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Abstract 77 

The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the 78 

subsequent months, the potential for wastewater surveillance to contribute to COVID-19 79 

mitigation programmes has been the focus of intense national and international research 80 

activities, gaining the attention of policy makers and the public. As a new application of an 81 

established methodology, focused collaboration between public health practitioners and 82 

wastewater researchers is essential to developing a common understanding on how, when 83 

and where the outputs of this non-invasive community-level approach can deliver actionable 84 

outcomes for public health authorities. Within this context, the NORMAN SCORE “SARS-CoV-85 

2 in sewage” database provides a platform for rapid, open access data sharing, validated by 86 

the uploading of 276 data sets from nine countries to-date. Through offering direct access to 87 

underpinning meta-data sets (and describing its use in data interpretation), the NORMAN 88 

SCORE database is a resource for the development of recommendations on minimum data 89 

requirements for wastewater pathogen surveillance. It is also a tool to engage public health 90 

practitioners in discussions on use of the approach, providing an opportunity to build mutual 91 

understanding of the demand and supply for data and facilitate the translation of this promising 92 

research application into public health practice.  93 

 94 

 95 

1. Introduction 96 

Research continues apace into many aspects of the use of wastewater surveillance for the 97 

detection of SARS-CoV-2 and how data generated can be utilised within local public health 98 

decision-making. Also known as sewage or environmental surveillance, the approach has an 99 



established literature in terms of monitoring the occurrence and concentration of chemicals 100 

arriving at a wastewater treatment plant (WWTP) (Choi et al., 2018). Determined chemical 101 

concentrations, loads and population normalised loads of illicit (González-Mariño et al., 2020; 102 

Ort et al., 2014) and licit drugs including tobacco, caffeine and alcohol (Castiglioni et al., 2015; 103 

Gracia-Lor et al., 2017; Ryu et al., 2016, Thomaidis et al., 2016) are used to provide 104 

quantitative longitudinal data sets on the use at a catchment level. It is also possible to 105 

evaluate the rates of exposure to environmental or food contaminants using the same 106 

approach (Rousis et al., 2017; Lopardo et al., 2019). Furthermore, wastewater surveillance 107 

can be used to evidence changes overtime in relation to the implementation of new policy 108 

initiatives. The practical utility of chemical wastewater surveillance data sets is demonstrated 109 

by its use within local and national monitoring and public health programmes (EMCDDA, 2020; 110 

Riva et al. 2020; Lai et al., 2018). Prior to 2020, the use of wastewater surveillance for 111 

monitoring pathogens was gaining ground only slowly. Most notably, enterovirus wastewater 112 

surveillance systems have been established in several locations (Sedmak et al., 2003; 113 

Majumdar et al., 2018), with wastewater surveillance identified as playing a key role in polio 114 

eradication schemes in Israel, India and Egypt (WHO, 2020; Ashgar et al., 2014; Holm-115 

Hansson et al., 2017). The first SARS-CoV-2 wastewater surveillance studies were 116 

undertaken in the Netherlands, with viral RNA material detected in wastewater treatment 117 

influent samples in seven Dutch cities and the international airport (Medema et al., 2020a). 118 

This landmark study included data on the detection of viral fragments in wastewater in one 119 

city prior to the detection of any clinical cases. This potential to provide an early warning on 120 

the presence of the virus within a community is a proof-of-concept and an evidence base that 121 

could be used by public health teams as a trigger to intensify clinical testing, facilitating the 122 

identification and isolation of positive cases (Thompson et al., 2020; POST, 2020). Hence, the 123 

use of wastewater surveillance for SARS-CoV-2 as a tool to address the COVID19 pandemic 124 

is a new application of an established method in a rapidly moving field.  125 

 126 



SARS-CoV-2 wastewater surveillance studies to date have demonstrated the occurrence of 127 

its RNA genome in a range of compartments, primarily WWTP influents but it has also been 128 

reported in sludge and effluents as well as within receiving waters (Jones et al., 2020; 129 

