
A Genetic Deep Learning Model for Electrophysiological

Soft Robotics

Hari Mohan Pandey
1
and David Windridge

2

1, 2Middlesex University, The Burroughs, London NW4 4BT, U.K.

{h.pandey,d.Windridge}@mdx.ac.uk

Abstract. Deep learning methods are modelled by means of multiple layers of

predefined set of operations. In recent years, deep learning methods utilizing

unsupervised learning for training the layers of neural networks have shown

remarkable results in various fields. Genetic algorithms, by contrast, are search

and optimization algorithm that mimic evolutionary process. In the past, genetic

algorithms have been successfully implemented for training three-layer neural

networks. In this paper, we propose a novel genetic approach to evolving deep

learning networks. The performance of the proposed method is evaluated in the

context of an electrophysiological soft robot like system, the results of which

demonstrate that our proposed hybrid system is capable of effectively training a

deep learning network.

Keywords: Deep learning, Evolutionary algorithm, Genetic algorithm, Meta-

heuristics, Neural networks.

1 Introduction

Deep learning networks are composed of multiple processing layers of predefined

set of operations [6]. They have significantly improved the state-of-the-art across

domains, including text mining, logical and symbolic reasoning, speech processing,

pattern recognition, robotics and big data. Training deep learning networks is known

to be hard [5]. Many standard learning algorithms randomly initialize the weights of

the neural network (NN) and apply gradient descent using backpropagation. However,

this gives poor solutions for networks with 3 or more hidden layers. Hence, fine-

tuning of deep network parameters is an important aspect of learning and can be

treated as a problem in which the fitness (or objective) function is considered as a

criterion for optimization alongside parameters required to construct an efficient deep

learning network architecture.

In recent years, meta-heuristics algorithms were implemented to handle the prob-

lem of Restricted Boltzmann Machine (RBM) model selection. Kuremoto et al. [7]

used a Particle Swarm Optimization (PSO) algorithm to optimize the size of neural

networks (number of input (visible) and hidden neurons) and the learning rate for 3-

layer deep network of RBMs. Liu et al. [8] suggested a Genetic Algorithm (GA)

based system for optimization of RBM. Later on, Levy et al. [9] proposed a hybrid

2

approach (GA + RBM) for unsupervised feature learning, which was used for auto-

matic painting classification. In [9], GA was applied to evolve weights of the RBM.

Rodrigues et al. [10] employed Cuckoo Search (CS) algorithm for the fine-tuning of

parameters of a Deep Belief Network (DBN). In order to validate the effectiveness

results were compared against other meta-heuristic algorithms such as Harmony

Search (HS), Improved Harmony Search (IHS) and PSO. Rosa et al. [11] utilized a

Firefly algorithm for learning the parameters of DBN. They also took other optimiza-

tion algorithms (HS, IHS and PSO) for performance comparison. Papa et al. [12]

proposed a HS based method for fine tuning the parameter of a DBN, obtaining more

accurate results than comparable methodologies. Horng [13] showed the implementa-

tion of Artificial Bee Colony (ABC) algorithms for calibration of the parameters of

DBNs. Experimental results showed the superiority of the ABC and Firefly algo-

rithms over HS, HIS and PSO algorithms.

The aforementioned results reveal that meta-heuristic algorithms can be employed

successfully for fine-tuning of parameters of deep learning networks. A comprehen-

sive work on parameter calibration was presented in [12], though the authors suggest

that better results can be achieved through Evolutionary Algorithms (EAs). Consider-

ing this view, we propose a hybrid deep learning mechanism which utilizes the merits

of GAs to enhance Gradient Decent in backpropagation learning. Therefore, the main

contributions of this paper are threefold: (a) introducing a GA-based approach to deep

auto-encoder learning, (b) enhancing the working of gradient decent in backpropaga-

tion and (c) filling the gap in research regarding application of meta-heuristic algo-

rithms to deep learning model selection.

The remainder the paper is organized as follows: Section 2 presents a background

on Deep Auto-Encoders. Section 3 presents our methodology for the application of

Genetic Algorithms to Deep Learning Networks. Computational simulation and re-

sults are shown in Section 4. Finally, Section 5 states conclusions and future plans.

