberger and Procaccia, 

1983, Wolf et al., 1985, Eckmann et al., 1986, and Conte and Dubois, 1988) to 
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detect possible empirical chaos. Programs TSLE and TSDIM calculate Liapunov 

exponents and correlation function, respectively, of an attractor of such 

dynamical systems. The algorithm used in TSLE is due to Eckmann et al. (1986) 

and the algorithm used in TSDIM due to Grassberger and Procaccia (1983). 

The programs CARFL, UNCLE, DBCLE, and CORDIM have been tested and 

used in the relevant chapters in this thesis. The programs TSLE and TSDIM 

were tested by using the time series data of one single variable of the Henon map 

mentioned in the thesis. Liapunov exponents and correlation dimension of a 

chaotic attractor in the map were calculated by programs TSLE and TSDIM 

respectively. The results were compared with the known values in the literature 

(Conte and Dubois, 1988, and Grassberger and Procaccia, 1983) and good 

agreements were found. These two programs have been used successfully by two 

undergraduate students (Peters, 1993, Unlu, 1995) in Middlesex University to 

analyze time series data of economic systems. 
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B.l. THE PROGRAM CARFL 

PROGRAM CARFL 
C 
C This program integrates the delay-differential equation of the 
C car-following model by modified fourth order Runge-Kutta 
C algorithm. The algorithm is described in Appendix A. 
C 
C The input data: 
C KV number of cars considered; 
C REACT reaction time; 
C SENS coefficient of proportionality; 
C M parameter in the car-following equation; 
C L parameter in the car-following equation; 
C YO minimum headway; 
C A amplitude of the forcing term; 
C B average speed of the first car; 
C C frequency of the forcing term; 
C XO(I) initial value of relative spacing of car 1+1 to car I; 
C VO(I) initial value of relative speed of car 1+1 to car I. 
C The input data is in the data file CARFL1.DAT. 
C 
C The output data: 
C YL(I) = relative spacing of car 1+1 to car I; 
C VL(I) = relative speed of car 1+1 to car I. 
C There are two output data files: 
C CARFL2.DAT contains the transient solutions; 
C CARFL3.DAT contains the steady state solutions. 
C 

PARAMETER (NCAR=10,NPT=2000) 
DOUBLE PRECISION V(NCAR,NPT) ,Y(NCAR,NPT), 

1 YL(NCAR) ,YN(NCAR) ,VL(NCAR) ,VN(NCAR) ,ALE(4) ,VLE(4), 
2 ALl (NCAR, NPT) ,AL2(NCAR,NPT) ,AL3(NCAR,NPT) 

REAL M,L,XO(NCAR) ,VO(NCAR) ,H,TL, 
1 VIN1,VIN2,TIME,REACT,SENS,YO,A,B,C 

INTEGER KV,MT,ITW,BWT,NT 
OPEN(UNIT=11,FILE='CARFL1.DAT' , STATUS = 'OLD' , 

1 FORM='FORMATTED' ,ACCESS='SEQUENTIAL') 
OPEN(UNIT=12,FILE='CARFL2.DAT' , STATUS = , UNKNOWN' , 

1 FORM='FORMATTED' ,ACCESS='SEQUENTIAL') 
OPEN(UNIT=13,FILE='CARFL3.DAT' , STATUS = 'UNKNOWN' , 

1 FORM='FORMATTED' ,ACCESS='SEQUENTIAL') 
READ(ll,*)KV,H,REACT,MT,TIME,ITW,BWT, 

1 YO,A,B,C,M,L,SENS,VIN1,VIN2 
READ{11,*) (XO(I) ,I=1,KV-1), (VO(I) ,I=1,KV-1) 

C 
C Initialize 
C 

DO 30 K=1,KV-1 
TIN=O 
DO 20 I=l,MT 

V(K,I)=FINV(VO(K) ,TIN,VIN1,VIN2) 
AL1(K,I)=FINV(VO(K) ,TIN+H/2,VIN1,VIN2) 
AL2(K,I)=AL1(K,I) 
AL3(K,I)=FINV(VO(K) ,TIN+H,VIN1,VIN2) 
Y(K,I)=FINY(VO(K) ,XO(K) ,TIN,VIN1,VIN2) 
TIN=TIN+H 

20 CONTINUE 
VL(K)=FINV(VO(K) ,MT*H,VIN1,VIN2) 
YL(K) =FINY(VO (K) ,XO(K) ,MT*H,VIN1,VIN2) 
YN(K)=O.O 
VN(K)=O.O 

30 CONTINUE 
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C 

TL=O 
NT=TIME/REACT 

C Start integrating 
C 

DO 200 I=l,NT 
DO 100 J=l,MT 

C Calculate the speed and the acceleration of the first car 
CALL LEAD(TL,A,B,C,ALE(l) ,VLE(l)) 
CALL LEAD(TL+H/2,A,B,C,ALE(2) ,VLE(2)) 
ALE(3)=ALE(2) 
VLE(3)=VLE(2) 
CALL LEAD(TL+H,A,B,C,ALE(4) ,VLE(4)) 

C Calculate the relative speed and spacing among following cars 
DO 50 K=l,KV-1 

CALL AKTY(TL,H,V(K,J) ,VL(K) ,Y(K,J) ,YL(K) ,AL1(K,J), 
1 AL2(K,J) ,AL3(K,J) ,VN(K) ,YN(K) ,ALE,VLE,YO,M,L,SENS) 

V (K, J) =VL (K) 
VL (K) =VN (K) 
Y(K,J)=YL(K) 
YL ( K) = YN ( K) 

50 CONTINUE 
TL=TL+H 

C Print the current solution 
JJ=((I-1)*MT+J)/ITW 
RJ=FLOAT((I-1)*MT+J)/FLOAT(ITW) 
IF(JJ.LT.RJ) GOTO 100 
IF(TL.LT.BWT) THEN 

WRITE(12,' (lX,7F10.4) ') TL, (YL(II) ,II=l,KV-1), 
1 (VL(II) ,II=l,KV-1) 

WR I TE (* , , (lX, 7 FlO. 4) ') TL, (YL ( I I) , I I = 1 , KV - 1) , 
1 (VL(II) ,II=l,KV-1) 

ELSE 
WR I TE ( 13, , OX, 7 FlO . 4) ') TL, (YL ( I I) , I I = 1, KV - 1) , 

1 (VL ( I I) , I I = 1, KV - 1 ) 
WRITE(*,' (lX,7F10.4)') TL, (YL(II) ,II=l,KV-1), 

1 (VL(II) ,II=l,KV-1) 
ENDIF 

100 CONTINUE 
200 CONTINUE 

STOP 
END 

SUBROUTINE AKTY(T,H,VJ,VL,YJ,YL,AL1,AL2,AL3,VN,YN, 
1 ALE,VLE,YO,M,L,SENS) 

C 
C This subroutine integrates the car-following equation 
C for one step by modified fourth order Runge-Kutta formula. 
C 

REAL T,H,M,L,YO,SENS 
DOUBLE PRECISION VJ,VL,VN,YJ,YL,YN,DY,DV, 

1 ALE(4) ,VLE(4) ,RA(4) ,RV(4) ,AL1,AL2,AL3, 
1 AK1, AK2 , AK3 

RV(l)=VL 
RA(l)=CFE(ALE(l) ,VLE(l) ,RV(l) ,VJ,YJ,YO,M,L,SENS) 
AK1=H*RA(1) 
RV(2)=VL+AK1/2 
RA(2)=CFE(ALE(2) ,VLE(2) ,RV(2) ,AL1,YJ+H*VJ/2,YO,M,L,SENS) 
AK2=H*RA(2) 
RV(3)=VL+AK2/2 
RA(3)=CFE(ALE(3) ,VLE(3) ,RV(3) ,AL2,YJ+H*AL1/2,YO,M,L,SENS) 
AK3=H*RA(3) 
RV(4)=VL+AK3 
RA(4)=CFE(ALE(4) ,VLE(4) ,RV(4) ,AL3,YJ+H*AL2,YO,M,L,SENS) 
AK4=H*RA(4) 
DV=(AK1+2*AK2+2*AK3+AK4)/6 
VN=VL+DV 
DY=H*VL+H*(AK1+AK2+AK3)/6 
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C 

YN=YL+DY 
DO 1000 LL=1,4 

ALE(LL)=ALE(LL) -RA(LL) 
VLE(LL)=VLE(LL) -RV(LL) 

1000 CONTINUE 
AL1=RV (2) 
AL2=RV (3) 
AL3=RV(4) 
RETURN 
END 

DOUBLE PRECISION FUNCTION CFE(ALC,VLC,VL,VJ,YJ,YO,M,L,SENS) 

C Calculate the value of the function defined by the 
C car-following equation. 
C 

REAL M,L,YO,SENS 
DOUBLE PRECISION VL,VJ,YL,ALC,VLC 
X1=VLC-VL 

C Check the negativity of the speed 
IF(X1.LT.0.0) THEN 

PRINT*, 'X1=VLC-VL' ,X1,VLC,VL 
STOP 

ENDIF 
C Check the boundness of the spacing 

IF(X1.GT.200.0) THEN 
PRINT*, 'X1=VLC-VL' ,X1,VLC,VL 
STOP 

ENDIF 
X2=YJ+YO 

C Check the negativity of the spacing 
IF(X2.LT.0.0) THEN 

PRINT*, 'X2=YJ+YO' ,X2,YJ,YO 
STOP 

ENDIF 
C Evaluate the function 

C 

X1=X1**M 
X2=X2**L 
CFE=ALC-SENS*X1*VJ/X2 
RETURN 
END 

SUBROUTINE LEAD(T,A,B,C,ALC,VLC) 

C Calculate the acceleration and the speed of the first car 
C 

C 

DOUBLE PRECISION ALC,VLC 
REAL T,A,B,C 
ALC=A*SIN(C*T) 
VLC=-A/C*COS(C*T)+B 
RETURN 
END 

REAL FUNCTION FINV(VO,T,A,C) 

C Evaluate the initial function of relative speed 
C 

C 

REAL VO,T,A,C 
FINV=VO+A*SIN(C*T) 
RETURN 
END 

REAL FUNCTION FINY(VO,XO,T,A,C) 

C Evaluate the initial function of relative spacing 
C 

REAL VO,XO,T,A,C 
FINY=XO+VO*T+(A/C)*(l-COS(C*T)) 
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RETURN 
END 
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B.2. THE PROGRAM UNCLE 

PROGRAM UNCLE 
C 
C This program calculates Liapunov exponents for the 
C attractor of the unconstrained or singly 
C constrained gravity model by the algorithm by 
C Eckmann and Ruelle (1985). 
C The algorithm is described in section 5.4. 
C The program uses NAG routines (NAG Ltd, 1987): 
C F01CKF, F01QCF, and F01QEF. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

The input data: 
NIJ number of O-D pair; 
ZO(I) relative capacity of O-D pair I; 
CO(I) uncongested travel cost of O-D pair I; 
XO (I) initial number of trips of O-D pair I; 
ALPHA parameter in the model; 
BETA parameter in the model; 
GAMA parameter in the model; 
RN parameter in the model. 
Different values of the above parameters may be tried. 

The output data: 
X(I) = solution or the number trips of O-D pair I; 
RLE(I)= the Ith Liapunov exponent, which is contained 

in the data file UNCLE1.DAT. 

