
Software Quality Model Requirements for
Software Quality Engineering

Marc-Alexis Côté1, Witold Suryn2, Elli Georgiadou3

‘Ubisoft Canada, Quebec, Canada.

Emafi: marc-alexis.cote@ubisoft.com
2 Software and Information Technology Engineering Dept, École de technologie

supérieure. Montréal, Canada.

E-mail: witold.suryn@etsmtl.ca wsuiyn@ele.etsmtl.ca

Middlesex Universïty, London, UK

Email: e. georgiadou@mdx.ac.uk

Abstract

Software Quality Engineering is an emerging discipline that ïs concemed with
improving the approach to software quality. It is important that this discipline be
firmly rooted in a quality model safisfying its needs. In order to define the needs of
this discipline, the meaning of quality is broadly defined by reviewing the literature
on the subject. Software Quality Engineering needs a quality model that is usable
throughout the software lifecycle and that it embraces ail the perspectives of
quality. The goal of this paper is to propose a quality model suitable for such a
purpose, through the comparative evaluation of existing quality models and their
respective support for Software Quality Engineering.

Introduction
Over the last decade, the general focus of the software industiy has shffled from
providing ever more functionality to improving what bas been coined as the user
expenence. The user experience refers to charactensucs such as ease-of-use,
security, stability and reliability. Improvements in such areas lead to an improved
quality as perceived by the end users. Some software products, most notably
Microsoft’s next iteration of their Windows operating system, have been delayed
by as much as two years in order to improve their quality. There is no doubt that
software quality is becoming an increasingly important subject in software
engineering.

Traditionafly, software requïrements have been classified either as ftncfional or
non-ffinctional with eventual notions of quality hidden in the latter. As the indusliy
focus is shifting from ffincflonality to improving qualitv, a new categoiy of
requirements focused on qualîty is emerging. In order to define these new quality
requirements, quality itself must be defined. A quality model provides the
framework towards a defmiflon of quality. Engineers have long recognised that in
order for something to find ils way in a product, it should be properly defined and
specified. Unfortunately, the push towards software quality that can be observed in
the industiy today is lacking a solid foundation in the fonn of an agreed upon
quality mode! that can be used not on!y to evaluate software quality, but also to
specïfy il.

Bourque [7J suggests that the implementafion of qua!ity in a software product is an
effort that should be formally managed throughout ifie Software Engineering
lifecycle. The implementation of quality should therefore begin with the
specification of user quality requirements. Such an approach to the implementation
of quality leads to Software Quality Engineering. Suiyn [37J has suggested that
this discipline be defined as the application of a continuous, systematic,
disciptined, quantifiable approach to the development and maintenance of quality
ofsoftware products and systems; that is, the application ofquality engineering to
software.

The objective of this paper is to idenflfy the requirements for a software quality
model to be used as a foundation to Software Quality Engineering.

Definition of Software Quality
What exactly constitutes the qualily of a product is often the subject of a hot
debate. The reason the concept of quality is so controversial is that people fail to
agree on what it means. For some it is “[the] degree (o which a set of inherent
charactenstics fulfihis requirements” [22J while for others it can be synonymous
with “customer value” or even “defect levels” [19] A possible explanation as to
why any of these definitions fail to gamer a consensus is that they generally fail to
recognize the different perspectives of quality. Kitchenham and Pfleeger [28], by
reporting the teachings of David Garvin, report on the 5 different perspectives of
quality:

• The transcendental perspective deals with the metaphysical aspect of
quahty. In this view of quality, it is “something toward which we strive as
an ideal, but may neyer imp!ement completely.” [2$];

• The user perspective is concerned with the appropnateness of the product
for a given context of use. Kitchenham and Pfleeger fiuther note that
“whereas die transcendental view is ethereal, the user view is more
concrete, grounded in die product charactenstics that meet user’s needs”;

• The manufacturing perspective represents qualitv as conformance b
requirements. This aspect of quality is stressed by standards such as ISO

9001, which defines quality as “[the] degree to which a set of inherent
characterisflcs fiultilis requirements” [22]. Other models, like the
Capability Maturity Model (CMM) state that the quality of a product is
direcily related to the quality of the engineering process, thus emphasising
the need for a manufactiiring-like process;

• The product perspective implies that quality cari be appreciated by
measunng the inherent charactenstics of the product. Such an approach
oflen leads to a bottom-up approach to software quality: by measuring
some attributes of the dîfferent components composing a software
product, a conclusion cari be drawn as to the quality of the end product;

• The final perspective of quality is value-based. This perspective
recognises that the different perspectives of quality may have a different
importance, or value, to various stakeliolders.

