Software Quality Model Requirements for
Software Quality Engineering

Marc-Alexis Coté', Witold Suryn?, Elli Georgiadou®

! Ubisoft Canada, Quebec, Canada.
Email: marc-alexis.cote@ubisoft.com

% Software and Information Technology Engineering Dept, Ecole de technologie
supérieure. Montréal, Canada.

E-mail: witold.suryn@etsmtl.ca wsuryn@ele.etsmtl.ca
? Middlesex University, London, UK
Email: e.georgiadon@mdx.ac.uk

Abstract

Software Quality Engineering is an emerging discipline that is concerned with
improving the approach to software quality. It is important that this discipline be
firmly rooted in a quality model satisfying its needs. In order to define the needs of
this discipline, the meaning of quality is broadly defined by reviewing the literature
on the subject. Software Quality Engineering needs a quality model that is usable
throughout the software lifecycle and that it embraces all the perspectives of
quality. The goal of this paper is to propose a quality model suitable for such a
purpose, through the comparative evaluation of existing quality models and their
respective support for Software Quality Engineering.

Introduction

Over the last decade, the general focus of the software industry has shifted from
providing ever more functionality to improving what has been coined as the user
experience. The user experience refers to characteristics such as ease-of-use,
security, stability and reliability. Improvements in such areas lead to an improved
quality as perceived by the end users. Some software products, most notably
Microsoft's next iteration of their Windows operating system, have been delayed
by as much as two years in order to improve their quality. There is no doubt that
software quality is becoming an increasingly important subject in software
engineering.

Traditionally, software requirements have been classified either as functional or
non-functional with eventual notions of quality hidden in the latter. As the industry
focus is shifting from functionality to improving quality, a new category of
requirements focused on quality is emerging. In order to define these new quality
requirements, quality itself must be defined. A quality model provides the
framework towards a definition of quality. Engineers have long recognised that in
order for something to find its way in a product, it should be properly defined and
specified. Unfortunately, the push towards software quality that can be observed in
the industry today is lacking a solid foundation in the form of an agreed upon
quality model that can be used not only to evaluate software quality, but also to
specify it.

Bourque [7] suggests that the implementation of quality in a software product is an
effort that should be formally managed throughout the Software Engineering
lifecycle. The implementation of quality should therefore begin with the
specification of user quality requirements. Such an approach to the implementation
of quality leads to Software Quality Engineering. Suryn [37] has suggested that
this discipline be defined as the application of a continuous, systematic,
disciplined, quantifiable approach to the development and maintenance of quality
of software products and systems; that is, the application of quality engineering to

software.

The objective of this paper is to identify the requirements for a software quality
model to be used as a foundation to Software Quality Engineering,

Definition of Software Quality

What exactly constitutes the quality of a product is often the subject of a hot
debate. The reason the concept of quality is so controversial is that people fail to
agree on what it means. For some it is “[the] degree to which a set of inherent
characteristics fulfills requirements” [22] while for others it can be synonymous
with “customer value” or even “defect levels” [19]. A possible explanation as to
why any of these definitions fail to garner a consensus is that they generally fail to
recognize the different perspectives of quality. Kitchenham and Pfleeger {28], by
reporting the teachings of David Garvin, report on the 5 different perspectives of
quality:

e The transcendental perspective deals with the metaphysical aspect of
quality. In this view of quality, it is “something toward which we strive as
an ideal, but may never implement completely.” [28];

e The user perspective is concerned with the appropriateness of the product
for a given context of use. Kitchenham and Pfleeger further note that
“whereas the transcendental view is ethereal, the user view is more
concrete, grounded in the product characteristics that meet user's needs”;

e The manufacturing perspective represents quality as conformance to
requirements. This aspect of quality is stressed by standards such as ISO

9001, which defines quality as “[the] degree to which a set of inherent
characteristics fulfills requirements” [22]. Other models, like the
Capability Maturity Model (CMM) state that the quality of a product is
directly related to the quality of the engineering process, thus emphasising
the need for a manufacturing-like process;

e The product perspective implies that quality can be appreciated by
measuring the inherent characteristics of the product. Such an approach
often leads to a bottom-up approach to software quality: by measuring
some attributes of the different components composing a software
product, a conclusion can be drawn as to the quality of the end product;

e The final perspective of quality is value-based. This perspective
recognises that the different perspectives of quality may have a different
importance, or value, to various stakeholders.

