
Foundational Nonuniform (Co)datatypes for
Higher-Order Logic

Jasmin Christian Blanchette∗, Fabian Meier†, Andrei Popescu‡, and Dmitriy Traytel†
∗Inria & LORIA, Nancy, France, and Max-Planck-Institut für Informatik, Saarbrücken, Germany

†Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland
‡School of Science and Technology, Middlesex University London, UK

Abstract—Nonuniform (or “nested” or “heterogeneous”) data-
types are recursively defined types in which the type arguments
vary recursively. They arise in the implementation of finger trees
and other efficient functional data structures. We show how to
reduce a large class of nonuniform datatypes and codatatypes
to uniform types in higher-order logic. We programmed this
reduction in the Isabelle/HOL proof assistant, thereby enriching
its specification language. Moreover, we derive (co)recusion and
(co)induction principles based on a weak variant of parametricity.

I. INTRODUCTION

Inductive (or algebraic) datatypes—often simply called
datatypes—are a central feature of typed functional pro-
gramming languages and of most proof assistants. A simple
example is the type of finite lists over a type parameter α,
specified as follows (in a notation inspired by Standard ML):

α list = Nil | Cons α (α list)

A datatype is uniform if the recursive occurrences of the
datatype have the same arguments as the definition itself, as
is the case for list; otherwise, the datatype is nonuniform.
Nonuniform types are also called “nested” or “heterogeneous”
in the literature. Powerlists are nonuniform:

α plist = Nil | Cons α ((α×α) plist)

The type α plist is freely generated by the constructors Nil :
α plist and Cons : α→ (α× α) plist → α plist. When Cons
is applied several times, the product type constructors (×)
accumulate to create pairs, pairs of pairs, and so on. Thus,
any powerlist of length 3 will have the form

Cons a (Cons (b1,b2) (Cons ((c11,c12), (c21,c22)) Nil))

Nonuniform datatypes arise in the implementation of effi-
cient functional data structures, such as finger trees [24], and
they underlie Okasaki’s bootstrapping and implicit recursive
slowdown optimization techniques [37]. Yet many program-
ming languages and proof assistants lack proper support for
such types. For example, even though Standard ML allows
nonuniform definitions, a typing restriction disables interesting
recursive definitions. As for proof assistants, Agda, Coq, Lean,
and Matita allow nonuniform definitions, but they are built
into the logic (dependent type theory), with all the risks and
limitations that this entails [12, Section 1].

For systems based on higher-order logic such as HOL4,
HOL Light, and Isabelle/HOL, no dedicated support exists for

nonuniform types, probably because they are widely believed
to lie beyond the logic’s ML-style polymorphism. Building
on the well-understood metatheory of uniform datatypes (Sec-
tion II), we disprove this folklore belief by showing how to de-
fine a large class of nonuniform datatypes by reduction to their
uniform counterparts within higher-order logic (Section III).

Our constructions allow variations along several axes. They
cater for mutual definitions:

α ptree = Node α (α pforest)
α pforest = Nil | Cons (α ptree) ((α×α) pforest)

They allow multiple recursive occurrences, with different type
arguments:

α plist′ = Nil | Cons1 α (α plist′) | Cons2 α ((α×α) plist′)

They allow multiple type arguments, which may all vary:

(α, β) tplist = Nil β | Cons α ((α×α, unit+β) tplist)

Moreover, they allow the presence of datatypes, codatatypes,
and other well-behaved type constructors both around the type
arguments and around the recursive type occurrences:

α stree = Node α (((α fset) stree) fset)

Here, fset is the type constructor associated with finite sets.
Furthermore, the constructions can be extended to coin-

ductive (or coalgebraic) datatypes—codatatypes. Codatatypes
are generally non-well-founded, allowing infinite values. They
are often used to model the datatypes of languages with a
nonstrict (lazy) evaluation strategy, such as Haskell, and they
can be very convenient for some proving tasks. The codatatype
definition

α pstream ∞
= Cons α ((α×α) pstream)

introduces “powerstreams,” with infinite values of the form
Cons a (Cons (b1,b2) (Cons ((c11,c12), (c21,c22)) . . .)).

Unlike dependent type theory, higher-order logic requires
all types to be nonempty (inhabited). To introduce a new type,
we must both provide a construction in terms of existing types
and prove its nonemptiness. For example, a datatype specifi-
cation analogous to the pstream codatatype above should be
rejected. In previous work [13], we showed how to decide the
nonemptiness problem for uniform types—including mutually
recursive specifications and arbitrary mixtures of datatypes
and codatatypes—by viewing the definitions as a grammar,



with the defined types as nonterminals. Here, we extend this
result to nonuniform types (Section IV). This is achieved
by encoding the nonuniformities in a generalized grammar,
which can decide nonemptiness of the sets that arise in the
construction of the nonuniform types.

Once a datatype has been introduced, users want to define
functions that recurse on it and carry out proofs by induction
involving these functions—and similarly for codatatypes. A
uniform datatype definition generates an induction theorem
and a recursor. Nonuniform datatypes pose a challenge, be-
cause neither the induction theorem nor the recursor can be
expressed in higher-order logic, due to its limited polymor-
phism. For example, induction for plist should look like this:

∀Q. Q Nil ∧
(
∀x xs. Q xs =�⇒ Q (Cons x xs)

)
=�⇒∀ys. Q ys

However, this formula is not typable in higher-order logic,
because the second and third occurrences of the variable Q
in need different types: (α×α) plist→ bool versus α plist→
bool. Our solution is to replace the theorem by a procedure
parameterized by a polymorphic property ϕα : α plist→ bool
(Section V). For plist, the procedure transforms a proof goal of
the form ϕα ys into two subgoals ϕα Nil and ∀x xs. ϕα×α xs =�⇒
ϕα (Cons x xs). A weak form of parametricity is needed to
recursively transfer properties about ϕα to properties about
ϕα×α. Our approach to (co)recursion is similar (Section VI).

All the constructions and derivations are formalized in the
Isabelle/HOL proof assistant and form the basis of high-
level commands that let users define nonuniform types and
(co)recursive functions on them and reason (co)inductively
about them (Section VII). The commands are foundational:
Unlike all previous implementations of nonuniform types in
proof assistants, they require no new axioms or extensions of
the logic. An example involving λ-terms in De Bruijn notation
demonstrates the practical potential of our approach.

Our main contributions are the following:
• We designed a reduction of nonuniform datatypes to

uniform datatypes within the relatively weak higher-order
logic, including recursion and induction.

• We adapted the constructions to support codatatypes as
well, exploiting dualities.

• We coded the reduction in a proof assistant based on
higher-order logic, yielding a first implementation of
nonuniform datatypes without dependent types.

The formal proofs, the source code, and the examples are
publicly available [11].

II. PRELIMINARIES

A. Higher-Order Logic

We consider classical higher-order logic (HOL) with Hilbert
choice, the axiom of infinity, and rank-1 polymorphism. HOL
is based on Church’s simple type theory [14]. It is the logic of
Gordon’s original HOL system [18] and of its many successors
and emulators, notably HOL4, HOL Light, and Isabelle/HOL.

Primitive types are built from type variables α, β, . . . , a type
bool of Booleans, and an infinite type ind using the function

type constructor; thus, (bool→ α)→ ind is a type. Primitive
constants are equality = : α→ α→ bool, the Hilbert choice
operator, and 0 and Suc for ind. Terms are built from constants
and variables by means of typed λ-abstraction and application.

A polymorphic type is a type T that contains type variables.
If T is polymorphic with variables α= (α1, . . . ,αn), we write
α T instead of T . Formulas are closed terms of type bool. The
logical connectives and quantifiers on formulas are defined us-
ing the primitive constants—e.g., True as (λx : bool. x) = (λx :
bool. x). Polymorphic formulas are thought of as universally
quantified over their type variables. For example, ∀x : α. x = x
really means ∀α. ∀x :α. x= x. Nested type quantifications such
as (∀α. . . .) =�⇒ (∀α. . . .) are not expressible. Since HOL was
designed to support mathematical reasoning, we will express
the concepts in standard mathematical language. Occasionally,
when we hit the limitations of HOL, we will indicate so.

The only primitive mechanism for defining new types in
HOL is type definition: For any existing type α T and predicate
P : α T → bool such that {x : α T | P x} is nonempty, we can
introduce a type α S isomorphic to {x : α T | P x}. Upon meet-
ing the definition α S = {x : α T | P x}, the system first requires
the user to prove ∃x : α T . P x and then introduces the type
α S, the projection RepS : α S→ α T , and the embedding AbsS :
α T→ α S such that ∀x. P (RepS x), ∀x.AbsS (RepS x) = x, and
∀x. P x =�⇒RepS (AbsS x) = x. The nonemptiness check is nec-
essary because all types in HOL must be nonempty [18], [38].

Thus, unlike dependent type theory, HOL does not have
(co)datatypes as primitives. However, datatypes [5], [19], [20],
[33] and, more recently, codatatypes [43] are supported via
derived specification mechanisms. Users can write fixpoint
definitions such in ML-style notation, and the system auto-
matically defines the type using nonrecursive type definitions
(ultimately appealing to the infinite type ind and the function
space); defines the constructors and related operators; and
proves characteristic properties, such as injectivity of construc-
tors, induction theorems, and recursor theorems.

B. Bounded Natural Functors

In this paper, we take uniform (co)datatypes for granted,
thus assuming the availability of types such as α list. Often it is
useful to think not in terms of polymorphic types, but in terms
of type constructors. For example, list is a type constructor in
one variable, sum (+) and product types (×) are binary type
constructors. Most type constructors are not only operators
on types but have a richer structure, that of bounded natural
functors (BNFs) [43].

We write [n] for {1, . . . ,n} and α set for the powertype of α,
consisting of sets of α elements; it is isomorphic to α→ bool.
An n-ary BNF is a tuple F = (F,mapF ,(set

i
F)i∈[n],bdF), where

• F is an n-ary type constructor;
• mapF : (α1→ β1)→ ··· → (αn→ βn)→ α F→ β F;
• seti

F : α F→ αi set for i ∈ [n];
• bdF is an infinite cardinal number

satisfying the following properties:
• (F,mapF) is an n-ary weak-pullback-preserving functor.



• Each seti
F is a natural transformation between the functor

(F,mapF) and the powerset functor (set, image).
• ∀i ∈ [n]. ∀a ∈ seti

F x. fi a = gi a =�⇒mapF f x =mapF g x.
• ∀i ∈ [n]. ∀x : (α1,α2) F. |setF i x| ≤ bdF .

For example, list is a unary BNF, where maplist is the standard
map function, setlist collects all elements occurring in its argu-
ment, and bdlist is the cardinality of the natural numbers nat.