One could argue that in a world where conformance to 150 and 1EEE standards is
increasingly present in contractual agreements and used as a marketing tool [1], aIl
the perspectives of quality are subordinate to the manufacturing view. This
importance of the manufacturing perspective bas increased throughout the years
through works lilce Quality is Free (Crosby, 1979) and the populanty of
movements like Six-Sigma [3] The predominance of the manufactunng view in
Software Engineering can be traced back to the 1 960s, when the US Department of
Defense and IBM gave birth to Software Quality Assurance [381. This has led to
the belief that adherence to a development process, as in manufacturing, will lead
to a quality product. The corollary to this belief is that process improvement will
lead to improved product quality. According to many renowned researchers, this
belief is false, or at least flawed. Geoif Dromey states:

“The fiaw in this apptoach [that you need a quaiity process to produce a
quaiityproduct] is that the emphasis on process usuaity cornes at the expense
0fconstructing, refining, and using adequate product quaiity modeis. “[14].

Kitchenham and Pfleeger reïnforce this opinion by stating:

“There is littie evidence that conformance to process standards guarantees
good products. In fact, the ctitics ofthis view suggest that process standards
guarantee only uniforrnity ofoutput [.1 “[281

Furthermore, data available ftom Agile [19] projects show that high quality is
attainable without following a manufacturing-like approach.

However, recent studies conducted at Motorola [16, 12] and Raytheon [16] show
that there is indeed a correlation between the maturity level of an organization as
measured by the Capability Matunty Model and the quality of the resulting
product. These studies provide data on how a higher maturity level (as measured
by the CMM) can lead to:

• Improved error/defect density (i.e. the error/defect density lowers as
maturity improves)

• Lower error rate

• Lower cycle time (tune to complete parts of the lifecycle)

• Beiler estimation capability

From these resuits, one could conclude quality cari be improved by following a
mature process. Georgiadou (2003a) studied the development of lifecycle models,
and established that the maturity of the development process is reflected by the
emphasis and location of testing and offier quality assurance activïties. Her study
demonstrated that the more mature the process and its underlying lifecycle model
the earlier the identification of enors in the deliverables. However, these measured
improvements are dfrectly related to ifie manufacturing perspective of quality.
Therefore, such quahty improvement efforts fail to address tire other perspectives
of quality. Thïs might be one of the reasons that some observers of the software
development scene perceive the “quality problem” as one of the main failings of
the software engineering industry. Furthennore, studies show that improvement
efforts grounded in tire manufacturing perspective of quality are difficuit to scale
down to smaller projects and/or smaller teams [29, 4]. Indeed, rather than being
scaled down in smaller projects, these practices are simply not performed.

Over recent years, researchers have proposed new models that tiy to encompass
more perspectives of quality than just tire manufacturing view. Geoif Dromey
[13,14] proposed such a model in which tire quality of tire end product is directly
related to tire quality of the artifacts that are a by-product of the process being
followed. Therefore, he developed different models that cari be used to evaluate tire
quality of the requirements model, tire design model and tire resulfing software.
Tire reasoning is that if quality artifacts are conceived and produced throughout tire
lifecycle, then the end product will manifest attributes of good quality. This
approach cari clearly be Iinked to tire product perspective of quality with elements
from tire manufacturing view. This is certahdy a step forward from tire
manufactunng-only approach descnbed above, but it fails to view the engineering
of quality as a process that covers ail tire perspectives of quality. Pfleeger [33]
wams against approaches that focus only on tire product perspective of quality:

“This view [the product view] is the one often advocated by software metrics
experts; they assume that good internat quatity indicators witl lead to good
externat ones, such as retiabilily and maintainability. However, more research
is needed to veri these assumptions and to de termine which aspects ofquaiity
affect the actuai product’s use.”

Georgiadou [181 developed a generic, customisable quality model (GEQUAMO)
which enables any stakeholder to construct their own model depending on their
requirements. In a further attempt to differentiate between stakeholders Siaka et al
[35] studied tire viewpoints of users, sponsors and developers as three important
constituencies/stakeholders and suggested attributes of interest to each
constituency as welI as level of interest. More recenfly, Siaka and Georgiadou [36]
reported the resuits of a survey amongst pmctitioners (from the UK, Greece, Egypt
and Cypms) on tire importance placed on product quality charactensflcs. Using
ilieir empincal resuits they extended 150 9126 by adding two new charactenstics

namely Extensïbility and Security which have gained in importance in today’s
global and inter-connected environment.

The above observations illustrate the main disagreements that exist in both the
research community and the industry on the subject of software quality. The goal
of a quality model is in essence to provide an operational definition of quality.
While specific defimtions have been established for given contexts, there is no
consensus as to what constimtes quality in the general sense in software
engineering. A first requirement for a software quality model to be useful as a
foundation for Software Quality Engineering is thus to encompass ah the
perspectives of quahity mentioned at the beginning of this section.