Randazzo et al., 2020). In terms of infectivity potential of wastewater containing SARS-CoV-130 

2 RNA, initial studies (Westhaus et al., 2021; Rimoldi et al., 2020; Bivins et al., 2020a) and 131 

expert opinion (WHO, 2020; Jones et al., 2020) indicate that detected RNA materials do not 132 

occur in the form of an infectious viral particle. Further studies also looked to establish a 133 

quantitative relationship between viral load and number of clinical cases reported within a 134 

catchment (Vallejo et al., 2020; Ahmed et al., 2020). However, variations in the load and 135 

duration of viral material shed in faeces by asymptomatic, pre-symptomatic and symptomatic 136 

cases, together with limited understanding of the fate of viral particles within sewer systems 137 

(which vary significantly in design and flow dynamics), and variations in analytical protocols 138 

and their associated extraction efficiencies, generates considerable uncertainty in terms of 139 

directly relating viral loads to numbers of cases. Hence, many open challenges exist within 140 

this research area and use of data by public health teams. Within the field, key research 141 

questions encompass the potential for viral materials to adsorb to biofilm and particles, 142 

degrade in the sewage system and optimising sample collection processes, including 143 

collection location and frequency (WHO, 2020). Moreover, the need to standardise and 144 

optimise analytical protocols has been clearly identified (Michael-Kordatou et al., 2020). In 145 

terms of interpreting data, key issues include data comparability between studies (e.g. use of 146 

a common marker for normalisation and how contextual data e.g. flow and other parameters 147 

are included in data interpretation), the identification of a SARS-CoV-2 RNA threshold value 148 

and the actions that exceeding a threshold value should trigger (Medema et al., 2020b). 149 

Variations in the amount of viral RNA excreted per person are a further unknown, and inherent 150 

levels of variability in shedding may make accurate predictions of prevalence impossible. 151 

However, the absence of an absolute understanding of shedding rate behaviour does not 152 

preclude the use of this approach in public health contexts, where relative changes in signal 153 

(as opposed to its absolute value) can provide public health teams with valuable data. Further 154 



open questions remain over ethical aspects related to the use of wastewater surveillance, and 155 

the need to develop a social license to operate if the approach is to be successfully adopted. 156 

Whilst ethical aspects have been largely overlooked during the current health emergency, 157 

developments in near source tracking e.g. analysis of wastewater from aeroplanes, hospitals 158 

and schools (Ahmed et al., 2020; Gonçalvesa et al., 2021; Hassard et al., 2020, Hong et al., 159 

2021) is rapidly pushing this issue up the research and practice agenda. In this article a 160 

bottom-up, collaborative approach to enabling researchers to systematically and rapidly share 161 

raw data on traditional wastewater parameters, the occurrence of SARS-CoV-2 and clinical 162 

case numbers is presented, as both a resource for researchers and a tool to facilitate 163 

discussion with public health teams.  164 

 165 

2. The use of wastewater surveillance data within public health decision-making 166 

Wastewater surveillance can be used to non-invasively screen ‘hard to test’ communities (i.e. 167 

where uptake of testing is low or challenging for resource reasons) at a sewer catchment level 168 

as a new public health tool to understand COVID-19 spread (CDC, 2020; POST, 2020). 169 

Detection of SARS-CoV-2 RNA fragments in wastewater is independent of clinical testing 170 

strategy bias (Thompson et al., 2020), can be used as an early warning of the need for further 171 

testing (e.g. reallocating/increasing local testing resources such as drive-through test facilities) 172 

or the implementation of wastewater surveillance upstream of the WWTP i.e. near-source 173 

tracking to identify location of cases (Hassard et al., 2020). For example, the detection of 174 

SARS-CoV-2 RNA concentrations can indicate the (re-)emergence of the virus in a catchment 175 

following a period of no clinical cases and an increase in viral RNA load can indicate the 176 

occurrence of new outbreaks, requiring the urgent tracing of infected individuals and their 177 

subsequent support to isolate (DEFRA, 2020). Likewise decreasing prevalence can indicate 178 

that infected individuals are ‘known’ and isolation/public health interventions are effective. 179 