PARAMETER (LDIM=3,NIJ=4) 
INTEGER IFAIL 
DOUBLE PRECISION CO(NIJ) ,ZO(NIJ) ,ALPHA,GAMA,RN,BETA, 

1 BETA1(5) ,RN1(5) ,FC,CY,C(NIJ) ,F(NIJ) ,FPRIME(NIJ) ,RK 
DOUBLE PRECISION XO(NIJ) ,X(NIJ) ,XL(NIJ) ,T(LDIM,LDIM), 

1 Q(LDIM,LDIM) ,R(LDIM,LDIM) ,CUMR(LDIM) ,RLE(LDIM), 
2 WORK (LDIM) ,Z(LDIM) ,ZETA(LDIM) 

OPEN(1,FILE='UNCLE1.DAT' , STATUS = 'UNKNOWN' ,FORM='FORMATTED') 

C Input data 
C 

C 

DATA ALPHA,GAMA/1.0, 1.0/ 
DATA (BETA1(I) ,1=1,1)/2.5/ 
DATA (RN1(I) ,1=1,1)/7.0/ 
DATA (ZO(I) ,1=1,4)/ 

1 0.17, 0.15, 0.25, 0.23/ 
DATA (CO(I) ,1=1,4)/ 

1 1.40, 1.20, 1.80, 1.60/ 
DATA (XO(I) ,1=1,4)/ 

1 0.25, 0.25, 0.25, 0.25/ 

C Iteration with different values of parameters 
C 

C 

DO 9500 1111=1,1 
RN=RN1 (1111) 
DO 9500 JJJJ=1,20 
BETA=BETA1(1)+(JJJJ-1)*0.05 

C Initialize 
C 

DO 100 I=l,NIJ 
X (I) =XO (1) 

100 CONTINUE 
DO 80 I=l,LDIM 

DO 50 J=l,LDIM 
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50 

80 

C 
C Begin 
C 

C 
C Find 
C 

200 

500 

700 
C 

Q(I,J)=O.O 
CONTINUE 
CUMR (I ) = 0 . 0 
Q(I,I)=l.O 

CONTINUE 
ITER=lOOOO 
10=5000 
KB=O 

the iteration with time 

DO 9000 III=l,ITER 

current number of trips 

DO 200 I=l,NIJ 
XL (I) =X (I) 

CONTINUE 
RK=O.O 
DO 500 I=l,NIJ 

C(I)=CO(I)*(l+ALPHA*(XL(I)/ZO(I))**GAMA) 
F(I)=C(I)**RN*EXP(-BETA*C(I)) 
RK=RK+F (I) 

CONTINUE 
RK=l/RK 
DO 700 I=l,NIJ 

X ( I) =RK* F (I) 
CONTINUE 

C Check if transient stage has passed 
C 

IF(III.LT.KB) GOTO 7500 
C 
C Find derivatives 
C 

2400 
C 

1 

DO 2400 I=l,NIJ 
FC=RN*C(I)**(RN-l)*EXP(-BETA*C(I))­

BETA*C(I)**RN*EXP(-BETA*C(I)) 
CY=CO(I)*ALPHA*GAMA*(XL(I)/ZO(I))**(GAMA-l)/ZO(I) 
FPRIME(I)=FC*CY 

CONTINUE 

C Calculate the Jacobian matrix T 
C 

2500 
C 

1 

DO 2500 I=l,NIJ-l 
DO 2500 J=l,NIJ-l 

IF(I.EQ.J) THEN 
T(I,J)=RK*(FPRIME(I)-RK*F(I)*(FPRIME(I)­
FPRIME (NIJ) ) ) 

ELSE 
T(I,J)=-RK*RK*F(I)*(FPRIME(J)-FPRIME(NIJ)) 

ENDIF 
CONTINUE 

C Multiply matrix T by the previous orthogonal matrix Q 
C 

IFAIL=O 
CALL F01CKF(R,T,Q,LDIM,LDIM,LDIM,Z,LDIM,l,IFAIL) 

C 
C Do QR factorization of matrix T'= T*Q 
C 

C 

CALL F01QCF(LDIM,LDIM,R,LDIM,ZETA,IFAIL) 
DO 6300 I=l,LDIM 
DO 6300 J=l,LDIM 

Q (I, J) =R (I, J) 
6300 CONTINUE 

CALL F01QEF('S' ,LDIM,LDIM,LDIM,Q,LDIM,ZETA,WORK,IFAILl 
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C Calculate Liapunov Exponents and print out 
C 

DO 7000 I=l,LDIM 
CUMR(I)=CUMR(I)+DLOG(ABS(R(I,I))) 

7000 CONTINUE 
7500 IF(MOD(III,IO) .NE.O) GOTO 9000 

IF(III.LT.KB) GOTO 9000 
DO 8000 I=l,LDIM 

RLE(I)=CUMR(I)/III 
8000 CONTINUE 
9000 CONTINUE 

WRITE(*,' (lX,8F9.5) ') BETA, (X(I) ,I=l,NIJ), (RLE(I) ,I=l,LDIM) 
WRITE(l,' (lX,8F9.5) ') BETA, (X(I) ,I=l,NIJ), (RLE(I) ,I=l,LDIM) 

9500 CONTINUE 
STOP 
END 
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B.3. THE PROGRAM nBCLE 

PROGRAM DBCLE 
C 
C This program calculates Liapunov exponents for the 
C attractor of the doubly constrained gravity model 
C by the algorithm by Eckmann and Ruelle (1985). 
C The algorithm is described in section 5.4. 
C The program uses NAG routines (NAG Ltd, 1987): 
C FOICKF, F01QCF, F01QEF, and F04ATF. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

The input data: 
NI 
NJ 

number of origin; 
number of destination; 

Z (I) 
CO (I) 
O(I) 

relative capacity of O-D pair I; 
uncongested travel cost of O-D pair I; 
total number of trips from origin I; 
total number of trips to destination J; 
initial number of trips of O-D pair I; 
parameter in the model; 

D (J) 
XO(I) 
ALPHA 
BETA 
GAMA 
RN 

parameter in the model; 
parameter in the model; 
parameter in the model. 

The output data: 
X(I) = solution or the number trips of O-D pair I; 
RLE(I)= the Ith Liapunov exponent, which is contained 

in the data file DBCLEl.DAT. 

PARAMETER (NN=30,NZ=5,LDIM=4) 
DOUBLE PRECISION CO (NN) ,Z(NN) ,XO(NN) ,OI(NZ) ,DJ(NZ), 

1 XL (NN) ,X(NN) ,C(NN) ,F(NN), 
2 ALPHAl(10) ,GAMAl(10) ,BETAl(10) ,RNl(10), 
3 ALPHA,GAMA,RN,BETA,ERROR,AI(NZ) ,BJ(NZ), 
4 FC,CX, FPRIME (NN) ,T(LDIM,LDIM) ,Q(LDIM,LDIM), 
5 R(LDIM,LDIM) , CUMR(LDIM) ,RLE(LDIM), 
6 WORK (LDIM) ,ZWK(LDIM) ,ZETA(LDIM) 

INTEGER NI,NJ,NIJ,ITER,KB,IFAIL 
OPEN(l,FILE='DBCLEl.DAT' , STATUS = 'UNKNOWN' ,FORM='FORMATTED') 

C Input data 

C 

1 
2 
3 

1 
2 
3 

DATA ERROR/0.00005/ 
DATA NI,NJ,NIJ/3,3,9/ 
DATA (ALPHAI (I) ,1=1(1) /l. 5/, (GAMAI (I) ,1=1(1) /l. 5/ 
DATA (BETAl(I) ,I=l,I)/l.25/, (RNl(I) ,1=1(1)/4.50/ 
DATA (Z(I) ,1=1(9)/ 

0.10,0.11,0.07, 
0.09,0.09,0.11, 

DATA 

DATA 

0.10,0.09,0.07/ 
(CO (1),1=1,9) / 

1. ,1. ,1.5, 
1.2,1.4,1.8, 
l.5,O.9,O.5/ 

(XO (1),1=1,9) / 
1 0.050, 0.050, 0.200, 
2 0.100, 0.150, 0.050, 
3 0.200, 0.150, 0.050/ 

DATA (01(1) ,1=1(3)/0.35,0.35,0.3/ 
DATA (DJ(J) ,J=l(4)/0.3,O.3,O.4,l.0/ 
N1J=NI*NJ 
1TER=5000 
KB=O 
10=10 
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C Iteration with different values of parameters 
C 

1 

20 

C 

DO 9000 LLLL=l,l 
ALPHA=ALPHA1 (LLLL) 
DO 9000 MMMM=l,l 
GAMA=GAMA1 (MMMM) 
DO 9000 1111=1,1 
RN=RN1 (IIII) 
DO 9000 JJJJ=l,l 

BETA=BETA1(JJJJ) 
WRITE(*,' (lX,18Halpha,gama,rn,beta,4F10.4) ') 
alpha,gama,rn,beta 
DO 20 I=l,NIJ 

X (I) =XO (I) 
CONTINUE 
WRITE(*,' (lX,9HInitially,9F7.3) ') (X(I) ,I=l,NIJ) 

C Initialize 
C 

50 

80 
C 

DO 80 I=l,LDIM 
DO 50 J=l,LDIM 

Q(I,J)=O.O 
CONTINUE 
CUMR (I) =0.0 
Q(I,I)=1.0 

CONTINUE 

C Begin the iteration with time 
C 

DO 5000 KK=l,ITER 
C 
C Find the current cost, the value of deterrence function, 
C and the derivatives of the deterrence function with 
C respect of number of trips 
C 

1 

500 

DO 500 I=l,NIJ 
XL (I) =X (I) 
C(I)=CO(I)*(l+ALPHA*(XL(I)/Z(I))**GAMA) 
F(I)=C(I)**RN*EXP(-BETA*C(I)) 
FC=RN*C(I)**(RN-1)*EXP(-BETA*C(I))­
BETA*C(I)**RN*EXP(-BETA*C(I)) 
IF(GAMA-1.LT.0.000001) THEN 

CX=CO(I)*ALPHA*(XL(I)/Z(I))/Z(I) 
ELSE 

CX=CO(I)*ALPHA*GAMA*(XL(I)/Z(I))**(GAMA-1)/Z(I) 
ENDIF 
FPRIME (I) =FC*CX 
X(I)=F(I) 

CONTINUE 
C Find current number of trips 

CALL DISTR(X,OI,DJ,NI,NJ,ERROR,AI,BJ) 
C Check if transient stage has passed 

IF(KK.LT.KB) GOTO 5000 
C Calculate the Jacobian matrix T 

CALL JACOBN(NI,NJ,OI,DJ,AI,BJ,F,FPRIME,T) 
C Multiply matrix T by the previous orthogonal matrix Q 

IFAIL=O 
CALL F01CKF(R,T,Q,LDIM,LDIM,LDIM,ZWK,LDIM,l,IFAIL) 

C Do QR factorization of matrix T*Q 
CALL F01QCF(LDIM,LDIM,R,LDIM,ZETA,IFAIL) 

6300 

C 

DO 6300 I=l,LDIM 
DO 6300 J=l,LDIM 

Q (I, J) =R (I, J) 
CONTINUE 
CALL F01QEF('S' ,LDIM,LDIM,LDIM,Q,LDIM,ZETA,WORK,IFAIL) 

C Calculate Liapunov Exponents and print out 
C 
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DO 7000 I=l,LDIM 
CUMR(I)=CUMR(I)+DLOG(ABS(R(I,I))) 

7000 CONTINUE 

C 

IF(MOD(KK,IO) .NE.O) GO TO 5000 
DO 8000 I=l,LDIM 

RLE(I)=CUMR(I)/KK 
8000 CONTINUE 

WR I TE ( * , , (lX, IS , 4 F 18 . 4) ') KK, (X ( I) , 1=1 , 4 ) 
WRITE(*,' (lX,I8,4F12.6) ') KK, (RLE(I) ,I=l,LDIM) 
WRITE (1, '(lX,4HRLE=,I8,4F12.6) ') KK, (RLE(I) ,I=l,LDIM) 

5000 CONTINUE 
9000 CONTINUE 

STOP 
END 

SUBROUTINE DISTR (Y,OI,DJ,NI,NJ,E,A,B) 

C This subroutine solve the doubly constrained gravity 
C model by the algorithm described in section 5.3.2. 
C 

PARAMETER (NN=30,NZ=5) 
DOUBLE PRECISION Y(NN) ,OI(NZ) ,DJ(NZ) ,E, 

1 XO(NZ,NZ) ,X(NZ,NZ) ,A(NZ) ,B(NZ) 
INTEGER NI,NJ,NIJ,ITER 

C Initialize 
DO 200 J=l,NJ 
DO 200 I=l,NI 

XO(I,J)=Y((J-1)*NI+I) 
200 CONTINUE 

DO 250 I=l,NI 
XO(I,NJ+1)=OI(I) 

