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Abstract: A molecule is the smallest particle in a chemical element or compound that possesses
the element or compound’s chemical characteristics. There are numerous challenges associated
with the development of molecular simulations of fluid characteristics for industrial purposes.
Fluid characteristics for industrial purposes find applications in the development of various liquid
household products, such as liquid detergents, drinks, beverages, and liquid health medications,
amongst others. Predicting the molecular properties of liquid pharmaceuticals or therapies to address
health concerns is one of the greatest difficulties in drug development. Computational tools for precise
prediction can help speed up and lower the cost of identifying new medications. A one-dimensional
deep convolutional gated recurrent neural network (1D-CNN-GRU) was used in this study to offer
a novel forecasting model for molecular property prediction of liquids or fluids. The signal data
from molecular properties were pre-processed and normalized. A 1D convolutional neural network
(1D-CNN) was then built to extract the characteristics of the normalized molecular property of the
sequence data. Furthermore, gated recurrent unit (GRU) layers processed the extracted features to
extract temporal features. The output features were then passed through several fully-connected
layers for final prediction. For both training and validation, we used molecular properties obtained
from the Kaggle database. The proposed method achieved a better prediction accuracy, with values of
0.0230, 0.1517, and 0.0693, respectively, in terms of the mean squared error (MSE), root mean square
error (RMSE), and mean absolute error (MAE).

Keywords: deep learning; molecular property prediction; gated recurrent unit; convolutional neural
network; convolutional gated recurrent unit neural network

1. Introduction

Predicting molecular properties such as atomization energy is one of the most signif-
icant challenges in quantum physical chemistry [1]. Indeed, it has sparked considerable
interest in important fields of chemical science, physical science, and computer science,
as it accelerates technological improvements in the process of exploring materials with
desirable properties, which includes pharmaceutical research with a clear objective and
new material manufacturing [2]. Density functional theory (DFT) has been extensively
used in the literature to predict molecular properties. It is a common belief that subatomic
interactions between components (for example, molecules) cause molecular coherence
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and synchronization, which are strongly connected to their fundamental features [3]. Nu-
merous subatomic particle techniques based on DFT have been devised, to describe the
quantum interactions of Kohn and Sham [4]. On the other hand, DFTs are computationally
expensive, since they often require specialized functions to identify particle interactions,
which takes a long time. For instance, experimental data have revealed that predicting
the characteristics of just one molecule with 20 atoms takes approximately an hour [5].
Predictions that emanate from a huge number of molecules in a chemical compound space
can be quite cumbersome and time-consuming. Efficient methods are needed to make
the prediction process easy and fast. The majority of healthcare liquid medications have
chemical ingredients. Efficient approaches can aid in the prediction of a large number of
molecules in the chemical components of possible liquid medications.

Unlike the previously described approaches (density functional theory and subatomic
particle techniques), machine learning (ML) allows for the exact and quick prediction
of molecules, which can subsequently be used to filter millions of organic molecules of
interest using descriptors generated from energies [6]. Many machine learning approaches,
including artificial neural networks, Gaussian process regression, kernel ridge regression [6],
and quantum machine learning (QML) [7], have been shown to achieve an acceptable
balance of accuracy and computing cost. Other studies have demonstrated that integrating
information from quantum chemistry techniques (also known as delta learning) [8] and
training a model on multiple qualities (also known as transfer learning) [9] may anticipate
the difference between low- and high-fidelity computations. There have also been several
recent articles [10–12] on using machine learning to anticipate the energy of large organic
molecules. However, the effectiveness of these approaches for estimating the energy of
large organic molecules has not been well evaluated.

Scientists have previously demonstrated the potential of these data-driven methods
for molecular property prediction [13,14], motivated by the impressive growth of deep
learning in various fields such as pattern recognition, computational linguistics, and envi-
ronmental and human science [15–19]. In principle, these methods depend on rule-based
feature extraction (for example, a bag of atom bonds) or viewing molecules as lattice-shaped
formations, such as two-dimensional images or text. Unfortunately, few of them actually
consider the underlying quantum synergies of molecules, resulting in significant informa-
tion leakage, and leaving the molecular property prediction puzzle largely unsolved.