Specification and evaluation of quality

Software Quality Engineering cahis for a formai management of quality throughout
the lifecycle. In order to support this requirement, a quality model should have the
ability to support both the definiflon of quality requirements and their subsequent
evaluation. This can be explained by refernng to the manufacturing perspective of
quality, which states that quality is conformance to requirements. A quahity model
that is to be used as the foundation for the definitïon of quahity requirements should
help in both ifie specîfication of quality requirements and the evaluation of
software qualïty.

ŒEE Std 1061-199$ [201 defines this as a top to bottom and bottom to top
approach to quality:

From a top doxvn perspective the [qualilyJframeworkfacilitates:

• Establishment ofquality requirementsfactors, by customers and
managers early in a system ‘s lfe cycle;

• Communication of the estabtished quatityfactors, in ternis ofquatity
sub-factors, to the technical personnel;

• Identification ofmetrics’ that are related to the established qualily
factors and quality sub-factors.

From a bottom up perspective the [qualityJframework enab tes the managerial
and technicat personnel to obtainfeedback by

• Evaluating the software products andprocesses at the metrics level;

• Analysing the metric values to estimate and assess the quaiityfactors.

In 2002, the ISOIIEC JTC1 sub-committee SC7 — Systems and Software
Engïneering — replaced the term “metric” by “measure” to align its vocabulary
with the one used in metrologv. This paper will use the term measure whenever
possible.

A quality mode! that is to be used as the foundation for the definition of quality
requirements should help in both the specification of quality requirements and the
evaluation of software quality. In other words, it shotild be usable ftom the top of
the development process to the bottom and from the bottom to the top.

Evaluation of quality models
Three requirements that a quality mode! should possess to be a foundation for
Software Quality Engineering have been identified:

• A quality model should support the 5 different perspectives of qua!ity as
defined by Kitchenham and Pfieeger [28];

• A quality mode! should be usable from the top to the bottom of the
lifecyc!e as defined by IEEE Std 1061-199$ [20], i.e. should allow for
defining quality requirements and their fiirther decompositïon into
appropnate qua!ity charactenstics, subcharacteristics and measures;

• A quality model should be usable from ifie bottom to top of the lifecycle
as defined by IEEE Std 1061-199$ [20], i.e. should allow for required
measurements and subsequent aggregafion and evaluation of obtained
resu!ts.

Four quality models wi!! be evaluated with respect to these requirements.

McCaII

McCall [32] ïntroduced his quality mode! in 1977. According to Pfieeger [33], it
was one of the first pub!ished quality models. Figure 1 presents this quality mode!.
Each qua!ity factor on the !eft hand side of the figure represents an aspect of
quality that is not directly measurable. On the nght hand side are the measurable
properties that cari be eva!uated in order to quantil’ the quality in terms of the
factors. McCal! proposes a subjective grading scheme ranging from O (low) to 10
(high).

Regarding this mode!, Pressman notes that “unfortunately, many of the metrics
defined by McCa!! et al. can be measured on!y subjectively” [34]. It is therefore
difficuit to use this framework to set precise and specific quality requirements.
Furthermore, some of the factors and measurab!e properfies, like traceability and
self-documentation among others, are flot really definable or even meaningfti! at an
early stage for non-technica! stakeho!ders. This mode! is not applicable with
respect to the cnteria out!ined in the WEE Standard for a Software Qua!ity Metrics
Methodo!ogy for a top to bottom approach to quality engineering. Furthermore, it
emphasises the product perspective of quality to the detnment of the other
perspectives. It is therefore flot suited as a foundaflon for Software Quality
Engineering according to the stated premises.

-su[woisi(saJuMuosi!asnUuD(i(puaiogja‘(jquqai‘(psua)p&MOR

[91kniquuodpueXqiquuiuiuium“.mnnsi-suppDsodmoo

!‘mrrnwu‘uupogiojwan(s&iqnnbupaiapisuooaqwiruasIaq
isnmwaTs&sgiuMuosujsowaiojpue35Jinqiuoiassuiresisiqi‘Qooz)iaWaag

wUTp1ODDysUllfltIu1oua,,suaugapi(aqjuq&siXqunbjoousuapuruqo
awudaqi‘sauuaJIoosiqpuewqaogioj‘1aAassoH3uawa&iunuXpadoid
aquinsuam-iopujaqisrnuiai&jasooppom&iqunbsup‘soqszarn2yV
[ç]san2uajjoosrqpueUDDIA1jo3jJOAÀaqiuodnsaAoldwijapomkjqunbs1wqaoq

wqoo

(LL6I)pITuDONpue(cooz).iaaajwoijpa3dupy
japo(qenjwovj:jainij

L
C
C
r

Z)—

r---
_vE

Tq°aj

.
....