250 CONTINUE 
DO 300 J=1,NJ+1 

XO(NI+1,J)=DJ(J) 
300 CONTINUE 

ITER=100 
DO 500 J=l,NJ 

B(J)=1.0 
500 CONTINUE 

C 
C Start the iteration 
C 

DO 5000 KK=l,ITER 
LFLAG=(-l)**KK 
IF(LFLAG.EQ.-1) THEN 

DO 600 I=l,NI 
A(I) =0 
DO 550 J=l,NJ 

A(I)=A(I)+B(J)*XO(I,J) 
550 CONTINUE 

A(I)=XO(I,NJ+1)/A(I) 
600 CONTINUE 

ELSE 
DO 700 J=l,NJ 

B(J)=O 
DO 650 1=1, NI 

B(J)=B(J)+A(I)*XO(I,J) 
650 CONTINUE 

B(J)=XO(NI+1,J)/B(J) 
700 CONTINUE 

ENDIF 
C Check the convergency 

DO 1000 I=l,NI 
DO 1000 J=l,NJ 

X(I,J)=A(I)*B(J)*XO(I,J) 
1000 CONTINUE 

DO 800 J=l,NJ 
X(NI+1,J)=0 
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DO 800 I=l,NI 
X(NI+1,J)=X(NI+1,J)+X(I,J) 

800 CONTINUE 
DO 900 I=l,NI+1 
X(I,NJ+1)=0 
DO 900 J=l,NJ 

X(I,NJ+1)=X(I,NJ+1)+X(I,J) 
900 CONTINUE 

DO 2000 I=l,NI 
IF(ABS(X(I,NJ+1)-XO(I,NJ+l)) .GT.E) GOTO 5000 

2000 CONTINUE 
DO 3000 J=l,NJ 

IF(ABS(X(NI+1,J)-XO(NI+1,J)) .GT.E) GOTO 5000 
3000 CONTINUE 

GOTO 5500 
5000 CONTINUE 

C Output the result 
5500 DO 6000 J=l,NJ 

DO 6000 I=l,NI 

C 

Y( (J-1)*NI+I)=X(I,J) 
6000 CONTINUE 

RETURN 
END 

SUBROUTINE JACOBN(NI,NJ,OI,DJ,AI,BJ,F,DF,T) 

C This program calculate the Jacobian matrix of the gravity 
C model by the algorithm described in section 5.4.3. 
C 

PARAMETER (NN=30,NZ=5,LDIM=4,NDAB=54) 
DOUBLE PRECISION OI(NZ) ,DJ(NZ) ,AI(NZ) ,BJ(NZ) ,F(NN) ,DF(NN), 

1 DFIJ(NZ,NZ) ,FIJ(NZ,NZ) ,AAA(NDAB,NDAB) ,BBB(NDAB), 
2 DAB (NDAB) ,JAC(9,9) ,JAC1(9,3,3) ,JAC2(4,2,2) ,T(LDIM,LDIM) 

INTEGER NI,NJ,NIJ,IFAIL 
DOUBLE PRECISION AA(NDAB,NDAB) ,WKS1(NDAB) ,WKS2(NDAB),XXX 

C 
C Initialize the linear equation containing partial derivatives 
C of balancing factors with respect to the number of trips 
C 

NDIM=NI*NJ 
DO 700 J=l,NJ 
DO 700 I=l,NI 

FIJ(I,J)=F((J-1)*NI+I) 
DFIJ(I,J)=DF((J-1)*NI+I) 

700 CONTINUE 
DO 900 1=1, (NI+NJ) *NDIM 
DO 900 J=l, (NI+NJ)*NDIM 

AAA (I, J) =0.0 
900 CONTINUE 

DO 1000 I=l,NI 
DO 1000 II=l,NDIM 

AAA( (I-I) *NDIM+II, (1-1) *NDIM+II) =01 (I) 
1000 CONTINUE 

DO 1100 I=l,NJ 
DO 1100 II=l,NDIM 

AAA(NI*NDIM+(I-1) *NDIM+II,NI*NDIM+(I-1) *NDIM+II)=DJ(I) 
1100 CONTINUE 

DO 1200 I=l,NI 
DO 1200 J=l,NJ 
DO 1200 II=l,NDIM 

AAA( (I_1)*NDIM+II,NI*NDIM+(J-1)*NDIM+II)=AI(I)*AI(I)*FIJ(I,J) 
1200 CONTINUE 

DO 1300 J=l,NJ 
DO 1300 I=l,NI 
DO 1300 II=l,NDIM 

AAA(NI*NDIM+ (J-l) *NDIM+II, (I-I) *NDIM+II) =BJ(J) *BJ(J) "FIJ(I,J) 
1300 CONTINUE 

DO 1500 I=l,NI 
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DO 1500 L=l,NJ 
DO 1500 K=l,NI 

IF(I.EQ.K) THEN 
BBB«I-1)*NDIM+(L-1)*NJ+K)=-AI(I)*AI(I)*BJ(L)*DFIJ(K L) 

ELSE ' 
BBB«I-1)*NDIM+(L-1)*NJ+K)=0 

ENDIF 
1500 CONTINUE 

DO 1600 J=l,NJ 
DO 1600 L=l,NJ 
DO 1600 K=l,NI 

IF(J.EQ.L) THEN 
BBB(NI*NDIM+(J-1) *NDIM+(L-1) *NJ+K) = 

1 -BJ(J)*BJ(J)*AI(K)*DFIJ(K,L) 
ELSE 

BBB(NI*NDIM+(J-1)*NDIM+(L-1)*NJ+K)=0 
ENDIF 

1600 CONTINUE 
C 
C Solve the linear equation to get partial derivatives 
C of balancing factors with respect to the number of trips 
C 

IFAIL=O 
CALL F04ATF (AAA,NDAB,BBB,NDAB,DAB,AA,NDAB,WKS1,WKS2, IFAIL) 

C 
C Calculate elements of Jacobian matrix 
C 

3000 

3700 
3800 

5000 
5050 

5100 
5150 

C 

DO 3000 J=l,NJ 
DO 3000 I=l,NI 
DO 3000 L=l,NJ 
DO 3000 K=l,NI 

JACI=(J-1)*NI+I 
JACJ=(L-1)*NI+K 
IDA=(I-1)*NDIM+JACJ 
JDB=NI*NDIM+ (J-1) *NDIM+JACJ 
IF(K.EQ.I .AND. L.EQ.J) THEN 

JAC(JACI,JACJ)=BJ(J)*FIJ(I,J)*DAB(IDA)+ 
1 AI(I)*FIJ(I,J)*DAB(JDB)+ 
2 AI(I)*BJ(J)*DFIJ(I,J) 

ELSE 
JAC(JACI,JACJ)=BJ(J)*FIJ(I,J)*DAB(IDA)+ 

1 AI(I)*FIJ(I,J)*DAB(JDB) 
ENDIF 

CONTINUE 
DO 3800 II=l,NDIM 

DO 3700 J=l,NJ 
DO 3700 I=l,NI 

JAC1(II,I,J)=JAC(II, (J-1)*NI+I) 
CONTINUE 

CONTINUE 
DO 5050 K=l,NI-1 

DO 5000 J=l,NJ-1 
DO 5000 I=l,NI-1 

JAC2(K,I,J)=JAC1(K,I,J)-JAC1(K,I,3)-JAC1(K,3,J) 
CONTINUE 

CONTINUE 
DO 5150 K=4,5 

DO 5100 J=l,2 
DO 5100 1=1,2 

JAC2(K-1,I,J)=JAC1(K,I,J)-JAC1(K,I,3)-JAC1(K,3,J) 
CONTINUE 

CONTINUE 

C Output the Jacobian matrix 
C 

DO 5500 K=l,LDIM 
DO 5500 J=l,2 
DO 5500 1=1,2 
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5500 
T(K, (J-l)*(NI-l)+I)=JAC2(K I J) 

CONTINUE ' , 
RETURN 
END 
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B.4. THE PROGRAM CORDIM 

PROGRAM CORDIM 
C 
C This program calculates correlation function of an 
C attractor by the method due to Grassberger and 
C Procaccia (1983). The method is described in 
C section 5.5.1. The logarithms of both correlation 
C function and corresponding distance are produced; 
C which are ready to be used to obtain the correlation 
C dimension of the attractor by, for example, MATLAB 
C (The MathWorks Inc. 1993). The attractor is defined 
C by a time series data. 
C 
C Input data: 
C NPT = length of time series data; 
C NDIM = dimension of the phase space; 
C Time series data is in the data file TSDATA.DAT. 
C 
C Output data: 
C LOGR(K) logarithm of the Kth distance; 
C LOGC(K) = logarithm of the Kth value of correlation function. 
C 

C 

PARAMETER (LDIM=10,LDAT=10000,LSTEP=200) 
INTEGER NDIM,NPT,NR(LSTEP) ,NSTEP,OFFSET,MM,EMIN,EMAX, 

1 KMAX,KMIN,KDEL,INDX 
DOUBLE PRECISION X (LDAT,LDIM) , LOGC (LSTEP) ,LOGR(LSTEP), 

1 BASE,DIST,EXPNT,CR 
OPEN(l,FILE='TSDATA' ,STATUS='OLD' ,FORM='FORMATTED') 
OPEN(2,FILE='DIMDATA' , STATUS = 'UNKNOWN' ,FORM='FORMATTED') 

C Initialization 
C 

C 

BASE=2.0 
MM=l 
EMIN=(-50)*MM 
EMAX=20*MM 
NSTEP=EMAX-EMIN+1 
OFFSET=-EMIN+1 
KMIN=NSTEP 
KMAX=l 
KDEL=O 
NDIM=2 
NPT=20000 

C Read in the time series data 
C 

DO 50 I=l,NPT 
READ (1,*) KKK, (X(I,J) ,J=l,NDIM) 

50 CONTINUE 
C 
C Set the vector for counting numbers of inter-point 
C 

DO 500 I=l,NSTEP 
NR (1) =0.0 

500 CONTINUE 
C 
C Calculate the distance of each inter-point 
C 

DO 3000 II=1,NPT-1 
DO 3000 JJ=II+1,NPT 

DIST=O 
DO 1000 I=l,NDIM 
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DIST=DIST+(X(JJ,I) -X(II,I) )*(X(JJ,I)-X(II,I)) 
1000 CONTINUE 

DIST=SQRT (DIST) 
IF(DIST.EQ.O) THEN 

KDEL=KDEL+1 
GOTO 3000 

ENDIF 
EXPNT=FLOAT(MM)*DLOG(DIST)/DLOG(BASE) 
INDX=INT(EXPNT)+OFFSET 
NR(INDX)=NR(INDX)+1 
IF (INDX.LT.KMAX) KMAX=INDX 
IF(INDX.GT.KMIN) KMIN=INDX 

3000 CONTINUE 
C 
C Calculate the number of points within the given distances 
C 

DO 4000 K=2,NSTEP 
NR(K)=NR(K-1)+NR(K) 

4000 CONTINUE 
C 
C Find the logarithms of both correlation function and 
C the distance 
C 

DO 4100 K=l,NSTEP 
IF(NR(K) .EQ.O) THEN 

LOGC(K)=O.O 
ELSE 

CR=FLOAT(2*NR(K))/FLOAT((NPT*NPT)) 
LOGC(K)=DLOG(CR)/DLOG(BASE) 

ENDIF 
LOGR(K) = FLOAT ( (K-OFFSET))/FLOAT(MM) 
WRITE(*,' (lX,I4,2F20.4) ') K, LOGR (K) ,LOGC(K) 
WRITE(2,' (lX,I4,2F20.4) ') K, LOGR (K) ,LOGC(K) 

4100 CONTINUE 
STOP 
END 
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B.S. THE PROGRAM TSLE 

PROGRAM TSLE 
C 
C This program calculates Liapunov exponents of an attractor 
C reconstructed from time series data of a single variable. 
C The algorithm used is due to Eckmann et al. (1986). 
C The program uses NAG (NAG Ltd, 1987) routines: 
C M01DAF, M01ZAF, F04JGF, F01CKF, F01QCF, and F01QEF. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

data: 
length of time series data; 
embedding dimensioni 
delay time used to reconstruct the attractori 
time interval for print out. 

Input 
LTS 
EDIM 
TAU 
10 
The time series data is in the data file TSDATA.DAT. 

Output data: 
ELE(I) = the Ith Liapunov exponent of the 
reconstructed attractor. 