Further, an increase in viral load over time against a trend of ‘no-change’ in daily positive case 180 

numbers could indicate that the clinical testing regime should be intensified (i.e. new cases 181 

are not being detected) (Thompson et al., 2020). Wastewater surveillance data sets can also 182 



be used to evidence the effect of alternative policy actions e.g. curfew vs local lockdown vs 183 

national lockdown at a community level, as well as track progress of vaccination campaigns.  184 

 185 

To deliver these types of actionable outcomes i.e. to enable public health authorities to use 186 

wastewater surveillance data within their community level decision-making processes requires 187 

activities on several fronts. As well as addressing the wastewater surveillance methodological 188 

and analytical challenges identified earlier, data from wastewater needs to be collected 189 

frequently and available rapidly in a format that is useful and useable by public health 190 

practitioners. Further collaboration between wastewater and public health practitioners is 191 

required to ensure that public health teams can access the type of data they require in a 192 

timeframe and format that integrates with current pandemic mitigation measures i.e. 193 

addressing public health data requirements needs to be front and centre of operationalising 194 

this new development in wastewater surveillance. The format and sampling strategies 195 

underpinning wastewater data sets may need to morph in terms of the locations and frequency 196 

of sample collection, quality assurance/quality control processes, scale at which data is 197 

generated and made available and the aspects of primary value from a public health 198 

perspective i.e. absolute values or trends analysis. Delivering this type of integrated data share 199 

‘dashboard’ is already challenging under usual working conditions; working across disciplines 200 

during a pandemic when public health teams are at (or beyond) full capacity is extremely 201 

challenging. However, collaboration between public health and wastewater researchers – 202 

where public health practitioners take a lead role in determining dashboard development - is 203 

happening. For example, in Australia, the development of a SARS-CoV-2 wastewater 204 

surveillance dashboard was led by a collaboration between the Victorian state public health 205 

team and Water Research Australia. This has already matured from a research and 206 

development phase to an operational tool for day-to-day use with functional dashboards for 207 

both internal and external communications (Victoria State Government, 2020). Other countries 208 

with established monitoring programs include Canada (https://cwn-rce.ca/covid-19-209 

wastewater-coalition/),Finland 210 



(https://www.thl.fi/episeuranta/jatevesi/jatevesiseuranta_viikkoraportti.html), Luxembourg 211 

(https://www.list.lu/en/covid-19/), Greece (http://trams.chem.uoa.gr/covid-19/), the 212 

Netherlands (https://www.rivm.nl/en/covid-19/sewage), and Spain 213 

(https://www.miteco.gob.es/es/agua/temas/concesiones-y-autorizaciones/vertidos-de-aguas-214 

residuales/alerta-temprana-covid19/default.aspx). In the UK, sharing of data between a 215 

government-led wastewater surveillance project and the national COVID-19 ‘track and trace’ 216 

programme led to the identification of an increase in SARS-CoV-2 RNA in wastewater despite 217 

relatively low numbers of people taking clinical tests (DEFRA, 2020). This data was used to 218 

alert local health professionals to contact people in the area to warn of the increase in cases 219 

and encourage local populations to engage with clinical testing programmes.  220 

 221 

The need for and benefits of collaboration among wastewater researchers has been 222 

recognised and several international and national collaborations rapidly established (e.g. 223 

Bivins et al., 2020b; WRF, 2020; WHO, 2020; JRC, 2020; Réseau Obépine, 2020; WRA, 2020; 224 

UCMERCED, 2020). These have focussed primarily on technical and analytical issues, 225 

facilitating opportunities for rapid discussion on a range of topics from recent publications to 226 

method development, predictive modelling and risk assessment. However, collaboration 227 

activities to-date have yet to address two key issues: firstly, the development of an open-228 

access data platform to enable and facilitate the rapid sharing and critical evaluation of multiple 229 

wastewater meta-data sets to address technical issues (Bivins et al., 2020a). Secondly, 230 

engagement with public health authorities i.e. development of a critical mass of public health 231 

and wastewater researchers to collaboratively identify and deliver an operational SARS-CoV-232 

