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Abstract. Deep learning methods are modelled by means of multiple layers of 

predefined set of operations. In recent years, deep learning methods utilizing 

unsupervised learning for training the layers of neural networks have shown 

remarkable results in various fields. Genetic algorithms, by contrast, are search 

and optimization algorithm that mimic evolutionary process. In the past, genetic 

algorithms have been successfully implemented for training three-layer neural 

networks. In this paper, we propose a novel genetic approach to evolving deep 

learning networks. The performance of the proposed method is evaluated in the 

context of an electrophysiological soft robot like system, the results of which 

demonstrate that our proposed hybrid system is capable of effectively training a 

deep learning network.  

Keywords: Deep learning, Evolutionary algorithm, Genetic algorithm, Meta-

heuristics, Neural networks.  

1 Introduction 

Deep learning networks are composed of multiple processing layers of predefined 

set of operations [6]. They have significantly improved the state-of-the-art across 

domains, including text mining, logical and symbolic reasoning, speech processing, 

pattern recognition, robotics and big data. Training deep learning networks is known 

to be hard [5]. Many standard learning algorithms randomly initialize the weights of 

the neural network (NN) and apply gradient descent using backpropagation. However, 

this gives poor solutions for networks with 3 or more hidden layers. Hence, fine-

tuning of deep network parameters is an important aspect of learning and can be 

treated as a problem in which the fitness (or objective) function is considered as a 

criterion for optimization alongside parameters required to construct an efficient deep 

learning network architecture.  

In recent years, meta-heuristics algorithms were implemented to handle the prob-

lem of Restricted Boltzmann Machine (RBM) model selection. Kuremoto et al. [7] 

used a Particle Swarm Optimization (PSO) algorithm to optimize the size of neural 

networks (number of input (visible) and hidden neurons) and the learning rate for 3-

layer deep network of RBMs. Liu et al. [8] suggested a Genetic Algorithm (GA) 

based system for optimization of RBM. Later on, Levy et al. [9] proposed a hybrid 
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approach (GA + RBM) for unsupervised feature learning, which was used for auto-

matic painting classification. In [9], GA was applied to evolve weights of the RBM. 

Rodrigues et al. [10] employed Cuckoo Search (CS) algorithm for the fine-tuning of 

parameters of a Deep Belief Network (DBN). In order to validate the effectiveness 

results were compared against other meta-heuristic algorithms such as Harmony 

Search (HS), Improved Harmony Search (IHS) and PSO. Rosa et al. [11] utilized a 

Firefly algorithm for learning the parameters of DBN. They also took other optimiza-

tion algorithms (HS, IHS and PSO) for performance comparison. Papa et al. [12] 

proposed a HS based method for fine tuning the parameter of a DBN, obtaining more 

accurate results than comparable methodologies. Horng [13] showed the implementa-

tion of Artificial Bee Colony (ABC) algorithms for calibration of the parameters of 

DBNs. Experimental results showed the superiority of the ABC and Firefly algo-

rithms over HS, HIS and PSO algorithms. 

The aforementioned results reveal that meta-heuristic algorithms can be employed 

successfully for fine-tuning of parameters of deep learning networks. A comprehen-

sive work on parameter calibration was presented in [12], though the authors suggest 

that better results can be achieved through Evolutionary Algorithms (EAs). Consider-

ing this view, we propose a hybrid deep learning mechanism which utilizes the merits 

of GAs to enhance Gradient Decent in backpropagation learning. Therefore, the main 

contributions of this paper are threefold: (a) introducing a GA-based approach to deep 

auto-encoder learning, (b) enhancing the working of gradient decent in backpropaga-

tion and (c) filling the gap in research regarding application of meta-heuristic algo-

rithms to deep learning model selection. 

The remainder the paper is organized as follows: Section 2 presents a background 

on Deep Auto-Encoders. Section 3 presents our methodology for the application of 

Genetic Algorithms to Deep Learning Networks. Computational simulation and re-

sults are shown in Section 4. Finally, Section 5 states conclusions and future plans.  

2 Training of a Deep Autoencoder   

In this section, we set the context for the deep learning network used for creating 

the current system.  An auto-encoder is an unsupervised neural network for which the 

number of neurons at input and output layers is equal with an optimization goal for 

output neuron i set to i iy x= , where ix and iy respectively represents the value of 

input and output neurons. A hidden layer is introduced between input and output lay-

ers following the convention: “number of neuron in the hidden layer is less than those 

in the input and output layers” which helps the network to learn a higher level repre-

sentation of the input by introducing an information bottleneck.  Backpropagation 

methods are usually employed for training of an auto-encoder. Once training is over, 

the decoder layer can be discarded and, the values of the encoder layer fixed, so that it 

cannot be modified further. At this stage, the output of hidden layer is considered as 

input to a new auto-encoder. This new auto-encoder can be trained in a similar fa-

shion. The whole structure encompasses a stack of layers referred to as a deep auto-
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encoders or deep belief network.  The deep belief networks can be utilized for super-

vised and unsupervised classification utilizing the implicit higher-level representation. 

3 Methodology Adapted for Training Deep Autoencoder 

In this paper, we introduce a GA-based method for training a deep neural network 

(deep autoencoder in our case). GA is a metaheuristic search and optimization algo-

rithm proposed by Holland [2] that has been successfully implemented for training of 

neural networks [3]. More specifically, GAs have been employed as a substitute for 

the backpropagation methods. By contrast, we here propose to use GAs in conjunc-

tion with backpropagation to enhance the overall performance of deep neural net-

works.  

