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Abstract

Background

Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting about 1.6% of the

population in England. Novel oral anticoagulants (NOACs) are approved AF treatments that

reduce stroke risk. In this study, we estimate the equality in individual NOAC prescriptions

with high spatial resolution in Clinical Commissioning Groups (CCGs) across England from

2014 to 2019.

Methods

A Bayesian spatio-temporal model will be used to estimate and predict the individual NOAC

prescription trend on ‘prescription data’ as an indicator of health services utilisation, using a

small area analysis methodology. The main dataset in this study is the “Practice Level Pre-

scribing in England,” which contains four individual NOACs prescribed by all registered GP

practices in England. We will use the defined daily dose (DDD) equivalent methodology, as

recommended by the World Health Organization (WHO), to compare across space and

time. Four licensed NOACs datasets will be summed per 1,000 patients at the CCG-level

over time. We will also adjust for CCG-level covariates, such as demographic data, Multiple

Deprivation Index, and rural-urban classification. We aim to employ the extended BYM2

model (space-time model) using the RStan package.

Discussion

This study suggests a new statistical modelling approach to link prescription and socioeco-

nomic data to model pharmacoepidemiologic data. Quantifying space and time differences

will allow for the evaluation of inequalities in the prescription of NOACs. The methodology

will help develop geographically targeted public health interventions, campaigns, audits, or
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guidelines to improve areas of low prescription. This approach can be used for other medi-

cations, especially those used for chronic diseases that must be monitored over time.

Introduction

Background

Atrial fibrillation (AF) is the most common cardiac arrhythmia [1]. Men are more often

affected than women, and the prevalence of AF increases with age [2]. In the UK, the age-sex

standardised prevalence of AF has increased from 2.14% in 2000 to 3.29% in 2016 [2]. AF is a

major cause of ischaemic stroke, as the risk of stroke is five times higher than in a person with

a normal heart rhythm [3]. The age-adjusted AF incidence and prevalence are lower in

women; however, the absolute number of men and women living with AF remains similar due

to men’s shorter life expectancy [4].

The UK’s National Institute for Health and Care Excellence (NICE) has approved four

licensed non-Vitamin K antagonist oral anticoagulants (NOACs): Apixaban, Dabigatran,

Edoxaban, and Rivaroxaban. Dabigatran is a direct thrombin inhibitor, while the others are

direct factor Xa inhibitors. Large international multicentre trials have shown that NOACs

reduce the risk of stroke in patients with non-valvular atrial fibrillation similar to warfarin.

Their ease of use, minimal need for monitoring, and negligible interactions with other drugs

have made NOACs a mainstream treatment choice among clinicians [5]. NOACs have limit-

ing characteristics as well, such as the clinicians’ inability to assess dosing, compliance, or wash

out with an uncomplicated laboratory test, the lack of an antidote to rapidly control major

haemorrhage, and reduced safety in emergent or urgent surgical procedures [6].

These NOACs are primarily prescribed to prevent stroke and systemic embolism in patients

with non-valvular atrial fibrillation (AF) [7–10]. Additionally, they are indicated to treat deep

vein thrombosis (DVT) and pulmonary embolism (PE), prevent and recurrent DVT and PE in

adults, and to prevent atherothrombotic events after the management of acute coronary syn-

drome [11–15].

Although anticoagulation to reduce the risk of stroke is an essential part of managing AF,

patients are not always appropriately anticoagulated [16]. In 2013, an estimated 7,000 strokes

could have been avoided, and 2,100 lives saved each year in England with appropriate AF man-

agement [17]. The NICE Implementation Collaborative has identified barriers to NOACs use

at general practice levels, which include, but are not limited to:

• the continued use of aspirin for stroke prevention,

• health care professionals’ concerns regarding patient adherence, as there is no need for rou-

tine coagulation monitoring with NOACs,

• the cost of prescribing NOACs in comparison to alternatives such as vitamin K antagonists

(VKA), like Warfarin, or

• the unavailability of specific antidotes for NOACs (except for Dabigatran, for which idaruci-

zumab is available) to reverse the drugs’ effect in the event of a major bleed.