2 wastewater surveillance public health system.  233 

 234 

3. Open access data sharing to progress collaboration across disciplines  235 

The NORMAN/SCORE SARS-COV-2 in sewage (SC2S) database is a platform, which can 236 

contribute to meeting both these needs. This open-access database is an output of the 237 
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collaboration between two international networks: the NORMAN network (www.norman-238 

network.net/) of research organisations supporting the validation and harmonisation of 239 

measurement methods and monitoring tools and SCORE (https://score-cost.eu) a network 240 

established to harmonise methodologies for measuring human biomarkers in wastewater to 241 

evaluate lifestyle, health and exposure at the community level. The database is located within 242 

the NORMAN Database System at https://www.norman-network.com/nds/ as the latest 243 

addition to its 13 database modules within the interlinked database system series for the 244 

collection and evaluation of data / information on emerging substances in the environment 245 

(Dulio et al., 2020). The SC2S database structure follows that of the NORMAN Antibiotic 246 

Resistance Bacteria/Genes database, enabling users to freely access data at a WWTP level 247 

as well us upload new data via a customised data collection template (DCT; downloadable 248 

from the website) which facilitates its automatic uploading to the system. On accessing the 249 

database, users can search via country and/or WWTP or view the entire data set (both within 250 

the database or it can be exported into MS Excel) without any restrictions. Data displayed in 251 

the dashboard includes sampling date, gene copy (number of copies /mL and/or ng of 252 

RNA/mL), cycle threshold (Ct), WWTP and country name, population served and the number 253 

of people reported SARS-CoV-2 positive in the sewer catchment area on the day of sampling. 254 

Table 1 identifies the requested reporting parameters and provides an overview of their role 255 

in interpreting generated data sets. Finally, the full DCT containing all reported data on all 256 

parameters can be downloaded for each dataset. In terms of engaging the attention of public 257 

health authorities, as a first step it includes both wastewater and clinical case data. In addition, 258 

and perhaps more importantly, it is a starting point for further discussions with public health 259 

practitioners on what wastewater surveillance is, the types of longitudinal data sets it can 260 

produce (together with process controls), and the potential of this non-invasive approach as a 261 

tool to provide an early warning of new clusters as well as the impact of existing pandemic 262 

mitigation measures.  263 

 264 
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To launch the database, invitations to participate were initially shared through both the 265 

NORMAN and SCORE networks, with a request for members to disseminate further through 266 

their own networks. To harmonise activities, participants were provided with a common 267 

protocol covering sample collection, RNA extraction and analysis. The common protocol 268 

(available at https://www.norman-network.com/nds/sars_cov_2/) adopts the Medema et al 269 

(2020) methodology with an alternative simplified protocol for SARS-CoV-2 extraction from 270 

wastewater via polyethylene glycol (PEG) precipitation (recognising that many 271 

consumables/equipment currently in short supply). Given the logistical challenges and 272 

urgency to share data quickly, participating laboratories did not undertake an inter- laboratory 273 

validation procedure but were asked to report their laboratory QA/QC procedures in full. 274 

Submission of data using both methods is welcomed, with space on the DCT to identify which 275 

approach was used and the genes targeted. A further step was to establish a ‘buddy system’ 276 

for research groups who were able to collect wastewater samples but whose laboratories were 277 

under lock-down and/or were not familiar with RNA analysis. As such, the rapid sharing of a 278 

common protocol also had a capacity building effect, enabling many groups to explore 279 

opportunities to undertake wastewater surveillance for pathogens for the first time. Two 280 

scheduled sampling campaigns were held on June 1st 2020 and June 15th 2020, with data 281 

referring to further identified sampling campaigns now welcomed. To date the SC2S database 282 

contains 276 sets of data from nine different countries (see Figure 1).  283 

 284 

The impact of pandemic mitigation measures on working conditions impacted on the ability to 285 

both collect and manage samples e.g. reduced access to WWTPs and laboratories, 286 

consumables and/or work force. Further, whilst the DCTs were developed to support 287 

systematic data reporting, not all laboratories were able to provide all requested data due to 288 

the on-going challenges experienced by many research groups in terms of access to 289 

laboratories, shortages/delays in shipping consumables and reduced work force. 290 

