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Logics of non-sense allow a third truth value to express propositions that are nonsense. These logics

are ideal formalisms to understand how errors are handled in programs and how they propagate

throughout the programs once they appear. In this paper, we give a Hintikkan game semantics for

logics of non-sense and prove its correctness. We also discuss how a known solution method in game

theory, the iterated elimination of strictly dominated strategies, relates to semantic games for logics

of nonsense. Finally, we extend the logics of nonsense only by means of semantic games, developing

a new logic of nonsense, and propose a new game semantics for Priest’s Logic of Paradox.

Keywords Game semantics, logics of nonsense, logic of paradox, iterated elimination of strictly

dominated strategies.

1 Introduction

Logics of nonsense allow a third truth value to express propositions that are nonsense. The initial mo-

tivation behind introducing nonsensical propositions was to capture the logical behavior of semantic

paradoxes that were thought to be nonsensical.

As argued by Ferguson, nonsense is “infectious” [8]: “Meaninglessness [...] propagates through the

language; that a subformula is meaningless entails that any complex formula in which it finds itself is

likewise meaningless.” Logics of nonsense, for this reason, are intriguing.

Nonsense appears in various contexts. In mathematics, the expression “1/x” is considered mean-

ingless when x = 0. Certain approaches to truth disregard paradoxes of self-reference and exclude them

as meaningless. In philosophy of science, some theories are thought to be “monsters” and are thereby

excluded from research programs [14]. In computer science, software bugs often remain throughout the

program run and produce an unexpected output. In all these discussions, nonsense propagates throughout

the system and “infects” the other truth values.

In what follows we will employ game theoretical tools and techniques to give a broader reading of

the aforementioned infectiousness. What motivates our approach is manifold. First, game theoretical

semantic tools offer a very intuitive and natural approach to semantics. Moreover, they suggest com-

putational connections between truth, proofs, programs and strategies, relating major concepts of game

theory, computer science and logic to each other constructively. In this way, certain connections be-

tween how errors are handled in programs and how they propagate throughout the programs once they

appear can be established. Studying logics of nonsense helps developing a substantial analysis of such

situations. Second, game semantics is perhaps the most studied non-compositional semantics. It is non-

compositional in the way that the truth of a complex formula is evaluated based on the truth values of

some of its components. We can thus answer how “some” truth values can infect the others and com-

putationally determine the truth value of the formula in question. Such “infections” suggest that there

is a certain strategic interaction amongst the players. Third, a study of “infectiousness” helps us draw a
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broader picture of interactive and rational behaviour, which is a central theme in multi-agent systems, so-

cial choice and decision theories. In conclusion, a game theoretical semantic study of logics of nonsense

helps us understand “infectiousness” from a variety of different but complementary perspectives.

In game semantics, the truth of a formula in a model is evaluated by playing a game. Given a model

and a well-formed formula, players try to win a game in order to decide the truth value of the formula in

the given model. In classical propositional logic, the semantic verification game (or “semantic game” for

short) is played by two players, the verifier and the falsifier, who are often called Heloise and Abelard

respectively. The verifier aims at verifying the truth of a given formula in a given model whereas the

falsifier aims at falsifying it. The game is for two-players, reflecting the binary truth values of the logic.

In a semantic game, the given formula is broken into subformulas step by step. The game terminates

when it reaches the propositional atoms. If the game ends with a true atom, then the verifier wins

the game. Otherwise, it is a win for the falsifier. The moves and turns of the game are determined

syntactically based on the shape of the formula. If the main connective is a conjunction, the falsifier

makes a move. If it is disjunction, the verifier makes a move. If the main connective is a negation, the

players switch roles: the verifier becomes the falsifier, the falsifier becomes the verifier. Throughout the

game, players may switch their roles according to the rules as the rules are given for players’ roles not

for the individual players.

We say that a player has a winning strategy if he has a set of rules that guides him throughout the play

and tells him which move to make, and consequently gives him a win regardless of how the opponent

plays. In classical game semantics, winning strategies necessarily determine the truth values of the

formulas. In non-classical game semantics, this assumption is rejected. Because some games may have

multiple winners – with multiple “winning” strategies. In that case, we need to be able to identify the

winning strategy that necessarily determines the truth value of the formula in question. We call such

winning strategies dominant. We will use dominant strategies to capture the infectiousness of nonsense.

Logics of nonsense and game semantics both have a long, but relatively unconnected, history.

Game semantics has been a popular research area since Jaakko Hintikka, and Helsinki School re-

searchers produced a significant amount of work on the subject. Broad historical surveys of the subject

were presented in [19, 13] with many references. Game semantics have been used to understand proofs

and computation in computer science [1], and dialogical games in philosophical logic [15, 21].