The NICE Implementation Collaborative explains that primary care providers prescribing

NOACs need local leadership. Not all GPs can be expected to be experts in anticoagulation for

atrial fibrillation. As the prevalence of atrial fibrillation continues to increase with age, local

anticoagulant “champions” will be needed [3]. Also, in terms of the local care pathways, NICE-
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approved treatments must be made available for prescribing NOACs. The NHS’s Clinical

Commissioning Groups (CCGs) have flexibility in making this happen and different models

can be used to suit local needs.

The above-mentioned barriers to prescribing NOACs, plus variations in local leadership,

general practitioners’ expertise and confidence in prescribing NOACs, and CCG flexibility in

prescribing cause variations across CCGs and over time. An AF diagnosis and anticoagulant-

prescribing performance have practice-level variations [2]. There will be regional variation in

stages of transiting to optimised NOAC prescriptions, with some relation to CCG-level charac-

teristics in either burden of the clinical indications (AF) or barriers to switching to NOACs.

Currently, little is known about the prescribing patterns at smaller geographical and adminis-

trative levels, e.g. CCGs, which can be a valuable index for economic and health service

planning.

Aims and questions

NHS Digital has made large data and geographical information about prescription patterns

across NHS available. This has made providing estimates of prescription patterns at smaller

geographic levels possible and will help inform decisions and policymaking.

We aim to develop and initiate an analytical strategy for small-area estimates. This research

will integrate concepts and methods from the fields of medicine, clinical epidemiology, popu-

lation health, and statistics to provide evidence for policy and programmatic decisions regard-

ing the prescribing patterns of NOACs in local populations. The objective of this research is to

quantify–for the first time for individual NOACs–the prescribing patterns at “small-area”

CCG levels. This will subsequently adjust the spatio-temporal prescribing patterns according

to relevant covariates across CCGs in England (space) and over time.

This higher resolution information about NOACs across CCGs can demonstrate major dif-

ferences in their prescribing patterns, potential variables that have contributed to these differ-

ences, and the amount of deviation. This information will allow policymakers to deliver

feasible and cost-effective primary care interventions to improve and optimise NOAC pre-

scribing at the population level.

Methods

This study explains the statistical methodology for estimating and predicting ‘prescribing data’

as an indicator of health services utilisation, using a small area analysis methodology.

The statistical methods in this study ‘borrow strength’ over time and space in a Bayesian

framework. We will start from individual NOACs and correlate them over space (e.g., using a

conditional autoregressive model) across CCGs, and over time (e.g., using random walk). The

study will focus on four licensed, guideline-approved, available NOACs across the NHS. The

international non-proprietary names (INNs) [generic names] of the NOACs are Apixaban,

Dabigatran, Edoxaban, and Rivaroxaban.

The rationale for analysing NOACs

Our study will analyse prescribing patterns for NOACs according to the following:

1. Clinical: NOACs are prescribed for clinically significant, diverse, and priority indications,

i.e., AF, prevention of DVT and PE, or after acute MI. The licensed NOACs can be pre-

scribed by general practitioners in England. Also, there is scientific evidence suggesting that

the NOACs are not being prescribed optimally, and interventions are needed to increase
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their use in primary care [18]. However, the prescribing patterns between CCGs remain

unknown.

2. Health economics: NOACs are costly medications covered by the NHS. According to the

NHS’s Prescribing by GP Practice datasets, Apixaban and Rivaroxaban had the top two

highest ACT and NIC costs in July of 2019.

3. Technical statistical advantage: for small area modelling using spatio-temporal analysis, the

above mentioned four NOACs have a unique advantage. Prescribing one is mutually exclu-

sive in prescribing the others, which means that they cannot be co-prescribed. Therefore,

each medication can be modelled and interpreted individually.

