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Abstract—A technique is developed using Self Organizing 

Maps (SOM) to efficiently cluster the data and it is compared with 

existing clustering Techniques such as K-Means clustering, 

Hierarchical clustering and SOM Clustering. The proposed 

technique is used to cluster an Earthquake dataset and the 

performance is compared with the other existing clustering 

technique. The experimental results show that the proposed 

clustering method demonstrated better results as compared to other 

clustering methods.  
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I. INTRODUCTION 

Clustering is the method used to group data into sets having 

similar characteristics. It can be used to observe common 

patterns in the data. Well formed clusters are those which are 

properly segregated and represent an order. Labeled data is 

easier to cluster as a penalty and reward system can be put into 

place to facilitate the efficient clustering of the data. However, 

it is difficult to cluster the unlabelled data since, there is no 

specific standard against which the clustering can be tested 

and the data is large enough to be properly clustered by human 

intervention. The need for Clustering was observed since long 

ago and several different clustering algorithms have been 

developed. However, lately there has been an increase in the 

use of these concepts to properly identify clusters. This has 

shown the various pros and cons of the clustering algorithms 

in place. 

Over the years many algorithms have been developed to 

cluster the datasets. K Means clustering is a widely used 

technique which initializes by randomly assigning the cluster 

centroids for the K Clusters. Each iteration of the algorithm 

involves assigning data points to their nearest clusters and then 

recalculating the cluster centroid. It is a very simple and 

effective technique. However, it produces different cluster 

outputs based on the initial clusters. This drawback was 

removed by the K Means++ optimization where the cluster 

centroids were initialized according to a specific method 

rather than a random initialisation. The initial centroids were 

chosen in such a manner that they are distant from each other.. 

This technique provides better clustering outputs compared to 

its predecessor. Apart from that K Means also produces 

unsatisfactory outputs when the clusters don’t possess the 

same variance. 

Hierarchical clustering is a technique which produces an 

output in the form of a tree called a dendogram which is used 

to divide the dataset into any number of clusters [11]. 

However, it is a computationally expensive algorithm when 

the number of features is high. An improvement to the 

algorithm can be made when the number of clusters to be 

formed is predefined. The Top Down approach should be used 

when the value of K is small and the Bottom Up approach 

should be used when the value of K is large. It works well 

with both Gaussian Clusters and irregularly shaped clusters 

due to the several linkage options available. The Gaussian 

Clusters are formed properly due to the complete linkage 

option which allows every point in the cluster to be linked to 

the newly added point. The representation looks similar to a 

complete graph representation. The irregularly shaped clusters 

are formed due to the Single linkage option in Hierarchical 

clustering which enables linking of only one data point with 

the other which looks similar to an Euler Tour in a graph. 

Apart from these two linkages there are several other options 

available for different usages.  

DBSCAN is one algorithm which has been highly 

appreciated for its performance. It is able to identify clusters 

on the basis of their densities. It works well with both 

Gaussian clusters and irregularly shaped ones. The main 

advantage being that the algorithm brings with itself the ability 

to filter out noise in the dataset. However, choosing the value 

of its initial parameters is a tough job which requires an 

expert. Otherwise, it will output clusters which are improperly 

formed. Additionally, the algorithm doesn’t work well on 

datasets where the densities of the clusters have a large 

variance. 

Self Organizing Map or Kohonen’s Map (SOM) is a 

competitive learning algorithm based on Neural Networks 

[10]. It uses the concept of neurons which represent the 

clusters. The algorithm is highly useful as it can reduce an N 

dimensional feature representation to a 2D or 1D 

representation. It can be used for retraining the neural network 

without much modification to the algorithm. The initialisation 



phase starts with assigning random weights or coordinates to 

the neurons which represent the cluster centroids. Each 

iteration involves picking a data point and finding out the 

neuron closest to it. This is a competitive approach where 

neurons compete against each other to be chosen the closest 

neuron. The chosen neuron’s weights are adjusted in such a 

manner that it comes closer to the data points whereas there is 

no change in the other neurons. The amount by which the 

neuron’s weights are modified decreases gradually and is 

called the learning rate. The performance of the Self 

Organizing Map is reduced by the random initialisation of 

Neuron weights similar to K Means. An improvement in the 

initialisation of these weights can increase the performance of 

the algorithm significantly. 