PARAMETER (LDIM1=75,LDIM2=10,LDIM3=10000) 
INTEGER RPERM(LDIM3) ,IPERM(LDIM3) ,IPLS(LDIM1) ,EDIM,TAU 
DOUBLE PRECISION OTS(LDIM3) ,OBSV(LDIM1,LDIM2) ,OBSV1(LDIM1), 

1 T(LDIM2,LDIM2) ,Q(LDIM2,LDIM2) ,R(LDIM2,LDIM2), 
2 CUMR(LDIM2) ,ELE(LDIM2) ,DT,MYDAT(4), 
3 WORK(75) ,Z(LDIM2) ,ZETA(LDIM2) ,SIGMA 

LOGICAL SVD 
RCA(I,J)=OTS(I+(J-1)*TAU) 
OPEN(l,FILE='TSDATA' ,STATUS='OLD' ,FORM='FORMATTED') 
OPEN(2,FILE='LEDATA' ,STATUS='UNKNOWN' ,FORM='FORMATTED') 

C Input data 
C 

PRINT*, 'Input the length of time series' 
READ*, LTS 
PRINT*, 'Input the embedding dimension' 
READ*, EDIM 
PRINT*, 'Input the delay for reconstruction' 
READ*, TAU 
PRINT*, 'Input the interval for output' 
READ*, 10 
DO 10 I=l,LTS 

READ (1,*) OTS(I) 
10 CONTINUE 

C 
C Initialize 
C 

LSTEP=TAU 
BALLO=O.OOl 
DBALL=O.OOOl 
BALLM=1.0 
LSMAXO=3*EDIM 
LSMAXD=2 
LSMAX1=6*EDIM 
LSMIN=2*EDIM 
DT=l 

C 
C Sort the time series data in the increasing order 
C 

IFAIL=O 
CALL M01DAF(OTS,1,LTS, 'A' ,RPERM,IFAIL) 
DO 30 I=l,LTS 
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IPERM(I)=RPERM(I) 
30 CONTINUE 

CALL M01ZAF(IPERM,1,LTS,IFAIL) 
C 
C Calculate number of points on the reconstructed attractor 
C 

NPT=LTS-(EDIM-1)*TAU-LSTEP 
C 
C Initialize for Jacobian matrix estimation 
C 

50 

80 

90 
C 

DO 80 I=l,EDIM 
DO 50 J=l,EDIM 

T(I,J)=O.O 
Q(I,J)=O.O 

CONTINUE 
CUMR (I) =0.0 
Q(I,I)=1.0 

CONTINUE 
DO 90 I=1,EDIM-1 

T(I,I+1)=1.0 
CONTINUE 

C Begin the journy through the reconstructed attractor 
C 

C 

DO 10000 IIII=l,NPT,LSTEP 
NPLS=O 
LSMAX=LSMAXO 
BALL=BALLO 
IRNK=RPERM ( I I I I) 

C Find the neighbours of the two current points 
C 

500 

550 

600 

800 

1000 
1500 

IRNKF=IRNK+1 
IRNKB=IRNK-1 
DO 1000 III=IRNKF,LTS 

IF (NPLS.GE.LSMAX) GO TO 5000 
ICN=IPERM (III) 
IF(ICN.GT.NPT) GO TO 1000 
DO 600 II=l,NPLS 

IF(ICN.EQ.IPLS(II)) GO TO 1000 
ICN1=IPLS (II) 
DO 550 I=l,EDIM 

DIST=ABS(RCA(ICN,I)-RCA(ICN1,I)) 
IF(DIST.GT.0.0000001) GO TO 600 

CONTINUE 
GOTO 1000 

CONTINUE 
DO 800 II=l,EDIM 

DIST=ABS(RCA(ICN,II)-RCA(IIII,II)) 
IF(DIST.LE.BALL) THEN 

GOTO 800 
ELSE IF (II.EQ.1)THEN 

GOTO 1500 
ELSE 

GOTO 1000 
ENDIF 

CONTINUE 
DIST=ABS(RCA(ICN+LSTEP,EDIM)-RCA(IIII+LSTEP,EDIM)) 
IF(DIST.GT.BALL) GOTO 1000 
NPLS=NPLS+1 
IPLS(NPLS)=ICN 

CONTINUE 
DO 2000 III=IRNKB,l,-l 

IF(NPLS.GE.LSMAX) GO TO 5000 
ICN=IPERM (III) 
IF(ICN.GT.NPT) GOTO 2000 
DO 1600 II=l,NPLS 

IF(ICN.EQ.IPLS(II)) GOTO 2000 
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1550 

1600 

1800 

2000 
C 

ICN1=IPLS(II) 
DO 1550 I=l,EDIM 

DIST=ABS(RCA(ICN,I)-RCA(ICN1,I)) 
IF(DIST.GT.0.0000001) GOTO 1600 

CONTINUE 
GOTO 2000 

CONTINUE 
DO 1800 II=l,EDIM 

DIST=ABS(RCA(ICN,II)-RCA(IIII,II)) 
IF(DIST.LE.BALL) THEN 

GOTO 1800 
ELSE IF (II.EQ.1)THEN 

GOTO 3000 
ELSE 

GOTO 2000 
ENDIF 

CONTINUE 
DIST=ABS(RCA(ICN+LSTEP,EDIM)-RCA(IIII+LSTEP,EDIM)) 
IF(DIST.GT.BALL) GOTO 2000 
NPLS=NPLS+1 
IPLS (NPLS) =ICN 

CONTINUE 

C Check the number of points for regression 
C 

3000 IF(NPLS.GE.LSMAX) GOTO 5000 
C Increase the size of ball to get more neighbours 

BALL=BALL+DBALL 

* 

C 

IF (BALL.LT.BALLM) GOTO 500 
IF(NPLS.LT.LSMIN .OR. LSMAX. GT. LSMAXO) THEN 

PRINT*, 'NO ENOUGH NEIBOURS lBALL, LSMAX,NPLS= , , 
BALL, LSMAX,NPLS 

STOP 
ENDIF 
GO TO 5000 

C Estimate the Jacobian matrix T by Least Squares 
C 

5000 

5300 

5500 

* 
C Check 

5550 
C 

DO 5500 I=l,NPLS 
IND=IPLS(I) 
DO 5300 J=l,EDIM 

OBSV(I,J)=RCA(IND,J)-RCA(IIII,J) 
CONTINUE 
OBSV1(I)=RCA(IND+LSTEP,EDIM)-RCA(IIII+LSTEP,EDIM) 

CONTINUE 
CALL F04JGF(NPLS,EDIM,OBSV,LDIM1,OBSV1,5*0.00001,SVD,SIGMA, 

lRANK,WORK,75,IFAIL) 
the rank of T 
DO 5550 I=l,EDIM 

IF (ABS (OBSV1 (1)) .LT. 0.00000000000001) THEN 
LSMAX=LSMAX+LSMAXD 
IF (LSMAX.LE.LSMAX1) GOTO 500 

PRINT*, 'T is singularlBALL, LSMAX,NPLS= , , BALL, LSMAX,NPLS 
STOP 

ENDIF 
CONTINUE 

C Construct the Jacobian matrix T 
C 

DO 5800 I=l,EDIM 
T(EDIM, I) =OBSV1 (I) 

CONTINUE 5800 
C 
C Multiply matrix T by the previous orthogonal matrix Q 
C 

CALL F01CKF(R,T,Q,LDIM2,LDIM2,LDIM2,Z,LDIM2,l,IFAIL) 

C 
C Do QR factorization of the matrix T'= T*Q 
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C 

C 

CALL F01QCF(EDIM,EDIM,R,LDIM2,ZETA,IFAIL) 
DO 6300 I=l,EDIM 
DO 6300 J=l,EDIM 

Q(I,J)=R(I,J) 
6300 CONTINUE 

DO 6400 I=2,EDIM 
DO 6400 J=l,I-1 

R(I,J)=O.O 
6400 CONTINUE 

CALL F01QEF('S' ,EDIM,EDIM,EDIM,Q,LDIM2,ZETA,WORK,IFAIL) 

C Calculate Liapunov Exponents and print out 
C 

DO 7000 I=l,EDIM 
CUMR(I)=CUMR(I)+DLOG(ABS(R(I,I))) 

7000 CONTINUE 
IF(MOD(IIII/LSTEP,IO) .NE.O) GOTO 10000 
DO 8000 I=l,EDIM 

ELE(I)=CUMR(I)/(IIII*DT) 
8000 CONTINUE 

WRITE(*,' (lX,I7,9F8.3) ') 1111, (ELE(I) ,I=l,EDIM) 
WRITE(2,' (lX,I7,9F8.3) ') 1111, (ELE(I) ,I=l,EDIM) 

10000 CONTINUE 
STOP 
END 
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B.6. THE PROGRAM TSDIM 

PROGRAM TSDIM 
C 
C This program calculates the correlation function of an 
C attractor by the method due to Grassberger and 
C Procaccia (1983). The logarithms of both correlation 
C function and the corresponding distance are produced; 
C which are ready to be used to obtain the correlation 
C dimension of the attractor by, for example, MATLAB 
C (The MathWorks Inc. 1993). The attractor is 
C reconstructed from time series data of a single variable 
C of a dynamical system. 
C 
C Input data: 
C LTS length of time series data; 
C NDIM = embedding dimension; 
C TAU = delay time used to reconstruct the attractor; 
C The time series data is in the data file TSDATA.DAT. 
C 
C Output data: 
C LOGR(K) logarithm of the Kth distance; 
C LOGC(K) = logarithm of the Kth value of correlation function. 
C 

C 

PARAMETER (LDIM=10,LDAT=10000,LSTEP=200) 
INTEGER LTS,TAU,NDIM,NPT,NR(LSTEP) ,NSTEP,OFFSET,MM, 

1 EMIN,EMAX,KMAX,KMIN,KDEL,INDX 
DOUBLE PRECISION OTS(LDAT) ,X(LDAT,LDIM) ,LOGC(LSTEP), 

1 LOGR(LSTEP) ,BASE,DIST,EXPNT,CR,MYDAT(4) 
OPEN(l,FILE='TSDATA' ,STATUS='OLD' ,FORM='FORMATTED') 
OPEN(2,FILE='DIMDATA' ,STATUS='UNKNOWN' ,FORM='FORMATTED') 

C Initialize 
C 

C 

BASE=2.0 
MM=l 
EMIN=(-50)*MM 
EMAX=20*MM 
NSTEP=EMAX-EMIN+1 
OFFSET=-EMIN+1 
KMIN=NSTEP 
KMAX=l 
KDEL=O 
PRINT*, 'Input the length of time series' 
READ*, LTS 
PRINT*, 'Input the embedding dimension' 
READ * , NDIM 
PRINT*, 'Input the delay for reconstruction' 
READ*, TAU 

C Read in the time series data 
C 

DO 10 I=l,LTS 
READ (1,*) OTS(I) 

10 CONTINUE 
C 
C Calculate the number of points on the reconstructed attractor 
C 

NPT=LTS-(NDIM-1)*TAU 
DO 50 I=l,NPT 
DO 50 J=l,NDIM 

X(I,J)=OTS(I+(J-1)*TAU) 
50 CONTINUE 
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c 
C Set the vector for counting the numbers of inter-point 
C 

DO 500 I=l,NSTEP 
NR (I) =0 

500 CONTINUE 
C 
C Calculate the distances of every inter-point 
C 

DO 3000 II=1,NPT-1 
DO 3000 JJ=II+1,NPT 

DIST=O 
DO 1000 I=l,NDIM 

DIST=DIST+(X(JJ,I)-X(II,I))*(X(JJ,I)-X(II,I)) 
1000 CONTINUE 

DIST=SQRT (DIST) 
IF(DIST.EQ.O) THEN 

KDEL=KDEL+1 
GOTO 3000 

ENDIF 
EXPNT=FLOAT(MM)*DLOG(DIST)/DLOG(BASE) 
INDX=INT(EXPNT)+OFFSET 
NR(INDX)=NR(INDX)+1 
IF (INDX.LT.KMAX) KMAX=INDX 
IF (INDX.GT.KMIN) KMIN=INDX 

3000 CONTINUE 
C 
C Calculate the number of points within the given distance 
C 

DO 4000 K=2,NSTEP 
NR(K)=NR(K-1)+NR(K) 