Nevertheless, all received data sets were uploaded to achieve the aim of rapid data share as 291 

a compliment to ongoing efforts to standardise sampling and analytical protocols. 292 

https://www.norman-network.com/nds/sars_cov_2/


Downloading the current data set shows that 24-hour composite samples (either volume-293 

weighted or time-weighted) were collected on several dates on or close to scheduled sampling 294 

dates (from 24th May 2020 – 16th June 2020) with grab and/or composite samples collected 295 

on further as local conditions permitted. Sample preparation date, date of analysis and storage 296 

conditions were identified, together with the method used for sample preparation, RNA 297 

extraction, analysis and the use of internal standards in the sample preparation phase (61% 298 

of samples) and the RNA extraction step (88% of samples). Reviewing the data set as a whole, 299 

a positive signal for SARS-CoV-2 was quantified in 167 of the 276 samples analysed. Of these 300 

167 samples, the N1 gene was quantified in 18 samples, N2 gene in 8 samples, a combined 301 

measure of N1 and N2 in 133 samples and the E gene in 3 samples. Ct counts ranged from 302 

31.9 - 41.9 (median 35), with the number of gene copies/ml ranging from 0.04 – 148 gene 303 

copies/mL (median: 10.6 gene copies/mL). In terms of quality control, reported analysis 304 

included two to six replicates per sample with the use of a positive control reported in the 305 

analyses of 268 of the 276 samples. The analytical limit of detection was reported on 173 306 

occasions (range: 3 – 5 gene copies/ml for N1 gene; 0.5-5 gene copies/ml for N2 gene; 0.75 307 

gene copies/ml for N1/N2 combined gene measurement;  0.5 - 100 gene copies/mL for E 308 

gene), with a study by Philo et al. (2021) suggesting that the variability in detection between 309 

target genes could be due to variations in the performance of assays or differential rates of 310 

degradation in the target genetic material. No study reported their limit of quantification. In 311 

terms of clinical data, the number of positive cases reported in the local municipality (which 312 

may/may not reflect the sewer catchment) on the day of sampling was reported for 260 of the 313 

276 samples analysed (range: 0 – 1701; median = 239 cases). Whilst at sewer catchment 314 

level, ethical issues around participant anonymity and data protection is generally not an issue. 315 

However, as contributing areas reduce to, for example, an individual building level, the need 316 

to systematically and robustly consider the use of generated data at source and further 317 

downstream (i.e. secondary data use) becomes increasingly urgent. 318 

4. Conclusions 319 



The current data hosted by the SC2S provides a snapshot of the occurrence of SARS-CoV-2 320 

in wastewater at participating WWTPs and demonstrates the ad-hoc cooperation of the 321 

scientific community on data collection. However, more importantly, the NORMAN/SCORE 322 

initiative:  323 

• demonstrates that the SC2S database is a workable multi-jurisdictional data-share 324 

platform with potential to facilitate development of an international dataset  325 

• provides a tool to engage and inform discussions with public health practitioners on 326 

the potential role of wastewater surveillance as an additional approach to integrate 327 

within community public health strategies 328 

• is open to all (contributors are warmly invited to submit data from any campaigns they 329 

are able to share, using the relevant sections on the DCT to document sample 330 

collection, storage and analytical details together with clinical case numbers)  331 

• with continued use, this collection of wastewater meta-data will support a retrospective 332 

analysis of the impact of differing sewer/catchment/population variables on the use of 333 

wastewater surveillance as a tool in public health practice 334 

• facilitated the collection of comparable data sets from an early phase of the pandemic; 335 

continued use will provides an opportunity to maximise operational insights gained 336 

during different phases of the pandemic and support development of robust best 337 

practice in wastewater surveillance. 338 
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