The connection between non-classical logic and game semantics have not been studied so exten-

sively. Game semantics for various many-valued logics have been presented in [10, 9]. In the context

of dialogical logic, which can be seen as a variant of game semantics, the connection between semantic

games and paraconsistency was explored in [20]. A recent work focused on the connection between

various well-known paraconsistent logics and game semantics and offered various modifications for the

games based on different logics [3, 4]. The current work attempts at following the same path yet puts

more emphasis on strategies.

Logics of nonsense were first suggested by Bochvar in the 1930s and by Halldén in the 1940s [5, 12]1.

These logics enjoy different validities as Halldén’s system preserves nonsense (along with true) under

valid inferences. Bochvar’s system, however, does not. As such, Halldén’s logic is paraconsistent;

Bochvar’s, dually, is paracomplete. Such systems were extended by Åqvist and Segerberg [2, 22].

Hałkowska suggested an algebra for logics of nonsense [11]. In that work, nonsense truth value was

motivated by certain meaningless mathematical expressions such as 1/x where x = 0.

There has been an increasing interest towards infectious logics. Ferguson examined the logics of

nonsense in relation to various other non-classical containment logics, offering a broad perspective [8].

1The translation of [5] appeared as [6].
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Szmuc discussed logics of nonsense within the context of some other non-classical logics, including

logics of formal inconsistency and of formal underminedness. As such, he carried the issue into broader

classes of logics and generated a variety of logics of nonsense [23]. Following this methodology, Ciuni et

al constructed a linear order of infectious logics, extending logics of non-sense into a countably infinite

family of subsystems of classical logic [7]. What they achieved in their work uses logical and semantical

methods, while we arrive at similar systems using game theoretical tools in this work. Omori presented

an extension of logics of nonsense by discussing them within the framework of logics of formal incon-

sistency [16]. Omori and Szmuc focused on the behavior of conjunction and disjunction in logics of

nonsense and observe the unexpected working of disjunction [17].

The current paper is organized as follows. First, we formally define semantic games. Then, after a

brief discussion of a logic of nonsense, we introduce a game semantics for it. Consequently, we prove the

correctness theorem of our game semantics. We then extend our semantic games for an attempt to obtain

some other logics of nonsense that extend the initial system. Finally, as a case study, we take advantage

of our approach in order to obtain a more refined semantic game for a well-known paraconsistent logic,

Priest’s Logic of Paradox.

The main contribution of the paper is to emphasize the role of dominant strategies in game semantics

in the context of non-classical logics. By doing so, we establish a stronger connection between non-

classical logics and game theory. We achieve this by showing how dominant strategies and certain truth

values in game semantics work similarly.

This paper is part of a research programme on non-classical game theory. Similar to non-classical

approaches to truth (and proof), it is possible to analyze strategies and wins from a non-classical per-

spective. This will provide a more nuanced understanding of game theory and open up a new avenue for

applications for non-classical logic(s).

Throughout this work, we will use “game theoretical semantics” and “game semantics” interchange-

ably, assuming no confusion arises.

2 Semantic Games

Non-classical logics and their game semantics allow us to study the connection between non-classical

logical elements and their corresponding game theoretical properties. How does a paraconsistent game

look like? Can we have a multi-player semantic game for a multi-valued logic? Whilst answering

these questions, one can engineer non-classical logics using game theoretical tools as well as develop

semantic games for non-classical logics. Those games can be multi-player, non-zero-sum, cooperative,

non-determined and non-sequential, differing from the semantic games for classical logic.

In what follows, we focus on systems of propositional logic which allow us to reason about strategies

in semantic games. This will exemplify the fact that strategies in classical semantic games are over-

simplified (or degenerate) forms of strategies that appear more clearly in semantic games for some non-

classical logics, such as logics of nonsense. Before presenting our results, we need to set up our system.

We define semantic games following the terminology given in [19, 3]. First, we consider the language

L of propositional logic given as follows in the Backus–Naur form for a set of countable propositional

variables P:

ϕ := p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ

where p ∈ P. We define the conditional arrow as expected: ϕ → ψ ≡ ¬ϕ ∨ψ .

A model for semantic games is defined as follows.
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Definition 2.1. A model M is a tuple (S,v) where S is a non-empty domain on which the game is played,

and the valuation function v assigns the formulas in L to truth values in the logic.