One could argue that in a world where conformance to ISO and IEEE standards is
increasingly present in contractual agreements and used as a marketing tool [1], all
the perspectives of quality are subordinate to the manufacturing view. This
importance of the manufacturing perspective has increased throughout the years
through works like Quality is Free (Crosby, 1979) and the popularity of
movements like Six-Sigma [3]. The predominance of the manufacturing view in
Software Engineering can be traced back to the 1960s, when the US Department of
Defense and IBM gave birth to Software Quality Assurance [38]. This has led to
the belief that adherence to a development process, as in manufacturing, will lead
to a quality product. The corollary to this belief is that process improvement will
lead to improved product quality. According to many renowned researchers, this
belief is false, or at least flawed. Geoff Dromey states:

“The flaw in this approach [that you need a quality process to produce a
quality product] is that the emphasis on process usually comes at the expense
of constructing, refining, and using adequate product quality models. [14].

Kitchenham and Pfleeger reinforce this opinion by stating:

“There is little evidence that conformance to process standards guarantees
good products. In fact, the critics of this view suggest that process standards
guarantee only uniformity of output [...]"'[28].

Furthermore, data available from Agile [19] projects show that high quality is
attainable without following a manufacturing-like approach.

However, recent studies conducted at Motorola [16, 12] and Raytheon [16] show
that there is indeed a correlation between the maturity level of an organization as
measured by the Capability Maturity Model and the quality of the resulting
product. These studies provide data on how a higher maturity level (as measured
by the CMM) can lead to:

o Improved error/defect density (i.e. the error/defect density lowers as
maturity improves)

e Lower error rate

e Lower cycle time (time to complete parts of the lifecycle)
e Better estimation capability

From these results, one could conclude quality can be improved by following a
mature process. Georgiadou (2003a) studied the development of lifecycle models,
and established that the maturity of the development process is reflected by the
emphasis and location of testing and other quality assurance activities. Her study
demonstrated that the more mature the process and its underlying lifecycle model
the earlier the identification of errors in the deliverables. However, these measured
improvements are directly related to the manufacturing perspective of quality.
Therefore, such quality improvement efforts fail to address the other perspectives
of quality. This might be one of the reasons that some observers of the software
development scene perceive the “quality problem™ as one of the main failings of
the software engineering industry. Furthermore, studies show that improvement
efforts grounded in the manufacturing perspective of quality are difficult to scale
down to smaller projects and/or smaller teams [29, 4]. Indeed, rather than being
scaled down in smaller projects, these practices are simply not performed.

Over recent years, researchers have proposed new models that try to encompass
more perspectives of quality than just the manufacturing view. Geoff Dromey
{13,14] proposed such a model in which the quality of the end product is directly
related to the quality of the artifacts that are a by-product of the process being
followed. Therefore, he developed different models that can be used to evaluate the
quality of the requirements model, the design model and the resulting software.
The reasoning is that if quality artifacts are conceived and produced throughout the
lifecycle, then the end product will manifest attributes of good quality. This
approach can clearly be linked to the product perspective of quality with elements
from the manufacturing view. This is certainly a step forward from the
manufacturing-only approach described above, but it fails to view the engineering
of quality as a process that covers all the perspectives of quality. Pfleeger [33]
warns against approaches that focus only on the product perspective of quality:

“This view [the product view] is the one often advocated by sofiware metrics
experts; they assume that good internal quality indicators will lead to good
external ones, such as reliability and maintainability. However, more research
is needed to verify these assumptions and to determine which aspects of quality
affect the actual product's use.”

Georgiadou [18] developed a generic, customisable quality model (GEQUAMO)
which enables any stakeholder to construct their own model depending on their
requirements. In a further attempt to differentiate between stakeholders Siaka et al
[35] studied the viewpoints of users, sponsors and developers as three important
constituencies/stakeholders and suggested attributes of interest to each
constituency as well as level of interest. More recently, Siaka and Georgiadou [36]
reported the results of a survey amongst practitioners (from the UK, Greece, Egypt
and Cyprus) on the importance placed on product quality characteristics. Using
their empirical results they extended ISO 9126 by adding two new characteristics

namely Extensibility and Security which have gained in importance in today’s
global and inter-connected environment.

The above observations illustrate the main disagreements that exist in both the
research community and the industry on the subject of software quality. The goal
of a quality model is in essence to provide an operational definition of quality.
While specific definitions have been established for given contexts, there is no
consensus as to what constitutes quality in the general sense in software
engineering. A first requirement for a software quality model to be useful as a
foundation for Software Quality Engineering is thus to encompass all the
perspectives of quality mentioned at the beginning of this section.