Identifiers of individual NOACs

This study focuses on four individual NOACs with unique identifiers in the intended prescrib-

ing datasets, including their corresponding British National Formulary (BNF) codes. The BNF

codes show what medication has been prescribed. Additionally, for aggregating the different

dosage forms of these four NOACs, we will add the individual alphanumeric codes developed

by the World Health Organisation (WHO), i.e., the Anatomical Therapeutic Chemical (ATC)

Classification System. ATC classifies the active ingredients of drugs according to the organ or

system on which they act and their therapeutic, pharmacological, and chemical properties.

Standardising different dosages and primary variables of interest

We will use the defined daily dose (DDD) methodology, as recommended by WHO, to pro-

vide a fixed unit of measurement independent of price, currency, package size, and strength.

This enables us to assess trends in medication prescribing patterns and to compare different

geographical areas over time. By definition, “DDD is the assumed average maintenance daily

dose for a drug administered for its main indication in adults.” Table 1 summarises the indi-

vidual NOACs’ identifiers, DDDs, and available dosage forms in the UK.

As a practical example, if 100 Edoxaban at 30 mg and 200 Edoxaban at 60 mg are prescribed

at any point, the total DDD equivalent for Edoxaban is calculated as:

ð100 x 30 mgþ 200 x 60 mgÞ=60 mg ¼ 250

Table 1. Identifiers of the individual NOACs.

Name ATC code BNF Code DDD� (mg) Dosage Forms

Apixaban B01AF02 0208020Z0 10 2.5mg

5mg

Dabigatran etexilate B01AE07 0208020X0 300 75mg

110mg

150mg

Edoxaban B01AF03 0208020AA 60 30mg

60mg

Rivaroxaban B01AF01 0208020Y0 20 2.5mg

10mg

15mg

20mg

� DDD: Defined daily dose.

https://doi.org/10.1371/journal.pone.0246253.t001
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This total ‘DDD equivalent’ is unit-free and will serve as a generic parameter that can be

compared at various locations over time.

However, to compare CCGs with each other and any CCG in different years regarding the

total DDD equivalent, population changes over space and time must be considered. Therefore,

we will divide the calculated total DDD equivalent by the population and then multiply the

result by 1,000. This will give a continuous outcome variable, in the form of a rate called DDD

per 1,000 population, which will be the primary variable in the analyses.

Adjusting for covariates

To account for variables that may explain the distribution of the primary variable of interest,

we will use population-level data to include relevant covariates in the analytical model, includ-

ing, but not limited to, age, socio-economic indicators, the number of prescribing practition-

ers, and the prevalence of specific medical conditions, such as atrial fibrillation.

Visualising outputs

To visualise the analysis outputs, we will use the Clinical Commissioning Groups (CCG)

Boundaries as of April 2019, available from the Office for National Statistics website under the

Open Government Licence v3.0 [19,20]. In compliance with copyright, we initially down-

loaded and reproduced a CCG map shapefile using R software version 3.5.1 (Fig 1).

Reference year

For meaningful comparison between CCGs over time, we will set the 2019 calendar year as the

reference time and will consider providing retrospective comparisons back to 2014.

Data sources

The main dataset in this study will be the “Practice Level Prescribing in England,” a list of all

medicines, dressings, and appliances that are prescribed by all registered GP practices in

England [21].

Practice Level Prescribing in England is available from August of 2010, and updated

monthly, covering the specifics of each item prescribed. The data covers England NHS’s pre-

scriptions and dispensation in the UK. Prescriptions that are written in England but dispensed

outside of England are also included. The data includes prescriptions written by GPs and other

non-medical prescribers, such as nurses and pharmacists attached to GP practices. Medica-

tions are identified by their British National Formulary (BNF) code. The practices listed

include all those registered in England and several “dummy” practices created by Primary

Care Trusts (PCTs) to identify prescriptions in certain environments or circumstances, includ-

ing specialist clinics, hospices, prisons, and training units.