The aforementioned methods work well but there is no 

single best method amongst them. Usually the methods are 

used interchangeably based on the type of data which requires 

inputs from an expert. This human dependency should be 

gradually removed by developing an algorithm which 

outperforms the others irrespective of the type of clusters 

present in the dataset. The K Means Algorithm works well 

only if the actual data has clusters of similar sizes. Whereas, 

the Hierarchical Clustering seems a little impractical as it 

gives all the possible choices of cluster sets and not the actual 

answer to the problem [12]. The Self Organizing Map on the 

other hand fails to outperform these algorithms. 

The rest of the paper is organized as follows: Section II 

presents background studies on clustering algorithms. We 

have presented the proposed algorithm in Section III. Section 

IV gives the experimental setup, results and analysis. Finally, 

we present concluding remark of this paper in Section V.  

 

II. BACKGROUND STUDY 

The random initialization of these neuron’s weights is a 

source of diminished results. The enhanced performance of the 

Kohonen’s map can be extracted only if the neuron’s are 

correctly initialized. The SOM converges to a local minimum 

rather than a global minimum hence if the neuron weights are 

randomly assigned there is no specific control on the 

clustering. This form of clustering will produce good results 

but it could be better if the initialisation was based on the 

pattern in the dataset. This can only be done in the case of 

batch processing of the dataset. There are several methods to 

initialize the neuron’s weights which have been already 

developed. 

 An alternative to the random small valued weights for the 

neurons is the random initialisation of data points to the 

neurons. This technique serves better than the former one due 

to its accurate scaling dependent on the data. However, it is 

independent of the patterns in the dataset and is hence not 

much of an improvement to the original random initialisation. 

A technique which combines K Means and SOM is 

occasionally used where the output of the K Means technique 

is used to initialize the neuron weights. It is even more 

computationally expensive that both K Means and SOM and it 

don’t always produce superior outputs. 

A technique named SOM++ was developed by Dogan. The 

neuron’s weights are initialized by the help of the K-Means++ 

Algorithm. These weights are used as the starting point in the 

Kohonen SOM. It is faster to converge to the result than the 

traditional algorithms and it produces better results when 

compared to them. 

An initialisation algorithm proposed by “Ehsan Mohebi 

and Adil M. Bagirov in A New Modification of Kohonen 

Neural Network for VQ and Clustering Problems”[6] is based 

on their split and merge procedure which is efficient in 

identifying areas with high density in the dataset. This helps in 

converging to a better local minimum than the original 

method. 

Another initialisation method was proposed by 

“Madhusmita Mishra and H.S. Behera in Kohonen Self 

Organizing Map with Modified K-means clustering” [8] for 

High Dimensional Data Set where they use SOM to get the 

number of clusters. This output is used by a Genetic 

Algorithm which generates new initial centroids which are 

used by the K Means Algorithm. This technique is helpful as it 

is able to find out an appropriate value of K and the Genetic 

Algorithm finds out good initial cluster centroids. However, 

the use of SOM followed by K Means is computationally 

expensive even if we account the time saved due to faster 

convergence because of better initialization of centroids. 

There are several initialisation techniques which have been 

formulated up till now but they’re generally computationally 

expensive since they often use some other algorithm along 

with the original SOM which increases the time complexity of 

the respective approaches.  

There is a requirement for a technique which is 

computationally inexpensive and is able to outperform the 

original SOM technique. It is noteworthy that a technique so 

developed could be used by other Clustering methods as well 

which require an initial cluster representation such as K 

Means. Hence a technique which has a time complexity that is 

O(N) or O(N log N) is required. A complexity this low would 

ensure that the initialisation algorithm takes almost no time 

when compared to the rest of the SOM procedure. 