4000 CONTINUE 
C 
C Find the logrithms of both the correlation function 
C and the distance 
C 

DO 4100 K=l,NSTEP 
IF(NR(K) .EQ.O) THEN 

LOGC(K)=O.O 
ELSE 

CR=FLOAT(2*NR(K))/FLOAT((NPT*NPT)) 
LOGC(K)=DLOG(CR)/DLOG(BASE) 

ENDIF 
LOGR(K)=FLOAT((K-OFFSET))/FLOAT(MM) 
WRITE(*,1 (lX,I4,2F20.4) 1) K,LOGR(K) ,LOGC(K) 
WRITE(2,1 (lX,I4,2F20.4) 1) K,LOGR(K) ,LOGC(K) 

4100 CONTINUE 
STOP 
END 
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ADDITIONAL GRAPHS RELATING TO 
CHAPTERS 4 AND 5 

During this research, many more graphs were produced in the numerical analysis 

of the three traffic models in an attempt to identify all possible types of dynamic 

behaviour in the models. Only selected ones were shown in the thesis because of 

the limited space. Here are some additional interesting diagrams, including three 

periodic solutions of the car-following model, three bifurcation diagrams of the 

unconstrained or singly constrained gravity model, and four bifurcation diagrams 

of the doubly constrained gravity model. These diagrams were produced in the 

same settings as those in Chapters 4 and 5. The notations are the same as well, 

except that here xl is the number of trips from origin one to destination one for 

Figures 4-10. The values of uncongested travel costs and capacities for Figures 

4-6 are 

CO = (cf c~ c~ c~) = (1.4 1.2 1.8 1.6) and 

q = (q q q q) = (0.170.15 0.25 0.23) 
1 2 3 4 

respectively. While for Figures 7-11, 

CO = 

and 

q= 

ch cf2 c~3 
c~l c~2 c~3 
c~l c~2 c~3 

qu q12 q13 

q21 q22 q23 

q31 q32 q33 

[ 

1.00 1.00 1.50 ] 
= 1.20 1.40 1.80 , 

1.50 0.90 0.50 

[ 

0.01 0.11 0.07] 
= 0.09 0.09 0.11 . 

0.10 0.09 0.07 

The total numbers of trips from and to each zone are 

o = (°
1 

02 03) = (0.35 0.35 0.30), and d = (d1 d2 d3) = (0.30 0.30 0.-10), 

respectively for Figures 7-10. 
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Figure 1. Periodic solution of the nonlinear non-autonomouS car-following modeL 

with N = 2, l = 2.0, m = 1.0, a = 140, T = 1.0, b = 30, F = 1.0, P = 0.5, U = 2U. 

(a) Relative speed; (b) relative speed against spacing. 
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Figure 2. Periodic solution of the nonlinear non-autonomous car-following model, 
with N = 2, l = 2.0, m = 1.0, a = 140, T = 1.0, b = 30, F = 1.0, P = 7r/2. 
U = 20. (a) Relative speed; (b) relative speed against spacing. 
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The Dynamic Behaviour of 
Road Traffic Flow: 
Stability or Chaos? 

David Jarrett and Zhang Xiaoyan 

Abstract 

This paper is a report on work in progress on a project concerned with models 
of road traffic flow. Results for two such models are described and illustrated. 
One model is the classical car-following model. A number of numerical simu­
lations were carried out, but no evidence of chaos was found. The other model 
concerns trip distribution. Here a dynamic formulation of the model results in 
some solutions which appear chaotic, and evidence of a period-doubling sequence 
of bifurcations is found. 

Introduction 

The motion of road traffic on a road network or on a single link of a network (a 
stretch of road between junctions) can be considered as a dynamic system. At a 
microscopic level, the system can be described in terms of variables such as the 
position and velocity of each vehicle. At a more macroscopic level, important 
variables include the total number of trips between two zones, the rate of traffic 
How (the number of vehicles per unit time passing a fixed point), traffic density 
(the number of vehicles per lane and kilometre) and average speed. Dynamic 
models of road traffic How describe how these variables change with time, possibly 
in response to external demands. These might be expressed, for instance, as the 
need for certain numbers of individuals or goods to be in particular places at 
particular times. The concepts of traffic equilibrium and its stability receive 
much attention; they are important both for understanding the behaviour of 
road traffic, and in traffic management and planning. Equilibrium and stability 
are desirable objectives for road traffic How but are not always achieved. In 
dense traffic, where drivers follow each other very closely, small disturbances like 
the acceleration or deceleration of one vehicle might be preserved or amplified 
along the line of vehicles or over time, suggesting that there can be sensitive 
dependence on initial conditions. These phenomena can raise problems in traffic 
management, and can even result in accidents. 
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To the casual observer, road traffic flow appears inherently stochastic. How­
ever, many theoretical models of traffic flow are deterministic. Thus, it is appro­
priate to investigate these models and observed traffic flow for chaotic behaviour. 
This paper is a report on work in progress on a project cOl1cerned with nonlinear 
dynamic models of road traffic flow. One model being investigated is the car­
following model, which describes the microscopic behaviour of congested traffic 
moving along a link. Two other recent studies investigated whether there is 
chaos in this model, but reached apparently different conciusions. This model 
and its solutions are considered in the next section. Macroscopic models be­
ing investigated include traffic assignment models and trip distribution models. 
Traffic assignment models are multi-dimensional discrete-time systems, in which 
the flows on the routes in the road network are iterated. In each iteration, the 
flows are diverted to 'cheaper routes' as perceived by drivers. Trip-distribution 
models are similar in form to assignment models, with the observables being the 
number of trips between given origin and destination zones. These models are 
considered later in the paper. 

Computer systems are already widely used for the control of traffic signals, 
to move traffic efficiently through urban areas. Currently under development 
are systems for automated route guidance, and artificial intelligence systems 
in cars. One important application of this project is to investigate whether 
the introduction of such systems into the driving process, with the intention of 
improving traffic quality and efficiency, can lead to instability, or even chaos, in 
the motion of individual vehicles or the distribution of traffic over the system. 

The Car-following Model 

The motion of a line of vehicles on a crowded road link without overtaking is 
described by the car-following model [Leut88: Wilh73]. This model is based on 
the assumption that a driver responds to the motion of the vehicle immediately 
in front. In the simplest model, the acceleration of the following car is assum~ 
to be proportional to the difference between its speed and that of the car 10 

front; this model is linear. More complex models are nonlinear and allow the 
acceleration of the following car to depend both on its own speed and on the 
relative spacing of the two cars. In all cases, a time delay ~ built. into the 
equations. The driver does not react immediately to changes 10 relatIve speed 

or spacing. 
Consider a line of cars numbered from 1 (the leading car) to N (the last ~) 

(Figure 1). Let xn{t) denote the position of car n at time t. Then the equatIOns 

of the model are 
xn(t) = a[xn-l(t - r) - Xn(t - r)] n = 2,3,··· ,N 

Here a is a function of the current speed of car n, and its distance from car , 
n - 1 at the time (t - r) (Xn(t))m 

a=c I 
[Xn-l(t - r) - Xn(t - r)] 
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In these equations, dots denote time derivatives. T is a constant, represent in 
the reaction time of the driver of the following car. c is a positive parameter.

g 

m and 1 are nonnegative parameters, not necessarily integers. The linear mod~l 
corresponds to a constant, with m = 1 = O. In general, a is called the seruitivity. 

Many stability studies of traffic flow on a road link are based on this model. 
Most recently, there have been two studies about possible chaotic behaviour 
in the car-following model. Disbro and Frame [Disb90] claim that chaos can 
definitely occur in the car-following process. Their conclusion is based on shOwing 
that the first Lyapunov exponent is positive for certain values of the parameters, 
but they give no plots or other evidence of a strange attractor. On the other 
hand, in an exploratory study Kirby and Smith [Kirb91] found no evidence of 
chaos in car following. 

From a mathematical point of view, the car-following equations have a num­
ber of interesting features. Firstly and most importantly, they are a system 
of delay-differential equations an~ therefore have an infinite-dimensional phase 
space. Initial conditions must be specified as functions xn(t) over the interval 
-T < t < O. The mathematical analysis of such equations is difficult. However, 
finite-dimensional attractors exist for systems of delay-differential equations; 
some such systems are believed to possess finite-dimensional strange attractors 
(see [Farm82]). Secondly, for given initial conditions, solutions do not neces­
sarily exist for all t > 0; for I > 0 the equations have a singularity where 
Xn-l(t - r) = xn(t - r), corresponding to a collision between vehicles n - 1 
and n at time (t - T). Such collisions can occur quite easily. Similarly, for m 
noninteger the equations make no sense if the speed of any vehicle becomes neg­
ative. Thirdly, where the solutions xn{t) exist for all positive t, they in general 
are unbounded: the cars eventually reach any given point on the road. It is also 
possible for the speed of one or more vehicles to increase without limit. . 

Note that the motion of each car is influenced directly by only the car lm­
mediately in front; the motion of the first car is taken as given. The equations 

X (t) 
n 

Xn_1(t) 
~ ~ --+ 

N n n-l 2 1 

D 0 0 . . . 0 0 . . . 
• •• • • • 

it---( Y n + b)~i 

X (t) 
n 

Xn- 1 (t) 

Figure 1. The car-following model. 
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can therefore be solved numerically one by one How 
al 

. . . . ever, progress can be mad 
an ytlcally by wntmg the equation for car n as e 

Xn(t) = C Xn-l(t - r) - xn(t - r) 

xn{t)m [Xn-l(t - r) - xn{t _ r)]' 

These equations ~an be integrat~ once (see [Leut88J, p. 140). 
Further analYSIS of the model 18 most easily carried out b . h 
d I . '. . y re-expressmg t e 

mo e m tern:u' of relatIve quantities so the solutions can remain bounded. De-
note the spacmg between adjacent cars by 

Yn(t) = Xn-l (t) - xn(t) - b n=23 .. · N " , 

where b is interpreted as the minimum headway (see Figure 1). Then 

Yn(t) = Xn-l{t) - xn{t) 

Yn (t) = Xn-l (t) - xn{t) 

Let Xl = XI(t), Yn = Yn(t), Y~ = Yn(t - r). Then the model becomes 

'r 
.. .. ( . ')m Y2 Y2 = X I - C X I - Y2 

(Y2 + b)' 
'r 

.. (.. ')m Yn-l Yn = C Xl - Y2 - ... - Yn-l 
(Y~-l + b)l 

'r 

- C(XI - Y2 - ... - y)m Yn 
n (Y~ + b)' 

n=34 .. · N " , 

These equations are solved numerically using a Runge-Kutta algorithm, modified 
for dealing with the delay time in the equations. The motion of a line of cars 
can be simulated, with the movement of the first car being treated as an input, 
that is 

a . 
Xl(t) = ut + 2" smwt 

w 

Thus, the speed of the first car fluctuates about a constant, u. For a = 0 the 
equations are autonomous; for a=/;O there is a sinusoidal forcing term. This 
model has been simulated for selected combinations of values of the parameters 
m and l, for both the autonomous and the forced model. 

·If there is no forcing term, then typically there are stable equilibria, where 
the relative speed is zero and the relative spacing is constant. The limiting 
relative spacing depends on the initial conditions. There is a continuum of fixed 
points - note from the equations that if the relative speed becomes zero then 
the relative spacing remains constant. If the sensitivity, as determined by the 
parameter, c, is small, then most solutions converge to an equilibrium without 
oscillation. However, unbounded solutions can exist if the initial conditions are 
far from equilibrium. As the sensitivity increases, oscillations begin to occur. 
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For initial conditions close to an equilibrium, these oscillations damp down as 
the solution converges. If the initial conditions are further from equilibrium, 
then the solutions break down: they oscillate with increasing amplitude until the 
speed of the last car becomes negative. The basins of attraction of the equilibria 
become smaller as the sensitivity increases. In between the two cases, a periodic 
attractor (limit cycle) exists in the case m = 0 and 1 = 2 for a small range of 
values of the parameter, c. A solution converging to this attractor is shown in 
Figure 2. The period is approximately 4r. This appears to be independent of the 
initial conditions, the value of c and the number of cars - only the amplitude of 
the oscillations depends on these factors. The basin of attraction of this periodic 
attractor is very small. A small change in the initial conditions results in a long 
transient, but the solution eventually tends to an equilibrium or breaks down. 