BNFs are closed under uniform (least and greatest) fixpoint
definitions [43] and the nonemptiness problem for BNFs
constructed by basic functors, fixpoints and composition is
decidable [13]. These crucial properties enable a modular
approach to mixing and nesting uniform (co)datatypes and de-
ciding if a high-level specification yields valid, i.e., nonempty,
HOL types. In addition, BNFs display predicator and relator
structure [41]. The predicator predF : (α1→ bool)→ ··· →
(αn→ bool)→α F→ bool and the relator relF : (α1→ β1→
bool)→ ··· → (αn→ βn→ bool)→ α F→ β F→ bool, are
defined from setF and mapF as follows:
• predF P x⇐⇒∀i ∈ [n]. ∀a ∈ seti

F . P a;
• relF R x y⇐⇒ (∃z. (∀i ∈ [n]. seti

F z ⊆ {(a,b) | Ri a b}) ∧
mapF fst z = x ∧ mapF snd z = y, where fst and snd are
standard projection functions on the product type ×.

For list, predlist P xs states that P holds for all elements of
the list xs, and rellist R xs ys states that xs and ys have the same
length and are element-wise related by R.

Relators and predicators are useful to track parametricity
[40], [44]. A polymorphic constant c : α F is parametric if,
for all relations Ri : αi→ βi→ bool for each i ∈ [n], we have
relF R c c—i.e., every two instances of c are related by the
lifting of the relations associated with the component types.
Parametricity applies not only to BNFs but also to any com-
bination of BNFs using the function space. For polymorphic
functions f : α F→ αG between two BNFs, f is parametric if
and only if f is a natural transformation (Appendix A).

III. (CO)DATATYPE DEFINTIONS

Before describing the reduction of nonuniform (co)data-
types to uniform (co)datatypes in full generality, we start with
a simple example that conveys the main idea. The reduction
proceeds by defining a larger uniform datatype and carving
out a subset that is isomorphic to the desired nonuniform
type. To prove that the constructed type is the intended one,
we establish the isomorphism between the defined nonuniform
type and the right-hand side of its specification.

A. An Example: Powerlists
Okasaki [37, Section 10.1.1] sketches how to mimic nonuni-

form datatypes using uniform datatypes. He approximates
powerlists by the following definitions:

datatype α sh = Leaf α | Node (α sh×α sh)
datatype α raw = Nil0 | Cons0 (α sh) (α raw)

The type α raw corresponds to lists of binary trees α sh. It
is larger than powerlists in two ways: (1) α sh allows non-
full binary trees, which cannot arise in a powerlist; (2) α raw
imposes no restriction on the depth of the binary trees, whereas
a powerlist has elements successively of depth 0, 1, 2, . . . .

Okasaki considers these mismatches as one of two disad-
vantages of the above encoding. The other disadvantage is that
the encoding requires users to insert Leaf and Node coercions
to convert an element such as

(
(a, b), (c, d)

)
: (α×α)×(α×α)

to Node (Node (Leaf a, Leaf b), Node (Leaf c, Leaf d)) : α sh.
We overcome the first disadvantage by using a type defini-

tion. From the raw type, we select exactly those inhabitants
that correspond to powerlists. To achieve this, we define two
predicates, ok : nat→ α sh→ bool and ok : nat→ α sh→ bool,
as the least predicates satisfying the following rules:

ok 0 (Leaf x) ok n l∧ ok n r =�⇒ ok (n+1) (Node (l, r))
ok n Nil0 ok n x∧ok (n+1) xs =�⇒ ok n (Cons0 x xs)

The predicate ok n t holds if and only if t is a full binary tree
of depth n, and ok n xs ensures that the first element is a full
binary tree of depth n, the second of depth n+ 1, etc. The
desired type starts at depth 0: α plist = {xs : α raw | ok 0 xs}.

The second disadvantage is addressed by hiding the internal
construction of α plist. We define the powerlist constructors
Nil : α plist and Cons : α→ (α×α) plist→ α plist in terms of
Nil0 and Cons0. These definitions will require some additional
machinery on the raw type.

B. General Type Construction

We assume that the desired nonuniform datatype has a
single constructor. Separate constructors are easy to intro-
duce as syntactic sugar [10, Section 4]. For powerlists, the
single constructor definition is α plist = Ctorplist (unit+α×
(α × α) plist). It corresponds to finding a least solution
(up to isomorphism) to the type fixpoint equation α plist '
(α, (α F) plist)G with α F = α×α and (α, β)G= unit+α×β.

We generalize this setting in multiple dimensions. First, we
support a simultaneous definition of an arbitrary number i of
mutual nonuniform datatypes. For example, ptree and pforest
from Section I are given by the system of fixpoint equations

α ptree ' (α, (α F1) ptree, (α F2) pforest) G1
α pforest ' (α, (α F3) ptree, (α F4) pforest) G2

where (α, β, γ) G1 = α×γ, (α, β, γ) G2 = unit+β×γ, α F1 =
α F2 = α F3 = α, and α F4 = α× α. We assume that all
G’s depend on the same type variables, even though the
dependence may be spurious, as in the case of G1 and β.

Second, a type may occur several times on the right-hand
side of a definition. We support an arbitrary number j of such
occurrences. This feature is used in the plist′ type: α plist′ '
(α, (α F1) plist′, (α F2) plist′) G, where (α, β, γ) G = unit +
α×β+α×γ, α F1 = α, and α F2 = α×α.

Finally, the construction supports an arbitrary number k
of type parameters. The parameter changes may differ for
different type parameters, such as in the tplist example:
(α, β) tplist ' (α, β, ((α, β) F1, (α, β) F2) tplist) G, where
(α, β, γ) G = β+ α× γ, (α, β) F1 = α× α, and (α, β) F2 =
unit+β. As before for the G’s, all F’s may depend on all type
parameters of the specified nonuniform type.

In the sequel, the indices i, j, and k range over [i], [j], and
[k], respectively. Moreover, we abbreviate indexed sequences



using a horizontal bar; for example, α stands for α1, . . . , αk,
and α F1 stands for α F11, . . . , α F1k. It should be clear from
the context which index is omitted.

A definition of i mutual nonuniform datatypes Ti is a system
of i type fixpoint equations

α Ti '
(
α, (α F1) Tσ(1), . . . , (α Fj) Tσ(j)

)
Gi (1)

where the Gi’s are (k + j)-ary BNFs, the F jk’s are k-ary
BNFs, and σ : [j] → [i] is a monotone surjective function
that expresses which of the i mutual types belongs to which
recursive occurrence. The construction generalizes Okasaki’s
idea and yields k-ary BNFs Ti that are least solutions (up
to isomorphism) to equation (1). A uniform datatype defini-
tion [10] is a special case with j = i, σ(i) = i, and α F jk = αk.

We start by defining the shape types α shk that overapprox-
imate the recursive changes to the type arguments. There is
are k shape types, corresponding to the k type arguments, and
they are mutually recursive uniform datatypes:

α shk = Leafk αk | Node1k (α sh F1k) | · · · | Nodejk (α sh Fjk)

For plist, the sh type is sh. In general, each recursive occur-
rence may change the type arguments in a different way; this
is reflected in the different Node constructors.

Next, we define i uniform mutually recursive datatypes rawi
that recurse through the Gi’s in the same way as the Ti’s
do, except that they keep the type arguments unchanged. The
immediate α arguments to Gi are replaced by α sh:

α rawi = Rawi ((α sh, α rawσ(1), . . . , α rawσ(j)) Gi)

For every i, we specify subsets of the types α rawi that are
isomorphic to the nonuniform types Ti, by defining predicates
oki that characterize the allowed shapes and their changes in
the recursion. As in the powerlist example, the definition of oki
relies on auxiliary predicates okk : [j] list→ α shk → bool on
the shape types. The type of okk shows an important difference
to the plist example: The first argument is not just a natural
number denoting the depth of a full tree but has more structure.
We call it the shadow of the shape and let ∆ stand for [j] list.
The additional structure is necessary because different Node jk
constructors may occur in a single shape element. These
occurrences in the full shape trees are layered: All Node con-
structors right above the Leaf constructors belong to a fixed oc-
currence j. The next layer of Nodes may belong to a different
fixed occurrence j′. The shadow summarizes the occurrence
indices. Consider Cons1 u (Cons2 v (Cons2 w (Cons1 x Nil))) :
plist′. This order of constructors forces x’s type to be α F =
α F1 F2 F2, with α F1 = α and α F2 = α×α. Consequently, x
is embedded into α sh as Node2 (mapF2

Node2 (mapF2
(mapF2

Node1) (mapF Leaf x))), whose shadow is [2, 2, 1].
Formally, the predicates okk are defined together as the least

predicates satisfying the rules

okk [] (Leafk x)
predF jk

(ok1 u) . . . (okk u) f =�⇒ okk ( j /u) (Node jk f )

where [] and / are notations for Nil and Cons. To access the
recursive components of sh, we rely on the predicators asso-

ciated with the F’s. Predicators are monotone. The i mutual
predicates oki : ∆→ α rawi→ bool are defined similarly:

predGi
(ok1 u) . . .(okk u) (okσ(1) (1 /u)) . . .(okσ(j) (j /u)) g =�⇒

oki u (Rawi g)

We access the k immediate components of the shape type
and the j recursive components of the raw type through the
predicator. We write that an element r of type α rawi has
shadow u if oki u r holds.

Finally, the nonuniform type Ti can be defined as the subset
of rawi that satisfies the oki predicate for the empty shadow:
α Ti = {r : α rawi | oki [] r}. Such a type definition introduces
a new type and the embedding–projection pairs Repi : α Ti→
α rawi and Absi : α rawi→ α Ti. The emerging nonemptiness
problem is discussed in Section IV.

We can prove by induction that oki is invariant under the
maprawi

function.
Lemma 1: oki u (maprawi

f r)⇐⇒ oki u r.
This property is sufficient to prove that Ti is a BNF. By

virtue of being a BNF, Ti can appear around type arguments
and recursive type occurrences in future uniform or nonuni-
form (co)datatype definitions.

C. Nonuniform Constructors

If the type Ti is the nonuniform type that we intended to
construct, it should satisfy equation (1). We prove this isomor-
phism by defining a constructor Ctori : (α, (α F1) Tσ(1), . . . ,
(α Fj) Tσ(j)) Gi → α Ti and a destructor dtori : α Ti →
(α, (α F1) Tσ(1), . . . , (α Fj) Tσ(j)) Gi and by showing that they
are inverses of each other.

Figure 1 gives diagrammatic definitions of Ctori (by com-
posing the functions on the outer arrows) and dtori (by com-
posing the functions on the inner arrows). All shape and raw
types occurring in the diagram are annotated with their shad-
ows. Absi can be applied only to raw elements with shadow [].