Specification and evaluation of quality

Software Quality Engineering calls for a formal management of quality throughout
the lifecycle. In order to support this requirement, a quality model should have the
ability to support both the definition of quality requirements and their subsequent
evaluation. This can be explained by referring to the manufacturing perspective of
quality, which states that quality is conformance to requirements. A quality model
that is to be used as the foundation for the definition of quality requirements should
help in both the specification of quality requirements and the evaluation of
software quality.

IEEE Std 1061-1998 [20] defines this as a top to bottom and bottom to top
approach to quality:

From a top down perspective the [quality] framework facilitates:

e Establishment of quality requirements factors, by customers and
managers early in a system's life cycle;

e Communication of the established quality factors, in terms of quality
sub-factors, to the technical personnel;

e Identification of metrics' that are related to the established quality
Jactors and quality sub-factors.

From a bottom up perspective the [quality] framework enables the managerial
and technical personnel to obtain feedback by

e Evaluating the software products and processes at the metrics level;

o Analysing the metric values to estimate and assess the quality factors.

'In 2002, the ISO/IEC JTC1 sub-committee SC7 — Systems and Software
Engineering — replaced the term “metric” by “measure” to align its vocabulary
with the one used in metrology. This paper will use the term measure whenever
possible.

A quality model that is to be used as the foundation for the definition of quality
requirements should help in both the specification of quality requirements and the
evaluation of software quality. In other words, it should be usable from the top of
the development process to the bottom and from the bottom to the top.

Evaluation of quality models

Three requirements that a quality model should possess to be a foundation for
Software Quality Engineering have been identified:

e A quality model should support the 5 different perspectives of quality as
defined by Kitchenham and Pfleeger [28],

e A quality model should be usable from the fop to the bottom of the
lifecycle as defined by IEEE Std 1061-1998 [20], i.e. should allow for
defining quality requirements and their further decomposition into
appropriate quality characteristics, subcharacteristics and measures;

e A quality model should be usable from the botfom to top of the lifecycle
as defined by IEEE Std 1061-1998 [20], i.e. should allow for required
measurements and subsequent aggregation and evaluation of obtained
results.

Four quality models will be evaluated with respect to these requirements.

MccCall

McCall [32] introduced his quality model in 1977. According to Pfleeger {33], it
was one of the first published quality models. Figure 1 presents this quality model.
Each quality factor on the left hand side of the figure represents an aspect of
quality that is not directly measurable. On the right hand side are the measurable
properties that can be evaluated in order to quantify the quality in terms of the
factors. McCall proposes a subjective grading scheme ranging from 0 (low) to 10
(high).

Regarding this model, Pressman notes that “unfortunately, many of the metrics
defined by McCall et al. can be measured only subjectively” [34]. It is therefore
difficult to use this framework to set precise and specific quality requirements.
Furthermore, some of the factors and measurable properties, like traceability and
self-documentation among others, are not really definable or even meaningful at an
early stage for non-technical stakeholders. This model is not applicable with
respect to the criteria outlined in the IEEE Standard for a Software Quality Metrics
Methodology for a top to bottom approach to quality engineering. Furthermore, it
emphasises the product perspective of quality to the detriment of the other
perspectives. It is therefore not suited as a foundation for Software Quality
Engineering according to the stated premises.

Cupnsciness

R]

”""'*MN.,,: T O 1
. "'w._"w..._n._n PRy
Rediability B ' LTSIy }
B Accirany]
‘. “’"‘"‘M""’ww { £ .
or e G
Efficiancy S Eeroy tolrencs]
T e——n SNV
it
e, .
I e Reate COaney
niagrls t*-wmw-..:wm
ey N Actiiss eontio]]
www’\ Py e - A,
™1 Actrsh 3Udt 1
fsahilits A s e et -
Usahility 3;“'““”” S— T 1
e, S,
o e "..,.wa-s..,_.l Tr&ﬂrfl v ;
o, ARG
Matriainability oo, M""“‘Mv.,wy -
Mudniainability e, g COGGRLA RS]
Simphoin]
Testabiliyy d LRt nss ;
adrumagalion 1
Flexihilisy P R R 3
Expandatiley 1
Vortahiliey Genatilie i
- Moditanne]
MMM,::TT:.@Q{:—-;:" Sofbearesystom ndegendencd
Reusability - e N, —
MU . el { TRACHA % INURENATER |
-
vl N, Consruninatives Lonmanality
oy 9 an LT i TORNNE D e
IAYAIA WYY . N
[niaroparakility : ! ST 1

Figure 1: McCall’s Quality Model

Adapted from Pfleeger (2003) and McCall et al. (1977)

Boehm

Boehm's quality model improves upon the work of McCall and his colieagues [5].
As Figure 2 shows, this quality model loosely retains the factor-measurable
property arrangement. However, for Boehm and his colleagues, the prime
characteristic of quality is what they define as “general utility”. According to
Pfleeger (2001), this is an assertion that first and foremost, a software system must
be useful to be considered a quality system. For Boehm, general utility is
composed of as-is utility, maintainability and portability [6]:

e How well (easily, reliably, efficiently) can I use it [software system] as-

is?

e How easy is it to maintain (understand, modify, and retest)?
e Can I still use it if I change my environment?