In semantic games, we have a set of players, game rules and a set of positions. Some non-classical

logics, such as Priest’s LP and Strong Kleene Logic, share the same truth tables but they differ on their

set of designated truth values – rendering the former paraconsistent, the latter paracomplete. In order to

distinguish such systems, designated truth values2 are specified – even though we will not focus on them

in this work. Some games may not be sequential, thus a game-token may be used to indicate the current

position of the players.

Definition 2.2. A semantic game is a tuple Γ = (π,ρ ,σ ,τ ,δ ) where π is the set of players, aiming at

winning the game by reaching atomic formulas with specific truth values based on their roles, ρ is the

set of well-defined game rules, σ is the set of positions, τ is the set of positions of the game-token in the

case of a concurrent play, and δ is the set of designated truth values.

Let us start by explaining how Γ is constructed. Players in the semantic game Γ have interchangeable

roles. A player pi ∈ π may assume different roles, thus strategies, in the game. Therefore, the game rules

will be given not for the players pi but for their roles. Players, then, will follow the rules based on what

roles they assume. The falsifier aims at reaching a false atom, the verifier a true atom.

The positions σ in the game are determined by the subformulas of the given formula and the players.

As such, they also include the turn function, which specifies which players are allowed to make a move

at each position. Consequently, the set of positions will be composed of tuples as (pi,ϕ) for pi ∈ π and a

well defined formula ϕ . The tuple (pi,ϕ) will read “it is player pi’s turn at ϕ”. The set σpi
will denote the

set of positions for player pi ∈ π , and will be defined as σpi
= {(pi,ϕ) : (pi,ϕ)∈ σ for a fixed player pi}.

For simplicity, we will include the empty set in σ .

The set σ is not sufficient by itself to describe which positions are concurrent and played simulta-

neously. In semantic games for classical logic, τ is the set of singletons as there is no concurrent or

parallel play. In games, where two players are allowed to make moves at the same time, we will have

{(p1,ϕ),(p2,ψ)} ∈ τ , which reads “player p1 plays at ϕ and player p2 plays at ψ simultaneously”.

Designated truth values δ determine the theorems in a logic. In order to distinguish different logics,

we specify δ . Yet, we will not focus on proof theory in this work.

The rules ρ of semantic games are defined inductively as (partial) transformations from a game

position (pi,ϕ) to a set of game positions {(p j,ψ)} j∈I for pi, p j ∈ π , I ⊆ π , well-defined formula ϕ

and a subformula ψ of ϕ , defined in the standard way. As such, game rules do not change if a position

is a concurrent or not since they are defined per position. For simplicity reasons, we do not include a

turn function to determine which players are supposed to make a move at any position. Game rules and

positions specify the turn. If player pi is not supposed to make a move at position (pi,ϕ) then, the game

rule ρ j will return ρ j((pi,ϕ)) = /0 where /0 ∈ σ .

A run (or play) is a sequence of sets from τ which starts with {{pi,ϕ}} and ends with a set that

contains a position with an atom, where ϕ is the initially given formula. In semantic games for classical

propositional logic, for example, a run is a sequence of singletons from τ .

The semantic game Γ for a model M and a well-defined formula ϕ ∈ L is denoted by Γ(M,ϕ).
In semantic games, logical behavior is described using game theoretical tools and concepts. Strate-

gies are perhaps the most important of such tools. In semantic games for classical logic, having winning

2The set of designated truth values are used to define theorems in a particular logic. They can be viewed as non-classical

extensions of the truth value TRUE, and are preserved under valid inferences. The relation between the proof theory and

semantic games is well-pronounced for certain logics, which falls outside the scope of this paper [1]. Similarly, game theoretical

readings of logical consequence relation remains a curious problem. We are thankful to the anonymous referee for pointing this

out.
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strategies necessarily determines the truth value of the formula in question, and vice versa. This is a

very intuitive and fundamental idea. Yet, it fails to translate into various non-classical logics as having

a winning strategy for a semantic game does not necessarily determine the truth value of the formula in

question. For that reason, we need a stronger concept.

Definition 2.3. In Γ(M,ϕ), a dominant winning strategy is a winning strategy that determines the truth

value of ϕ once played.

In other words, in Γ(M,ϕ) if a player pi admits a dominant winning strategy Σ and if pi plays Σ, then

ϕ has the truth value that pi forces. If pi admits a winning strategy, on the other hand, then ϕ may have

the truth value that pi forces, depending on other players and conditions. However, if pi does not admit a

winning strategy nor a dominant winning strategy, she cannot determine the truth value of ϕ . Naturally,

in classical logic, every winning strategy is dominant. In non-classical logics, they are not.