The unLeafk and unRawi functions are inverses of the
corresponding constructors satisfying unLeafk (Leafk a) = a
and unRawi (Rawi r) = r. Note that unLeafk is underspecified
and (just as Absi) may be applied only to Leafk shape elements
with shadow []. Moreover, the definition must bridge the gap
between the types α F j rawσ( j) of shadow [] and α rawσ( j)
of shadow [ j] (the rightmost arrows in Figure 1). This must
happen recursively (even though the constructor Ctori itself
is not recursive), by inlining the additional Fs into a new
layer of the shape type (right above the Leaf constructors) and
therefore requires a generalization that transforms an arbitrary
shadow u into u . j (i.e., the list u with the element j appended
to it). For each fixed j, inlining is implemented by means
of i mutual primitively recursive functions ↑ ji : (α F j) rawi→
α rawi, whose definition uses k mutual primitively recursive
functions ↑ jk : (α F j) shk→ α shk on the shape type:

↑ jk (Leafk f ) = Node jk (mapF jk
Leaf f )

↑ jk (Node j′k f ) = Node j′k (mapF j′k
↑ j f )

↑ ji u (Rawi g) = Rawi (mapGi
↑ j ↑ jσ(1) . . . ↑ jσ(j) g)



(α, (α F1) Tσ(1), . . . , (α Fj) Tσ(j)) Gi

Ctori

��

mapGi id Repσ(1) ... Repσ(j) // (α, (α F1)
[]

rawσ(1), . . . , (α Fj)
[]

rawσ(j)) Gi

mapGi Leaf1 ... Leafk ↑1σ(1) ... ↑jσ(j)

��

mapGi id Absσ(1) ... Absσ(j)

oo

α Ti

dtori

OO

Repi // α raw
[]

i
Absi

oo
unRawi // (α sh

[]

, α raw
[1]

σ(1), . . . , α raw
[j]

σ(j)) Gi
Rawi

oo

mapGi unLeaf1 ... unLeafk (↓1σ(1) []) ... (↓jσ(j) [])

OO

Fig. 1. Definitions of constructors and destructors

Inlining is injective. We define the (partial) inverse opera-
tions ↓ ji : ∆→ α rawi → (α F j) rawi and ↓ jk : ∆→ α shk →
(α F j) shk, which are useful when defining the destructors
dtori. The additional shadow parameter in ↓ ji denotes how
many more layers to destruct until we arrive at the last layer
of Nodes (with only Leaf constructors below).

↓ jk [] (Node jk f ) = Leafk (mapF jk
unLeaf f )

↓ jk ( j′/u) (Node j′k f ) = Node j′k (mapF j′k
(↓ j u) f )

↓ ji u (Rawi g) =
Rawi (mapGi

(↓ j u)(↓ jσ(1) (1 /u)) . . . (↓ jσ(j) (j /u)) g)

We establish the expected behavior of ↑ ji and ↓ ji with
respect to shadows and prove that they are mutually inverse.
The proofs proceed by induction on the raw type using very
similar omitted auxiliary lemmas for ↑ jk and ↓ jk.

Lemma 2:
1) oki ur =�⇒ oki (u . j)(↑ ji r);
2) oki (u .j)r =�⇒ oki u(↓ ji ur);

3) oki ur =�⇒↓ ji u(↑ ji r) = r;
4) oki (u .j)r =�⇒↑ ji (↓ ji ur)= r.

Since every pair of arrows in Figure 1 is mutually inverse
(when applied to elements of the right shadow), we obtain our
desired isomorphism property for Ctori and dtori.

Theorem 3: dtori (Ctori g) = g and Ctori (dtori t) = t.
Finally, we prove characteristic theorems for Ti’s BNF

constants. We focus on the property that mapTi
commutes

with the constructor Ctori. The theorems for the relator, the
predicator, and the set functions are proved analogously.

Theorem 4: mapTi
f (Ctori g) = Ctori (mapRi

f g) where
α Ri = (α, (α F1) Tσ(1), . . . , (α Fj) Tσ(j)) Gi and mapRi

is the
map function associated to this composite BNF.

The proof of Theorem 4 relies on commutation properties of
maprawi

and ↑ ji and of mapshk
and ↑ jk that can be proved by

induction. This is a pervasive pattern when defining recursive
functions on nonuniform datatypes.

Lemma 5: mapshk
f (↑ jk s) = ↑ jk (mapshk

(mapF j
f ) s) and

maprawi
f (↑ ji r) = ↑ ji (maprawi

(mapF j
f ) r).

D. Nonuniform Codatatypes

The construction can be gracefully extended to support
types whose elements may be infinitely deep: codatatypes.
Given a definition as in equation (1), codatatypes are exactly
the types Ti that are the greatest solution to this equation.

This change in semantics needs to be reflected only at
the raw level. Accordingly, the rawi types are defined as an
uniform mutual codatatype definition. The shape types remain

unchanged, since even in an infinitely deep object all type
arguments are finite (but unbounded) type expressions.

The subsequent changes are similarly mild: the predicates
oki are now defined as a mutual greatest (or coinductive)
fixpoint of the same introduction rule; the functions ↑ ji and ↓ ji
are defined by primitive corecursion, using the same equations
as in the datatype case though.

All theorems from Subsections III-B and III-C hold exactly
as stated also for codatatypes. The proofs however are differ-
ent: for example while propositions 1) and 2) of Lemma 2
were proved by induction on r for datatypes, for codatatypes
the proof proceeds by coinduction on the now coinductive
definitions of oki. Similarly, the equational statements (e.g., 3)
and 4) of Lemma 2 or the raw part of Lemma 5) are proved
by coinduction on the = predicate.

IV. THE NONEMPTINESS PROBLEM

All types in HOL are required to be nonempty. This is
a fundamental design decision connected to the presence of
Hilbert choice in HOL [18], [38]. As we are developing more
sophisticated high-level datatype specification mechanisms,
the problem of establishing nonemptiness of the introduced
types becomes more difficult.

For nonuniform (co)datatypes Ti specified mutually recur-
sively, the question is whether Ti are indeed valid HOL types,
i.e., are nonempty. We are interested in an answer that is both
automatic, i.e., is given without asking the user to perform
any proof, and complete, i.e., does not reject any valid types.

In previous work, we designed a solution for mutual uniform
(co)datatypes [13]. It is based on storing, for each BNF αK
with α= (α1, . . . ,αn), complete information on its conditional
nonemptiness, i.e., on which combinations of nonemptiness
assumptions for the argument types αi would be sufficient to
guarantee nonemptiness of αK. For example, if n = 3 and
αK is α1 stream+α2×α3, then for αK to be nonempty it
suffices that either α1, or both α2 and α3 be nonempty. We
say that both {α1} and {α2,α3}, or, simply, {1} and {2,3}
are witnesses for the nonemptiness of α1 stream+α2×α3.

The above discussion assumes that K operates on possibly
nonempty collections of elements (which, technically, as a
type constructor, it does not, since the HOL type variables
are assumed to range over nonempty types). To model this,
we employ the setK operators to capture the action of K on
sets, as the homonymous constant K : α1 set→ . . .→ αn set→
(αK)set, defined by K A1 . . . An = {x : αK | ∀i ∈ [n]. seti

K x⊆
Ai}. This way, the constant K operates on sets like the type



constructor K operates on types. And since sets can be empty,
we are able to express witnesshood:

Given I ⊆ [n], we call I a witness for K if, for all sets A,
∀i∈ I. Ai 6=∅ implies K A 6=∅. A set I ⊆ [n]set of witnesses
for K is called perfect if for all witnesses J ⊆ [n] there exists
I ∈I such that I ⊆ J. Thus, a perfect set of witnesses for K
is one where no witness is missed, in that any witness J is
equal to, or improved by, an I ∈I .

We fix a definition of i mutual nonuniform datatypes Ti, as
depicted in equation (1) from Section III-B. We assume the
involved BNF’s, namely, each Gi and each F jk, are endowed
with perfect sets of witnesses I (Gi) and I (F jk). We will
show how to effectively construct perfect sets of witnesses for
the Ti’s. On the one hand, this allows us to decide when the
Ti’s are nonempty, hence valid HOL types—if and only if their
perfect sets are nonempty. On the other hand, this equips the
Ti’s with infrastructure needed to establish nonemptiness in
future (co)datatypes that may use them as parameters.

To identify the witnesses for the Ti’s, we try a similar
approach to what we did for uniform datatypes. There, we
define a context-free set-grammar (which is like a standard
context-free grammar except that its productions act on finite
sets rather than words) having the Ti’s as nonterminals and
the argument types αi as terminals. The productions of the
set-grammar followed the direction of the destructors,

α Ti
dtori−→ (α, αT1, . . . , αTi) Gi

with each Ti deriving sets containing the nonterminals Ti′ and
the terminals αk allowed by witnesses of Gi.

For the nonuniform case, when applying recursively pro-
ductions following the definitions

α Ti
dtori−→ (α, (α F1) Tσ(1), . . . , (α Fj) Tσ(j)) Gi

we see that the Ti’s become applied to larger and larger
polynomial expressions involving the F jk’s. To keep the set-
grammar finite, we take a more abstract view, retaining from
the F jk-expressions only their witness-relevant information,
obtained by suitably combining their perfect sets I (F jk). We
define the set PolyWit, of polynomial witness sets (polywits
for short), inductively as follows:

• If k ∈ [k], then {{k}} ∈ PolyWit.
• If ( j,k) ∈ [j] × [k] and p1, . . . , pk ∈ PolyWit, then
(p1, . . . , pk) ·I (F jk) ∈ PolyWit.

Note that polywits are sets of subsets of [k]. In the second
clause above, we used the composition (p1, . . . , pk) ·I (F jk),
which is defined as

⋃
I∈I (F jk)

{
⋃

k′∈I Jk′ | J ∈ ∏k′∈I pk′}. This
composition captures the computation of witnesses for com-
posed BNFs, namely, for the composition of F jk with the BNFs
corresponding to the polywits p1, . . . , pk.