Each monthly data set is over 10 million rows. The data includes the total quantity of indi-

vidual treatments prescribed for each practice identified by the BNF code. Six-calendar years

of Apixaban, Rivaroxaban, Edoxaban, and Dabigatran etexilate prescriptions are extracted

from January of 2014 to December of 2019 to form the main dataset. Databases used in this

study do not contain clinical diagnoses. The study does not aim to differentiate between differ-

ent indications for prescribing NOACs.

The GP practice list size (the number of registered patients) in five-years age bands and a

sex distribution is available quarterly from January of 2014 and monthly from April of 2017

[22]. A linear interpolation will be conducted to cover unsupported demographic data, assum-

ing a linear change in the sex and age discrepancy [23]. To capture the deprivation in England,
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the Index of Multiple Deprivation (IMD) 2019 by CCG is extracted from the Ministry of Hous-

ing, Communities & Local Government (MHCLG) [24,25]. The Overall Index of Multiple

Deprivation is produced according to the seven domains of deprivation, with a particular

weights approach (income (22.5%); employment (22.5%); education, skills and training depri-

vation (13.5%); health and disability (13.5%); crime (9.3%); barriers to housing and services

(9.3%); living environment (9.0%)). The 2011 rural-urban classification (RUC) data by CCG is

obtained from the Office for National Statistics (ONS), including population data [26].

Data processing

GP practice data were summed on the total quantity of each defined BNF code per CCG over

time. The aggregated main data were linked to the demographic data to match standardised

DDDs for individual NOAC identifiers per 1,000 patients for the average age and proportion

of males. The CCG-level IMD summarised score for 2019 and RUC data from 2011 were

merged regardless of their time effects. According to the boundary and name changes during

the years, some of the CCGs had been updated or were merged [27]. Our data frame consisting

of 191 CCGs, over six study years, was a total of 1146 records for standardised DDD of individ-

ual NOACs.

Fig 1. Reproduced CCG map shapefile for England as of April 2019. Source: Office for National Statistics licensed

under the Open Government Licence v.3.0. Contains OS data © Crown copyright and database right [2020].

https://doi.org/10.1371/journal.pone.0246253.g001
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Analysis and modelling

Small-area health studies have two main features: the spatial location and the distribution of

disease, which is known as georeferenced disease data [28]. It is important to use a proper anal-

ysis method [28]. Spatial models help quantify inequalities in drug prescriptions and assess

trends. The model’s estimates for each district depend on its data and neighbours’ information

[29]. Due to insufficient sample size at small geographical levels, direct estimators are too unre-

liable to provide adequate estimation, while Bayesian methods have improved estimates [30].

Bayesian methods are commonly used in modern statistical packages to facilitate quick

computational algorithms, which was not feasible in the past [31].

The small area estimation method using the Bayesian technique can help count rare events

in regions with a small population. In the Bayesian approach, we fit data to the model struc-

ture, add information, and perform an external validation. The Bayesian methods enable

researchers a sensible interpretation from the statistical concepts, directly quantifying uncer-

tainty and incorporating complex issues [32]. Hierarchical Bayesian modelling is used to esti-

mate the incidence or prevalence rate in spatial epidemiology. In Bayesian hierarchical

models, parameters have distributions based on prior beliefs defined by expert opinions or

study investigators. These distributions control the parameter limits, which can vary in the

model.

When bordering zones show a higher correlation than remote zones, we have real data with

a spatial structure [33]. Hence, Besag’s intrinsic conditional autoregressive (ICAR) model can

account for the spatial autocorrelation by putting information in from adjacent areas [34].

Although this model smooths the noisy estimates, it couldn’t explain the variability of these

data entirely. The BYM model was introduced by Besag et al. in 1991 to combine both spatial

and non-spatial random effects to account for all data variation [35]. However, it is difficult to

assume independence between these two components in the BYM model. Nearly all variation

can be addressed since the non-spatial random effect is included to capture the independent

region-specific variation. Consequently, it is not possible to split the variability over the effects.