I Jpvpflsa%ol!?4,I$

<‘I3Vt3U(\
S..-—

t

L_-

t,Jz-ttsç-

.....,....,........

.-./7._•% r—9auasuO;)c% L

--...

--

zzz
E
«z$

_ &Iiar%ttI

jmt

L

C
t:
r

UV1ay).ioujk--—

SSUPJJO3

How easy is it to maintam (understand, modify, and retest)?

Can I stili use it if I change my environment?

It is interesting to note that in opposition to McCall’s model, Boehms model is
decomposed in a hierarchy that at the top addresses the concerns of end-users
while the bottom is of interest to technicaliy inciined personnel. It is in effect the
emergence of the user perspective of quality. However, this interest wanes whcn
one reads Boehm’s definiflon of the characteristics of software quality. Except for
General Utitity and As-is Utitity, ail defimflons begin wiffi “Code possesses the
charactenstic [...]“. The measurabie properties and charactenstics therefore
concentrate on highly technicai details of quality that are difficult to grasp for non
technical stakeholders that are typically involved early in the software lifecycle.

if the semantïcs of McCalPs model are used as a reference, the quaiity factors
could be defined as: Portabiiity, Reliability, Efficiency, Humait Engineering,
Testability, Understandability and Modifiability. These factors cari be decomposed
into measurable properties sucli as Device Independence, Accuracy, Completeness,
etc. Portability is somewhat incoherent in this classification as it acts both as a top
level component of generai utility, and as a factor that possesses measurable
attributes.

Mdifialiulity

figure 2: Boehm’s quality model
Adapted from Pfleeger (2003), Boehm et al. (1976; 197$)

The characteristics Generat Utitity and As-is Utility are too genenc and imprecise

to be usefiil for definmg verffiable requirements. Lilce the McCall model, this

model is mostly usefiul for a boftom to top approach to software quality (i.e. it can

effectiveiy be used to define measures of software quality, but ïs more difficuli to

use to specify quality requirements).

While this model is a step forward in the sense that ît provides basic support for a

top to bottom approach to software quality, this support is too ephemeral to be

considered as a solid foundation for quality engineerrng.

Dromey

Dromey’s [131 model takes a different approach to software quality than the two

previously presented models. For Dromey, a quality model should clearÏy be based

upon the product perspective of quality:

“What must be tecognized in any attempt to buitd a quality model is that

software does flot directly manzfest quality attributes. Instead it exhibits

product characteristic that impty or contribute to quaiity attributes and other

characteristics (product defects) that detractfrom the quatily attributes ofa

produet. Most modets 0fsoftivare quaiityfait to deal with the produet

characteristics side ofthe probtem odequateiy and they alsofait to make the

direct tinks between quaiity attributes and correspondingproduct

characteristics. “[13] (“Emphasis added to support the argument)

Dromey lias built a quality evaluation framework that analyzes the quality of

software components through the measurement of tangible quality properties

(Fignre 3). Each arfifact produced in the software lifecycle cari be associated with a

quality evaluation model. Dromey gives the following examples of what lie means

by software components for each of the different models:

• Variables, fimctions, statements, etc. can be considered components of the

implementation model;

• A requirement cmi be considered a component of the reqmrements model;

• A module cari be considered a component of the desigii model;

• Etc.

Accordïng to Dromey [13], these components ail possess intrinsic properties that

can be classified into four categones:

• Correctness: Evaluates if some basic pnnciples are violated.

• Internai: Measure how weil a component lias been deployed according to

its intended use.

• Contex-tual: Deals with the extemal iiffluences by and on the use of a

component.

• Descriptive: Measure the descriptiveness of a component (for example,

does it have a mearnngful name?).

These properties are used to evaluate ffie quality of the components. This is
illustrated in Figure 4 for a variable component present in the implementation
model.

Produ nd1

r—
A 4-* qudlty cary

pvcpertie

Lie q.ii:. flS

r
Cooinnt B 44’ qa1i cyg

Figure 3 Dromey’s Quality Model

Quallt
Comùnont Carryg Property Quallty

Propertle,s Classification Impact

j 1-

I I •I P::Ç’

r—

_______________F—H

F——-1_________________________

figure 4 Quality evaluation of a variable component

It seems obvious from the inspection of the previous figures that Dromey’s model
is focused on the minute details of quality. This is stated explicitly:

“What we can do is identi and build in a consistent, harmonious, and
comptete set ofproduct properties (such as modules without side effects) that
resuit in manifestations ofreliabitity and maintainability. “[13].