We fix a set of tokens, Tok = {ti | i ∈ [i]}, to repre-
sent symbolically the Ti’s. We define the set-grammar Gr =
(Term,NTerm,Prod) as follows. Its terminals Term are [k],
i.e., one number k ∈ [k] for each type variable αk. The
nonterminals NTerm are either polywits or have the form

( 1©, 2©) t1

1©

1

( 2©, 1©) t1

1©

1

( 1©, 2©) t1

· · ·

( 1©, 2©) t1

2©

2

( 2©, 1©) t1

2©

2

( 1©, 2©) t1

· · ·

Fig. 2. Derivation trees in the witness grammar

(p1, . . . , pk) ti, where each pk is a polywit and i ∈ [i]. There
are two types of productions:

1) p =⇒ I, where p ∈ PolyWit and I ∈ p
2) pti =⇒ ΓJ where i ∈ [i], J ∈ I (Gi) and ΓJ = {pk | k ∈

J∩ [k]} ∪ {(p ·I (F j1), . . . , p ·I (F jk)) tσ( j) | k+ j ∈ J}
The first type of production selects witnesses from polywits.
The second type mirrors the recursion in the definition of the
Ti’s by following the destructors and selecting the terminals
and nonterminals according to the witnesses of Gi.

Let Langi(Gr) be the language, i.e., set of subsets
of [k], generated by Gr starting from the nonterminal
({{a1}}, . . . ,{{ak}}) ti (the token for Ti applied to the trivial
polywits for its argument types). Similarly, let Lang∞,i(Gr)
be the language cogenerated by Gr—allowing infinite chains
of productions, i.e., allowing infinite derivation trees—again,
starting from ({{a1}}, . . . ,{{ak}}) ti.

Theorem 6:
1) If we interpret the definition as specifying mutual datatypes,
then:
1.1) the definition is valid in HOL (i.e., the specified types

are nonempty) if and only if Langi(Gr) 6=∅;
1.2) Langi(Gr) is a perfect set of witnesses for Ti.
2) If we interpret the definition as specifying mutual codata-
types, then:
1.1) the definition is always valid in HOL (and in fact

Lang∞,i(Gr) 6=∅ always holds);
1.2) Lang∞,i(Gr) is a perfect set of witnesses for Ti.

Note how the formulation of the theorem distinguishes the
nonemptiness subproblem from the witness problem. This is
because the Ti’s cannot be registered as types without knowing
their nonemptiness, more precisely, without knowing the non-
emptiness of their representing predicates oki [] from the raw
types rawi. In the codatatype case, nonemptiness always holds
thanks to the greatest fixpoint nature of the construction.

Since the rawi’s are BNFs, we already have a perfect set of
witnesses for them, but those usually will not satisfy oki [] (and
even if they were, they may not give a perfect set for Ti). So to
prove the theorem we adapt the notion of witness from types
to predicates and show that the languages (co)generated by Gr
offer perfect sets for oki u for any shadow u. We generalize
from [] to arbitrary u because the shadow increases along
applications of the rawi destructors. Appendix B gives details.

For any finite set-grammar Gr, the languages Langi(Gr) and
Lang∞,i(Gr) are effectively computable by fixpoint iteration
[13]. Moreover, in [13, Section 4.3] we show that iteration only



needs a number of steps equal to the number of nonterminals.
However, for uniform datatypes this number is precisely that of
mutual types, i; in our nonuniform case, it is the larger number
j×k× |PolyWit|, where |PolyWit| = O(22k

). Fortunately, in
practice the declared types do not have many type variables,
so the doubly exponential blowup in k is not problematic.

As an example, consider the following contrived definition
of the nonuniform codatatype of (α1,α2)-alternating streams:

(α1, α2) alter ∞
= C α1 ((α2, α1) alter) | D α2 ((α2, α1) alter)

Thus, we have i = 1, j = 1, k = 2, σ is the unique func-
tion from [1] to [1], (α1,α2)F11 = α2, (α1,α2)F12 = α1 and
(α1,α2,α3) G1 = α1×α3 +α2×α3. Thus, {{2}}, {{1}} and
{{1,3},{2,3}} are perfect sets of witnesses for F11, F21 and
G1, respectively. Figure 2 shows two infinite derivation trees
from the initial nonterminal ( 1©, 2©) t1 in the grammar Gr
associated to this definition, where we write 1© and 2© for the
polywits {{1}} and {{2}}. The trees repeat the same pattern
after reaching ( 1©, 2©) t1. In the left tree, the top production
is ( 1©, 2©) t1 =⇒{ 1©,( 2©, 1©) t1}; this is a valid production of
type 2, based on G1’s witness {1,3}. By contrast, the tree’s
other production of type 2, ( 2©, 1©) t1 =⇒ { 1©,( 1©, 2©) t1},
uses the other witness, J = {2,3}. The frontiers of the two
trees are {1} and {2}, respectively. In fact, {{1}, {2}} forms
a perfect set of witnesses for alter.

Even though alter is always nonempty, since it is a codata-
type, determining a perfect set of witnesses is important for
maintaining a complete solution to the overall nonemptiness
problem. If we used an imperfect set of witnesses such as
{{1,2}}, we would reject valid datatypes such as α fractal =
(α, ((α, α) alter) fractal) alter, where we must know that
{{1}} is a witness for alter to infer nonemptiness.

V. (CO)INDUCTION PRINCIPLES

In a proof assistant, high-level abstractions must be matched
by a reasoning apparatus. Next we discuss how reasoning prin-
ciples for nonuniform (co)datatypes can be inferred in HOL.
To avoid cluttering the ideas with too many technicalities, in
this and the next section we discuss the restricted situation
of a single (co)datatype α T defined as fixpoint isomorphism
α T ' (α,α F T ) G as in Section III-B but with i = j = k = 1.
We will reuse all the infrastructure defined in Section III-B
while omitting all indices except for when they are needed,
e.g., for distinguishing between the two set operators for G.

(Co)induction involves reasoning about the elements of
a (co)datatype and those of their (co)recursive components.
BNFs allow us to capture components abstractly, in terms of
the “set” operators. For example, for any element r of the
uniform (co)datatype α raw, its components are the elements
r′ of set2G(unRaw r)—because, in its fixpoint definition, raw
appears recursively as the second argument of G.

A. Induction

Induction for uniform datatypes can be smoothly expressed
in HOL. For example, the induction principle for α raw is the

r©
α raw

dtor ��

Abs // α T

unT

��

(α sh,
r′©

α raw) G
unLeaf ↓ []��

(α, α F
r′′©

raw) G (α, α F T) Gid

Rep
oo

Fig. 3. The raw representation of T

r©
α sh raw
dtor ��

Abs // α sh T

unT

��

(α sh sh, α sh
r′©

raw
r′′′©

)G
unLeaf ↓ []��

(α sh,α sh F
r′′©

raw)G
Leafmapraw Node
OO

(α sh, α sh F T)Gid

Rep
oo

Fig. 4. Connecting the T- and the raw- components

following HOL theorem, which we will refer to as Indraw:

∀Q. (∀r : α raw. (∀r′ ∈ set2G (unRaw r). Q r′) =�⇒ Q r) =�⇒
∀r : α raw. Q r

It states that, to show that a predicate Q holds for all α raw,
it suffices to show that Q holds for any element r given that
Q holds for the recursive components set2G (unRaw r) of r.

As we remarked in Section I, a verbatim translation of
Indraw for T would not be typable, since Q would be a
variable used with two different types. But even if we change
Q from a quantified variable to a polymorphic predicate
Q : α raw→ bool (and remove the outer ∀), the formula would
be unsound, due to the cross-type nature of the T-components:
Whereas t has type α T , its components t′ have type α F T .
For example, if Q is vacuously false on the type nat F T , we
could use such an induction theorem (with α instantiated to
nat) to wrongly infer that Q is true on nat T .

On the other hand, for each polymorphic predicate P :
αT → bool, we can hope to prove the following inference
rule in HOL, where for clarity we make explicit the universal
quantification over the type variable α, occurring both in the
assumption and the conclusion

∀α. ∀t : α T . (∀t′ ∈ set2G (dtor t). P t′) =�⇒ P t
∀α. ∀t : αT . P t

IndPT

Let us try to prove this rule sound. All we have at our disposal
is the representation type α raw and its induction principle. So
we should try to reduce IndPT to Indraw along the embedding–
projection pair Rep : α T → α raw and Abs : α raw→ α T ,
where the predicate ok [] describes the image of Rep.

We start by defining Q to be Abs ◦ P and try to prove
∀r. ok [] r =�⇒Q r using Indraw, hoping to be able to connect the
hypothesis of IndPT with that of Indraw. We quickly encounter
the following problem, depicted in Figure 3.1 Suppose r :α raw

1There and in forthcoming figures we replace all mapG f g arrow anno-
tations with arrows carrying two labels The types should make clear which
function represents which argument of mapG. For uniformity, we put the first
argument f to the right of the arrow’s direction and the second argument g
to the left.



corresponds to t : α T (via the embedding–projection pair);
then T-induction speaks about the T-components t′ : α F T of
t, which do not correspond to the raw-components r′ : α raw of
r, but rather to elements r′′ : α F raw of the form ↓ [] r′. This
mismatch is a consequence of our representation technique:
To represent T’s destructor using raw’s destructor we needed
to apply the “correction” ↓ [] for the nonuniformity. In order
to cope with it, we appeal to the shape type α sh, which is
in the simplified setting essentially α+α F+α F2 + . . . , and
thus includes all the types inhabited by t, its components, the
components’ components and so on.

So we weaken our goal, trying to prove that P holds not
on all types α T , but only on types of the form α sh T—for
Q, this means switching from α raw to α sh raw. As shown
in Figure 4, now we have a way to travel from the type
α sh F raw back to the type α sh raw—namely, by applying
Node to level the nonuniformity F into the larger type sh. For
this to work, we need Q to reflect mapraw Node, i.e., have
Q(mapraw Node r′′) imply Q r′′.

Another issue is that r′′′ = mapraw Node r′′ itself is not
in the image of Rep: r′′′ has shadow [1] instead of the
required []. We must generalize our goal to arbitrary shad-
ows, i.e., to ∀r u. ok u r =�⇒ Q′ u r, for a suitable predicate
Q′ : ∆→ α sh raw→ bool that extends Q in that Q′ [] =Q. To
this end, we define ↓↑ : ∆→ α sh raw→ α sh raw, an operator
that generalizes the trip from r′ to r′′ to r′′′ described above to
an arbitrary shadow u, and ↓↓↑↑, the cumulative iteration of ↓↑:

↓↑ u r =mapraw Node (↓ u r)
↓↓↑↑ [] r = s
↓↓↑↑ (u .1) r = ↓↑ u (↓↓↑↑ u r)

To see the intuition of these operators, we can regard the
elements of both β sh and β raw as trees whose leaves are
elements of β and whose nodes branch according to F. Then ↓↑
traverses elements of α sh raw until it reaches their innermost
nodes (with only leaves, i.e., elements of α sh, as subtrees),
and then immerses them as top nodes in the inner shape layer.
The additional shadow argument u is needed in oder to identify
when an innermost tree has been reached (since we only count
on ↓↑ u r being well-behaved if ok u r holds).