III. PROPOSED CLUSTERING ALGORITHM 

The technique proposed by us assigns specific weights to 

the neurons instead of a random assignment. The 

aforementioned clustering algorithms require a value of the 

number of clusters. K Means and SOM require the value of K 

to initialize their cluster centroids and neurons respectively. 

Hierarchical Clustering on the other hand doesn’t require a 

value of K to produce it’s Dendogram but it does require the 

value to give a result of the clustering algorithm. Similar to 

these methods, our approach requires the number of clusters to 

be formed from the data.  



Algorithm-1: Cluster Centroid Initializations 

Input: Point Set (P) 

Output: Cluster Centroids for Initialisation 

1. Begin 

2.     For p in P: 

3.         Total Distance(p) ←  ∑ Distance(p, a) for all a  

         in P   

4.     Store Extreme values of Total-Distance is Steps                          

    2-3. 

    Maximum Distance = max(Total Distance(p)) 

    Minimum Distance = min(Total Distance(p)) 

5.     Calculate Difference from Extreme values in  

    Step 4. 

    Difference =  (Maximum Distance - Minimum 

Distance) / K 

6.     For i in 1-K 

7.          Cluster Distance(i)  = Minimum Distance +    

         Difference * (i-0.5)   

8.         Cluster Centroid(i) = Coordinate(p) where     

        |Total Distance(p) – Cluster Distance(i)| =    

        min( |Total Distance(a) – Cluster Distance(i) |   

        for all a in P. 

9.     Initialize Cluster Centroids with the values  

    obtained in Step 8. 

10.  End 

Algorithm-1 is given in this paper to determine the initial 

cluster centroid positions. We consider every point and 

compute their distance from every other point. We note the 

extremum values of these distances in Step 3. We use these 

values in Step 5 to calculate the average distance between the 

distance metric of the cluster centroids. Then, we allocate the 

corresponding distance metrics to the cluster centroids in Step 

7. Finally, we find the data points which have their distance 

metric closest to each centroid and assign their weight to the 

centroid’s weight in Step 8.  

The existing version of SOM that have been utilized in the 

earlier scientific literatures assigns random weights to the 

neurons. This arbitrary assignment seems ideal due to the 

randomness present but it isn’t a good fit according to the 

data. The final result is affected since the assignment leads to 

a local minimum which is not as optimal as the global 

minimum. Attaining the global minimum is a rather hard 

problem. The proposed Algorithm-1 has the ability to 

overcome from the aforementioned issue. This is because it 

initializes the cluster depending on the actual dataset. We have 

observed that points that are nearer to each other tend to have 

similar values of the distance metric used by us. This hint is 

useful for classifying the data into K clusters.  

IV. EXPERIMENTAL SETUP, RESULTS AND ANALYSIS  

Extensive experiments have been conducted using Python 

3.6.1 in an i7 7th Gen Processor clocked at 2.70 GHz and an 8 

GB Memory. We have taken the earthquake data from 

National Center for Environmental Information, National 

Oceanic and Atmospheric Administration (NOAA) to perform 

our experiments [10]. The 1400 tuple data contains the 

latitudes and longitudes of the Earthquakes held from around 

1000 AD to Present. The data is provided to the algorithms in 

the format of one whole training set and not in an online 

manner. The algorithms in comparison are used to cluster the 

data into 100 clusters.  

In order to compare the performance we collected the 

results of K-Means, Hierarchical and SOM Clustering on the 

data. They were compared with the proposed algorithm on the 

basis of the following Performance Metrics: 

 

1. Minkowski Euclidean Distance: It is the distance of the 

cluster centroid from the data points in the cluster. A 

lower value of the metric is desirable and represents 

clusters whose data points are closer to each other. 
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Where, d (x, y) is the distance between two objects x and 

y. The number of features is represented by n. The value 

of q remains 2 for the Euclidean Distance. 