We thus implement, as a proof-of-concept, a simple GA based deep learning net-

work for the electrophysiological soft robot like system as described in [1]. During 

the training phase of the auto-encoder, we store multiple sets of weights (W ) for each 

layer and these weights are used to create a population for the GA, where each chro-

mosome represents one set of weights. We determine the fitness of each chromosome 

using equation (1). 

'i

1

1
T

m
nitial diff

Mt

P
F f f

P
=

   
= + − −   

   
∑

 

(1) 

Where, initialf : the initial fitness value (=0, in the beginning of the execution), 

difff : difference in the position of organism (green dot) after eating food (blue dot) 

from initialization and the end of T actuation cycles/time step (in our case T = 130), 

mP : penalty matrix and 
'

MP : maximum penalty matrix.  

The fitness value of all the chromosomes is determined and then sorted in descend-

ing order of their value. Next, we utilize backpropagation to update the weights of the 

high ranking chromosomes and discard the lower ranked chromosomes from the pool 

by removing them from the population. We apply a uniform selection strategy to se-

lection the chromosomes, so that all chromosomes have equal probability of selection 

for the next generation regardless of the fitness values of the chromosome. In our 

system, we use the fitness value to determine which chromosomes are to be removed 

from the population.  

 

Fig. 1. A simple example of crossover and mutation operations used during simulation. 
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In order to perform the crossover operation, a couple of parent populations are se-

lected. Then, by selecting weights randomly from each parent the new offspring is 

created. On the other hand, the mutation operation is performed by replacing a selec-

tion of weights with zero values in the offspring. We demonstrate the crossover and 

mutation operations via the simple example depicted in Figure 1.  

Crossover and mutation operations are powerful mechanisms for introducing di-

versity in the population; - David and Greental [4] indicate that gradient descent me-

thods such as backpropagation are susceptible to trapping in local minima. By adding 

the merits (in particular recombination operations) of a GA, we can alleviate propen-

sity for the system to get stuck at local optima. 

In the preceding we set a maximum number of generations as the termination crite-

ria. At the end of this process, the best value of the chromosomes are selected and 

shared among all the chromosomes of the new layer of the auto-encoder. Hence, the 

new layer currently being trained only contains the best value of the chromosomes, 

helping to improve the performance of the overall system. 

4 Computational Simulation and Results 

All the experiments are conducted on Anaconda Spider (Tensorflow) with python 

3.5. For our experiments we used a simple electrophysiological robot like system as 

presented in [1]. The problem setup in our case consists of a deep neural network that 

uses a stack of 4 layers. The first layer has 50 neurons, whereas other three layers 

consist of 40, 30 and 20 neurons. We train each layer separately: we started training 

with 40 - 30 layers, then utilize the 30 output neurons as inputs to the 30 - 20 layers. 

We used a simple GA (SGA) with the following configuration: population size = 

100, chromosome size = 15, crossover rate = 0.6, mutation rate = 0.4 and termination 

condition = maximum number of generations = 100. 

    
Gen: 0, Time_Step:0 Gen 10, Time_Step:23 Gen:15 Time_Step:100 Gen:17, Time_Step:79 

    
Gen:20, Time_Step: 79 Gen:26, Time_Step:117 Gen: 38, Time_Step: 85 Gen:55, Time_Step: 60 
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Gen: 65, Time_Step:114 Gen:70, Time_Step:121 Gen:85, Time_Step:70 Gen:90, Time_Step:105 

    
Gen:92, Time_Step:50 Gen:95, Time_Step:75 Gen:97, Time_Step:124 Gen:99: Time_Step:68 

Fig.2. Simulation results of GA based deep learning network in different generations 

 

Fig. 3.Average fitness value VS generation (first 20 iterations) chart for the best, average and worst fitness 
values recorded for 30 independent runs with total time step 130. 

We executed the GA based deep learning network 30 times (independent runs with 

identical initial conditions) and collated the results. The objective function is the cost 

function in our experimental setup; the cost function is called once every generation 

(after a cycle of 130 time steps a generation is said to be complete). The fitness func-

tion value depends upon both: the collisions between the organism (green dot) and 

food particles (blue dot) as shown in Figure 2. When an organism coincides with a 

food particle, the fitness function value of that organism is updated and the food par-

ticle reappears at a new random location. In the second case, when an organism col-

lides with any other organism, then we penalize the system. In each iteration, the GA 

provides training to the network in layered manner, identifies the closet food particle, 

determines the direction of the food particle and based on the response updates the 

position and velocity of the organism. We record the best, average and worst fitness 

value for each generation (graphically shown Figure 3). 
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5 Concluding Remarks and Future Plans 

In this paper we have presented a GA-based approach to applying evolution to a 

deep learning network problem. Initial results suggest that GAs can be utilized for the 

training of deep learning networks not just an alternative to backpropagation methods 

as in previous work, but can rather work in conjunction with backpropagation 

effectively solve the deep learning optimization problem. Our experiments utilizes an 

auto-encoder, we believe that the same method can be generalized to other forms of 

deep learning network architectures. 

In regards to future work, we aim to compare the performance of GA-based 

training methods with other meta-heuristic approaches and gradient descent methods, 

and to extend the method for de-noising auto-encoders and implement a similar 

system for training deep Boltzmann machines.   
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