The sh counterparts of the above, ↓↑ : ∆→ α sh sh→ α sh sh
and ↓↓↑↑, are defined similarly (using mapsh instead of mapraw).
The key property of the “immerse” family of operators is that
they commute with raw’s destructor in the following sense.

Lemma 7: The left subdiagram in Figure 5 is commutative.
Now, taking Q′ u r to be Q (↓↓↑↑ u r) does the job. Namely,

Q′ can be proved by raw-induction on r, since it achieves the
desired correspondence between the raw-components and the
T-components, namely, between the leftmost and rightmost
edges of Figure 5’s diagram. That the correspondence works
is ensured by the diagram’s commutativity, as a composition
of two commutative subdiagrams: the left by the above lemma
and the right by the definition of dtor.

Thus, assuming the hypothesis of IndPT , we have proved
∀α. ∀r :α sh raw. ∀u : ∆. ok u r =�⇒Q′ u r—in particular, ∀α. ∀r :
α sh raw. ok [] r =�⇒ Q r, which implies ∀α. ∀t : α sh T . P t.

However, we had started out to prove the more general fact

∀α. ∀t : α T . P t. To move from the former to the latter, it
would suffice that P reflects the operator mapT Leaf : α T →
α sh T in the same way we needed it to reflect the operator
mapraw Node earlier: ∀t′′. P (mapT Node t′′)→ P t′′. In fact,
it suffices to assume that P is injective-antitone-parametric
(IAP), in that P (mapT f t) implies P t for all t : α T and
all injective functions f : α→ β. (Both Leaf and Node are
injective.) In conclusion, we have obtained:

Theorem 8: If P is IAP, then IndPT is derivable in HOL.
IAP is related but significantly weaker than (arbitrary)

parametricity, which for P would mean P t⇐⇒ P (mapT f t)
for all t and arbitrary functions f (Appendix A).

Due to the limitations of HOL, we were only able to
prove a restricted form of induction. However, all formulas
built from the usual terms used in functional programming
and employing equality, the logical connectives and universal
quantifiers are IAP, and therefore fall in the scope of our the-
orem. Indeed, all these operators are either fully parametric or
IAP—the equality and universal quantification are IAP, but not
fully parametric. The main losses are constants defined using
Hilbert choice, existential quantifiers, and ad hoc overloaded
constants. For example, a predicate P : α T → bool that has
different definitions on nat T and int T is not IAP.

B. Coinduction
We have designed the above infrastructure, consisting of the

“immerse” operators, to work equally well for the codatatype
as it does for the datatype. Namely, when α T is a codatatype,
these operators are defined in the same way and can be used
to derive the soundness of a nonuniform coinduction rule
under similar assumptions to the induction case (from the
corresponding uniform coinduction on the raw type):

∀α. ∀t1, t2 : αT .
P t1 t2 =�⇒ relG (=) P (dtor t1) (dtor t2)
∀α. ∀t : αT . P t1 t2 =�⇒ t1 = t2

CoindPT

For this rule to be sound, P : α T → α T → bool should
again interact well with injective functions, however this time
in the opposite direction. We say that P is injective-monotone-
parametric (IMP), if P t1 t2 implies P (mapT f t1) (mapT g t2)
for all t1, t2 : α T and injective functions f , g : α→ β.

Theorem 9: If P is IMP, then CoindPT is derivable in HOL.
Unlike IAP, IMP disallows the usage of the universal

quantifier in P, while it allows the existential quantifier. This
is a quite desirable symmetry: Induction requires the universal
quantifier to perform generalization over non-inductive param-
eters. For coinduction, the existential quantifier takes this role.

VI. (CO)RECURSION PRINCIPLES

For nonuniform (co)datatypes to be practically useful, there
must exist some infrastructure supporting (co)recursive func-
tion definitions. We start with datatypes and consider the
following simple recursive function on powerlists:

split : (α×β) plist→ α plist ×β plist
split Nil = (Nil, Nil)
split (Cons ab xs) = let (as, bs) = split (mapplist swap xs)

in (Cons (fst ab) as, Cons (snd ab) bs)



α sh raw
↓↓↑↑ u //

unRaw

��

α sh raw
unRaw ��

Abs // α sh T

dtor

��
(α sh sh, α sh raw) G

id ↓↑ []��
(α sh sh, α sh raw) G

↓↓↑↑ u

↓↓↑↑ (1/u) // (α sh sh, α sh raw) G (α sh, α sh F T) GLeaf

mapraw Node ◦ Rep
oo

Fig. 5. Borrowing induction and coinduction from raw to T

Here, the pattern matched variable xs has type ((α× β)×
(α × β)) plist and the auxiliary swap function is defined
as swap ((a1, b1), (a2, b2)) = ((a1, a2), (b1, b2)). The function
split uses polymorphic recursion: its type on the right hand
side of the specification is different from the one on the left
hand side. More precisely, the recursive call is applied to an
argument of type ((α×α)×(β×β)) plist. None of the existing
tools for defining recursive functions in higher-order logic can
handle polymorphic recursion—the gap we are about to fill.

Also note that split is not primitively recursive in the stan-
dard sense: the recursive call is applied to a modified pattern
matched argument mapplist swap xs. However, the modification
happens through the mapplist function, which does not change
the length of xs. Hence, such generalized primitively recursive
specifications, which modify the arguments of the recursive
call merely through a map function, are safely terminating.

A. Generalized Primitive Recursion

Following the foundational approach, primitively recursive
specifications in HOL are reduced to nonrecursive definitions
using a recursion combinator [10]. The equally expressive
but slightly less convenient primitively iterative specifications
can be reduced too, using a simpler fold combinator. For a
uniform datatype α T = Ctor ((α, α T) G) (e.g., α T = α list
with (α, β) G = unit+α×β) the fold combinator has type

((α, β) G→ β)→ α T→ β

A function f = fold b for some fixed b : (α, β) G → β,
satisfies the characteristic recursive equation f (Ctor g) =
b (mapG id f g). We call b the blueprint of f. Note that b
describes how to combine the results of the recursive calls into
a new result of type β. The recursion combinator’s blueprint,
of type (α, α T × β) G→ β, generalizes fold’s blueprint by
providing access to the original α T values, in addition to
the results of the recursive calls. Although our ideas support
recursion, we focus on iteration to simplify the presentation.

For a nonuniform datatype α T = (α, αF T)G (as before for
simplicity we consider the setting i = j = k = 1), the natural
generalization of fold would be a combinator of type

∀Y .(∀α. (α, α F Y) G→ α Y)→ β T→ β Y

where the universally quantified type constructor Y captures
the positions where α have to be replaced by α F, since
the recursive calls will be applied to a term of type α F T .
The explicit universal quantification over α indicates that the
blueprint needs to be truly polymorphic in α.

Bird and Paterson [9] observe that the above combinator is
not practical, since the primitive iteration scheme it provides
is very restrictive: it forces the type argument β of T to be
fully polymorphic. In fact, neither the split function, nor a
simple summation of a powerlist storing natural numbers can
be expressed using that fold. To overcome the limitation, they
propose a generalized fold of type

∀X Y . (∀α. (α X, α F Y) G→α Y)→ (∀α. α X F→α F X)→
β X T→ β Y

where the second argument enables recursive functions of a
more refined type β X T → β Y by providing a distributive
law a : ∀α. α X F→ α F X which we call the (argument)
swapper. Bird and Paterson require X and Y to be functors
and the two function arguments b and a to fold to be natural
transformations. The function f = fold b a is then a natural
transformation too and adheres to the characteristic equation

f (Ctor g) = b (mapG id (f ◦mapT a) g) (2)

It is straightforward to allow functors X and Y to be of
arbitrary arity n instead of 1. The function split can then be
defined by setting, n = 2, (α, β) G = unit+α×β, α F = α×α,
(α, β) X = α×β, (α, β) Y = α plist×β plist, a= swap, and

b (Inl ()) = (Nil, Nil)
b (Inr (ab, abs)) = let (as, bs) = abs

in (Cons (fst ab) as, Cons (snd ab) bs)

where Inl and Inr are the standard embeddings of +. For
simplicity, the rest of the section assumes n = 1.

We propose an even more flexible fold combinator which
replaces the functor F, which is fixed in the nonuniform
datatype specification and shows up in the recursive calls, with
another arbitrary functor V of the same arity as F (here, 1):

∀X Y . (∀α. (α X, α V Y) G→α Y)→
(∀α. α X F→α V X)→ β X T→ β Y

This allows the recursive calls to return a type α V Y instead
of the fixed α F Y . The combinator satisfies the same charac-
teristic equation (2) (with the more general types).

All those expressive combinators for nonuniform types
share one problem: in higher-order logic neither type construc-
tor quantification nor type variable quantification that happens
not at the outermost level is possible. Thus, it is impossible to
define the fold constants for nonuniform datatypes in HOL.

Instead, we follow a similar route as for induction. We
devise a recursion procedure that takes (here: unary) BNFs



V , X, Y ,2 a blueprint b : (α X, α V Y) G → α Y and a
swapper a : α X F→ α V X as input and produces a function
f : α X T→ α Y satisfying equation (2) as output.

Internally, the procedure defines a recursive function using b
and a on the raw type and lifts it to the nonuniform type. To
perform such a lifting for induction, the inductive property
P had to be a polymorphic IAP term. For recursion, we
require both b and a to be polymorphic injective-parametric
terms, i.e., parametric only for relations that are graphs of
injective function. This is a weaker assumption than Bird
and Paterson’s naturality assumption (e.g., mapF (mapX f ) =
mapX (mapV f ) ◦ a for a). On (bounded) natural functors
injective-parametricity implies the weak naturality assumption
that demands for the above equation to hold only for injective
functions f . Consequently, f will also only be a natural trans-
formation for injective functions. However, our construction
is closed: If both b and a are fully parametric in some type
parameters, f is fully parametric in those as well.

The definition of f proceeds in four steps. First, we define
a shape type shV for V analogously to sh for F, including the
constructors LeafV , NodeV , their inverses unLeafV , unNodeV ,
and the functions okV , ↑V , and ↓V . Second, we lift a to shapes
a : ∆→ α X sh→ α shV X by recursion on the shadow:

a [] =mapX LeafV ◦unLeaf
a (1 /u) =mapX NodeV ◦a◦mapF (a u)◦unNode

Third, we define a raw version of our function fraw : ∆→
α X T→ α shV Y by primitive recursion:

fraw u (Raw g)= b (mapG (a u) (mapY unNodeV ◦fraw (1 /u)) g)

The generalization to shV in the return type of fraw is similar to
the generalization performed for induction. Finally, we define
the function f as f = unLeafV ◦ fraw []◦Rep.