Regrettably, there are numerous technological and domain obstacles in the way. To
start with, quantum interactions in molecules, such as attention pull, exchange aver-
sion, and electrically charged contact, are immensely complicated, particularly in large
molecules [20]. Analytical approaches to model them are difficult. Additionally, the vol-
ume of labeled molecular data is relatively constrained compared to classic tasks, such as
systems that use artificial intelligence to train computers to understand and interpret visual
worlds, necessitating a generalizable approach for prediction. Finally, we are frequently
presented with labeled data for small calculations that are costly in practice. As a result, it
is vital to recognize this imbalance and provide a transferrable solution for predicting the
properties of large molecules using a model that has been trained on smaller molecules.

To solve these problems, this research proposes a one-dimensional deep convolutional
gated recurrent neural network (1D-CNN-GRU) for predicting the intramolecular coupling
constants of molecules and for increasing the properties of molecules of possible liquid
medications/drugs and other generic molecules, by directly adding their quantum inter-
actions. In the feature extraction step, it also extracts molecular property features based
on sequence data characteristics. Unlike previous feature extraction approaches, CNN can
extract data features with minimum user effort or professional knowledge. Finally, a prop-
erty may be predicted using the whole interaction description from all levels (for example,
the additional energy required to fragment a molecule into separate atoms). Extensive
testing was performed on both balanced and unbalanced molecular datasets, with the
experimental results confirming the usefulness of our suggested technique. Furthermore,
1D-CNN-GRU demonstrated a greater capability for generalizability and portability. The
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suggested model can naturally transmit molecular interaction information at each level.
The contributions of this work are outlined below:

1. This study proposed a one-dimensional deep convolutional gated recurrent neural
network (1D-CNN-GRU) for improving the properties of chemical compounds in
possible liquid drugs/medications.

2. A comparison of the performance of molecular property systems based on a recur-
rent neural network, long short-term memory (LSTM), gated recurrent unit (GRU),
one-dimensional convolutional neural network (1DCNN), and the proposed one-
dimensional convolutional gated recurrent unit neural network (1D-CNN-GRU)
was conducted.

3. A 1D-CNN-GRU optimization algorithm that can accurately predict the molecular
properties of molecules is presented.

4. The efficacy of the suggested model was assessed using various performance criteria.

2. Related Work

Several studies have been conducted on predicting molecular characteristics.
Faber et al. [13] investigated the impact of regressors and chemical characterizations,
while developing rapid machine learning (ML) models of thirteen electronic ground-state
parameters of organic molecules. Learning curves that highlight out-of-sample faults as a
function of training dataset size, encompassing up to 118k distinct molecules, were used
to assess the performance of each regressor/representation/property combination. They
observed that, with the exception of the largest vibrational frequency, where RF performed
best, gated convolution networks (GC), gated graph networks (GG), and kernel ridge
regression (KRR) had the best performance across all attributes. There was no optimal
representation and regressor combination for all attributes (however, a subsequent work
with improved GG-based models predicted the best results for all properties). The research
had one drawback: ML models for predicting features of molecules in non-equilibrium or
stressed configurations can require significantly more training data.

McDonagh et al. [21] described a new approach for estimating the dynamic electron
correlation energy of an atom or a link in a molecule, using topological atoms. They used
the machine learning technique Kriging to predict these dynamic quantum mechanical
energy components (Gaussian process regression with a non-zero mean function). The
actual energy values were calculated by combining the MP2 two-particle density matrix
with the interacting quantum atoms (IQA) approach. They presented examples as the final
step in realizing the full potential of IQA for molecular modeling. This key result enables
us to consider situations in which displacement is the most significant intermolecular
interaction. The results of these instances indicated a novel method for generating diffusion
possibilities for molecular simulation.

Huang and von Lilienfeld [22] investigated works that used modern machine learn-
ing approaches based on synthetic data, which is frequently generated using quantum
mechanics-based methodologies, and model architectures inspired by quantum mechanics
to address this challenge. Quantum mechanics-based machine learning (QML) combines
the computational efficacy of empirical proxy models with a structure-based interpretation
of matter. To achieve universality and transferability across CCS, they strictly mimicked
fundamental physics. While the latest estimations of quantum issues enforce drastic pro-
cessing constraints, recent QML-based discoveries suggest the possibility of a significant
speedup, without jeopardizing quantum mechanics’ prediction accuracy.