Notice that what Definition 2.3 describes is rather different than what most readers may be familiar

in classical game theory about strategy dominance.3 The standard game theoretical definitions discuss

pay-offs and higher pay-offs, whereas we focus on determining truth-values [18]. There is, however, a

philosophical connection. Higher-payoffs with dominant strategies help a player win a game in com-

petitive games, dominant winning strategies help a player to determine the truth value of a formula in

semantic games.

3 Game Semantics for the Bochvar–Halldén Logic

Bochvar–Halldén Logic introduces an additional truth value N, called nonsense, which intuitively stands

for sentences which are nonsensical or meaningless. As we argued earlier, Bochvar–Halldén logics are

actually two distinct logics with the same truth table. In Bochvar’s system, the designated truth value is

T whereas in Halldén’s it is {T,N}. For our semantic considerations, we treat them together and call this

formalism the Bochvar–Halldén Logic (BH3, for short) with the following truth table.

¬

T F

N N

F T

∧ T N F

T T N F

N N N N

F F N F

∨ T N F

T T N T

N N N N

F T N F

Figure 1: The truth tables underlying BH3.

In a semantic game for BH3, we need three players to force the three truth values. In addition

to the classical players Verifier and Falsifier, we introduce a third player which we call “Dominator”.

Dominator forces the game to a nonsense proposition. As such, he is allowed to make moves along other

players. We also stipulate that Dominator’s strategy is dominant – his wins determine the truth value.

We denote the semantic game for BH3 by GTSBH3 and propose the following rules for GTSBH3.

Definition 3.1. The tuple ΓBH3 =(π,ρ ,σ ,τ ,δ ) is a semantic game for BH3 where π = {Falsifier, Verifier,
Dominator}, σ is the set of tuples (pi,ϕ) for pi ∈ π and a well-formed formula ϕ , and δ is {T,N} for

Bochvar logic and {T} for Halldén logic. For a game ΓBH3(M,ϕ), the set of positions σ is specified in

the following.

• If ϕ is atomic, then (pi,ϕ) ∈ σ for all pi ∈ π ,

3We are thankful to the anonymous referee for pointing this out.
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• If ϕ = ¬ψ , then (pi,ϕ) ∈ σ for all pi ∈ π , and (p j,ψ) ∈ σ for some p j ∈ π depending on ψ’s

main connective,

• If ϕ = χ ∧ψ , (Falsifier,ϕ) ∈ σ , (Dominator,ϕ) ∈ σ , and (p j,χ),(pk,ψ) ∈ σ for some p j, pk ∈ π

depending on ψ and χ’s main connectives,

• If ϕ = χ ∨ψ , (Verifier,ϕ) ∈ σ , (Dominator,ϕ) ∈ σ , and (p j,χ),(pk,ψ) ∈ σ for some p j, pk ∈ π

depending on ψ and χ’s main connectives.

The set τ is given inductively as follows only for those positions (pi,ϕ) in σ that are allowed to be

played simultaneously but independently.

• For ϕ = χ ∧ψ , {(Falsifier,χ ∧ψ),(Dominator,χ ∧ψ)} ∈ τ ,

• For ϕ = χ ∨ψ , {(Verifier,χ ∨ψ),(Dominator,χ ∨ψ)} ∈ τ .

Finally, ρ is given inductively as follows for players’ roles.

(ρp) If ϕ is atomic, the game terminates, and Verifier wins if ϕ is true, Falsifier wins if ϕ is false and

Dominator wins if ϕ is nonsense;

(ρ¬) If ϕ = ¬ψ , Falsifier and Verifier switch roles, Dominator keeps his role, and the game continues

as ΓBH3(M,ψ);

(ρ∧) If ϕ = χ ∧ψ , Falsifier and Dominator choose between χ and ψ independently and simultaneously;

(ρ∨) If ϕ = χ ∨ψ , Verifier and Dominator choose between χ and ψ independently and simultaneously;

(ρs) Dominator’s strategy strictly dominates the Verifier’s and Falsifier’s.

Let us now briefly explain the game. First, the set of positions σ is constructed inductively. Atomic

formulas are associated with all players as they all need to check whether they win. At negated formulas,

players reshuffle their roles and the game continues with the players based on the next formula’s syntactic

form, which is determined inductively. For conjunctions and disjunctions, the next position is determined

based on the main connective of conjuncts and disjuncts, respectively. Two players are allowed to make

moves at the same time but independently at conjunctions and disjunction, as specified by τ : conjunctions

are for Falsifier and Dominator, disjunctions are for Verifier and Dominator. The set of available moves

for those players are specified further in the game rules ρ .