Figure 6 justifies why the above definitions make sense
by proving equation (2). When reading the diagram, some of
the arrows labeled by injective functions, such a Leaf(V) and
Node(V) (possibly under further maps), need to be inverted for
the diagram to make sense. Elements of the two highlighted
types have shadow [1]. All other elements of types sh, shV ,
and raw occurring in the diagram have shadow [].

Equation (2) is the outermost pentagon, which is filled by
commutative diagrams starting by unfolding the definitions of
f 1© (twice), Ctor 2©, and mapT 3© as well as the recursive
specification of fraw 4©. The quadrilateral 5© follows from the
naturality for injective functions (LeafV ) of b and 6© from the
recursive specification of ↑V . The remaining commutative pen-
tagon 7© crucially relates fraw and ↑ (similar to Lemma 5 for
mapraw). The proof of that fact follows by induction. There-
fore, the property used in 7© for shadow [] needs to be general-
ized to an arbitrary u and requires an auxiliary fact about a and
↑ alongside with the facts that a and fraw preserve ok u and
ok u. The proofs rely on the injective-parametricity of a and b.

Lemma 10:

2Strictly speaking, the boundedness assumption are not needed for X and
Y , which implies that α set is permitted to occur in those type expressions.

1) ok u s =�⇒ predshV
(okV u) (a u s)

2) ok u r =�⇒ predraw (okV u) (fraw u r)
3) ok u s =�⇒ a (u .1) (↑ s) =mapX ↑V (a u (mapsh a s))
4) ok u r =�⇒ fraw (u .1) (↑ s) =mapY ↑V (fraw u (mapraw a s))
Finally, we remark that asking for Y to be a natural functor,

or more generally as in case of Bird and Paterson to be a
(positive) functor is very restrictive, as it essentially disallows
recursive functions with parameters. We generalize the whole
construction to the case where α Y = α Y1→ α Y2 with Y1 and
Y2 being natural functors. This allows first-order arguments or
higher-order arguments that do not refer to α in their domain.
This generalization is straightforward but technically involved.

B. Generalized Primitive Corecursion

We have carefully orchestrated the recursion procedure to
work dually for codatatypes. Indeed, the corecursion proce-
dure mainly reverses function arrows: It takes the injective-
parametric blueprint b : α Y→ b : (α X, α V Y) G and swapper
a : α V X → α X F as inputs and produces the function
f : α Y→ α X T as output, which satisfies

f y = Cons (mapG id (mapT a◦ f) (b y)) (3)

An example of the “orchestration” is the type and the defi-
nition of a . For datatypes, the type is ∆→ α X sh→ α shV X
and the definition is recursive on ∆. However, we could have
defined it by recursion on the sh argument without the need for
a ∆ argument at all, i.e. a : α X sh→ α shV X. For codatatypes,
we would then fail to define the dual a : α shV X→ α X sh,
since there is no inductive argument on which we could
recurse. The additional ∆ argument restores the duality.

VII. IMPLEMENTATION

To add support for nonuniform types to Isabelle/HOL, we
followed the same general strategy as previously [10]:

1) We formalized in Isabelle/HOL an abstract datatype ex-
ample α T = Ctor ((α,α F T) G) as well as a codatatype.

2) We developed ML functions that generalize the abstract
examples to produce the derivations for a concrete set of
mutual types with an arbitrary number of type variables
and to derive the nonemptiness witnesses.

3) We developed ML functions that extend the results of
step 2 to multiple curried constructors—the high-level
view presented to users.

4) We developed the commands that process type and func-
tion definitions and that perform (co)induction.

For datatypes, step 1 starts by defining the type α T ,
Ctor, and the BNF constants; then it derives theorems about
them and registers T as a BNF. This registration relies
on an Isabelle command that lifts the BNF structure of a
type across an embedding–projection pair [6]. Induction is
formalized by deriving a lemma Q t in terms of a fixed but
unknown polymorphic predicate Q that is IAP and inductive
(i.e., (∀x ∈ set2G g. Q x) =�⇒ Q (Ctor g) holds). Recursion is
formalized as a function f defined such that the recursive



α X T

f

��

1©

2©
Rep ,,

(α X, α X F T) GCtoroo

id mapT a

��

id

Rep
rr

3©
α X raw

fraw []

��

4©

(α X sh, α X raw) GRawoo

a [] fraw [1]��

(α X , α X F raw) GLeaf

↑
oo

id mapraw a
��

(α shV X, α shV Y) G
id mapY unNodeV��

(α X , α V X raw) G
id fraw []��

id

Abs // (α X , α V X T) G

id

f
tt

α shV Y
5©

(α shV X, α shV V Y) Gboo (α X, α V shV Y) G

mapX LeafV

mapY ↑V

mm
7©

6©

α Y
mapY LeafV

22

(α X, α V Y) G
b

oo
idmapY LeafV

OO
mapX LeafV

mapY (mapV LeafV )

jj

1©

Fig. 6. Proof of the recursive specification of f

equation f (Ctor g) = b (mapG id ( f ◦ mapT a) g) holds for a
fixed injective-parametric blueprint b and swapper a.

The code for step 2 constructs the low-level types, terms,
and lemma statements presented in Sections III to VI and
proves the lemmas using specialized tactics—ML programs
that generalize the proofs from the formalization. In principle,
the tactics should always succeed, but it is necessary to
execute them to obtain the highest level of trustworthiness.
Assuming Isabelle’s inference kernel is correct, bugs in the
new commands might lead to run-time failures but never to
logical inconsistencies. For step 3, we were able to generalize
and reuse the infrastructure for uniform types that performs
the same lifting from low to high level [10, Sections 3–6].

Step 4 takes the form of six main commands available to the
users and making definitions and reasoning about nonuniform
types nearly as convenient as for uniform types.

The nonuniform_(co)datatype commands can be used to
define nonuniform types. For example, the following definition
introduces a type of λ-terms over variables drawn from α, with
De Bruijn notation for bound variables [8]:

nonuniform_datatype α tm =
Var α | App (α tm) (α tm) | Lam ((unit+α) tm)

Entering a λ-abstraction (Lam) creates a new variable, which
is accommodated by the extended type unit+α consisting of
the values Inl () (the new variable) and Inr x for all x : α.
The command performs the type construction and computes
a nonemptiness witness. Then it defines the constructors Var,
App, Lam and corresponding destructors and derives charac-
teristic theorems about the constructors, the destructors, and
the BNF constants maptm, predtm, reltm, and settm.

The nonuniform_prim(co)recursive commands allow
users to define primitively (co)recursive functions, by specify-
ing their (co)recursive equations.3 For example, the following
definition introduces a function join that “flattens” a term
whose variables are themselves terms:

nonuniform_primrecursive join : α tm tm→ α tm where
join (Var x) = x

3The implementation of these two commands is incomplete at the time of
this writing. We do not foresee any difficulties beyond those which we met
for the other commands and expect to finish the implementation in the weeks
following the submission deadline. Our archive [11] will be updated.

| join (App s t) = App (join s) (join t)
| join (Lam u) = Lam (join (maptm (λx. case x of

Inl ()⇒ Var (Inl ()) | Inr y⇒maptm Inr y) u))
The command extracts blueprints and swappers from the user-
specified equations and emits parametricity proof obligations
that must be discharged by the user. In the example, the swap-
per is the λ-expression of type unit+α tm→ (unit+α) tm that
is passed to the outer maptm. Once the proofs are complete,
the command derives a low-level characteristic theorem about
the defined function. Then it derives the equations specified
by the user from this theorem.

One of the most basic operations on λ-terms is substitution:
subst : (α→ β tm)→ α tm→ β tm. Due to the limitation that
arguments to recursive functions must be BNFs, we cannot
define higher-order functions like subst that depend on a type
variable that changes in the recursive calls. But we can define
subst as a composition: subst σ= join ◦maptm σ.

The nonuniform_(co)induct commands can be used to
prove a lemma (or a set of lemmas for mutual definitions)
by (co)induction. For example, the command

nonuniform_induct s in subst_subst:
subst τ (subst σ s) = subst (subst τ ◦ σ) s

emits proof obligations for parametricity and the three cases
of the induction on s. Often, the pararametricity proofs can be
delegated to Isabelle’s Transfer tool [26]. Once the obligations
are discharged, the stated property is derived and stored under
the specified name (subst_subst). For the technical reason
explained in Section V, the derivation can be performed only
by an Isabelle command, not by a proof method as is done
for uniform (co)datatypes [10]. The main advantage of proof
methods is that they can be invoked on an arbitrary proof goal
in the middle of a proof.

We conclude with a codatatype example: We prove two
alternative definitions of the constant powerstream equivalent.
All required proofs are fully automatic after specifying the
trivial bisimulation relation R l r⇐⇒ ∃x xs. l = const x∧ r =
mappstream (λ_. x) xs in the coinduction proof.

nonuniform_codatatype α pstream =
Cons α ((α×α) pstream)

nonuniform_primcorecursive const : α→ α pstream
const x = Cons x (const (x, x))



nonuniform_coinduct R in const_alt:
const x =mappstream (λ_ : α. x) xs

VIII. DISCUSSION AND RELATED WORK

a) Inspiration: For representation, we generalized
Okasaki’s construction [37] to arbitrary datatypes. Nordhoff et
al. [36] have used this construction partially (defining the sh
and raw types but without introducing a new nonunform type)
in their Isabelle/HOL formalization of 2-3 finger trees. The
corresponding reduction of nonuniform to uniform codatatypes
appears not to have been studied in the literature.

For recursion, we refined Bird and Paterson’s generalized
fold combinators [9] in several ways, including weakening the
parametricity/naturality condition and enabling non-functor
target domains. In turn, Bird and Paterson had improved on
the standard sheaf-functor approach from category theory [29].

Our (co)induction principles take advantage of the BNF
structure including set operators and relators, and form a
lighter alternative to fibration-based approaches [17], [22] for
the category of sets and functions.

b) Comparison with Other Proof Assistants: Our work
shows that nonuniform (co)datatypes and the associated poly-
morphic (co)recursion [21], [34] can be supported in the
minimalistic rank-one polymorphic framework of HOL, and
therefore made available in HOL-based provers, which cover
about half of the theorem proving community.

The dependent type theory (DTT) camp, represented by
theorem provers such as Agda, Coq, Matita, and Lean, has
sophisticated type systems built into their mechanized logic,
including native nonuniform datatypes. Several case studies in
these provers exploit nonuniformity [4], [15], [25], [35], [42].