Montavon et al. [23] used a learning-from-scratch technique for the prediction of molec-
ular energy transfer in psychoactive chemical space. The original molecular structures were
used to determine subatomic molecule energies. According to the study, creating an elastic
estimation method and ensuring normalization probabilistically instead of analytically, as
per usual, has advantages. Their findings increased the cutting edge by almost a factor
of three, bringing statistical methods closer to chemical precision. The input depiction
became deeper as the total amount of information in the input distribution increased. The
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multilayer neural network performed better, implying that the neural network’s absence
of a powerful added feature prior should be balanced by a huge volume of data. The
neural network operates best with random Coulomb matrices, which are inherently the
best depictions, because each molecule is connected with a full distribution of Coulomb
matrices. The inefficiency of Gaussian kernel ridge regression reduces gradually as the
training data increases, whereas the neural network can benefit more from the new data.
The techniques’ downside is that the performance is still quite poor.

Goh et al. [24] presented the ChemNet for prediction, after converting chemical dia-
grams into 2D RGB images. However, in non-Euclidean space, where the intrinsic spatial
and distance information of atoms is not completely acknowledged, this grid-like rear-
rangement frequently results in information loss for molecules. Their findings showed that,
by using a pre-trained ChemNet that contains chemistry domain expertise, universally
applicable neural networks can be used to more accurately predict new chemical compo-
sitions. ChemNet regularly beats the existing deep learning models trained on synthetic
characteristics. These include molecular fingerprints, as well as the latest ConvGraph
algorithm for various problems. Moreover, their parameter adjustment research indicated
that ChemNet’s lower layers have acquired general chemical representations based on
rule-based knowledge, enhancing its universal applicability to the prediction of unknown
chemical attributes. The work’s drawback is that only AUC and RMSE were utilized
to evaluate the system’s performance, which is not sufficient to validate the efficacy of
the work.

Sun et al. [25] conducted a thorough examination of graph convolutional networks and
their application in pharmaceutical research and molecular bioinformatics. They discussed
current applications from four perspectives: molecular property and activity prediction,
interaction prediction, synthesis prediction, and de novo drug creation. They gave a quick
overview of the scientific concept of graph convolutional networks, before illustrating
different components based on numerous interpretations. The representative used in
narcotic problems was then summarized. The present limitations and future opportunities
of using graph convolutional networks in drug development were also discussed.

Schütt et al. [14] introduced SchNet, a deep learning framework with continuous
convolutional layers that was specifically built to model atomistic systems. They demon-
strated SchNet’s capability by correctly predicting a number of properties for molecules
and materials across chemical space, where the model learns chemically plausible em-
beddings of atom types from throughout the periodic table. Finally, they used SchNet to
predict potential-energy areas and energy-conserving force fields for molecular dynamics
simulation of small molecules, and they used this to perform an exemplary study of the
quantum-mechanical properties of C20-fullerene, which would have been impossible to
perform using regular ab initio molecular dynamics. SchNet provides accurate and rapid
forecasts. It can also put the learnt representation to the test using local chemical potentials.

The performance of the General AMBER force field (GAFF) in exploring liquid dy-
namics was compared by Wang and Hou [26]. Diffusion coefficients were estimated for
17 solvents, five chemical compounds in a dilute environment, four proteins in organic
solvents, and nine chemical molecules in non-aqueous solutions. To compute the diffusion
coefficients of solutes in solutions, a realistic sampling technique was presented and veri-
fied. The major molecular diffusion settings, such as simulation box sizes and wrapping
molecular diffusion snapshot coordinates into basic simulation boxes, were investigated.
The authors’ quantitative approach of aggregating the mean square displacement (MSD)
gathered in many short-MD simulations was effective in predicting diffusion coefficients
of solutes at infinite dilution, according to the scientists. The work had some drawbacks.
These included that the work had no performance measures other than average unsigned
error, root-mean-square error, and correlation coefficient, which were used to assess the
method’s effectiveness.