2 Training of a Deep Autoencoder

In this section, we set the context for the deep learning network used for creating

the current system. An auto-encoder is an unsupervised neural network for which the

number of neurons at input and output layers is equal with an optimization goal for

output neuron i set to i iy x= , where ix and iy respectively represents the value of

input and output neurons. A hidden layer is introduced between input and output lay-

ers following the convention: “number of neuron in the hidden layer is less than those

in the input and output layers” which helps the network to learn a higher level repre-

sentation of the input by introducing an information bottleneck. Backpropagation

methods are usually employed for training of an auto-encoder. Once training is over,

the decoder layer can be discarded and, the values of the encoder layer fixed, so that it

cannot be modified further. At this stage, the output of hidden layer is considered as

input to a new auto-encoder. This new auto-encoder can be trained in a similar fa-

shion. The whole structure encompasses a stack of layers referred to as a deep auto-

3

encoders or deep belief network. The deep belief networks can be utilized for super-

vised and unsupervised classification utilizing the implicit higher-level representation.

3 Methodology Adapted for Training Deep Autoencoder

In this paper, we introduce a GA-based method for training a deep neural network

(deep autoencoder in our case). GA is a metaheuristic search and optimization algo-

rithm proposed by Holland [2] that has been successfully implemented for training of

neural networks [3]. More specifically, GAs have been employed as a substitute for

the backpropagation methods. By contrast, we here propose to use GAs in conjunc-

tion with backpropagation to enhance the overall performance of deep neural net-

works.

We thus implement, as a proof-of-concept, a simple GA based deep learning net-

work for the electrophysiological soft robot like system as described in [1]. During

the training phase of the auto-encoder, we store multiple sets of weights (W) for each

layer and these weights are used to create a population for the GA, where each chro-

mosome represents one set of weights. We determine the fitness of each chromosome

using equation (1).

'i

1

1
T

m
nitial diff

Mt

P
F f f

P
=

   
= + − −   

   
∑

(1)

Where, initialf : the initial fitness value (=0, in the beginning of the execution),

difff : difference in the position of organism (green dot) after eating food (blue dot)

from initialization and the end of T actuation cycles/time step (in our case T = 130),

mP : penalty matrix and
'

MP : maximum penalty matrix.

The fitness value of all the chromosomes is determined and then sorted in descend-

ing order of their value. Next, we utilize backpropagation to update the weights of the

high ranking chromosomes and discard the lower ranked chromosomes from the pool

by removing them from the population. We apply a uniform selection strategy to se-

lection the chromosomes, so that all chromosomes have equal probability of selection

for the next generation regardless of the fitness values of the chromosome. In our

system, we use the fitness value to determine which chromosomes are to be removed

from the population.

Fig. 1. A simple example of crossover and mutation operations used during simulation.

4

In order to perform the crossover operation, a couple of parent populations are se-

lected. Then, by selecting weights randomly from each parent the new offspring is

created. On the other hand, the mutation operation is performed by replacing a selec-

tion of weights with zero values in the offspring. We demonstrate the crossover and

mutation operations via the simple example depicted in Figure 1.

Crossover and mutation operations are powerful mechanisms for introducing di-

versity in the population; - David and Greental [4] indicate that gradient descent me-

thods such as backpropagation are susceptible to trapping in local minima. By adding

the merits (in particular recombination operations) of a GA, we can alleviate propen-

sity for the system to get stuck at local optima.

In the preceding we set a maximum number of generations as the termination crite-

ria. At the end of this process, the best value of the chromosomes are selected and

shared among all the chromosomes of the new layer of the auto-encoder. Hence, the

new layer currently being trained only contains the best value of the chromosomes,

helping to improve the performance of the overall system.

4 Computational Simulation and Results

All the experiments are conducted on Anaconda Spider (Tensorflow) with python

3.5. For our experiments we used a simple electrophysiological robot like system as

presented in [1]. The problem setup in our case consists of a deep neural network that

uses a stack of 4 layers. The first layer has 50 neurons, whereas other three layers

consist of 40, 30 and 20 neurons. We train each layer separately: we started training

with 40 - 30 layers, then utilize the 30 output neurons as inputs to the 30 - 20 layers.

We used a simple GA (SGA) with the following configuration: population size =

100, chromosome size = 15, crossover rate = 0.6, mutation rate = 0.4 and termination

condition = maximum number of generations = 100.

Gen: 0, Time_Step:0 Gen 10, Time_Step:23 Gen:15 Time_Step:100 Gen:17, Time_Step:79

Gen:20, Time_Step: 79 Gen:26, Time_Step:117 Gen: 38, Time_Step: 85 Gen:55, Time_Step: 60

5

Gen: 65, Time_Step:114 Gen:70, Time_Step:121 Gen:85, Time_Step:70 Gen:90, Time_Step:105

Gen:92, Time_Step:50 Gen:95, Time_Step:75 Gen:97, Time_Step:124 Gen:99: Time_Step:68

Fig.2. Simulation results of GA based deep learning network in different generations

Fig. 3.Average fitness value VS generation (first 20 iterations) chart for the best, average and worst fitness
values recorded for 30 independent runs with total time step 130.