The BYM2 model, a reparameterization of the BYM model, addresses this issue to interpret

parameters and select hyper-priors for spatial and non-spatial precision [36]. The new model

modified the variability distribution between two components using a single-precision param-

eter for the combined component and a mixing parameter for the amount of spatial to non-

spatial variation [36]. To quantify the temporal trends in the data, the spatial model can be

extended to a space-time model by adding a temporal term in the small areas [37]. We plan to

employ the extended BYM2 model (space-time model) using an RStan package for GP Practice

Presentation-level Data.

Small-area estimation model

The statistical analysis will be carried out using a Bayesian hierarchical framework. We will be

able to investigate the geographical distribution of the outcome of interest, DDDs quantity. Let

yi denote the DDDs quantity in each area (i). Since DDDs are a rare count measure, a Poisson

distribution is usually used. In this case, areas with low DDDs quantity frequency might have

small expected numbers, and sampling variability will occur with large variance. Due to this

potential, Bayesian hierarchical models are used to achieve spatial smoothness of estimates

[28].

A Poisson model will be used to map DDDs spatial distribution over time and to explore

other related factors associated with DDDs at the CCG-level. The effects of clustering within

the CCGs (i.e., patients travelling between different clinics but within a specific assigned CCG)

will be present in the remaining error terms.
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The DDDs quantity of individual NOACs is represented by yij in region i and time j. Let Eij
denote the expected number of relevant people in area i and time j, which can be calculated

based on the demographic data set. A Poisson distribution is used to model the DDDs quan-

tity, given θij. It denotes the underlying true time and area-specific relative rate. The estimation

of θij is
yij
Eij

, which corresponds to timely rates.

yijjyij � PoissonðEij � yijÞ

A general model formulation assumes that the log relative rate μij = log (θij) has a decompo-

sition as below.

mij ¼ b0 þ bx
T
ij þ ki�σ þ b3timeij

The lognormal Poisson model includes both spatial smoothing and a random effect for

non-spatial heterogeneity. The DDDs quantity (μij) in area i and year j measures the space and

time variations in the data. The spatial structure of the data, according to the BYM2 as

described by Riebler et al., 2016, includes an overall DDDs yearly rate at the country level (β0),

CCG-level covariates (bxTij ), a combined random effects component (κi) consisting of both spa-

tial and non-spatial random-effects, and the temporal effect. This mixture of components con-

sists of either spatial and non-spatial random effects to account for model error terms. The

non-spatial error term is used to consider over-dispersion not modelled by the Poisson vari-

ates. In the latest version of the BYM models, a combination of these two components is incor-

porated in the Poisson model to make it more interpretable and allow for sensible

hyperparameters [36].

ki ¼ Ziðð
p
ρ=sÞ þ viðð

p
1� ρÞÞ

Information between adjacent areas can be captured with spatially-correlated random effect

(ηi), which allows for sharing the similarity of characteristics. Spatially uncorrelated random

effect accounts for heterogeneity within areas (νi). The mixture component κi smooths obser-

vations to the total mean μij, with a precision parameter σ (overall standard deviation for com-

bined error terms) and weighting parameter ρ for spatial/non-spatial variation. ρ has a value

between zero and one and models the amount of the variance that comes from the spatially

correlated error terms over the variance that comes from the independent error terms. In this

formula, s is the scaling factor that scales the proportion of variance ρ and lets σ be the standard

deviation of the combined components. Spatial variation due to different amounts of DDDs in

each CCG and geographical inequalities in CCGs is captured by this combined parameter. The

temporal component β3 smooths variation over time (yearly) and considers potential time cor-

relation. We will account for exposure time by including it as a variable in the Poisson model.

However, in the future, we will consider other time models that could fit our data.