The following are some of the ways in which this work improves on past research:
This paper employs a one-dimensional deep convolutional gated recurrent neural network
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(1D-CNN-GRU) to provide a unique forecasting model for the predicting chemical prop-
erties of potential liquid drugs or medication. The signal data for molecular properties
is preprocessed and standardized. A 1D convolutional neural network (1D-CNN) is then
created to extract the features of the normalized molecular property sequence data. Fur-
thermore, the retrieved features are processed by the gated recurrent unit (GRU) layers to
extract temporal characteristics. For final prediction, the output characteristics are routed
through numerous completely connected layers.

3. Materials and Methods
3.1. Molecular Property Dataset

The molecular characteristics between atom pairs in molecules, the coupling type,
and any other features to create the molecule structure were obtained from the Kaggle
database [27]. As indicated in Table 1, the dataset contains both numerical and text data
types. The id data type is an integer, whereas the molecule name data type is a combination
of numbers and characters. The atom index 0 and atom index 1 columns are both integers,
the coupling type columns are both numbers and characters, and the scalar coupling
constant column is a float number. As indicated in Figure 1, the scalar coupling constant is
the target variable.

Figure 1. The Scalar Coupling Constant in the Molecular Property.

Table 1. Descriptions of Datasets.

Dataset Types Explanation

Id Numerical(Integer) Identity of the molecular property

Molecule_name Text(Object) The name of the molecule where the
coupling constant originates

Atom_index_0 Numerical (Integer) The atom indices of the atom-pair
creating the coupling

Atom_index_1 Numerical (Integer) The atom indices of the atom-pair
creating the coupling

Type Text (Object) It indicates different types of coupling

Scalar_coupling_constant Numerical (Float)
Scalar coupling is the isotropic part
(independent on the molecular
orientation) of the J coupling

3.2. Data Normalization

Data normalization, which lowers data to a range of 0–1, is one of the most used
methods of data processing. Normalization is often employed in the processing of several
assessment indexes procedures, to eliminate data unit restrictions and make the comparison
and weighting of different indicators easier [28]. The following are some of the benefits of
data normalization.
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• Data normalization aids in the improvement of data speed, accuracy, and efficiency, as
well as the removal of undesired outliers.

• It aids in the reduction of data alteration issues.
• Data normalization reduces duplication, by ensuring that only relevant data is stored

in each table.

The mathematical expression of data normalization is:

x =
x− xmin

xmax − xmin
(1)

where xmax is the maximum value of the input data and xmin is the minimum value of the
input data.

3.3. The Proposed Model

The tremendous feature extraction capacity of a convolutional neural network (CNN) [29]
allows it to mine data extensively. A CNN is a two-dimensional image processing and
financial signal processing algorithm [30]. To extract pixel information and achieve image
identification and classification, a convolution kernel flows smoothly over an image. As
the input data for predicting the remaining useful life of chemical properties are mostly
one-dimensional, these features cannot be retrieved using a two-dimensional convolution
kernel. As a result, a 1D-CNN [31] model is utilized to collect sensitive information
and achieve the feature extraction of molecular properties in the feature extraction stage,
based on the properties of the sequence data. In comparison to classic feature extraction
approaches, CNN can extract data characteristics without requiring a lot of user effort
or expert knowledge. Figure 2 shows the overview of the proposed one-dimensional
convolutional gated recurrent unit neural network, and Table 2 shows the proposed model
(1D-CNN-GRU) parameters.

In this study, the molecular property dataset is adjusted before being input into the
proposed one-dimensional convolutional gated recurrent neural network. The ID-CNN
GRU architecture, dataset, training, and optimization algorithms will be detailed in depth
in the next sections. All experiments were carried out using the Python programming
language, which includes libraries such as numpy, pandas, seaborn, matplotlib, joyplot,
sklearn, keras, and math.

Table 2. Proposed Model (1D-CNN-GRU) Parameters.