Compared with the DTT systems, our support for nonuni-
form types in HOL has some limitations. First, dependent
families of (nonuniform) types cannot be expressed in HOL.
Second, Agda supports self-nested (co)datatypes. For example,
a definition such as α bush = BNil | BCons α (α bush bush) is
beyond scope of our results, since the recursive occurrence of
bush is nested in itself. Third, our (co)induction principles have
some restrictions concerning (a weak form of) parametricity.
The reason is that we cannot perform well-founded induction
across types in HOL. While practical predicates about
functional programs obey them, the restrictions are not
necessary sematically. Appendix D presents an axiomatic
extension that allows HOL to “see” cross-type. However,
adding axioms, no matter how provably correct they may be,
goes against the main tenets of HOL.

Our approach has some advantages as well, stemming from
its category-theory-awareness. First, arbitrary parameter types,
not just (co)datatypes, can be plugged in the specifications
for nonuniform (co)datatypes, either inside or outside of the
recursive occurrences in the specification. For example, the
type stree from Section I is possible because the type α fset,
of finite sets is a BNF. This is not possible with DTT, where
datatypes are restricted to a predefined grammar.

Second, since the foundational approach compels us to
maintain the functorial structure to justify fixpoint definitions,

users can enjoy default map functions and relators, as well as
some polytypic properties either out of the box or within the
immediate reach. Thus, our nonuniform recursion principle
delivers parametric functions, i.e., natural transformations.
Moreover, the fusion laws [9] (Appendix C), known to be
important in reasoning about functional programs, rely heavily
on functoriality and naturality, and they are immediate in our
framework. In contrast, in DTT, very little structure is available
for nonuniform datatypes after definition. In particular, map
functions and relators are missing and can be difficult to add.

c) Other Work: The pioneering work of Bird and his
collaborators on nonuniform datatypes [7], [8], [9] has been
extended into several directions, including structures for effi-
cient functional programming [23], [24], [30], datatypes with
references [16], as well as work directly relevant for DTT
proof assistants: reduction to W-types and container types
[1], typed term rewriting frameworks for total programming
[2], [3], [31], intensional-DTT induction [32]. Our current
contribution was concerned with bootstrapping nonuniform
datatypes in HOL on a sound and compositional basis. Only
time will tell if Isabelle/HOL users, or more generally the HOL
community of users and researchers, will embrace nonuniform
datatypes and their applications to a similar scale as in
advanced programming languages and type theories.

Acknowledgment: We thank Peter Lammich for pointing
us to his work on finger trees and for formalizing Okasaki’s
construction for powerlists and Johannes Hölzl for explaining
us Lean’s support for nonuniform datatypes.

REFERENCES

[1] M. G. Abbott, T. Altenkirch, and N. Ghani. Representing nested
inductive types using W-types. In ICALP 2004, vol. 3142 of LNCS,
pp. 59–71. Springer, 2004.

[2] A. Abel and R. Matthes. Fixed points of type constructors and primitive
recursion. In CSL 2004, vol. 3210 of LNCS, pp. 190–204. Springer,
2004.

[3] A. Abel, R. Matthes, and T. Uustalu. Iteration and coiteration schemes
for higher-order and nested datatypes. Theor. Comput. Sci., 333(1-2):3–
66, 2005.

[4] N. Benton, C. Hur, A. Kennedy, and C. McBride. Strongly typed term
representations in Coq. J. Autom. Reasoning, 49(2):141–159, 2012.

[5] S. Berghofer and M. Wenzel. Inductive datatypes in HOL—Lessons
learned in formal-logic engineering. In TPHOLs ’99, vol. 1690 of LNCS,
pp. 19–36, 1999.

[6] J. Biendarra. Functor-Preserving Type Definitions in Isabelle/HOL.
B.Sc. thesis, Technische Universität München, 2015.

[7] R. S. Bird and L. G. L. T. Meertens. Nested datatypes. In MPC’98,
vol. 1422 of LNCS, pp. 52–67. Springer, 1998.

[8] R. S. Bird and R. Paterson. De Bruijn notation as a nested datatype. J.
Funct. Program., 9(1):77–91, 1999.

[9] R. S. Bird and R. Paterson. Generalised folds for nested datatypes.
Formal Asp. Comput., 11(2):200–222, 1999.

[10] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and
D. Traytel. Truly modular (co)datatypes for Isabelle/HOL. In ITP 2014,
vol. 8558 of LNCS, pp. 93–110. Springer, 2014.

[11] J. C. Blanchette, F. Meier, A. Popescu, and D. Traytel. Formalization
and implementation accompanying this paper. https://people.mpi-inf.
mpg.de/~jblanche/nonuniform.tar.gz, 2016.

[12] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible
corecursion. In ICFP 2015, pp. 192–204. ACM, 2015.

[13] J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing (co)datatypes.
In ESOP 2015, vol. 9032 of LNCS, pp. 359–382. Springer, 2015.

[14] A. Church. A formulation of the simple theory of types. J. Symb. Logic,
5(2):56–68, 1940.



[15] N. A. Danielsson. Lightweight semiformal time complexity analysis for
purely functional data structures. In POPL 2008, pp. 133–144. ACM,
2008.

[16] N. Ghani, M. Hamana, T. Uustalu, and V. Vene. Representing cyclic
structures as nested datatypes. In TFP 2006, vol. 7 of Trends in
Functional Programming, pp. 173–188. Intellect, 2006.

[17] N. Ghani, P. Johann, and C. Fumex. Generic fibrational induction.
Logical Methods in Computer Science, 8(2), 2012.

[18] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University
Press, 1993.

[19] E. L. Gunter. A broader class of trees for recursive type definitions for
HOL. In HUG ’93, vol. 780 of LNCS, pp. 141–154. Springer, 1994.

[20] J. Harrison. Inductive definitions: Automation and application. In
TPHOLs ’95, vol. 971 of LNCS, pp. 200–213. Springer, 1995.

[21] F. Henglein. Type inference with polymorphic recursion. ACM Trans.
Program. Lang. Syst., 15(2):253–289, 1993.

[22] C. Hermida and B. Jacobs. Structural induction and coinduction in a
fibrational setting. Inf. Comput., 145(2):107–152, 1998.

[23] R. Hinze. Efficient generalized folds. In Workshop on Generic
Programming, pp. 1–16, 2000. The proceedings appeared as a technical
report of Universiteit Utrecht, UU-CS-2000-19.

[24] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. J. Funct. Program., 16(2):197–217, 2006.

[25] A. Hirschowitz and M. Maggesi. Nested abstract syntax in Coq. J.
Autom. Reasoning, 49(3):409–426, 2012.

[26] B. Huffman and O. Kunčar. Lifting and Transfer: A modular design for
quotients in Isabelle/HOL. In CPP 2013, vol. 8307 of LNCS, pp. 131–
146. Springer, 2013.

[27] O. Kunčar and A. Popescu. A consistent foundation for Isabelle/HOL.
In ITP 2015, vol. 9236 of LNCS, pp. 234–252. Springer, 2015.

[28] O. Kunčar and A. Popescu. Comprehending Isabelle/HOL’s consistency.
In ESOP, 2017. To appear. Preprint available at http://andreipopescu.
uk/pdf/compr_IsabelleHOL_cons.pdf.

[29] J. Lambek. Subequalizers. Canadian Mathematical Bulletin, 13(1):337–
349, 1970.

[30] C. E. Martin, J. Gibbons, and I. Bayley. Disciplined, efficient, gener-
alised folds for nested datatypes. Formal Asp. Comput., 16(1):19–35,
2004.

[31] R. Matthes. Recursion on nested datatypes in dependent type theory. In
CiE 2008, vol. 5028 of LNCS, pp. 431–446. Springer, 2008.

[32] R. Matthes. An induction principle for nested datatypes in intensional
type theory. J. Funct. Program., 19(3-4):439–468, 2009.

[33] T. F. Melham. Automating recursive type definitions in higher order
logic. In Current Trends in Hardware Verification and Automated
Theorem Proving, pp. 341–386. Springer, 1989.

[34] A. Mycroft. Polymorphic type schemes and recursive definitions. In
Symposium on Programming, vol. 167 of LNCS, pp. 217–228. Springer,
1984.

[35] G. Naves and A. Spiwack. Balancing lists: A proof pearl. In ITP 2014,
vol. 8558 of LNCS, pp. 437–449. Springer, 2014.

[36] B. Nordhoff, S. Körner, and P. Lammich. Finger trees. In Archive of
Formal Proofs. http://afp.sf.net/entries/Finger-Trees.shtml, 2010.

[37] C. Okasaki. Purely functional data structures. Cambridge University
Press, 1999.

[38] L. C. Paulson. A formulation of the simple theory of types (for Isabelle).
In COLOG-88, vol. 417 of LNCS, pp. 246–274. Springer, 1990.

[39] A. Pitts. Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic, chapter The HOL Logic, pp. 191–232. In Gordon
and Melham [18], 1993.

[40] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP ’83, pp. 513–523, 1983.

[41] J. J. M. M. Rutten. Relators and metric bisimulations. Electr. Notes
Theor. Comput. Sci., 11:252–258, 1998.

[42] M. Sozeau. PROGRAM-ing finger trees in Coq. In ICFP’07, pp. 13–24.
ACM, 2007.

[43] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, composi-
tional (co)datatypes for higher-order logic: Category theory applied to
theorem proving. In LICS 2012, pp. 596–605. IEEE Computer Society,
2012.

[44] P. Wadler. Theorems for free! In FPCA ’89, pp. 347–359. ACM, 1989.

APPENDIX

A. (Weak) Parametricity and Naturality

c : α F parametric relF R c c for all R
f : α F→ α G parametric (P) (relF R Z⇒ relG R) f f for all R
Function space relator R Z⇒ S defined as λ f g. (∀a b. R a b =

S ( f a) (g b)). In other words two functions are related by
R Z⇒ S if for all R-related inputs, the outputs are S -related.
f : α F→ αG injective-parametric (IP) (relF R Z⇒ relG R) f f

for all R that are graphs of injective functions, i.e., left-total,
singlevalued relations.
f natural transformation (NAT) f ◦mapF g =mapG g ◦ f for

all g
predicate P : α F → bool (injective-)parametric (relF R Z⇒

(=)) P P for all R (that are graphs of injective functions).
predicate P : α F → bool injective-monotone parametric

(IMP) (relF R Z⇒ (=�⇒))PP for all R that are graphs of injective
functions

predicate P : α F→ bool injective-antitone parametric (IAP)
when (=�⇒) is replaced by (⇐�=)

P = NAT
P =�⇒ IP
IP =�⇒ IMP
IP =�⇒ IAP
IMP and IAP =�⇒ IP

B. Proof Sketch of Theorem 6

Since the types Ti do not exist yet, we need to work on
the representation types rawi, and prove a property about the
predicates oki that represent the to-be-defined types Ti. For
this, we introduce a refinement of the notion of witness: Given
a shadow u : ∆, a set I ⊆ [i] is an u-witness for rawi if, for all
sets A, ∀k ∈ I. Ak 6=∅ implies ∃r ∈ rawi A. oki u r. We prove:

(3) Langi(Gr) (or Lang∞,i(Gr)) is a perfect sets of []-
witnesses for the (co)datatype rawi.