We will develop the inferencing of the Bayesian model in the open-source RStan package,

which is a highly expressive general probabilistic programming language for the specification

of Bayesian statistical models [38–40]. Stan used No-U-Turn Sampler, or NUTS, an extension

of the Hamilton Monte Carlo algorithm sampler, to draw samples from the model parameters

and residual errors from the posterior distribution. This algorithm, introduced by Hoffman

et al. in 2014, efficiently minimizes manual interventions and allows users to save time and

focus on model development [41]. NUTS is a simpler algorithm that is used to select sample

points that have a wider distribution to prevent redundant sampling steps [41]. For hierarchi-

cal models comprising a complex posterior, such as the BYM models, Stan’s NUTS sampler

makes more robust estimates compared to the Gibbs or Metropolis samplers [33].
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The posterior summaries, including the median and 95% credible interval (the 2.5th and

97.5th percentiles) for each parameter, will be calculated from the drawn samples [41].

Assumptions for the data and the model

The outputs of our model may be different from the actual population characteristics because

of sampling and non-sampling errors in the data and assumptions underlying the modelling

techniques. In the modelling and analysis, we may need to make a few assumptions, such as

none of these four NOACs are withdrawn from commercial markets, prescribing patterns or

authorisation for these NOACs do not change significantly over time (for example, via a major

change in clinical practice guidelines), our estimates will also be model-unbiased under the

assumption of the linear association between the response variable and the area-specific covar-

iates when only area-specific auxiliary information is available, and all small (CCGs) and large

areas (country) have the same characteristics [42].

These assumptions are made because they have implications in interpreting model output.

If any of the assumptions appear to be true, the effects on the model’s output will be checked

through empirical-defining counterfactual scenarios (a posteriori) and rerunning the model.

Model validation

To assess the validity of our estimations, we will conduct a sensitivity analysis in two stages

[43]. In the first stage, we will randomly mask 10% of our data points and we will repeat all of

the models for the remaining 90% of the data. We will use the (average) root mean squared

error (RMSE) as a measure for the average squared difference between model estimates and

the observed values. The RMSE is often used to measure the differences between the values

predicted by a model and the observed values, a useful measure to capture model precision

[44]. In the next stage, we will calculate the proportion of data points in our masked data set

that fell within the 95% uncertainty interval of the withheld data.

The validation framework will check each model’s performance using the summary of the

parameters and their various quantities. These include the posterior mean, the posterior stan-

dard deviation, and various quantiles computed from the draws. We will check MCMC

model-fitting measurements, including the Monte Carlo standard error (se_mean), the effec-

tive sample size (n_eff), and the R-hat statistic (Rhat).

Ethical considerations

This study uses publicly-available data only, so no ethical approval is required. NHS and ONS

data sets have open government licenses and we will cite the principal investigators of the sec-

ondary data sets.

Open data sharing

The Research Data Australia platform will be used to make the models, codes, and detailed

outputs available to the public and professionals [45]. Research Data Australia, an Australian

Government-supported data discovery service of the Australian Research Data Commons,

helps in finding, accessing, and reusing research data. Data will be stored on authors’ univer-

sity-affiliated storage platforms, with descriptions of and links to the data provided on

Research Data Australia.
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Discussion

To our knowledge, this study is the first small-area analysis of the distribution of NOACs in

England using the Bayesian approach. In comparison to warfarin, the vitamin K antagonists

Dabigatran, Apixaban, Rivaroxaban, and Edoxaban have proven to be comparably effective in

preventing stroke in AF and in treating venous thromboembolism. They are associated with a

reduced risk of intracranial bleeding. NOACs’ superiority compared to vitamin-K anticoagu-

lants has been also acknowledged by the WHO, who has included Dabigatran (as representa-

tive of the pharmacological class) on the 21st WHO Essential Medicine List [46].

However, as the selection of a particular NOAC will depend on a few factors, the prescrib-

ing patterns are different across geographic areas and over time. These selection factors can be

individual-related factors, such as renal function, possible drug-drug interactions, or preferred

dosing schedules (once- or twice-daily), prescriber-related factors, such as familiarity with

NOACs and their dosing or being comfortable prescribing NOACs; and system-related fac-

tors, such as the availability of individual NOACs at a particular CCG.

Research implications

This study will identify possible similarities or differences in prescribing individual NOACs

over time and space to help identify possible gaps in NOAC prescriptions at the CCG level.