If the semantics of McCall's model are used as a reference, the quality factors
could be defined as: Portability, Reliability, Efficiency, Human Engineering,
Testability, Understandability and Modifiability. These factors can be decomposed
into measurable properties such as Device Independence, Accuracy, Completeness,
etc. Portability is somewhat incoherent in this classification as it acts both as a top
level component of general utility, and as a factor that possesses measurable
attributes.

Portahility Devize independence [

Selfi-cantainedness |

Acouracy]
Feliability =
Camplatenss [
Pebusnessintegrity |
Utility Efficiency Censistensy |
\‘ Accowntahility |
{ Human Engmp;nng ‘ Devics Alidany i

General

Wility / Accassibility |
Conumwisativenesz
Testakility f—g : |
Seli-dasmiptiveness |
3
Structiandnzss]
Maintainatility IInderstandahility R p
‘ Cunazenesz |
Legihility I

Modifiability Augnient ity]

Figure 2: Boehm’s quality model
Adapted from Pfleeger (2003), Boehm et al. (1976; 1978)

It is interesting to note that in opposition to McCall's model, Boechm's model is
decomposed in a hierarchy that at the top addresses the concerns of end-users
while the bottom is of interest to technically inclined personnel. It is in effect the
emergence of the user perspective of quality. However, this interest wanes when
one reads Boehm's definition of the characteristics of software quality. Except for
General Utility and As-is Utility, all definitions begin with “Code possesses the
characteristic [...]”. The measurable properties and characteristics therefore
concentrate on highly technical details of quality that are difficult to grasp for non-
technical stakeholders that are typically involved early in the software lifecycle.

The characteristics General Utility and As-is Utility are too generic and imprecise
to be useful for defining verifiable requirements. Like the McCall model, this
model is mostly useful for a bottom to top approach to software quality (i.e. it can
effectively be used to define measures of software quality, but is more difficult to
use to specify quality requirements).

While this model is a step forward in the sense that it provides basic support for a
top to bottom approach to software quality, this support is too ephemeral to be
considered as a solid foundation for quality engineering.

Dromey

Dromey's [13] model takes a different approach to software quality than the two
previously presented models. For Dromey, a quality model should clearly be based
upon the product perspective of quality:

“What must be recognized in any attempt to build a quality model is that
software does not directly manifest quality attributes. Instead it exhibits
product characteristic that imply or contribute to quality attributes and other
characteristics (product defects) that detract from the quality attributes of a
product. Most models of software quality fail to deal with the product
characteristics side of the problem adequately and they also fail to make the
direct links between quality attributes and corresponding product
characteristics. ”[13] (Emphasis added to support the argument)

Dromey has built a quality evaluation framework that analyzes the quality of
software components through the measurement of tangible quality properties
(Figure 3). Each artifact produced in the software lifecycle can be associated with a
quality evaluation model. Dromey gives the following examples of what he means
by software components for each of the different models:

e Variables, functions, statements, etc. can be considered components of the
implementation model,

e A requirement can be considered a component of the requirements model;
e A module can be considered a component of the design model;
e FEtc.

According to Dromey [13], these components all possess intrinsic properties that
can be classified into four categories:

e Correctness: Evaluates if some basic principles are violated.

e Internal: Measure how well a component has been deployed according to
its intended use.

e Contextual: Deals with the external influences by and on the use of a
component.

e Descriptive: Measure the descriptiveness of a component (for example,
does it have a meaningful name?).

These properties are used to evaluate the quality of the components. This is
illustrated in Figure 4 for a variable component present in the implementation

model.

Prodact moded

Componeart &

Tangible

- Ielualily careying

propexsies

Component B

Tengible

-Peeiorality Tarrving

properiias

Compuonent

Figure 3 : Dromey’s Quality Model

{inkages

FHigh Jevel

ity stiritates

Cuality |
Carrying Propexrty Quality
Properties Classilication Impact

l axsgned]« LOEYORL O } --------- -I FURSINREHEY reftadgliye]

-—-l prITine l———-

g Ntaany

l»-—-——i Tunctiznaicy refiabifisy]

ri stgin puses

.......... 4 OIS

‘{ Fuwstes

; diadility i

erianle }-——-«l IR BISIER I—-——a CHRETIRE H Maisteinadiiiey, saose l
-—i iz !-———~ santehng: H Massatwnbite, eoasn l
——41 ol dosndpive }———~— deseriative H Maiatainaniity reuse I
»«l ducutpentid }—-1 duserptive lv——l Mainteinaziiy, rouse !