For Dromey, the high level characterisfics of quality will manifest themselves if
the components of the software product, from the individuai requirements to the
programming language variables 1, exhibit quality-carrying properties. Dromey’s
hypothesis shouid be questioned. if ail the components of ail the artifacts produced
dunng the software lifecycle exhibit quality-canying properties, will the resulting
product marnfest characteristics such as maintarnability, functionality, and others?

The following analogy will be useful in answering this question:

Ifyou buy the highest qualityflour, atong with the highest quatity apples and
the highest qualily cinnamon, will you automaticalty produce an apple pie that
is ofthe highest qualily?

The answer is obviously negative. In addition to quality ingredients, at least three
more things are needed in order to produce an apple pie of the highest quality:

• A recipe (i.e. an overail architecture and an execution process). Dromey
acknowledges this by identifiing process matunty as a desirable high
level characterisflc. However, it is only bnefly mentioned in both bis
publications on the subject [13, 14].

• The consumer’s tastes must be taken into account. In order for the resuil to
be considered of the highest quality by the consumer, it needs to be tuned
to bis tastes. This is altin to what is commonly called user needs in
software engineering. User needs are completely ignored by Dromey.
However, as it was demonstrated in the introduction, they are an integral
and non-negligible part of software quality.

• Someone with the qualifications and the tools to properly execute the
recipe.

While Dromey’s work is interesting from a technically inclined stakeholder’s
perspective, it is difficult to see how it could be used at the beginning of the
lifecycle to determine user quality needs. Dromey [13] states that software quahty
“must be considered in a systematic and structured way, from the tangible to the
intangible”. By focusing too much on the tangible, Dromey fails to build a model
that is meaningful for stakeholders typically involved at the beginning of the
lifecycle. Do end users care about the variable naming convention or module
coupling? In most cases, it is doubiful that this question can be answered
affirmatively. Therefore, this model is rather tmwieldy to specify user quality
needs. This does not mean that it cannot be usefiul later on as a checklist for
ensuring that product quality is up to standards. It cari deflmtely be classified as a
bottom to top approach to software quality.

Furthermore, as vas illustrated at the beginrnng of this section, this quality model
has its roots in the product perspective of quality, to the detriment of other

perspectives. Therefore, it fails to qualify as a foundation for Software Quality
Engineering according to ffie established requirements.

ISO/IEC 9726

In 1991, the International Organizafion for Standardization introduced a standard
named ISO/ffiC 9126 (1991): Software product evaluation - Quality charactenstics
and guidelines for their use. This standard aimed to define a qualîty model for
software and a set of guidelines for measuring the characterisfics associated with it.
ISO/IEC 9126 quickly gained notoriety with II’ specialists in Europe as the best
way to interpret and measure quality [2]. However, Pfleeger [331 reports some
important problems associated with the first release of ISO/IEC 9126:

• There are no guidelines on how to provide an overali assessment of
quality.

• There are no indications on how to perform the measurements of the
quality characterisflcs.

• Rather than focusing on the user view of software, the model’s
characteristics reflect a developer’s view of software.

According to Pfleeger, this first incarnation of ISOIIEC 9126 is flot usable as a
bottom up approach to quality engineering, and even less usable as a top down
approach.

In order to address these concems, an ISO committee began working on a revision
of the standard. The results of this effort are the introduction of a revised version of
ISO/IEC 9126 focusing on the quality model, and a new standard, ISO/IEC 1459$
[21] focusing on software product evaluation. ISOIŒC 1459$ addresses Pfleeger’s
first concem whule the revision to ISO/IEC 9126 aims to resolve the second and
third issues. ISO/IEC 9126 is now a four part standard:

• ISO/ffiC 9 126-1 [24] defines an updated quality model.

• ISO/IEC 9 126-2 [26] defines a set ofextemal measures.

• ISO/IEC 9 126-3 [27] defines a set of internai measures.

• ISO/1EC 9 126-4 [25] defines a set ofquality in use measures.

The new quality model defined in ISO/ffiC 9126-1 recognises three aspects of
software quality and defines them as follows: (the full definition is given as it is
pertinent to Ihe discussion that ensues).