2. Silhouette Value: It compares the distances of every point 

in a cluster to other points in the same cluster with its 

distance from every point in the neighbouring cluster. A 

higher value is desirable as it’s represents well formed 

clusters. [9]. 
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Where, sil(oi) is the silhouette value for an object oi. The 

cluster to which a point belongs is represented by CA and 

the nearest cluster to the point is represented by CB. The 

number of points in a cluster CA is represented by |CA|. 

3. Average Error: It is the average distance between a data 

point and it’s respective cluster centroid. A lower value is 

desirable as it represents proper assignment of the 

clusters. [9]. 
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 Where, E(C) is the Average Error in the clustered output. 

The number of clusters is represented by K and the 

number of objects is represented by N. The object o 

belongs to a cluster Ci and ceni represents the centroid 

coordinates of cluster Ci.  



4. Cluster Utilisation: It is the ratio of the number of clusters 

utilised from the K clusters given. A higher value 

represents higher productivity since lesser space is wasted 

for unassigned clusters.  

   Number of Clusters Formed
u

K
  
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TABLE I  

RESULTS MATRIX OF VARIOUS CLUSTERING METHODS 

Methods/Metrics Metric 1 Metric 2 Metric 3 Metric 4 

K Means 824.749 0.589336 1.97898 0.91 

Hierarchical 1291.71 0.599106 2.23892 0.85 

SOM 817.337 0.379404 2.78728 0.97 

Proposed Algorithm 814.085 0.392424 2.71739 0.98 

The following observations have been made using the 

results presented in TABLE I. 

Metric 1 (Average Minkowski Euclidean Distance): A 

lower value of this metric is necessary since it represents 

closely shaped cluster members. 

Metric 2 (Average Silhouette Value): A high value of this 

metric is necessary and it represents that the cluster members 

are closer to the centroid as compared to other neighboring 

centroids. 

Metric 3 (Average Error): A lower error value is required. 

It represents correct centroid assignment. 

Metric 4 (Cluster Utilization): A higher value of cluster 

utilization represents that the maximum number of clusters are 

utilized.  

1. It has the Lowest Minkowski Euclidean Metric Value 

amongst all the Algorithms in comparison. 

2. It has a Higher Average Silhouette Value as compared to 

standard SOM. 

3. It has a Lower Average Error than the standard SOM. 

4. Its cluster utilisation is the highest among all the 

techniques in comparison. 

V. CONCLUSIONS 

In this paper, we have presented a novel algorithm 

(Algorithm-1) to determine the initial cluster centroids for a 

Kohonen Map. The experimental results revealed that the 

proposed algorithm outperformed the other algorithms as it 

had better values of the performance metrics. It has a worse 

Average Silhouette Value and Average Squared Error than K-

Means but an overall better result implies that it is a more 

practical option. The proposed approach produced better 

results than the SOM in all the criterions. Hence, it is 

recommended to use the proposed method for initializing the 

clusters centroids before using the Kohonen Map. The 

proposed algorithm evenly divided the Euclidean Distances 

among the clusters. Due to this, the average difference 

between distances assigned to Clusteri and Clusteri+1 became 

the same for all values of i. However, in some datasets the 

clusters could be present in an uneven order. The above 

mentioned regular order would hinder the possible accuracy of 

the technique in those cases. The current technique enables 

online clustering by calculating the cluster centroids from the 

intermediate results. These centroids can be provided as input 

whenever more data points are available. However, with this 

technique the number of clusters wouldn’t increase from the 

first step. This limitation can be diminished by assigning a 

little more neurons from the amount already being used and 

initializing them with Algorithm 1. Although, this too won’t 

be the best solution to it. A technique needs to be developed 

that properly incorporates the modifications made in the 

dataset by adjusting the cluster centroids and the number of 

these clusters. 
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