Figure 4 : Quality evaluation of a variable component

It seems obvious from the inspection of the previous figures that Dromey's model
is focused on the minute details of quality. This is stated explicitly:

“What we can do is identify and build in a consistent, harmonious, and
complete set of product properties (such as modules without side effects) that
result in manifestations of reliability and maintainability.” [13].

For Dromey, the high level characteristics of quality will manifest themselves if
the components of the software product, from the individual requirements to the
programming language variablesl, exhibit quality-carrying properties. Dromey's
hypothesis should be questioned. If all the components of all the artifacts produced
during the software lifecycle exhibit quality-carrying properties, will the resulting
product manifest characteristics such as maintainability, functionality, and others?

The following analogy will be useful in answering this question:

If you buy the highest quality flour, along with the highest quality apples and
the highest quality cinnamon, will you automatically produce an apple pie that
is of the highest quality?

The answer is obviously negative. In addition to quality ingredients, at least three
more things are needed in order to produce an apple pie of the highest quality:

e A recipe (i.e. an overall architecture and an execution process). Dromey
acknowledges this by identifying process maturity as a desirable high
level characteristic. However, it is only briefly mentioned in both his
publications on the subject [13, 14].

e The consumer's tastes must be taken into account. In order for the result to
be considered of the highest quality by the consumer, it needs to be tuned
to his tastes. This is akin to what is commonly called user needs in
software engineering. User needs are completely ignored by Dromey.
However, as it was demonstrated in the introduction, they are an integral
and non-negligible part of software quality.

» Someone with the qualifications and the tools to properly execute the
recipe.

While Dromey's work is interesting from a technically inclined stakeholder's
perspective, it is difficult to see how it could be used at the beginning of the
lifecycle to determine user quality needs. Dromey [13] states that software quality
“must be considered in a systematic and structured way, from the tangible to the
intangible”. By focusing too much on the tangible, Dromey fails to build a model
that is meaningful for stakeholders typically involved at the beginning of the
lifecycle. Do end users care about the variable naming convention or module
coupling? In most cases, it is doubtful that this question can be answered
affirmatively. Therefore, this model is rather unwieldy to specify user quality
needs. This does not mean that it cannot be useful later on as a checklist for
ensuring that product quality is up to standards. It can definitely be classified as a
bottom to top approach to software quality.

Furthermore, as was illustrated at the beginning of this section, this quality model
has its roots in the product perspective of quality, to the detriment of other

perspectives. Therefore, it fails to qualify as a foundation for Software Quality
Engineering according to the established requirements.

ISO/IEC 9126

In 1991, the International Organization for Standardization introduced a standard
named ISO/IEC 9126 (1991): Software product evaluation - Quality characteristics
and guidelines for their use. This standard aimed to define a quality model for
software and a set of guidelines for measuring the characteristics associated with it.
ISO/IEC 9126 quickly gained notoriety with IT specialists in Europe as the best
way to interpret and measure quality [2]. However, Pfleeger [33] reports some
important problems associated with the first release of ISO/IEC 9126:

e There are no guidelines on how to provide an overall assessment of
quality.

e There are no indications on how to perform the measurements of the
quality characteristics.

e Rather than focusing on the user view of software, the model's
characteristics reflect a developer’s view of software.

According to Pfleeger, this first incarnation of ISO/IEC 9126 is not usable as a
bottom up approach to quality engineering, and even less usable as a top down
approach.

In order to address these concerns, an ISO committee began working on a revision
of the standard. The results of this effort are the introduction of a revised version of
ISO/EC 9126 focusing on the quality model, and a new standard, ISO/IEC 14598
[21] focusing on software product evaluation. ISO/IEC 14598 addresses Pfleeger's
first concern while the revision to ISO/IEC 9126 aims to resolve the second and
third issues. ISO/IEC 9126 is now a four part standard;

o ISO/IEC 9126-1 [24] defines an updated quality model.
o ISO/IEC 9126-2 [26] defines a set of external measures.
o ISO/IEC 9126-3 [27] defines a set of internal measures.
o ISO/IEC 9126-4 [25] defines a set of quality in use measures.