• quality in use:

Quaiity in use is the user’s view of the quality ofthe software product when it is
used in a specific environment and a specfic context ofuse. Jt measures the
extent to which users can achieve their goals in a particular environment,
rather than measuring the properties ofthe software itself [24]

• external quality:

Externat quality is the totatity ofcharacteristics of the software productftom
an external view. It is the quatity when the software is executed, which is
typicaiiy measured and evaiuated ;vhile testing in a simuiated environment with
simutated data using external metrics. During testing, mostfaults shoutd be
discovered and etiminated. However, somefauits may stili remain aftet testing.
As it is difficuit to correct the software architecture or otherfundamentat
design aspects ofthe software, thefundamental design rernains unchanged
throughout the testing. [24]

• internai quality:

Internat quaiity is the totaiity ofcharacteristics of the software productfrom an
internai view. Internai quaiity is rneasured and evaiuated against the internat
quaiity requirements. Details ofsoftware product qztality con be improved
during code impiementation, reviewing and testing, but thefundarnentai nature
of the software product quaiity represented by the internai quaiity remains
unchanged uniess redesigned. [24]

The internai and extemal quality model is inspired from McCall and Boehm’s
work. It is a tbree-iayer model composed of quaiity characteristics, quality
subcharnctenstics and quality measures. figure 5 ilustrates this model. More than
100 measures of internai and external quality are proposed as part of the standard.
It is important to note that the measures do flot make an exhaustive set, which
means that other measures can also be used.

finally, Quality in use is modeled in a different way than internai and external
quahty. Figure 6 illustrates the two-layer quality in use modet composed of
charactenstics and quaiity measures.

externat andinternaiquality

functionj reIi3biltty usability j efficiency j mzItntainabitit1 PCTtbHIIY

Ji3IY.Iity taur:tv utUetstandxt;ty .
daptability

..rt
‘ titiit t eri3nce I. ftk.)

m. w ‘ïrnge.b , 9$4JBJ
ntecfler- t r.r. o>nLIII, rsGUrce s ab t eIst’’Ice

scwty aiiac;w-w,ess UtiIISatiDI tss;hitv repIacsiItty

tinctcnitv Uî.ahilty effldnct iaintrmabi]itv pttbty
corsDLance coIIancE Co’flph29e ConWliaflme roInpti3ste ccr4Dtallce

Figure 5 3-layer model for internai and externat quality. Adapted from [24]

I<uty Hitai4)u î
Figure 6 : Quality in use model. Adapted from [24]

figure 7 Relationstups between ffie different aspects of quality. Adapted from
[24]

This prediction relationship states that user quality needs should first be established
and specified using flic Quahty in use model. from these requirements as well as
other sources, external quality requirements should be established using the
external quaiity model. Finaliy, the internai quaiity requirements should be
constrncted from the external quallty requirements and other sources. Once the
requirements are established and software construction is under way, the quality
model can be used to predict the overali quaiitv. For example, measurement of

Theoretically, internai quality, externai quality and quality in use are hnked
together with a predictive mode 1. TItis is illustrated in Figure 7.

vrfication

internai quality can be useful in predicting extemal quality. Lilcewise,
measurement of external quality can be usefiil in predicting quality in use.

The above pamgraphs descnbe the ideal theoretical model that links these three
aspects of quaiity. However, in reaiity, no model may daim to follow perfecily this
prediction mechanism. Mthough the ISOIIEC 9126 model foiiows this approach
closely, no daims are made as to the real predictive power of the model. While the
links between internai and extemal quality seem rather obvious because the models
are essentially the same, caution must be exercised. While the name of the
charactensflcs and subcharacteristics are the same, the iinks between internai and
extemal quality must be verified empirically. The same reasonrng applies to the
links between externai quaiity and quality in use.

The new version of ISOIffiC 9126 is gaining momentum in the industry. Some
corporate quality models, for example MITREs SQAE [311, are beginning a
migration from a model based on McCall’s and Boehm’s research to one based on
ISOIffiC 9126 [8, 9, 10]. This new version of ISO/IEC 9126 is thus seen as an
improvement upon Oie older quaiity models.

h is ïnteresting to see how the three aspects of quality defined above can be
directiy Iinked to the perspectives of quality that were outiined previously. More
specifically:

ISO/IEC 9126-4, which defines quality in use, is directly related to the
user and value-based perspectives. The definition of the user perspective
of quaiity states that it is concemed with the appropnateness of a product
for a given context of use. Quaiity in use is defined as the capabiiity of
the software product to enable specified users to achieve specified goals
in specffied contexts of use. The relationship between the two is clear.
Quality in use and the value based perspective of quaiity are linked
essentiaily through Oie Satisfaction characteristic. This charactenstic
inherently recognises that quality can have a different meaning andlor
value for different stakehoiders. Satisfaction levels can thus be set
according to those levels of perception. This has been demonstrated by
the study reported in [361.

ISO/WC 9126-3, which defines internai quality, and ISOIIEC 9 126-2,
which defines external quality, are directly related to both the
manufactunng and product perspectives. The defimuons of the quality
characteristics Functionality and Reiiability can be linked with the
manufacturing perspective of quality. Reiiabiiity, Usability, Efficiency,
Maintainabihty and Portabiiity are ail inherent characteristics of the
product and a manifestation of the product perspective of quality.