Specifically, quantifying spatio-temporal differences will enable the evaluation of inequalities

in prescribing NOACs. This quantification will be meaningful in developing geographically

targeted public health interventions, campaigns, audits, or guidelines to improve low-prescrib-

ing areas.

Moreover, the spatio-temporal analysis in this study will be the fundamental framework for

visualising variations in prescribing NOACs over time and highlighting possible geographical

clusters, or ‘hot-spots’, of NOAC prescriptions.

The Bayesian spatio-temporal modelling of prescribing patterns for NOACs will help pre-

dict future patterns and provide estimation based on hypothetical scenarios or sensitivity anal-

yses. It will assess counterfactual prescription scenarios for better prescriber preparedness

outcomes at the CCG level and support decision making at the prescriber or CCG level.

Target audiences of this research

Public health researchers, individual clinician prescribers, such as general practitioners and

nurse practitioners, CCG managers across England, pharmacists working with GP practices,

and NHS Implementation Collaborative groups are the target audiences of this research.

Pros of this analytical approach

This study emphasizes the intersection of time and space in pharmacoepidemiology studies. A

small number of studies consider the effects of combining time and location to estimate drug

trends. Some researchers map the distribution of prescribing geo-referenced data by applying

a likelihood method to a specific time. This paper is the first to use a hierarchical Bayesian spa-

tiotemporal model to estimate standardised drug quantities of prescription data in small areas.

The Bayesian hierarchical framework is more flexible and handles small amounts of data with

spatial correlation. Bayesian hierarchical methods enable smoothing by borrowing informa-

tion from neighbouring units, which leads to more stable estimates. Using an RStan package is

another advantage of this study. This powerful programming language allows for disconnected

subgraphs and island regions and better estimates of models with complex posteriors, such as

the BYM model [33].
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Future directions

The future direction of this research includes the economic evaluation of prescribing NOACs

at the small-area level, dynamic or real-time visualisation of analytical outputs for NOACs to

translate our findings into practice and policy, predicting future patterns, and conducting this

small-area analysis for other medication classes (individually or in groups). Additionally, the

analytical approach from this study can be used for more detailed comparisons with other

countries, including Canada, Australia, or New Zealand, depending on data availability.

Considerations and limitations of the study

This study uses aggregate, population-level data, which is a similar design approach to ecologi-

cal studies, without any gender- or age-specific data. Therefore, interpreting the results and

outputs of this spatio-temporal small area analysis should be done at the CCG level, not at

individual prescriber or patient levels, to prevent any ecological fallacies.

The main dataset that we will use for the Bayesian analysis, although rich in medication-

related information, contains information for other relevant variables or covariates. Therefore,

the inclusion of other covariates for statistical adjustment purposes depends on their availabil-

ity from reliable sources over time.

Additionally, the main dataset that we will use for analysis will only cover CCGs in England,

not the United Kingdom. Therefore, geographical interpretation and visualisation of the out-

puts may be limited.

The Prescribing by GP Practice database covers prescriptions by general and nurse practi-

tioners. Data from other authorised prescribers, such as specialists or trainees working at hos-

pitals or private practices, are not reflected in this dataset or analysis. General practitioners on

average prescribe approximately 60–65% of all medications across NHS. However, the actual

percentage of NOACs prescribed by GPs is unknown.

The four licensed NOACs analysed in this study are known by their generic names in the

main data set. Therefore, parties interested in specific brand-focused information need more

details, such as the market share of a brand, to translate the outputs of this study to their

practice.

For optimal and meaningful interpretation, statistical model assumptions should be consid-

ered. Otherwise, reliable interpretation may not be possible. Finally, this study requires very

large data sets, which makes replicating the methodology more suitable for advanced statistical

software or packages.

Conclusion

This study offers a new statistical approach to modelling pharmacoepidemiologic data. The

generic analytical approach of this study can be applied to other medications, especially those

prescribed for chronic conditions that must be taken for a long time (possibly a lifetime).
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