The new quality model defined in ISO/IEC 9126-1 recognises three aspects of
software quality and defines them as follows: (the full definition is given as it is
pertinent to the discussion that ensues).

e quality in use:

Quality in use is the user's view of the quality of the software product when it is
used in a specific environment and a specific context of use. It measures the
extent to which users can achieve their goals in a particular environment,
rather than measuring the properties of the sofiware itself. [24]

e external quality:

External quality is the totality of characteristics of the software product from
an external view. It is the quality when the software is executed, which is
typically measured and evaluated while testing in a simulated environment with
simulated data using external metrics. During testing, most faults should be
discovered and eliminated. However, some faults may still remain after testing.
As it is difficult to correct the software architecture or other fundamental

design aspects of the software, the fundamental design remains unchanged
throughout the testing. [24]

e internal quality:

Internal quality is the totality of characteristics of the software product from an
internal view. Internal quality is measured and evaluated against the internal
quality requirements. Details of software product quality can be improved
during code implementation, reviewing and testing, but the fundamental nature
of the software product quality represented by the internal quality remains
unchanged unless redesigned. [24]

The internal and external quality model is inspired from McCall and Boehm's
work. It is a three-layer model composed of quality characteristics, quality
subcharacteristics and quality measures. Figure 5 illustrates this model. More than
100 measures of internal and external quality are proposed as part of the standard.
It is important to note that the measures do not make an exhaustive set, which
means that other measures can also be used.

Finally, Quality in use is modeled in a different way than internal and external
quality. Figure 6 illustrates the two-layer quality in use model composed of
characteristics and quality measures.

externat and

internat
quality
| 1 1 1 | |
functionatity refiability usabitlty efficiency maintainability portabifity
suitability . L . o ity
matrty understandaiity s § o analysabilly adaptability
Acruracy fault t:erance lzarmabity Hme behavour changealxity nstafanity
atercperasiity rRroveraity operabllity resource stabaty co-existence
securtly attraciiveness utisation tesmabiily replaceabitity
functichaiity reliaidliyy usability efficiency malntanability pottabity
wrgliance comphance compliafice compliance compdiance complance

Figure 5 : 3-layer model for internal and external quality. Adapted from [24]

satisfaction

Figure 6 : Quality in use model. Adapted from [24]

Theoretically, internal quality, external quality and quality in use are linked
together with a predictive model. This is illustrated in Figure 7.

ugmgg“‘y Apwnad> | Quality in use

use and fesdback A

nplh 23 RN ITSTLUN ey e
copdribeste 10 541-‘!?1,-18’;!/9‘ ngicntas

Bxternal

vafidation '

coadibite o specifvig Y8 L)

¥

lnternal Internal
quality Fowwudt quatity

External
guality
raquirement

=

>

requirement

verification

Figure 7 : Relationships between the different aspects of quality. Adapted from
[24]

This prediction relationship states that user quality needs should first be established
and specified using the Quality in use model. From these requirements as well as
other sources, external quality requirements should be established using the
external quality model. Finally, the internal quality requirements should be
constructed from the external quality requirements and other sources. Once the
requirements are established and software construction is under way, the quality
model can be used to predict the overall quality. For example, measurement of

internal quality can be useful in predicting external quality. Likewise,
measurement of external quality can be useful in predicting quality in use.

The above paragraphs describe the ideal theoretical model that links these three
aspects of quality. However, in reality, no model may claim to follow perfectly this
prediction mechanism. Although the ISO/IEC 9126 model follows this approach
closely, no claims are made as to the real predictive power of the model. While the
links between internal and external quality seem rather obvious because the models
are essentially the same, caution must be exercised. While the name of the
characteristics and subcharacteristics are the same, the links between internal and
external quality must be verified empirically. The same reasoning applies to the
links between external quality and quality in use.

The new version of ISO/IEC 9126 is gaining momentum in the industry. Some
corporate quality models, for example MITRE's SQAE [31], are beginning a
migration from a model based on McCall's and Boehm's research to one based on
ISO/IEC 9126 (8, 9, 10]. This new version of ISO/IEC 9126 is thus seen as an
improvement upon the older quality models.

It is interesting to see how the three aspects of quality defined above can be
directly linked to the perspectives of quality that were outlined previously. More
specifically:

o ISO/EC 9126-4, which defines quality in use, is directly related to the
user and value-based perspectives. The definition of the user perspective
of quality states that it is concerned with the appropriateness of a product
for a given context of use. Quality in use is defined as the capability of
the software product to enable specified users to achieve specified goals
in specified contexts of use. The relationship between the two is clear.
Quality in use and the value based perspective of quality are linked
essentially through the Satisfaction characteristic. This characteristic
inherently recognises that quality can have a different meaning and/or
value for different stakeholders. Satisfaction levels can thus be set
according to those levels of perception. This has been demonstrated by
the study reported in [36].

o ISO/IEC 9126-3, which defines internal quality, and ISO/IEC 9126-2,
which defines external quality, are directly related to both the
manufacturing and product perspectives. The definitions of the quality
characteristics Functionality and Reliability can be linked with the
manufacturing perspective of quality. Reliability, Usability, Efficiency,
Maintainability and Portability are all inherent characteristics of the
product and a manifestation of the product perspective of quality.