Çtty

[ET
peeÇv3

(i

Ç Mcpet

Figure $: Relafionships between ISOJIEC 9126 and ifie perspectives of quality

From the review of the different quality models, one might point out that none
seem to address the Iranscendental perspective of quahty. One might even ask the
following pertinent question: Does ISO/IEC 9126 address the transcendental
perspective of quality? Recali that the transcendental perspective of quality relates
to quality as something that is recognised but flot defined. At this point, the
following hypothesis will be made:

As the transcendentat perspective ofqualily cannot be deflned, it cannot be
expÏicitty imptemented in a software product. However, the franscendental
aspect ofquatity wilt emerge when a holistic approach to quatity engineering is
taken.

This model seems to recognise all the perspectives of quality as important
contnbutors to the overail assessment of quality. It takes an incremental approach
to software quality that begms with quality in use, something that is easy to grasp
for non-technical stakeholders, and ends with internai quality, something more
technically inclined stakehoiders wiil feel more comfortable with. furthermore,
there ïs a comprehensive set of suggested measures that allow for the assessment of
software quality.

ISOIIEC 9126 is thus the only model that fulfills ail the stated requirements for a
model to be useful as a foundation to Software Quality Engineering.

Conclusion
This paper lias defined three requirements that a quality model should meet to
serve as a foundation to Software Quality Engineering:

A quality model should support the 5 different perspectives of quality as
defined by Kitchenham and Pfieeger [2$].

1. I

• A quality model should be usable from the top to the bottom of the
lifecycle as defined by IEEE Std 1061-199$ [20].

• A quality model should be usable from the bottom to top of the lifecycle
as definedby IEEE Std 1061-199$ [20].

These cntena were applied to four quality models:

• It was found that the models proposed by McCall, Boehm and Dromey
focus on the product perspective of quality to the detriment of other
perspectives. Furthermore, they are pnmarily useful in a bottom up
approach to quality that is flot suitable for Software Quality Engineering.

• ISO/IZEC 9126 is the only model that supports ail the perspectives of
quality (with the exception of the transcendental perspective as noted).
furihermore, its predictive ftamework clearly supports both die top down
and bottom up approaches.

This paper has focused on analysïng the semantics of the different models wiffi
respect to the stated requirements. In theory, ISO/IEC 9126 seems well suited for
Software Quality Engineering. Further research is needed to see if the measures
associated with ISO/IEC 9126 make this model usable for Software Quality
Engineering in practice.

References
1 Adey, C. A. & Hill, G. K. (2000). Quality /180 9000 as a Marketing Tool,

[En ligne]. http://www.smps.org/rnrc/articles/0200qualityiso.pdf
2 Bazzana, G., Anderson, O., & Jokela, T. (1993). 180 9126 and 180 9000:

friends orjoes? Presented at Software Engineering Standards Symposium.
3 Biehi, R. E. (2001). Six sigmafor Software. IEEE Software, 21(2), 6$-70.
4 Boddie, J. (2000). Do We Ever Reatly Scate Down?, IEEE Software, 17(5),

79-$1.
5 Boehm, B. W., Brown, J. R., Kaspar, J. R., Lipow, M. L. & MacCleod, G.

(197$). Characteristics ofSoftware Quatity. New York: Amencan Elsevier.
6 Boehm, B. W., Brown, J. R., Lipow, M. L. (1976). Quantitative Evaluation of

Software Quatity. Proceedings of the 2nd international conference on Software
engineering, San Fransisco, Califorma, Umted States, 592-605, IEEE
Computer Society Press.

7 Bourque, P., R. Dupms, A. Abran, J.W. Moore, L.L. Tnpp et S. Wolff, (2000)
Fundamental Principles ofSoftware Engineering - A Journey, Journal of
Systems and Software,

$ Côté, M.-A., Suryn, W., Martin, R. A., Laporte, C. Y. (2004a). Evolving a
Corporate Software QualityAssessment Exercice: A Migration Path to
IS0/IEC 9126, Software Quality Professional, 6(3), 4-17.