Layer Type Units Kernel Filter Other Parameters

1 Convolution1D 3 128 Padding = same, activation = LeakyReLU, alpha = 0.001

2 Convolution1D 3 64 Padding = same, activation = LeakyReLU, alpha = 0.001

3 Convolution1D 3 32 Padding = same, activation = LeakyReLU, alpha = 0.001

4 MaxPooling1D Pool size = 3, strides-2, Padding = same

5 GRU 128 Activation = LeakyReLU, alpha = 0.001,return sequence = True,
activity regularizer = l2(0.001)

6 Dropout Rate = 0.2

7 GRU 64 Activation = LeakyReLU, alpha = 0.001, kernel initializer =
random uniform, seed = 42, activity regularizer = l2(0.001)

8 Dropout Rate = 0.2

9 Flatten

10 Dense 512 Activation = LeakyReLU, alpha = 0.001

11 Dense 256 Activation = LeakyReLU, alpha = 0.001

12 Dense 1 Activation = Linear
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Figure 2. Schematic diagram of the one-dimensional convolutional gated recurrent neural network.

3.4. 1D-CNN-GRU Architecture

To construct the unified neural network, the network consists of 12 layers: three 1D
convolutional neural network (1D-CNN) layers, two Gated Recurrent Unit (GRU) [32]
levels, two dropout layers, one maxpooling, one flatten layer, and three fully connected
layers. The signals are initially routed via the first convolutional layer. The kernel utilized
in the first layer of our proposed 1D-Convolutional GRU network is set to 2, which indicates
that all weights will be shared by every stride of the input layer of atom index 0 and atom
index 1, as well as the scalar coupling constant outputs. In the kernel window, input values
multiplied by weights are added together and utilized to build the feature map value.
The first convolution layer’s output is 2 × 128, but it is also the input to the following
convolutional layer. The filter size is lowered to 64 in the second 1D-convolutional layer,
from 128 in the first, and the kernel size is adjusted to 3 for all 1D convolutional layers. In
addition, the input size in the third 1D-convolutional layer is 2 × 64, with padding set to
the same value in all three 1D-convolutional layers.
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The mathematical expression of the 1D-convolutional layer is as follows:

y = β
(
∑n

i=1 conv1D(Wxi) + bi

)
(2)

where β() represents the Leaky ReLU (Rectified Linear Unit) activation function, n rep-
resents the number of feature maps in the layer, conv1D represents the one-dimensional
convolutional neural network operation with same padding, W represents the trainable
one-dimensional convolutional kernel, xi represent ith feature map, and bi represents the
bias of the ithe feature map.

In all 1D-convolutional neural networks, the feature maps are subsequently input
into the activation leaky ReLU function. The following is the mathematical equation for
Leaky ReLU:

β()={βx, for 0 < x ≤ 0} (3)

Layer 4 uses maxpooling to assist downsampling the input representation, by taking
the maximum value over a spatial window of size, with hyperparameters such as pool size
set to 3, padding set to “same”, and strides set to 2.

The maxpooling can be expressed as:

mpe = max(mpe1 : e ≤ e1 < e + s) (4)

where mpe1 is the e1 neuron before maxpooling operation, mpe is the e neuron after max-
pooling operation, and s is the size of the pooling.

A gated recurrent unit (GRU) was implemented in the fifth layer with 128 neurons
to overcome the vanishing gradient problem of 1D-CNN, and the activity regularizer of
layer 2 was adjusted to 0.001, to penalize the layer output. Update and reset gates are the
two gates used by GRU. These two gates determine which data are sent to the output. The
network unit plugs in the update gate with input xt and multiplies it by its own weight
W(z). The same is true for ht−1, which stores data from earlier (t− 1) units and multiplies it
by its own weight U(z). Both results were combined together, and the result was squashed
using a Leaky ReLU activation function with an alpha of 0.001. The update gate assists
the model in determining how much past data should be passed on to the future. The
mathematical expression of the update gates is:

zt = β(Wzxt + Uzht−1) (5)

where zt is the update gate at time step t, xt is the current sample input at time step t, Wz is
the weight of the update gate, ht−1 is the previous hidden state at time step t, and UZ is the
weight of the update gate.