To prove (3), we are looking for a connection between
the grammar Gr and rawi’s (co)recursive specification, in the
direction of the destructor

α rawi
unRawi−→ (α sh, α rawσ(1), · · · , α rawσ(j)) Gi

By the definition of oki, if r : α rawi is such that oki u r, then
dtori r has, for each j∈ [j], its j-components r′ : α rawσ( j) sat-
isfying oki ( j /u) r′. As discussed in Section III-B, the shadow
increment between u and j /u encodes the application of the
components F j = (F j1, . . ., F jk), reflected in the grammar’s
productions of type 2. This suggests a recursive translation of
shadows into polywits:
• γk [] = {{k}}
• γk ( j /u) = (γ1 u, . . . ,γk u) ·I (F jk)

Now we can formulate a generalization of (3), taking into
account arbitrary shadows, not just []. For each nonterminal
x, we write Langx(Gr) (or Lang∞,x(Gr)) for the language
(co)generated by x.

(4) For all u : ∆, Lang(γk u,...,γk u) ti(Gr) (or
Lang∞,(γk u,...,γk u) ti(Gr)) is a perfect set of u-witnesses
for the (co)datatype rawi.



Finally, (4) can be proved using standard (uniform)
(co)induction and (co)recursion, moving back and forth be-
tween Gr-derivation trees and the rawi’s.

For datatypes.: That every I ∈ Lang(γk u,...,γk u) ti(Gr) is an
u-witnesses follows by structural induction on its derivation
tree in Gr. Conversely, that for every u-witness J, we have
I ⊆ J for some I ∈ Lang(γk u,...,γk u) ti(Gr) follows by induction
on the definition of oki.

For codatatypes.: To prove that every I0 ∈
Lang∞,(γk u0,...,γk u0) ti0

(Gr) is an u0-witness, we let A be
such that ∀i ∈ I0. Ai 6=∅. With u0, i0, I0 and A fixed, let Tr be
a (possibly infinite) derivation tree of (γk u0, . . . ,γk u0) ti0 in
Gr—thus having I0 as the set of terminals on its frontier. Let
∆u0,i consists of all shadows having u0 as a prefix and such
that the nonterminal (γ u) ti occurs in the tree Tr, where we
write γ u for (γ1 u, . . . ,γk u).

Mutually corecursively (by primitive raw-corecursion), we
define the functions wi : ∆u0,i→ α rawi, by

wi u =mapGi
id (wσ(1), . . . ,wσ(j)) gu

where the element gu ∈ (α sh, ∆u0,σ(1), · · · , ∆u0,σ(j)) Gi is de-
fined as follows: Let (γ u) ti =⇒ ΓI be the (type 2) production
in Tr corresponding to the terminal (γ u) ti.

• From the definition of ΓJ it follows that, for each j such
that k+ j ∈ J, the nonterminal ((γ u) ·I (F j1), . . . ,(γ u) ·
I (F jk)) tσ( j), i.e., (γ1( j /u), . . . ,γk( j /u)) tσ( j), is also in
Tr; hence j /u ∈ ∆u0,σ( j).

• Also from the definition of ΓJ it follows that, for each
k ∈ [k]∩ J, the nonterminal γk u is also in Tr. Since only
type 1 productions are applicable to polywit nonterminals,
let γk u→ I be the production from Tr applied to γk u.
Then I is included in Tr’s frontier, i.e., I ⊆ I0. Then,
picking some elements ai ∈ Ai for i ∈ I, we can define
shapes sk ∈ shk A for each k ∈ [k] that are full trees, i.e.,
that oku si holds.

Thus, we have constructed the elements j /u∈∆u0,σ( j) for each
j such that k+ j ∈ J and si ∈ shk A (in particular, si : α shk)
for each k ∈ [k]. Since J is a witness for Gi, we obtain
our desired element gu ∈ (α sh, ∆u0,σ(1), · · · , ∆u0,σ(j))Gi, which
concludes the definition of the wi’s. Because of our choices in
the definition, it is now routine to prove:

• by rule coinduction on the definition of the oki’s, that
oki u (wi u) holds;

• by rule induction on the definition of the set operators
for raw, that setraw,k(wi u)⊆ Ai holds, which means that
wi u ∈ rawi A holds.

This concludes the proof that I0 is a witness.
Conversely, to prove that for every u-witness J, we have

I ⊆ J for some I ∈ Lang∞,(γk u,...,γk u) ti(Gr), we construct a
(possibly infinite) derivation tree whose frontier includes J.
The construction proceeds corecursively, by extracting each
time the next production to be applied from J and the Gi’s
witnesses. �

C. Fusion Laws

We fix a nonuniform datatype α T = (α,α F T ) G. Let
us write NURec(X,Y ,a,b) for the polymorphic function f :
αX T→ α Y defined by nonuniform recursion from a blueprint
b : (α X, α V Y) G→ α Y and a swapper a : α X F→ α V X,
as in Section VI-A. (Of course, NURec cannot be a HOL
combinator—it is just a meta-level notation.)

Theorem 11: The following hold:

Fold Fusion: If κ : α Y → α Y ′ is such that κ ◦
b = b′ ◦ mapG id κ, then κ ◦ NURec(X,Y ,a,b) =
NURec(X,Y ′,a,b′).

Map Fusion: If κ : α X′→ α X is such that κ◦a′ = a◦κ, then
NURec(X,Y ,a,b)◦mapT κ = NURec(X′,Y ,a′,b).

Proof. TODO: By nonuniform induction; things are suitably
parametric (equality of parametric / IAP functions); maybe
draw diagrams, writing f and f ′ for the recursively defined
functions. �

The duals of the funsion laws hold when α T ∞
= (α,αF T )G

is a uniform codatatype as in Section VI-B.

D. Cross-Type Induction Schema

As discussed in the paper, a main restriction of our work
is induction for nonuniform types, where we require IA-
parametricity of the predicate. Here, we show how a gentle,
provably consistent axiomatic extension of HOL removes this
restriction. The axiom does not refer to nonuniform datatypes,
or the intricate construction leading to them, or even to BNFs.
Rather, it is a general-purpose axiom for cross-type well-
founded induction and recursion.

We fix the types α T , α F and M (with the notations T and
F not connected to nonuniform datatypes).

Let P : α T → bool be a polymorphic predicate, for which
we want to prove ∀α. ∀t : α T .P t A natural approach would be
induction using a measure m : α T→M which decreases w.r.t.
a well-founded relation r : M set→M set→ bool. But what if
the measure decreases by changing the type, as in r (m t′) (m t),
where t : α T and t′ : α F T? This is still acceptable, since
well-foundedness should still operate across the types α Fn T .
Formally, we would like to have the following rule, where wf r
states that r is well-founded.
∀α. ∀t : α T .
wf r ∧ (∀t′ : α F T . r (m t′) (m t) =�⇒ P t′)
=�⇒ P t

∀α. ∀t : αT . P t
WFIndT ,F,r,m,P

In HOL, this type of induction in HOL across varying types
is impossible to justify. The problem is the change in type
during the descent: the elements t′ smaller than t (via m,
w.r.t. r) do not dwell the same type as t, α T , but a different
type (α F) T , And induction in HOL across varying types is
impossible (unless, as we have seen, we require parametricity).
However, it is easy to see that the rule is safe:

Theorem 12: The rule schema WFInd is sound in the
standard models of HOL [39] and in the ground models



of Isabelle/HOL [27], hence is consistent with HOL and
Isabelle/HOL.4

Proof. A standard model of HOL fixes a universe U of
sets with good slosure properties (e.g., closed under function
spaces) and interprets a type constructor such as T as a
function on this universe, [T] : U →U , a type such as M as
an element of the universe, [M] ∈ U , etc. Moreover, a poly-
morphic constant such as m : α T →M is intepreted as a U -
indexed family ([m]A)A∈U . Crucially, it interprets the function-
space type constructor as the set of all functions between the
interpretation of its arguments and the type nat os a countable
set [nat], which with [0] and [Suc] is isomorphic to the natural
numbers. This means that the scheme WFInd can be justified
inside U as follows: Assuming its conclusion is false and
repeatedly using its hypothesis, we obtain the infinite se-
qeuences (Ai)i and (bi)i such that Ai+1 = [F](Ai), bi ∈ [T](Ai),
[m](Ai)(bi) = [True] and [r] ([m](Ai+1)(bi+1))([m](Ai)(bi)) =
[True]. Taking ci = [m](Ai)(bi), this gives us an infinite
sequence (ci)i such that ci ∈ [M] and [r] (ci+1)(ci) = [True].
Thanks to standardness, (ci)i yields a witness for the formula
∃c′ : nat→ M. ∀i : nat. r (c′ i)(c′ i), which therefore holds in
the model. This is in contradiction with the fact that [wf r] also
holds in the model.

A ground model of Isabelle/HOL only interprets the ground
(monomorphic) types and terms, again with a standard inter-
pretation for functions and numbers. A formula is true in such
a model iff all its ground substitutions are true. For example,
∀x : α. x = x is deemed true because, for all ground types K,
the ground formula ∀x : K. x= x is true. The argument for why

the schema WFInd is sound is similar to the case of standard
HOL models, but employing ground types Ki instead of the
sets Ai. �

With this addition, we can remove the parametricity require-
ment from Theorem 8:

Theorem 13: The Ind schema is derivable in HOL enriched
with the WFInd schema.
Proof. The derivation takes place by instantiating the param-
eters of WFIndT ,F,r,m,P using those of IndPT . We take:
• T and F to be the nonuniform datatype and its nesting

BNF
• M to be the datatype M = MCons (unit,M)G
• r to be the immediate subterm relation associated to M,

namely r = {(m′,m) | m′ ∈ setG2 (MCons m)}
• m to be the composition rawmeas◦RepT , where RepT :
α T → α raw is the representation function for T and
rawmeas : α raw→M sends any r to its recursive depth:

rawmeas (Raw g) =MCons (mapG (λ_.()) rawmeas g)

It is not hard to verify the assumptions of WFIndT ,F,r,m,P. �

In summary, the unrestricted versions of nonuniform induc-
tion is made available via a consistent axiomatic extension

4The reason why we treat Isabelle/HOL specially is that it allows ad
hoc overloading of constants intertwined with type definitions, which is
problematic in the standard HOL semantics [27], [28].

of HOL. The users can choose between enabling this axiom
or using the more restricted principle we were able to prove
entirely in HOL.