We stipulate that Dominator’s strategy dominates the others and his role does not change throughout

the game, even under negation, which reflects the truth table for BH3 given in Figure 1. The strategies

of Verifier and Falsifier, however, do not dominate each other or any other strategy, by default.

The following example illustrates how BH3 semantic games are structured and played.

Example 3.2. Consider the formula (p∨ q)∨ (r∧ q) where p is true, q is nonsense and r is false. This

formula has the truth value N in BH3. The following diagram depicts the game tree informally.

(p∨q)∨ (r∧q)

p∨q

p

TRUE

q

NONSENSE

r∧q

r

FALSE

q

NONSENSE
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In this game, some of the positions in σ are (Verifier,(p∨q)∨(r∧q)), (Dominator,(p∨q)∨(r∧q)),
(Verifier, p∨q), (Dominator, p∨q), (Falsifier,r∧q), (Dominator,r∧q) (and those for the atoms). The

token set τ include sets {(Verifier,(p∨ q)∨ (r ∧ q)),(Dominator,(p∨ q)∨ (r ∧ q))} and {(Verifier, p∨
q),(Dominator, p∨q)}, for example.

Now, at the beginning of the game, Verifier and Dominator make choices. If Verifier chooses p∨q,

then he gets to make the next move and chooses p to win the game. So, he has a winning strategy.

However, Verifier’s winning strategy is dominated. At the beginning, Dominator also gets to make a

move. Suppose, he chooses p∨ q as well. Now, he can make a move again and chooses q which is

nonsense. This constitutes his winning strategy. But, by game rules, his strategy dominates the others.

So, he has a dominant winning strategy, which determines the truth value of the formula (p∨q)∨(r∧q).
The reasoning for Dominator’s choice of r∧q is similar.

The play/run for this specific example is given as follows:

{ {(Verifier,(p∨q)∨ (r∧q)),(Dominator,(p∨q)∨ (r∧q))},

{(Verifier, p∨q),(Dominator, p∨q)},

{(Verifier, p),(Dominator,q)} }. N

Let us now start with noting that Dominator is the only dominant player.

Theorem 3.3. In a GTSBH3 semantic game ΓBH3(M,ϕ), Verifier and Falsifier can never have winning

strategies at the same time.

Proof. The proof is by induction on ϕ .

For the propositional case, by definition, either of the players will have a winning strategy. Similarly,

for the negation, only one player gets to make a move in each case.

The interesting cases are the binary boolean connectives. If ϕ = ψ ∧ χ , then, by the game rules,

Falsifier and Dominator gets to make moves. If they have winning strategies at that stage for some of

the conjuncts, they will still have winning strategies at ψ ∧ χ . On the other hand, Verifier can have a

winning strategy at a conjunction as well. The only condition for this case is that Verifier must have a

winning strategy for both of the conjuncts ψ or χ . In this case, neither Falsifier nor Dominator has a

winning strategy. At the end, we have two cases: (i) Falsifier and/or Dominator has a winning strategy,

or (ii) Verifier has a winning strategy. Either case, Verifier and Falsifier cannot have winning strategies

at the same time.

The case for the disjunction is similar. �

Corollary 3.4. BH3 semantic games GTSBH3 are determined.

Dominant winning strategies and game rules allow us to establish the following correctness theorem

for the game semantics for BH3.

Theorem 3.5. In a GTSBH3 semantic game ΓBH3(M,ϕ),

• Verifier has a dominant winning strategy if and only if ϕ is true in M,

• Falsifier has a dominant winning strategy if and only if ϕ is false in M,

• Dominator has a dominant winning strategy if and only if ϕ is nonsense in M.

Proof. We start with the case for Verifier. Let us consider the game state (Verifier,ϕ). We proceed by

induction on the complexity of ϕ .

PROPOSITIONAL VARIABLES FOR VERIFIER: If ϕ is a propositional letter p true in M, then Verifier

wins by definition, hence has a dominant winning strategy. By Theorem 3.3, Falsifier cannot have a
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winning strategy for p. Additionally, by definition, Dominator does not have a winning strategy for p.

Thus, Verifier’s strategy is dominant.

Conversely, if Verifier has a dominant strategy for the game for p, by definition, p is true in M.

NEGATION FOR VERIFIER: Let ϕ = ¬ψ be true. Then, by the truth table ψ is false. By the game

rules, the play continues where Verifier becomes Falsifier. By the induction hypothesis (for falsifier),

Falsifier has a dominant winning strategy for ψ . Then, Verifier has a winning strategy for ¬ψ by simply

playing her game as Falsifier for ψ . Her strategy at ¬ψ is dominant as no additional move by the other

players is introduced at this stage of the game, according to the game rules. Thus, Verifier has a dominant

winning strategy for ϕ .