In the GRU model, a reset gate is utilized to determine how much information from
the past should be forgotten. This formula is identical to the one used for the update gate.
The weights and gates are what make the difference. We plugged in ht−1 and xt, multiply
with their respective weights, added the results, and applied the Leaky ReLU activation
function as before.

The mathematical expression of the reset gate is as follows:

rt = β(Wrxt + Urht−1) (6)

where rt is the reset gate at time step t, xt is the current sample input at time step t, Wr is
the weight of the reset gate, ht−1 is the previous hidden state at time step t, and Ur is the
weight of the reset gate.

To keep important information from the past, new memory content is introduced
that replaces the tanh activation function with a Leaky ReLU activation function β. This
involves multiply the input xt with a weight W and ht−1 with a weight U. Furthermore, the
element-wise product of reset gate rt and previous hidden state ht−1 are calculated. This
decides which time steps should be removed from the preceding ones.
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The mathematical expression is as follows:

ht = β(Wxt + rt �Uht−1) (7)

where ht is the current memory at time step t, xt is the current sample input at time step t,
W is the weight of networks, ht−1 is the previous hidden state at time step t, and U is the
weight of the previous hidden state.

The update gate is necessary to retrieve the current final memory. It decides what to
gather from the present memory content ht and past stages (ht−1). This is accomplished by
multiplying the update gate (zt) and (ht−1) element-by-element and multiplying (1− zt)
and ht element-by-element. After this, the two are added together.

The mathematical expression is as follows:

ht = zt � ht−1 + (1− zt)� ht (8)

where ht is the current memory at time step t, and ht−1 is the previous hidden state at time
step t. Layer 6 receives a matrix input from the GRU layer, which has 128 neurons, and a
dropout layer is employed to reduce overfitting using a dropout of 0.2. At the end of each
cycle, the dropout picks a few nodes at random and eliminates them, together with all of
their incoming and outgoing connections.

The mathematical expression of the dropout layer can be expressed as:

d = ∑n
i=1 wiδixi (9)

where δi is the Bernouli random variable that deletes the weight wi with a probability
between 0 and 1. After using the dropout layer, the GRU layer was considered in layer 7
by feeding the layer with 1 × 128 vector and using the step described in layer 5 with the
addition of a kernel initializer set to random uniform with a seed of 42. Layer 8 also uses
the dropout layer to prevent the network from overfitting. In layer 9, a flatten layer is used
to reduce the input data to a single dimension. The single dimension from the flatten layer
is input into the fully connected layer 10 with 512 nodes, and the leaky ReLU activation
function is used in all the remaining activation functions. Layer 11 is made up of 256 nodes
and is fully linked. Data is supplied into the final fully connected layers with a linear
activation function, after passing through Layer 11 for the final prediction.

3.5. Optimization Algorithm

An optimizer is used to minimize the model loss function value and discover the
best solution to acquire appropriate model parameters. The Adam (adaptive moment
estimation) [33] optimizer is one of the most widely used in neural networks because it
outperforms the previous optimizers by combining the best properties of the AdaGrad
(adaptive gradient algorithm) [34] and RMSProp (root mean squared propagation) [35,36]
algorithms to create an optimization algorithm that can handle sparse gradients in noisy
problems.

wi+1 = wi − ρ
mi√

vi + ε
(10)

where ρ is the learning rate, mi = mi−1 + (1− β1
∂c

∂wi
(wi), vi = vi−1 + (1− β2

∂c
∂wi

(wi)
2,

β1, β2 are the exponential decay rates for the moment estimates, mi is the aggregate of
gradients at t, mi−1 is the aggregate of gradients at time t-1, ∂c is the derivation of loss
function, ∂wi derivation of weight at time i, wi is the weight at time i, wi+1 weight at time
i + 1, and vi is the sum of the square of past gradients.