9 Côté, M-A., Suiyn, W., Martin, R. A., Laporte, C. Y. (2004b). The analysis of

the industrial applicability ofsoftware product quahty 150 standards: the

context of]vIITRE’s Software OuatityAssessment exercise, in Proceedings of

tbe l2 International Software Quality Management & USISPWE Conference

(BSI) 2004, Canterbuxy, Kent, United Kmgdom.
10 Côté, M-A., Swyn, W., Laporte, C. Y., Martin, R. A. (2005). The Evolution

Path for Industrial Software Quatity Evatuation Methods AppÏying ISO/IEC

9126.2001 Quatity Mode!: Example ofMITRE’s SQAEMethod, Software
Quality Journal, vol. 13, 17-30.

11 Crosby, P.B. (1979). QuaÏily isftee: The art ofmaking quatity certain. New
York : McGraw-Hill.

12 Diaz M. & Siigo, J. (1997). How Software Process Improvement Hetped
Motorola, IEEE Software, 17(5), 75-$1.

13 Dromey, R. G. (1995). A modelfor software product quality. IEEE
Transactions on Software Engineering 21, 146-162.

14 Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, 13(1), 33-43.

15 Eickelrnan, N. (2003). An Jnsider’s View ofCMMLeve! 5, ŒEE Software,
20(4), 79-8 1.

16 Haley, T. J. (1996). Software Process Improvement atRaytheon, 1EEE

Software, 13(6), 3341.
17 Georgiadozt E. (2003 a) Software Process and Product Improvement. A

Histoncal Perspective, International Journal ofcybernetics, Volume J, No],

Jan 2003 p?1 72-197
1$ Georgiadou E.(2003b) GEQUAMO—A Generic, Multilayered, Customisable,

Software Quality Mode!, Volume 11, Number 4, 313-323 November 2003

19 Highsmith, J. (2002). Agile Software DeveÏopment Ecosystems, Addison-
Wesley Professional.

20 IEEE. 1998. Std. 1061-1998 IEEE Standardfor a Software Qualily Metrics
Methodology.

21 ISO/IEC. 1999a. ISO/IEC 14598-1: Sofiware product evaÏuation-Part]:

General overview. Geneva, Switzerland: International Organization for
Standardization.

22 ISO/IEC. 1999b. ISO/IEC 9000:2000 Quatity management systems --

Fundamentais and vocabulary . Geneva, Switzerland: International

Organization for Standardization.
23 ISOIffiC. 2000. ISO/IEC 15288: System Life Cycle Processes. Geneva,

Switzerland: International Organization for Standardization.
24 ISO/TEC. 200 la. JSO/IEC 9)26-]: Software Engineering-Software product

quality-Part 1: Quality mode!. Geneva, Switzerland: International

Organization for Standardization.
25 ISO/IEC. 200 lb. JSO/IEC DTR 9126-4: Software engineering-Software

product quaiity-Part 4: Quality in use metrics. Geneva, Switzerland:
International Orgarnzation for Standardization.

26 ISO/IEC. 2003a. ISO/IEC TR 9126-2: Software Engineering-Software product

qua!ity-Part 2: Externa! metrics. Geneva, Switzerland: International

Organization for Standardization.

27 ISO/IEC. 2003b. ISO/IEC TR 9126-3: Software engineering-Software product
quaiily-Part 3: Internat metrics. Geneva, Switzerland: International
Organization for Standardization.

28 Kitchenham, S. L., Pfleeger (1996). Software Quaiity: The Etusive Target.
IEEE Soffivare,13(1), 12-2 1.

29 Laitmen, M. (2000). Scaling Down is Hard to Do, JEEE Software, 17(5), 78-
80.

30 Lefflngwell, D. & Widrig, D. (1999). Managing Software Requirements, A
UnifiedApproach. Addison-Wesley Professional.

31 Martin, R. A. & Shaffer, L. (1996). Providing aframeworkfor effective
software quatity assessment. Bedford, Mass MITRE Corporation.

32 McCall, J. A., Richards, P. K., & Walters, G. F. (1977). factors in software
quatity. Griffiths Air Force Base, N.Y. : Rome Air Development Center Air
Force Systems Command.

33 Pfleeger, S. L. (2001). Software Engineering: Theory and practice (2h1d ed.).
Upper Saddle River, N.J. Prentice Hall.

34 Pressman, R. 5. (2001). Sofiware Engineering: A practitioner’s approach (5ffi

ed.). Boston: McGraw-hill.
35 Siaka K V., Berki E, Georgiadou E, Sadier C (1997): The Complete Alphabet

of Quality Software Systems: Conflicts and Compromises, 7th World
Congress on Total Quahty&Qualex 97, New Delhi, India, 17-19 Februaiy

36 Siaka, K.V., Georgiadou, E. PERFUMES: A Scent of Product Quality
Charactenstics, SQM 2005, March 2005, UK

37 Smyn, W. (2003). Course notes 5YS861. Ecole de Technologie Supérieure,
Montréal.

38 Voas, 1. (2003). Assuring Software Quatity Assurance. IEEE Software, 20(3),
48-49.

C
o