Chuakty in Expuvaat intpraal

Vst Quality Quntity
I JJNN ISu—— |
r/‘ = - N £ .\\‘\
{u Manufaclunag gerspective R

=
S aaar,,

Figure 8 : Relationships between ISO/IEC 9126 and the perspectives of quality

From the review of the different quality models, one might point out that none
seem to address the transcendental perspective of quality. One might even ask the
following pertinent question: Does ISO/IEC 9126 address the transcendental
perspective of quality? Recall that the transcendental perspective of quality relates
to quality as something that is recognised but not defined. At this point, the
following hypothesis will be made:

As the transcendental perspective of quality cannot be defined, it cannot be
explicitly implemented in a software product. However, the transcendental

aspect of quality will emerge when a holistic approach to quality engineering is
taken.

This model seems to recognise all the perspectives of quality as important
contributors to the overall assessment of quality. It takes an incremental approach
to software quality that begins with quality in use, something that is easy to grasp
for non-technical stakeholders, and ends with internal quality, something more
technically inclined stakeholders will feel more comfortable with. Furthermore,

there is a comprehensive set of suggested measures that allow for the assessment of
software quality.

ISO/TEC 9126 is thus the only model that fulfills all the stated requirements for a
model to be useful as a foundation to Software Quality Engineering.

Conclusion

This paper has defined three requirements that a quality model should meet to
serve as a foundation to Software Quality Engineering:

e A quality model should support the 5 different perspectives of quality as
defined by Kitchenham and Pfleeger [28].

A quality model should be usable from the fop to the bottom of the
lifecycle as defined by IEEE Std 1061-1998 [20].

A quality model should be usable from the bottom to top of the lifecycle
as defined by IEEE Std 1061-1998 [20].

These criteria were applied to four quality models:

It was found that the models proposed by McCall, Boehm and Dromey
focus on the product perspective of quality to the detriment of other
perspectives. Furthermore, they are primarily useful in a bottom up
approach to quality that is not suitable for Software Quality Engineering,

ISO/IEC 9126 is the only model that supports all the perspectives of
quality (with the exception of the transcendental perspective as noted).
Furthermore, its predictive framework clearly supports both the top down
and bottom up approaches.

This paper has focused on analysing the semantics of the different models with
respect to the stated requirements. /n theory, ISO/TEC 9126 seems well suited for
Software Quality Engineering. Further research is needed to see if the measures
associated with ISO/IEC 9126 make this model usable for Software Quality
Engineering in practice.

References

1

(98)

Adey, C. A. & Hill, G. K. (2000). Quality / ISO 9000 as a Marketing Tool,
[En ligne]. http://www.smps.org/mrc/articles/0200qualityiso.pdf

Bazzana, G., Anderson, O., & Jokela, T. (1993). ISO 9126 and ISO 9000:
Friends or foes? Presented at Software Engineering Standards Symposium.
Biehl, R. E. (2001). Six sigma for Software. IEEE Software, 21(2), 68-70.
Boddie, J. (2000). Do We Ever Really Scale Down?, IEEE Software, 17(5),
79-81.

Boehm, B. W., Brown, J. R, Kaspar, J. R,, Lipow, M. L. & MacCleod, G.
(1978). Characteristics of Software Quality. New York: American Elsevier.
Boehm, B. W, Brown, J. R,, Lipow, M. L. (1976). Quantitative Evaluation of

Software Quality. Proceedings of the 2nd international conference on Software

engineering, San Fransisco, California, United States, 592-605, IEEE
Computer Society Press.

Bourque, P, R. Dupuis, A. Abran, J.W. Moore, L.L. Tripp et S. Wolff, (2000)
Fundamental Principles of Software Engineering - A Journey, Journal of
Systems and Software,

Coté, M.-A,, Suryn, W., Martin, R. A., Laporte, C. Y. (2004a). Evolving a
Corporate Software Quality Assessment Exercice: A Migration Path to
ISO/IEC 9126, Software Quality Professional, 6(3), 4-17.