Conversely, assume that Verifier has a dominant winning strategy for ϕ =¬ψ . Then, the game carries

on where Falsifier has a dominant strategy for ψ . By the induction hypothesis, then ψ is false. By the

truth table, ¬ψ is true, rendering ϕ true.

CONJUNCTION FOR VERIFIER: Now, let ϕ be a conjunction of the form χ ∧ψ . Assume that ϕ is

true. According to the truth table, the only way to make it true is to have both χ and ψ true. Then,

by the induction hypothesis, Verifier has dominant winning strategies for both χ and ψ . However, for

ϕ , Falsifier and Dominator make moves. But, whichever move they make (whichever of χ or ψ they

choose), it will be a win for Verifier. Thus, Verifier has a winning strategy. Is her strategy dominant?

Notice that neither Falsifier nor Dominator admits a winning strategy at this stage, thus Verifier’s strategy

is dominant. Thus, for ϕ , Verifier has a dominant winning strategy.

Conversely, assume that Verifier has a dominant winning strategy for ϕ which is of the form χ∧ψ . At

this stage, it is Falsifier and Dominator who make moves. By Theorem 3.3, we know that Falsifier cannot

have a dominant winning strategy. Thus, he cannot have a winning strategy. By assumption, we know

that Dominator does not have a winning strategy either. If he did, it would have dominated Verifier’s and

we couldn’t have assumed that Verifier has a dominant winning strategy for ϕ . Now, whatever choice

Falsifier and Dominator make, Verifier still has a dominant strategy for the subgames for χ and ψ . Thus,

by the induction hypothesis χ and ψ are both true. By the truth table, their conjunction is true, rendering

that ϕ is true.

DISJUNCTION FOR VERIFIER: Let ϕ be a disjunction of the form χ ∨ψ . Assume that ϕ is true.

Then, one of the disjuncts is true, and neither is nonsense. As such, by the induction hypothesis, Domi-

nator does not have a winning strategy for either of the disjuncts χ or ψ , and consequently does not have

a dominant winning strategy. Verifier then makes a move for either χ or ψ , whichever is true. Then,

choosing the true disjunct is her winning strategy at ϕ , independent from whatever Dominator chooses.

Verifier’s strategy is also dominant as Dominator does not have a winning strategy.

Conversely, let Verifier have a dominant winning strategy for ϕ = χ ∨ψ . Then, Dominator does not

have a winning strategy at this stage, which, together with the induction hypothesis, suggest that neither

of the disjunct is nonsense. Now, Verifier makes a choice following her dominant winning strategy, say

χ , without loss of generality. By the induction hypothesis, then, χ is true. We also established that the

other disjunct cannot be nonsense. Thus, by the truth table, ϕ is true.

THE CASES FOR FALSIFIER: The cases for Falsifier are similar to those of Verifier’s, hence skipped.

PROPOSITIONAL VARIABLES FOR DOMINATOR: Let ϕ be a propositional variable p. If p is non-

sense in M, then by definition Dominator has a dominant winning strategy.

Conversely, let Dominator have a dominant winning strategy for a propositional variable p. Then, by

definition p is nonsense.

NEGATION FOR DOMINATOR: Let ϕ = ¬ψ . If ϕ is nonsense in M, then by the truth table ψ is

nonsense, too. By the induction hypothesis, then Dominator has a dominant winning strategy for ψ .

He then continues with the same strategy for ¬ψ . His strategy remains dominant as no other player is
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allowed to make a move at this stage along with him. Even if they did, his strategy would dominate

theirs. Thus, Dominator has a dominant winning strategy for ϕ .

Conversely, let Dominator have a dominant winning strategy for ϕ = ¬ψ . Then, he carries on with

his strategy and his role for ψ , by the game rules. Then, Dominator has a dominant winning strategy for

ψ . Then, by the induction hypothesis ψ is nonsense. By the truth table, the negation of nonsense is still

nonsense, rendering ϕ nonsense as well.

CONJUNCTION FOR DOMINATOR: Let ϕ = ψ ∧ψ . If ψ ∧ψ is non-sense, then by the truth table at

least one of the conjuncts has the truth value N. Dominator is allowed to make a move at a conjunction

and he chooses a conjunct with the truth value N. Thus, he has a winning strategy. But, is his strategy a

dominant one? At a conjunction, Falsifier can make a move, too. It is also possible that for a nonsense

conjunction ψ ∧ψ , one of the conjunct can be false, according to the truth table. Thus, Falsifier can very

well choose that conjunct. In that case, he can have a winning strategy as well but his strategy is not a

dominant winning strategy as Dominator’s strategies dominate those of Falsifier’s (and verifier’s) by the

game rules. Hence, Dominator has a dominant winning strategy at a nonsense conjunction.