When the forcing term is introduced, the solutions behave in a very similar 
way to those of the autonomous equations. The equilibria are replaced by stable 
periodic solutions with the same period as the forcing term. The amplitudes 
of these solutions depend on the initial conditions, sensitivity and the position 
of the car in the line. For initial conditions not close to a stable solution, the 
solutions diverge and break down, with long transients. Again, the basins of at­
traction of the periodic attractors become smaller as the sensitivity is increased. 
Where the unforced equations have a periodic attractor, the forced equations 
have a more complex behaviour. This is illustrated in Figure 3. However, this 

6 

2 

1 
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~ 
-2 

-4 
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spacing 

. di tt t with N == 4, m == 0, I == 2. 
Figure 2. Unforced car-following model, perlo c a r~ or'f bird and fourth cars. 
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solution is not chaotic; it appears to be quasi-periodic, or possibly periodic with 
a very long period. 

When the solutions oscillate, a small deviation in the initial conditions tends 
to be amplified along the line of cars, although it can damp down with time. 
Thus, any breakdown in the equations occurs only with the last car in the line. 
Removing car N averts the breakdown. However, a similar situation is bound to 
occur for car N - 1 at a larger deviation from the equilibrium or an increased sen­
sitivity. Thus, it is felt that the number of cars has little effect on the qualitative 
form of the solution. 

In none of the investigations carried out so far has any evidence of chaos in the 
car-following model been found. Of course, no general conclusion can be reached 
from a finite number of numerical experiments. However, chaos does not appear 
to occur typically in the model. From a practical point of view, the existence of 
solutions leading to collisions is probably more important than the existence of 
chaotic solutions, and indicates the need for care if the car-following equations 
are used in any method for the automatic control of cars. 

There is another study of chaos in road traffic flow by KUhne [Kuhn91]' based 
on a fluid approximation model. In contrast to the car-following model, which 
treats vehicles individually, the fluid model describes traffic behaviour by macro­
scopic quantities such as flow rate, traffic density and average speed. Kuhne 
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investigates a truncation of the fluid equations; he finds a chaotic attractor and 
computes the first Lyapunov exponent. The present authors have not yet inves­
tigated this model. 

The Trip Distribution Model 

The aim of the trip distribution model is to determine the number of trips 
between each pair of zones given the number of trips originating and terminating 
in each zone. One of the most widely used models is the gravity model, which 
assumes that the number of trips between zones depends on the number produced 
at and attracted to each zone, and on the travel cost between zones. Most 
formulations of this model are static, where the travel costs are assumed to 
be independent of the number of trips. Dendrinos and Sonis [Dend90) give a. 
dynamic formulation in which the travel costs are a function of the number 
of trips between zones. At each stage of the iteration, the number of trips 
is generated using the costs associated with the trips of the previous stage. 
Dendrinos and Sonis suggest that this iteration can be chaotic, but they do not 
specify ranges of parameters for which this might be the case. 

The dynamic trip distribution model takes the form 

where Xij(t) is the relative number of trips from zone i to zone j, normalised so 
that L L Xij(t) = 1, and Cij(t) is the travel cost from zone i to zone j, given 
the trips Xij (t). Dendrinos and Sonis suggest taking 

where c?j is the uncongested travel cost, Zij is the relative capacity and (} and , 
are constants. 

! (Csj) is a function which relates the number of trips to the travel costs. Three 
types of function have been suggested (see [Ortu90]): 

(a) !(Csj) 

(b) !(Csj) 

(c) !(Csj) 

exp( - (3Csj ) 
-n cij 

cij exp( - (3Csj ) 

( exponential) 

(power) 

(combined) 

where f3 and n are positive constants. For (a) and (b) the numbe~ of trips is ~ 
decreasing function of cost, while in (c) the number of trips first llcreases an 

then declines as cost increases. . ' arantee that 
The model as formulated above is unconstramed: It ~ot gu val 

. t' t a '"ven zone has a ue the number of trips originating from or termma mg a o· 
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which is predetermined. In fact, the numbers become totally different from 
the starting values after a few iterations. Constraints can be incorporated but 
are not investigated here. This model ha.s been investigated with two or three 
origin and destination zones, using each of the three forms of cost functions. 
In most cases there is a stable fixed point or periodic orbit. However, for the 
combined cost function, evidence of a period-doubling sequence of bifurcations 
ha.s been found. If a and , are fixed at 1, then for appropriate values of n the 
period changes from 2 to 4 to 8 to 16 a.s f3 is gradually increased. Eventually, 
the sequence becomes irregular and appears chaotic, with a continuous power 
spectrum. Figure 4 shows such a solution for the three-dimensional model with 
two origins and two destinations. Lyapunov exponents for this solution were 
calculated using the algorithm of Eckmann and Ruelle [Eckm85], and were found 
to be approximately 0.2, -0.02 and -0.7, respectively. A bifurcation diagram 
for this model is shown in Figure 5. The apparent discontinuity seems to be 
because there are two or more periodic attractors for some parameter values. 

Related models concern traffic assignment. Given the trips (Xij(t)), the models 
attempt to estimate the flow on each link of a road network. The assignment 
of flows to different links is a dynamic process; in each iteration the flows are 
diverted to 'cheaper routes' a.s perceived by drivers. When the flow on each 
link tends to a constant value, it is said to converge to an equilibrium state. 
Horowitz [Hor084] pointed out that even in a two-route system this equilibrium 
might not be stable, that is, the equilibrium might not be reached or approached 
from arbitrary initial conditions. The authors are currently investigating thes€ 
models and hope to report on them elsewhere. 

Conclusion 

In this paper two different traffic models were investigated for the presence of 
chaotic solutions. No evidence of chaos wa.s found in the car-following model, 
although other authors have indicated that chaos can be found in re.lated models. 
However chaotic solutions were found in a dynamic trip-distributlOn model. It 
is clear t'hat other traffic models might have chaotic solutions, and the authors 

hope to report on these in a later paper. 
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TRAFFIC DYNAMICS: STUDIES IN 
THE GRAVITY MODEL AND THE TRIP ASSIGNMENT MODEL 

Abstract 

,Xiaoyan Zhang 
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The ai,m of this paper is to investigate the dynamic properties of non-linear 
dyn~mIc models of. road traffic flow. One mo~el considered is the dynamic 
versI.on of the graVIty model proposed by Dendnnos and Sonis (1990). In a 
prevlO~s paper (J arret~ and Zhang, 1993) this dynamic model was studied 
numen~ally and t.he. penod-doubling r.oute ~o chaos was found. In this paper, a 
theoretI~al an~lysis .IS made of a one-<iImenslOnal model; Liapunov exponents and 
corre~a~lOn ~ImenslOn~ are calculated for (chaotic) attractors found in the 
multI~menslOnal graVIty models and are found to be positive and fractal for 
ch~otIc attra~tors.. Another traffic model studied here is the dynamic, 
10gIt:-?~sed tnp assIgn~ent model, a~so suggested. by Dendrinos and Sonis (1990). 
StabIlIties of fixed pOInts and penod-two orbIts are studied for a network 
composed of one O-D pair connected by two links. 

This paper is produced and circulated privately and does not constitute 
publication. It may be subject to revision before publication. 

1. INTRODUCTION 

Dynamic traffic flow problems on a road network have been modelled and studied 
in different ways. One way is to consider explicitly the time-dependence of 
network characteristics, such as costs, and traffic flows. Dynamic link 
performance functions are used to consider queueing and congestion effects on 
links; the distribution of departure times of O-D trips depends on the temporal 
distribution of travel costs over the network so that the O-D flows vary with 
time. Another type of dynamic consideration is to model the process of 
adjustments of flow pattern in a network from one time instant to another for a 
given O-D matrix. This second type of study has received little attention and is 
considered here. Horowitz (1984) studied the stability of a stocha~tic equilibrium 
in a discrete-time assignment model for a network of one O-D paIr connected. by 
two links. Smith (1984) proposed a continuous-time adjust~e!lt. mechams~ 
modelled by a set of ordinary differential equations ... T~e eqrnh?I1um of thIS 
dynamic system coincides with the Wardrop user eqUlh.b.rm.m. ~Slllg a m.ethod 
due to Liapunov he was able to prove that the eqrnhbnum IS stable If the 
cost-flow function is monotonic and smooth. 

The time evolution of a dynamical system is normally modell.ed by ~ifferential or 
difference equations. In practical applica~i?ns these equatIOns. WIll usuall~·. be 
non-linear. Many dynamical systems exhibIt a start-up transIen.t, after \\ hlcl~ 
the motion settles down towards some form of steady-state behavIOUr. \l'Jtl~n, 
from neighbouring initial values tend to. converge towards stable at t.ractlJ1

g 

solutions called attractors. There are baSIcally three types.of att~actor~ pOInt 
attractors, periodic attractors, and chaotic attractors of the kind WhICh havt' hl't'll 
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~s~overe~ in the last. twe:n-ty to thirty years. ~table or attracting limit ~et s (a 
hmIt set IS ~ se~ of pOlnt~ In the phase space .w~ch a trajectory repeatedly \'isits) 
are of specIal. Inter~st SInce a. non-stable h~t set cannot be observed in real 
syst~ms and sImulatIOns. Stu~Ies of a dynamIcal system often involve identifying 
possIble attractors and analyzIng how these change with value of parameters. ' 

Chaos is a kind of irregular beh~vi?ur found in deterministic systems. It is not 
yet fully understood. Therefore, It IS of theoretical interest to find out if a model 
possesses chaos and to study chaotic attractors. As far as traffic studies are 
concerned, however, knowledge of the range of parameters for different types of 
behaviour in a model is clearly important. Values of parameters can be chosen to 
avoid unwanted behaviour such as instabilities, oscillations, and chaos; traffic 
flow can be monitored to achieve a stable equilibrium or even a better one if 
there are more than one. 

In this paper, the time variation of traffic flow is modelled by deterministic, 
dynamical systems expressed as difference equations. Traffic dynamics in trip 
distribution and trip assignment are studied, respectively based on a dynamic 
gravity model and a dynamic logit-based trip assignment model, both suggested 
by Dendrinos and Sonis (1990). Theoretical analyses are made of 
one-dimensional models and numerical study is employed to calculate Liapunov 
exponents and correlation dimensions for (chaotic) attractors found in 
multidimensional gravity model. The gravity model is investigated in the next 
section, followed by the study of the trip assignment model in the subsequent 
section. The paper is summarized in the last section. 

2. THE GRAVITY MODEL 

The aim of gravity models is to estimate the number of trips between e~ch O-D 
pair based on travel costs between zones and the total number of tnps from 
and/or to each zone, or the total numb~r of trips in t~e whole .a~ea under 
consideration. A family of gravity models In terms of relatIve quantItIes can be 
written in a general form 

t .. = ¢f(c .. ), t .. E[O,l], 
ZJ ZJ ZJ 

(1) 

i=1,2, ... ,1, j=1,2, ... ,J. 

Here t.. is the relative number of trips from zone i to zone j, cij is the 
ZJ . I d J th ber of orI'gins and destinations correspondIng travel cost an are e num 

respectively, f( c .. ) is c~lled the deterrence function which relates the number of 

trips to the trav~i costs, and 'I/J is an appropriate n?rmalizin~ factor. Thre~ 
types of deterrence function have been suggested (Ortuzar ~ W}llum~en, 1i~or 
(a) exponential function, (b) power function, and (c) combIned unctIOn. e,\ 

can be written as: 

f ( c .. ) = c. f1' exp (-fJ c .. ), 
ZJ ZJ ZJ 

. . th f of the function. \\'ht'll 
where J.l and {3 are constants whI~h deter~n~ e orm 0 and 3=0 it i~ a 
11=0 and ~>O, f is an exponentIal functlO~t it~e~o;b~ed function. In the 
power functIOn; and when J.l>fO .an~ fJ~O ~asing function of cost. while in 1 he 
former two forms the number 0 tnps IS a ecr 
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third the number of trips first increases and then declines as cost increases 
depending on the relative magnitude of .f.1 and (3. The factor 'I/J in (1) i~ 
chosen so that one or two of the followmg constraints of an O-D matrix are 
satisfied 

(a) ~ .. t .. - 1, (2a) -
ZJ ZJ 

(b) ~.t .. = o. , i=l, 2, . .. , I, (2b) J ZJ Z 

(c) ~.t .. - d. , )·=1,2, ... , J, (2c) -

Z ZJ J 

where o. is the total (relative) number of trips originated from zone i and d. 
Z , J 

is the total (relative) number of trips terminated at zone j. A gravity model is 
unconstrained if only the total number of trips attracted to (or produced at) all 
zones (which has been normalized to 1 here) is known, or singly constrained if 
o .'s or d .'s are at hand, or doubly constrained if both o.'s and d .'s are given. 