4. Results and Discussion

Pharmaceutical industries are witnessing a major transformation with the introduction
of machine learning and deep learning techniques. While many see this new technology as
a potential threat, it could be the solution to our persistent pharmaceutical deficits. Indeed,
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AI has already proven to be useful in several aspects of pharmaceutical research, from
assisting researchers to find new possible treatments, to predicting which pharmaceuti-
cals will fail clinical testing. There is really no doubt that these innovations will have a
profound impact on the development of drugs, as more pharmaceutical firms embrace
them. Drug development is a time-consuming and expensive venture. Moreover, it is a
gradual procedure, that starts with the discovery of a promising molecule, and finishes
with the creation of a new molecular entity. This research is important to pharmaceutical
companies, particularly in the production of liquid medications and drugs for medicinal
purposes, because it aids in the discovery of an effective particle, whose end purpose is
to affect the human body and demonstrate its effectiveness, pureness, and relevance in
medical therapy. The preceding conditions ensure that the new pharmaceuticals that are
approved by the authorities improve patients’ wellbeing, not only through curing their
disease but also through guaranteeing that the treatment does not cause serious side effects
and lead to other problems, such as potential complications.

The simulation results achieved in this paper can be used to improve the quality
and contents of liquid and solid drugs, by determining the molecular properties of the
drugs. Both medication reactions in the body over time, and drug effects on the body or on
microorganisms within or on the body, are influenced by physico-chemical and molecular
characteristics. This could also address challenging issues around medication safety. In
this regard, the current tendency in drug development is to take absorption, distribution,
metabolism, excretion, and toxicity (ADMET) qualities into account alongside target affinity.
To help medicinal chemists prioritize drug ideas, the idea of “drug-likeness” establishes
acceptable limitations of fundamental features stated as a set of rules. Liquid drug makers
investigating the treatments for illnesses such as Alzheimer’s, cancer, and other challenging
conditions are interested in learning about new targets that could be the primary goal of a
new drug development initiative.

As an algorithm-based strategy, deep learning incorporates numerous mathematical
and computational ideas. It can analyze vast volumes of data and has unwavering coor-
dination and matching powers. It can be used to enhance drug discovery tasks such as
target recognition, drug design, and drug repurposing. Instead of rendering scientists’
jobs obsolete, it serves a crucial role in developing their talents. This is due to the need
for subject matter experts in the data structuring for AI analysis, as well as benefitting the
review process and end-to-end result confirmation. Conventional drug development can
only analyze a small number of tests or data at a time, increasing the risk of prejudice.

The performance of the recurrent neural network (RNN), long short term memory
(LSTM), gated recurrent unit (GRU), one-dimensional convolutional neural network (1D-
CNN), and the proposed 1D convolutional gated recurrent unit neural network (1D-CNN-
GRU) molecular property systems is explained in this section. Table 3 shows the summary
statistics for each of the columns of molecular properties. The mean, standard deviation,
minimum, 25%, 50%, 75%, and maximum are analyzed. The mean of atom_index_1 is
small compared to other molecular properties. Atom_index_1 also has a small volatility
of 3.27 compared with other molecular properties, which indicating that the atom index
fluctuates slowly and tends to be more stable, while Id has a maximum value according to
Table. The minimum value of the molecular property dataset is within the range of 0 to−44.
The coupling type consists of 3JHC, 2JHC, 1JHC, 3JHH, 2JHH, 3JHN, 2JHN, and 1JHN, as
shown in the bar graph of Figure 3. 3JHC came in first position with the highest value of
1511207, followed by 2JHC with the value of 1140867, while 1JHN came last with the lowest
value of 43680. The top 10 molecule names for molecular properties is shown in Figure 4.
The molecule name that tops the list is dsgdb9nsd_042139, having the highest, followed by
dsgdb9nsd_096580, dsgdb9nsd_121391, dsgdb9nsd_122665, and dsgdb9nsd_123139.
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Figure 3. The coupling type of molecular property.

Figure 4. Top 10 molecule names for molecular properties.

Table 3. Summary Statistics of the Molecular Properties Dataset.

Dataset Mean Std Min 25% 50% 75% Max Total

Id 2,329,537.5 1,344,959.53 0.00 1,164,768.75 2,329,537.50 3,494,306.25 4,659,075.00 4,659,076.00

Atom_index_0 13.36 3.27 1.00 11.00 13.00 16.00 28.00 4,659,076.00

Atom_index_1 5.88 4.99 0.00 2.00 5.00 8.00 28.00 4,659,076.00

Sscalar_coupling_constant 15.91 34.93 −44.76 −0.26 2.28 7.39 207.71 4,659,076.00

Figure 5 shows the difference in the density of atom_index 0 and 1, which are aligned
to the same horizontal scale. The graph revealed the distribution of atom index_0 and
atom_index_1.
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Figure 5. Difference in the atom index of molecular properties.