Conversely, again, let Dominator have a dominant winning strategy for ϕ = ψ ∧ψ . Dominator is

allowed to make a choice at conjunctions, and he chooses a conjunct following his winning strategy - say

he chooses ψ , without loss of generality. His dominant winning strategy perseveres after selecting ψ .

According to the game rules, no other player can dominate his stratagies. By the induction hypothesis,

then, ψ is nonsense. According to the truth table, conjunction of nonsense with anything produces

nonsense. Thus, ϕ is nonsense.

DISJUNCTION FOR DOMINATOR: Let ϕ = ψ ∨ψ . If ψ ∨ψ is non-sense, then, similarly, by the truth

table at least one of the disjuncts has the truth value N. Since Dominator is allowed to make a move

at disjunctions, he chooses the nonsense disjunct. By the game rules, again, his winning strategy is a

dominant one.

Conversely, let Dominator have a dominant winning strategy for ϕ = ψ ∨ψ . Similarly, he chooses

the nonsense disjunct, which renders the whole disjunction ϕ nonsense.

This completes the proof. �

It is important to note that in Theorem 3.5, Verifier or Falsifier can only have a dominant strategy if

Dominator does not have one.

More on Strategies

Dominant strategies can be useful in solving games. A familiar method, called the iterated elimination

of strictly dominated strategies (IESDS, for short), suggests that by eliminating those strategies that are

dominated, we can reach a solution. This method directly applies to semantic games for BH3. The

reasons can be mentioned as follows.

Observation 3.6. In semantic games BH3, the strategies for the dominant player strictly dominates the

strategies of Verifier and Falsifier.

Observation 3.7. In a GTSBH3 semantic game, Dominator makes a move at each connective.

Remark 3.8. [18] An action of a player in a finite strategic game is never a best-response if and only if

it is strictly dominated.

Intuitively, IESDS applies to semantic games for BH3 because of the infectiousness of the truth

value nonsense. If the given formula contains an atom with the truth value nonsense, all the other paths

in the game tree can be eliminated as those strategies are strictly dominated even if they are winning

(non-classically speaking). The following example illustrates our point.



C. Başkent 75

Example 3.9. Consider the formula (p∨ q)∨ (r ∧ q) from Example 3.2 where p is true, q is nonsense

and r is false. This formula has the truth value N in BH3.

(p∨q)∨ (r∧q)

p∨q

p

TRUE

q

NONSENSE

r∧q

r

FALSE

q

NONSENSE

In this case, Verifier’s strategy of L−L (which means play “left” consecutively twice) is dominated by

Dominator’s strategy L−R. The strategy L−L is eliminated, yielding L−R as the dominant strategy.

Similarly, Falsifier’s strategy if R is played by Verifier at the beginning of the game is eliminated by

Dominator’s strategy of R−R. N

In game theory, the strategy obtained after IESDS is often called a rationalizable strategy [18].

Similarly, we call the dominant strategy in a semantic game obtained after IESDS as the truth-maker

strategy since such strategies determine the truth value of the formula in question. Truth-maker strategies

exist in many semantic games.

Proposition 3.10. Every GTSBH3 semantic game has a truth-maker strategy.

Proof. Follows from Theorem 3.3 and Corollary 3.4. �

The following theorem summarizes our observations.

Theorem 3.11. In a GTSBH3 semantic game ΓBH3(M,ϕ), if ϕ contains a literal with a truth value

nonsense, then Dominator has a dominant winning strategy and consequently ϕ is nonsense.

Proof. It is easy to prove this theorem by an induction on ϕ using logical techniques, reflecting the truth

table for BH3 and Theorem 3.5. However, in what follows, we will prove it using the method of IESDS.

The cases for the propositional variables and the negation are immediate, hence skipped.

Assume that ϕ is a conjunction of the form ψ ∧ χ . Without loss of generality let us suppose that ψ

contains a literal with a truth value nonsense. By the induction hypothesis, Dominator has a dominant

winning strategy for ψ . Thus, Dominator’s strategy for χ is strictly dominated. Then, we can eliminate

the strategy for χ . In this case, Dominator chooses ψ when it is his turn at ϕ . Similarly, by the game rule

(ρs), any possible (winning) strategy of Falsifier is strictly dominated, thus can be eliminated. Hence,

Dominator’s strategy remains dominant at ϕ and determines the outcome of the game where ϕ contains

a literal with a truth value of nonsense. Hence, by Theorem 3.5, ϕ is nonsense.