Z J l ] 

The form of 'ljJ for the three cases are as follows 

(a) Unconstrained model. Only (2a) is satisfied and 

¢ 1 = 
~. f( c .. ) 

ZJ ZJ 
so that 

f( c .. ) 
t .. - ZJ 

-
ZJ ~ . .f(c .. ) 

ZJ ZJ 

(b) Singly constrained model. For an origin-constrained model (2b) is met and 
'ljJ is replaced by a set of constants: 

1 i = 1, 2, ... I, a.= 0.---

Z Z ~ f ( c .. ) 
J ZJ 

so that 
f( c .. ) 

ZJ t .. - o.--=---
ZJ Z ~ .f( c .. ) 

J ZJ 

. d d 1 (2 ). et and 0/, is replaced by another For a destination-constralne mo e c IS m 'f/ 

set of constants: 

so that 

1 b.= d.---
J J ~ f( C .. ) 

Z lJ 

f( c .. ) 
- d. lJ t .. 

lJ J ~ .f( C .. ) 
Z lJ 

j = 1, 2, ... J, 

) d j2) e satisfied and (c) Doubly constrained model. Both (2b a~ c
t 

a~ 
replaced by two sets of constants, or the balancmg ac ors. 
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a. - o. 1 
i=1,2, - '" I, Z 

z~.b!(c .. ) 
) Z) 

b. - d. 1 
j=1,2, -

'" f, ) ) ~.a f( c .. ) 
Z Z Z) 

and 
t .. - a. b . f( c .. ) . -

Z) Z) Z) 

Most gravity models in the literature are static and the t 1 
to be independent of the number of trips Ad' r~ve .costs are assumed 
the O-D flow dynamics in an area. D~ndrinJsn~:c mo. el IS needed to study 
iterative version of the gravity model by assumin th;~~~ (1990) propos~d an 
each. stage depends on the travel cost which, in tur~ is a f e ~.umb~r ~f tnps at 
of tnps at the previous stage, that is ,unc IOn 0 t e number 

with 

t .. (n+l) = ¢ f(c .. (n)) 
Z) Z) 

( ) 
[ [

t . . (n)] 1] 
c .. n == c.( t .( n)) = cq. 1 + a ~Z)_ 

Z) Z Z Z) q. . ' 
Z) 

where c~). is the uncongested travel cost, qij is the relative capacity, and n. 

and , are positive constants. 

The dynamic unconstrained model is a map of the simplex 

!1 LJ = {[ t . .]: t .. ~ 0, ~ . 11 ~. J t .. = 1 } 
Z) Z) z= )=1 Z) 

into itself. The dimension of the phase space is If-I. The origin---{:onstrained 
model is a map on 

S1 x S2 x ••• x SI 
where 

S. = {( t '1' t·2 , ..., t 'J): t .. ~ 0, ~. t .. = o.}, i = 1, 2, ..., I, 
Z Z Z Z Z) ) Z) 1 

so that 
S1 x S2 x ••• x SI = {[ t .. J: t .. > 0, ~. t .. = 0., i = 1, 2, ..., I} 

Z) Z) - ) 1) 1 

It can be seen that in the origin-constrained model t.. depends only on the 
1) 

elements of the ith row of a trip matrix. Therefore this model can be considered 
as I independent equations equivalent to the unconstrained model, but I JI1 

Si=!1 J and with a dimension of J-1. Similarly, the destination---{:onstrained 

model is equivalent to J independent equations on !1 I and with a dimension of 

1-1. The doubly-constrained model, however, is different. The phase spa('(' is 

S = {[ t . .]: t .. > 0, ~. t .. = 0., i = 1, 2, ... , I, £ . t .. = d. ~ j= L 2. .... J } 
1) 1) - ) 1) 1 1 1) ) 

= {( t t t) E !1 x !1 x .,. x!1 : £ . t .. < d. f = 1. :2. . ... J}. 
1·' 2·"'" /-1· J J J t 1) - ) 
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This phase space has a dimension of (1-1)( 1-1) and is m . 
~J.J This paper will concentrate in the unconstrained a °d

re ~oml ~1icated t.han 
n SIng} constraJnt"ci 

models only. The doubly constrained model will be cons'd d' f I ere In a uture paper. 

The unconstrained and singly-constrained models b 
I .r .. lb' can e written in the mllre 

genera lorm, uSIng sIng e su scnpts for simplicity, 

f(c.(n)) 
2 

~.f(c.(n)) 
J J 

(3) 

where 

f ( v) = vil exp (-,8 v) 

c.(n) - c.(t.(n)) 
2 2 2 

i=1,2, ... ,K. 

When K = II the equation represen~s an unconstrained gravity model; while 
when K equals I or I the equatIOn represents one component of a singly 
constrained model. 

The existence of a fixed point (in a discrete system an equilibrium is often called 
a fixed point) in (3) can be established by the Brouwer's fixed point theorem 
which can be stated as follows. 

Brouwer's fixed point theorem Any continuous map F: D. K --I D. K has at least 

one fixed point. 

In (3), f( v) and c .(n) are both continuous functions over the interval under 
2 

consideration. Therefore, F. is continuous and so, according to Brouwer's fixed 
2 

point theorem, has at least one fixed point. A general analysis of the uniqueness 
and the stability of a fixed point in (3) is difficult for it is nonlinear. A one 
dimensional-model is analyzed in the next subsection; and higher 
dimensional-models are studied numerically in the following subsection. 

2.1 Theoretical analysis - a one-dimensional model 

A one dimensional model can occur where, for example, there are one origin and 
two destinations, or vice versa. The model is: 

( -l) 

As mentioned above this model has at least one fixed point. A fixed point t
p 

, . 
can be found by solving the nonlinear equatIOn 

te: = F.(t e) . 

The equ~tion ~annot be solved analytically unless F. is such that the equation i~ 
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linear or quadratic. 

It can be shown (See the Appendix) that if f( c.( t .)) IS a monotonicalh 
f f t t • 

decreasing unction 0 ti' then so is Fi' and the fixed point is unique. The 
derivative of f with respect to t. is 

z 

where 

A-t f(c.(t.)) = fl(C.) c./(t.) , 
UL z t t z z 

t 

f I ( v) - /1 v/1-1 exp (-(3 v) - (3 v/1 exp (-(3 v) 

- f( v) ( ~ - (3 ) , 

[ 
t .]1 

c I. ( t .) = c q a L --.: > ° 
z t t q. q. -

t t 

The sign of fl (v) depends on {3 and 11. When (a) (3=0, /1<0, and (b) J.l=0, 
(3)0, fl (v) is negative. And so the fixed point is unique. When J.l>O, and 
{3>0, Fi is not monotone, and the uniqueness cannot be assured. 

A related problem of a fixed point is its stability. Although the fixed point 
cannot be obtained analytically in the more general case, the stability of it can be 
studied to some extent. A fixed point is asymptotically stable if the derivative at 
the point is within (-1, 1). Evaluating the derivatives at the fixed point t, 
gives 

where 

= tit 2 [ c; ( t i) [oW -Ii] 

+ c2 (t2) [c
2 
(12) - Ii] 1 ' 

[ 
t e.] 

1 
cl.(te.) = cq a L _t 

t z z q. q. 
Z t 

Three types of deterrence function can be considered separately. 

(a) When {3=0 and 11<0 

[ 

cf a(q)ql)1 
/11 1 

cf (1 + a(t1/ql) ) 

If I f-l, I < 1 then there must be 
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and the fixed point is stable. 

(b) When /3>0 and 11=0 

d at; F1 (t e
) = /3 ii i2 (ci (ii) + c~ (i2)) 

So if 

< 1/0.25 = 4 

the fixed point is stable. 

(c) When /3>0 11>0, the fixed point is not unique and no conclusion can be 
drawn about the stability. 

The fixed points in the ca~es (a) and (b) lose stability as the parameters vary (j.i 
decreases, /3, a, and , Increase) such that the derivatives pass -1. Because 
the. derivatives in both cases are negative, the fixed point bifurcates into a stable 
penod-2 orbit through a flip bifurcation (see the Appendix). In the 
one-dimensional model with the exponential and the power deterrence functions 
fixed points and period-2 orbits are only possible steady states; trajectories 
starting from any initial conditions in the phase space approach one of the states, 

It can be seen that for case ( a) and (b), for given road conditions (described by 
cq and q.), the stability of the fixed point depends on j.i, {3, a, and J. The 

l t 

value of parameters reflects the inter-ciependence of the number of trips and the 
travel costs. Higher values (or lower values for 11) mean a stronger dependence 
and can cause oscillations. Models of higher dimension and with a combined 
deterrence function are studied in the next subsection. 

2.2 Numerical study - higher-dimensional models 

Numerical study was made of (3) with various dimensions and \~ith the th:ee 
types of deterrence function in a previous paper (Jarrett a~d Zhang" 1993) 
Fixed points and period-2 orbits were found to be t.he tYPIcal, beha nour III 
models with the exponential and power deterrence functIOns; ~ penodIc~d, '\lblJng 
route to chaos was found when the combined deterrence functIOn (j.i>O and {3>U ~ 
is used. Chaotic at tractors can be characterized by their Liapunm' expolllll 1,5 ;lli 1 

fractal dimensions the former reflects the dynamical aspects and the lat It'r the 
geometrical ones 'of an attractor. Calculations of these two quaIl tIt ll'S f"r 
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( chaotic) attractors found in (3) follow. 

Calculation of Liapunov exponents 

A Liapunov exponent is a measure of the 
separations on an attractor. For a map average rate of change of small 

t.(n+1) = F.(t(n)), 
t t 

Liapunov exponents are defined as 

'\. = Log 1 (J·I , 
t t 

where the (Ji are the eigenvalue of the following operator 

L . m (Tn* Tn) 1/2n 
1 t t ' 

n--+m 

* In this expression, Tn stands for the adJ·oint of Tn and Tn is the derivati vo 
t t' t ' 

of the nth iteration and can be expressed as the product of the derivative of the' 
successive iterations by the chain rule of differentiation: 

T~ = T( Fn- 1 
( t)) ... T( F( t)) T( t) ) 

There is the same number of Liapunov exponents as the dimension of the phase 
space of a dynamical system. The largest exponent is positive for chaotic 
attractors and non-positive for non-chaotic ones. There are two types of 
method for calculating Liapunov exponents, suggested by Wolf(1985) and 
Eckmann & Ruelle (1985) respectively. The second algorithm is usually 
preferred (see, for example, Conte and Dubois, 1988) and was used here. To 
implement this algorithm, model (3) is iterated. At each step the derivative is 
calculated. Then they are multiplied using the QR factorization to get 

where Q
n 

is orthogonal and Rn upper triangular with non-negative diagonal 

elements. Then the diagonal elements (v).. of R ... Rl lead to the 
n n n 

exponents 

A. = Lim 1.. Log 1 diagonal elements (v ) ··1, 
t n n H 

n--+m 

where n is the number of iterations. 

The algorithm was programmed in FORT~AN and was tested by calculating 
the exponents of a chaotic attractor of the Henon map 
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2 = 1 - a x 
n 

b x 
n 

T~ere is a chaotic attractor when a = 1.4, b = 0.3; the Liapunov exponents for 
this attractor are known to be ~1 = 0.42, ~2 = -1.6 (Conte and Dubois, Hl88). 
The first ~OOO. steps of calculatIOn of. the LIapunov exponents for this at tractor 
are shown In FIg. 1; they converge qUIckly. The result after 20000 iterations 
was [0.4168 -1.6208]. 