We executed the GA based deep learning network 30 times (independent runs with

identical initial conditions) and collated the results. The objective function is the cost

function in our experimental setup; the cost function is called once every generation

(after a cycle of 130 time steps a generation is said to be complete). The fitness func-

tion value depends upon both: the collisions between the organism (green dot) and

food particles (blue dot) as shown in Figure 2. When an organism coincides with a

food particle, the fitness function value of that organism is updated and the food par-

ticle reappears at a new random location. In the second case, when an organism col-

lides with any other organism, then we penalize the system. In each iteration, the GA

provides training to the network in layered manner, identifies the closet food particle,

determines the direction of the food particle and based on the response updates the

position and velocity of the organism. We record the best, average and worst fitness

value for each generation (graphically shown Figure 3).

6

5 Concluding Remarks and Future Plans

In this paper we have presented a GA-based approach to applying evolution to a

deep learning network problem. Initial results suggest that GAs can be utilized for the

training of deep learning networks not just an alternative to backpropagation methods

as in previous work, but can rather work in conjunction with backpropagation

effectively solve the deep learning optimization problem. Our experiments utilizes an

auto-encoder, we believe that the same method can be generalized to other forms of

deep learning network architectures.

In regards to future work, we aim to compare the performance of GA-based

training methods with other meta-heuristic approaches and gradient descent methods,

and to extend the method for de-noising auto-encoders and implement a similar

system for training deep Boltzmann machines.

References

1. Cheney N.,MacCurdy R., Clune J. and LipsonH. “Unshackling evolution: evolving soft ro-

bots with multiple materials and a powerful generative encoding." Proceedings of the 15th

annual conference on Genetic and evolutionary computation, pp. 167-174, ACM, 2013.

2. Holland J. H.“Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control and artificial intelligence”. MIT press, 1992.

3. Schaffer J.D., Whitley D. and EshelmanL. J. "Combinations of genetic algorithms and

neural networks: A survey of the state of the art." Combinations of Genetic Algorithms

and Neural Networks, 1992, COGANN-92. International Workshop on. IEEE, 1992.

4. DavidO.E. and GreentalI.“Genetic algorithms for evolving deep neural networks.” In Pro-

ceedings of the Companion Publication of the 2014 Annual Conference on Genetic and

Evolutionary Computation (pp. 1451-1452). ACM, 2014.

5. Larochelle H., Bengio Y., Louradour J. and Lamblin P.“Exploring strategies for training

deep neural networks”. Journal of machine learning research, 10(Jan), pp. 1-40, 2009.

6. Pandey H.M. and Windridge D. "A comprehensive classification of deep learning libra-

ries." In: International Congress on Information and Communication Technology, Feb

2018, London, UK.

7. Kuremoto, T., Kimura, S., Kobayashi, K., and Obayashi, M. “Time series forecasting us-

ing restricted boltzmann machine.” In International Conference on Intelligent Computing

(pp. 17-22), 2012, Springer, Berlin, Heidelberg.

8. Liu, K., Zhang, L. M., and Sun, Y. W. “Deep Boltzmann machines aided design based on

genetic algorithms.” In Applied Mechanics and Materials (Vol. 568, pp. 848-851), 2014,

Trans Tech Publications.

9. Levy, E., David, O. E., & Netanyahu, N. S. “Genetic algorithms and deep learning for au-

tomatic painter classification.” In proceedings of the 2014 Annual Conference on Genetic

and Evolutionary Computation, pp. 1143-1150, 2014, ACM.

10. Rodrigues, D., Yang, X. S., and Papa, J. P. “Fine-tuning deep belief networks using cuckoo

search.” In Bio-Inspired Computation and Applications in Image Processing, pp. 47-59,

2017.

11. Rosa, G., Papa, J., Costa, K., Passos, L., Pereira, C., and Yang, X. S. “Learning parame-

ters in deep belief networks through firefly algorithm.” In IAPR Workshop on Artificial

Neural Networks in Pattern Recognition, pp. 138-149, 2016. Springer, Cham.

7

12. Papa, J. P., Scheirer, W., & Cox, D. D. “Fine-tuning deep belief networks using harmony

search.” Applied Soft Computing, 46 (2016), pp. 875-885.

13. Horng, M. H.“Fine-Tuning Parameters of Deep Belief Networks Using Artificial Bee Co-

lony Algorithm.” DEStech Transactions on Computer Science and Engineering, (aita),

2017.