The training loss and validation loss of deep learning algorithms considered in this
study, such as RNN, LSTM, GRU, 1D-CNN, and the proposed method based on the 1D-
CNN-GRU model when it was applied to the target variable of the scalar coupling constant
are given in Figures 6–10. It can be seen from Figure 10 that the proposed 1D-CNN-GRU
training loss and validation loss decreased at the lowest speed. The training and validation
loss values of the proposed model were obviously smaller than the values of the other
deep learning models, thus obtaining better training and validation accuracies. However,
although the training and testing performance of the standard 1DCNN was higher to that
of the proposed model and combining them with GRU greatly improved the performance.
The performance evaluation and errors of the different models, such as LSTM, RNN, GRU,
1D-CNN, and 1D-CNN-GRU, are presented in Table 4. It is noticeable from Table 4 that the
metrics of MSE, RMSE, and MAE for the proposed 1D-CNN-GRU were relatively small.
Due to the combination of 1D-CNN and GRU network parameter initialization, the output
features of the proposed 1D-CNN-GRU model had a significant improvement over all
other deep learning models. Figures 11–15 is the prediction result of all the deep learning
models considered in this study. Figure 15 shows that 1D-CNN-GRU can predict the scalar
coupling constant better than the other deep learning models.

Table 4. Performance Evaluation of LSTM, RNN, GRU, 1D-CNN, and 1D-CNN-GRU.

Metrics LSTM RNN GRU 1D-CNN 1D-CNN-GRU

MSE 0.0287 0.0285 0.0292 0.0282 0.0230

RMSE 0.1696 0.1670 0.1709 0.1681 0.1517

MAE 0.0862 0.0851 0.0863 0.0843 0.0693
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Figure 6. Loss curve of long short term memory (LSTM).

Figure 7. Loss curve of recurrent neural network (RNN).
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Figure 8. Loss curve of gated recurrent unit (GRU).

Figure 9. Loss curve of one-dimensional convolutional neural network (1D-CNN).
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Figure 10. Loss curve of one-dimensional convolutional gated recurrent unit neural network (1D-
CNN-GRU).

Figure 11. Actual and prediction values of LSTM.
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Figure 12. Actual and prediction values of RNN.

Figure 13. Actual and prediction values of GRU.
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Figure 14. Actual and prediction values of 1D-CNN.

Figure 15. Actual and prediction values of 1D-CNN-GRU.
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5. Conclusions

A fundamental component of a successful drug development process is computational
prediction of the molecular characteristics. In the chemical and pharmaceutical industries,
simultaneous accurate and efficient prediction of molecular characteristics throughout the
chemical compound space is a fundamental component of rational compound design.

For molecular property signal analysis, a 1D-CNN-GRU model is presented in this
study. To build an end-to-end network that can predict scalar coupling constant signals, the
proposed model combines a 1D-CNN with a GRU. The 1D-CNN-GRU offers a powerful
signal feature extraction capability, as well as the capacity to forecast successive scalar
coupling constant signals. Experiments on a molecular property data set gathered from
Kaggle were used to validate the proposed model performance. When compared to other
models, such as LSTM, RNN, GRU, and 1D-CNN, the suggested model obtained the lowest
prediction error: 0.0230, 0.1517, and 0.0693 for MSE, RMSE, and MAE, respectively.

Despite the fact that the presented model has made significant progress in the field of
molecular property prediction, it still has limitations that must be addressed in the future.
There should be a means to increase the value of the input variables, such as atom index 0
and atom index 1. Other hyperparameters may be incorporated in both 1D- CNN and GRU
as well. Based on these restrictions, future studies will concentrate on two areas: first, the
proposed model may be improved by modifying it and using alternative optimizers and
Bayesian optimization for the more complicated molecular property dataset. The proposed
model can also benefit from dimension reduction.
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