Liapunov exponents for a chaotic attractor in (3) is calculated. Values of 
parameters us.ed are: a=,=1.0, J.L=8.0, /1=3.25. The plotting of this attractor 
can be found In Jarrett and Zhang, (1993). The first 5000 iterations are shown 
in Fig. 2; the convergence is apparent. The three exponents after 30000 
iterations are [0.20 -0.02 -0.70].. Shown in ~ig. 3a and Fig. 3b are Liapunov 
exponents calculated as a functIOn of /1, III company with the bifurcation 
diagram in Jarrett and Zhang, (1993). Values of parameters in this calculation 
are a=,=1.0, J.L=7.0. The bifurcation diagram is copied here in Fig. 3c for 
comparison. By comparing the diagrams it can be seen that the first exponents 
are negative for periodic attractors and are positive for chaotic ones. 

Calculation of fractal dimensions 

The dimension of an attractor is a lower bound of the number of state variables 
needed to describe a steady-state behaviour. It can quantify the complexity of 
an attractor. A strange attractor normally possesses non-integer dimension, 
called a fractal dimension. Although many types of fractal dimension have been 
defined in the literature, an algorithm due to Grassberger & Procaccia (1983) is 
employed here to estimate correlation dimension. The correlation dimension is 
defined based on the correlation function of an attractor. A correlation function 
is the average fraction of points within a certain radius r on the attractor. For 
a system like (3) the correlation function C( r) is given by 

C(r) = Lim 12 { the number of points (t(i), tU)) such thai 
N-im N 

It(i)-tU)I<r}, 

where N is the number of points considered. The correlation dimension Dc IS 

defined as 

JJ - L' lOy C(r) 
C 

- 1m • 

O 
og r 

r-i 

That is, it is the slope of the plot of log(C(~)) ver.sus log(r). T~ere m~y besonly 

a limited range of the graph which is straIg~t WIth an .appro.Xlmate~\ cOlld t ~~t slope Only this range of data is used to estImate the dImensIOn. T ~~o e h ~ 
first 'iterated and the transient remoyed to get the attra~~~~ -10 e~ott o~ 
correlation functions are calculated for different values of r. T . g . g P db' 
O(r) versus r is made by the MATLAB software and the slope IS e.s.tImate

d 
bJ. 

Th f this algOrIthm 1~ te~te \ 
least squares, also in ~AT~AB.. e program .or )f in the Henon mai) 
calculating the correlatIOn dImensIOn of the ~haoftlc att~act~ ulation The :-Iupt' 
mentioned above. Fig. 4 is the log-log plOttlllg rom t e c c . 
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or the correlation dimension estimated is .1.256, which agrees well to t hat in t 11< 
literature, 1.261 (Grassberger and ProcaccIa (1983)). 

The program is used for computing the dimension of the same chaotic attractl I[ 
in the .gravi~y mod~l mentio!led above. The log-log plot is shown in Fig. 5 and 
the dImensIOn estImated IS 1. 8251, though the attractor lies in a t h[\,\ 

dimensional phase space. 

3. THE LOGIT-BASED TRIP ASSIGNMENT MODEL 

Another problem in network flow dynamics is an extension of the logit-based 
trip assi&nment model. The logit-based model was first developed by 
Dial(1971). It was assumed that an individual driver chooses alternative routes 
according to the route cost in the way modeled by the logit discrete choice model. 
The model can be written as 

and 

where: 

rs 
x. 

z 

exp (-Be~S) 
v _____ z --, ViEp , VrsEP, 

rs ~ 'E exp ( -Be ~s) rs 
J p rs J 

Yz ~ E P ~ ·E 8rz~ x~s 1 lE L , 
rs z p z z 

rs 

P = set of origin-destination pairs of node, . . 
p = set of routes connecting origin rand destmatIOn s, 

rs 
L = set of links comprising the network, 
v = total flow from origin r to destination s, 

rs 
rs x. 
z 

flow on route i joining rand s, 

e~s cost on route i joining rand s, 
z 

Y
z 

= flow on link 1, f . 
d = cost on link l, and dz(Yz) is the link performance unctIOn, 

~s _ {I if 1 i ~k 1 is in route i joining rand s 
8Zi - 0 otherwI se. 

This model is static and does not consider con&estior fleffeCtt~·al~~~~a:/;vee ~~~~~i~~ 
can be introduced by assuming that the dalloc:~lOg 0 of7he previous stage, or, 
the current stage depends on the cost an so e ow 

rs ) (Jrs ( rs ( )) (
6) x. (n+ 1 = . x. n 

z z z 

exp (_Be~s ( n)) 
t 

- V 
rs~. exp(-Be~S(n)) 

JEP J rs 

where 
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and 

The link performance function d (y (n)) relates the t 1 
l l rave cost to the flow. It i.; 

norI?-ally ass~med that it is a monotonically increasin f. C 

feasIble functIOn can be used. See Braston(1976) for a ~ ~nctlOn of ~ow; any 
Sonis (1990) actually suggested the idea for this kind of eVIew .. Dendnnos and 
more general individual discrete-choice model and witho textenfslOnh' though to a 

u any urt er analysls 

Consider first the case where there is one O-D pair joined b t r k . 
vrs=l and using single subscripts only, then (6) becomes y wo m s, puttlllg 

x.(n+l) = C.(x.(n)) -
z z z 

exp (-Be. (n) ) 
z 

where 
~ . exp ( - Be. ( n) ) 

J J 

( 7) 

e.(n) = e.(x.(n)) . 
z z z 

It can b~ that (7) is simila: to the one-dimensional gravity model with the 
exponentIal deterrence functIOn, except that the cost function here takes a 
general for~. Thus, the ~nalysis of the one-di~ensional gravity model in (2.1) 
can be applIed to (7): It IS easy to ~ee that (7) IS a decreasing mapping and so 
has a umque fixed pOInt xi. By settIng j.t=0, (3= 0, and replacing te by xt: in 

1 1 
(5) we have 

d 
~ C1 (x

e ) 
1 

So if 

the fixed point is stable. Note that the cost function here is the link performance 
function. If the condition for stability is not satisfied as a result of changing I Jf 
parameter( s) then the fixed point becomes unstable and a stable period-2 (Jrbi t 
emerges. The fixed point and the period-2 orbit are the only possible steady 
states that could occur in this model; any initial condition will be at tracted to 
the stable fixed point or a stable period-2 orbit if the fixed point is nonstable. 

The general model (6) has been experimented numerically for ?everal simpl~ rllad 
networks. Fixed point and period-2 orbits seem to be the mam ~eha \·1 our III the 
model. This outcome is not too surprising because it is conSIstent WIth .the 
numerical study of the gravity model with the exponential deterrence functlull 
the two models are quite similar. The trip assignment model seems tu be mon' 
complicated with links and/or routes overlapping. Thi.s difference, how:,\-er. ha~ 
not been found to make the behaviour of the model ncher except causlllg large 
oscillations in link flows. 
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4. SUMMARY 

Th~ dynamical properties of th~ gravi.ty mo~el and the logit-based trip 
~ssIgr:men~ model .have .been stu~Ied. FIxed pomts and period two orbits are 
IdentIfied In one-~--(hmensIO~al gravIty I?-0del~ with th~ power and the exponential 
deterrenc~ .functIOns, and I? a one-dImensI.onal logIt-based assignment model. 
The condItIO?S for. the s~abIhty of these orbIts were found. Liapunov exponent:; 
and correlatIOn dI.men~IOns a~e fou.nd to be positive and fractal for chaotic 
attractors found In higher-<hmensIOnal gravity models with the combined 
deterrence functions. 

The study in t~is pape! has shown that the behaviour of the dynamical models 
depends on the InteractIOn of the flow and the cost on a link, or between an O-D 
pair: T~e mechanism is that trip mak~rs make their choices of routes, origins. or 
destInatIOns) based on travel costs; while the travel costs change with flows. An 
empirical study can be made to determine what the relations of the flows and the 
costs really are. It needs to be stressed that chaotic behaviour has been found in 
the gravity model with the combined deterrence function, which, according to 
(Ortuzar & Willumsen, 1990), can fit the observed data better than the other 
two forms of function. 

The gravity model with the exponential and power deterrence functions, and the 
logit-based trip assignment model considered in this paper, share a similar form. 
The analysis of the stability of fixed points and the period-2 orbits in 
one-dimensional models needs be generalized to higher-dimensional models. 
Although in a higher-dimensional model the stabilities can be studied by 
bounding the eigenvalue of the derivative at a fixed point, the results are not 
very conclusive. Some other methods are being explored currently and it is 
hopped to report in the future. 
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Figure 1. Liapunov expone,,!-ts for Henon map 
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Figure 2. Liapunov exponents for gravity model 
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Figure 3a The first Liapunov exponent for gravity model 
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Figure 3b The second and the third Liapunov exponents for gravity model 
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Figure 3c Bifurcation diagram for gravity model 
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Figure 4. Log ( C( r)) versus log( r) for Henon map 
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Figure 5. Log ( C( r)) versus log( r) for gravity model 
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APPENDIX 

This appendix gives the proves of the conclusion used III 2.1 about a 
one-dimensional map. 

Given a map 

where 
9 .(x.) 

F.(x) = ~~ , g.(x.) > 0, g'.(x.) < 0, i = 1, 2, 
~ ~ () ~~ ZZ 

l.J .g. x. 
J J J 

(.\ 1) 

then F has a unique fixed point, which bifurcates into a stable period-2 orbit as 
value of parameter increases. Trajectories from any initial conditions tend tu 
either the stable fixed point, or a stable period-2 orbit if the fixed point is 
nonstable. 

Prove 

First of all, it can be shown that Fl is a decreasing function of xl for 

where 
y. = F.(x). 

z 1 

Let 
P(x

l
) = Fl(xl ) - xl ' xl E [0,1] 

and note that Fl(O»O and Fl(l)<l because FI(x) is decreasing, then 

P(O) 
P(l) 

F/O) -0> 0, 

Fl(l)-l<O, 

d P (x) = :r=-Fl(x)-l<O. 
:1:1 U xl 

It follows that there is a unique point 

P(x
l

) = Fl (xl) - xl = o. 

x E [0,1] so that 
1 

The point is a fixed point of (AI), denote this point by xe, then 

xr = Fl(xr) 

The fixed point is stable if 

18 



The derivative ~s a~w.ay.s negative, so, if it is bigger than -I, disturbances dto\;n" 
oscillatory; :vhile If It IS less than -1, they ~row oscillatory. In the latter ca~e. 
t~e fixe~ pOInt becomes unstabl~. and a penod~2 orbit appears through a flip 
bIfurcatIOn. To study the stabIlity of the penod-2 orbit it is convenient to 
consider the second iteration 

where 
G.(x) = F.(F(x)), 

t t 
i = 1,2. (:\:?) 

It can be observed that G is a monotonically increasing map because 

A fixed point in G corresponds to a period-2 orbit in F. While the fixed point 
'Jfl in F is also a fixed point in G so that 

Xl = G1(Xl)' 
Let 

Q(x
1

) G1(x1) - Xl ' Xl E [0,1] 
then 

Q(Xl) G1(Xl) - Xl = O. 

and, if ~ is unstable, 

Q (~) = ~G(~)-l = (i}F/z€))2_ 1 >0. 
:1:1 1 UX1 1 Xl 

Therefore, in the neighborhood of ~, there are 

(a) 
(b) 

Q( Xl) G 1 ( Xl) - Xl < 0 

Q(x
1

) = G
1
(x1) - Xl > 0 

if Xl < Xl ' 
if Xl > Xl . 

On the other hand, G(x) is bounded on both sides and so is Q(xl ) such that 

(c) 

(d) 

Q(O) 

Q(l) 

G(O) - 0 ~ 0 

G(l) - 1 ~ 0 

In case of (a) and (c), there is at least one point Xli E [ 0, Xl) such that 

Q( xll) = G( xll) - Xli = 0 

and 
Q ( xP 1) = d G (T.P 1) - 1 = < 0 =* i} G 1 ( ~ 1) < 1 

:1:1 1 ~ 1 -1 1 

in case of (b) and (d), there is at least one point X12 E ( '" 1] 
While 

corresponding to Xli so that 

Q( x12) = G( :q2) - x1
2 = 0 

and 
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The two fixed points is in fact a period-2 orbit in F and is stable because the 
derivatives lie between 0 and 1. The analysis here is made to a general model. 
Therefore, it can be concluded that stable fixed point and period-2 orbits are the 
only possible behaviour in a one-dimensional decreasing map. Conclusions 
proved. 
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