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

Coté, M.-A., Suryn, W., Martin, R. A., Laporte, C. Y. (2004b). The analysis of
the industrial applicability of software product quality ISO standards: the
context of MITRE's Software Quality Assessment exercise, in Proceedings of

the 12th International Software Quality Management & INSPIRE Conference
(BSI) 2004, Canterbury, Kent, United Kingdom.

Cbté, M.-A., Suryn, W_, Laporte, C. Y., Martin, R. A. (2005). The Evolution
Path for Industrial Software Quality Evaluation Methods Applying ISO/IEC
9126:2001 Quality Model: Example of MITRE's SQAE Method, Software
Quality Journal, vol. 13, 17-30.

Crosby, P.B. (1979). Quality is free: The art of making quality certain. New
York : McGraw-Hill.

Diaz M. & Sligo, J. (1997). How Software Process Improvement Helped
Motorola, IEEE Software, 17(5), 75-81.

Dromey, R. G. (1995). 4 model for software product quality. IEEE
Transactions on Software Engineering 21, 146-162.

Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, 13(1), 33-43.
Eickelman, N. (2003). An Insider's View of CMM Level 5, IEEE Software,
20(4), 79-81.

Haley, T. J. (1996). Software Process Improvement at Raytheon, IEEE
Software, 13(6), 33-41.

Georgiadou E. (2003 a) Software Process and Product Improvement, A
Historical Perspective, International Journal of Cybernetics, Volume 1, Nol,
Jan 2003 pp172-197

Georgiadou E.(2003b) GEQUAMO- A Generic, Multilayered, Customisable,
Software Quality Model, Volume 11, Number 4, 313-323 November 2003
Highsmith, J. (2002). Agile Software Development Ecosystems, Addison-
Wesley Professional.

IEEE. 1998. Std. 1061-1998 IEEE Standard for a Software Quality Metrics
Methodology.

ISOAEC. 1999a. ISO/IEC 14598-1: Software product evaluation-Part 1 :
General overview. Geneva, Switzerland: International Organization for
Standardization.

ISO/IEC. 1999b. ISO/IEC 9000: 2000 Quality management systems --
Fundamentals and vocabulary . Geneva, Switzerland: International
Organization for Standardization.

ISO/IEC. 2000. ISO/IEC 15288: System Life Cycle Processes. Geneva,
Switzerland: International Organization for Standardization.

ISO/IEC. 2001a. ISO/IEC 9126-1: Software Engineering-Software product
quality-Part 1 : Quality model. Geneva, Switzerland: International
Organization for Standardization.

ISO/IEC. 20010, ISO/IEC DTR 9126-4: Software engineering-Software
product quality-Part 4: Quality in use metrics. Geneva, Switzerland:
International Organization for Standardization.

ISO/IEC. 2003a. ISO/IEC TR 9126-2: Software Engineering-Software product
quality-Part 2 : External metrics. Geneva, Switzerland: International
Organization for Standardization.

27

28

29

30

31

32

33

34

35

36

37

38

ISO/IEC. 2003b. ISO/IEC TR 9126-3: Software engineering-Software product
quality-Part 3: Internal metrics. Geneva, Switzerland: International
Organization for Standardization.

Kitchenham, S. L., Pfleeger (1996). Software Quality: The Elusive Target.
IEEE Software,13(1), 12-21.

Laitinen, M. (2000). Scaling Down is Hard to Do, IEEE Software, 17(5), 78-
80.

Leffingwell, D. & Widrig, D. (1999). Managing Software Requirements, A
Unified Approach. Addison-Wesley Professional.

Martin, R. A. & Shaffer, L. (1996). Providing a framework for effective
software quality assessment. Bedford, Mass : MITRE Corporation.

McCall, J. A, Richards, P. K., & Walters, G. F. (1977). Factors in software
quality. Griffiths Air Force Base, N.Y. : Rome Air Development Center Air
Force Systems Command.

Pfleeger, S. L. (2001). Software Engineering: Theory and practice (2nd ed).
Upper Saddle River, N.J. : Prentice Hall.

Pressman, R. S. (2001). Software Engineering: A practitioner's approach (5th
ed.). Boston: McGraw-hill.

Siaka K V., Berki E, Georgiadou E, Sadler C (1997): The Complete Alphabet
of Quality Software Systems: Conflicts and Compromises, 7th World
Congress on Total Quality&Qualex 97, New Delhi, India, 17-19 February
Siaka, K.V., Georgiadou, E. PERFUMES: A Scent of Product Quality
Characteristics, SQM 2005, March 2005, UK

Suryn, W. (2003). Course notes SYS861. Ecole de Technologie Supérieure,
Montréal.

Voas, J. (2003). Assuring Software Quality Assurance. IEEE Software, 20(3),
48-49,