The case for disjunction is similar. �

An interesting question is how such solution methods relate to Nash equilibria in semantic games.

There can be thought of at least two approaches to this question. First, one can engineer logics that

necessarily have an equilibria which can be obtained by IESDS. In other words, one can try to construct

a truth table and a logic where the players’ strategies can be worked out using IESDS. What kind of

logics can be produced that way? What is their algebraic structure? Second, one can try to develop a

game with a rationalizable strategy for a logic which is not infectious. These are big questions. They fall

outside the scope of this paper and are left for future work.

Instead of eliminating strictly dominated strategies, one can introduce additional players with strictly

dominant strategies into semantic games for BH3. What kind of a logic does this methodology generate?

We answer this question in the next section.
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4 Extending Bochvar–Halldén Games

Using the idea of dominant strategies, we can engineer some semantic games without first considering

their possible semantics. This is an interesting methodology which develops logics (and truth tables)

which are solely generated by semantic games.

In what follows, we extend the BH3 games to four players, where we call the forth player Dictator.

Dominator’s strategy dominates Falsifier’s and Verifier’s, whereas Dictator’s strategy dominates them

all. For simplicity, we call the truth value that is forced by Dictator as super and denote it by S. Thus,

Dictator’s role is to force the semantic game to an end with an atom with the truth value super.

We propose the following rules for the extended game Γ(M,ϕ) with respect to players’ roles.

(ρ ′
p) If ϕ is atomic, the game terminates, and Verifier wins if ϕ is true, Falsifier wins if ϕ is false,

Dominator wins if ϕ is nonsense, and Dictator wins if ϕ is super,

(ρ ′
¬) if ϕ = ¬ψ , Falsifier and Verifier switch roles, Dominator and Dictator keep their roles, and the

game continues as Γ(M,ψ),

(ρ ′
∧) if ϕ = χ ∧ψ , Falsifier, Dominator and Dictator choose between χ and ψ simultaneously,

(ρ ′
∨) if ϕ = χ ∨ψ , Verifier, Dominator and Dictator choose between χ and ψ simultaneously.

(ρ ′
s) Dominator’s strategy strictly dominates Verifier’s and Falsifier’s, and Dictator’s strategy strictly

dominates them all.

These rules give raise to a logic. We call this system BH4. We can then construct a truth table for

BH4 that corresponds to the given game rules in Figure 2.4

¬

T F

F T

N N

S S

∧ T N S F

T T N S F

N N N S N

S S S S S

F F N S F

∨ T N S F

T T N S T

N N N S N

S S S S S

F T N S F

Figure 2: The truth tables underlying BH4.

Let us start by making an observation regarding the strategy configuration in the game.

Theorem 4.1. In a GTSBH4 semantic game ΓBH4(M,ϕ), Verifier and Falsifier can never have winning

strategies at the same time. Thus, GTSBH4 games are determined.

Proof. Similar to that of Theorem 3.3, hence left to the reader. �

Similar to what we have shown for BH3, we present the correctness theorem for BH4 as follows.

Theorem 4.2. In a GTSBH4 semantic game ΓBH4(M,ϕ),

• Verifier has a dominant winning strategy if and only if ϕ is true in M,

• Falsifier has a dominant winning strategy if and only if ϕ is false in M,

• Dominator has a dominant winning strategy if and only if ϕ is nonsense in M,

• Dictator has a dominant winning strategy if and only if ϕ is super in M,

4It turns out that this logic has been suggested in [23, 7].
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Proof. The proof is by induction on ϕ and very similar to the proof of Theorem 3.5. We will only

consider some interesting cases.

CONJUNCTION FOR FALSIFIER: Let ϕ = ψ ∧ χ . Assume that Falsifier has a dominant winning

strategy for ϕ . He chooses the false conjunct, say ψ . By the induction hypothesis, ψ is false. But,

it is not sufficient to establish the truth value of the formula. However, since Falsifier’s strategy is the

dominant one by assumption, that means that Dominator and Dictator do not have winning strategies.

By the induction hypothesis for the cases for Dominator and Dictator in this very theorem, then neither

of the conjuncts is nonsense nor super. Thus, according to the truth table of BH4 given in Figure 2, ϕ is

false.

Conversely, assume ϕ is false. Falsifier, Dominator and Dictator make moves. According to the truth

table, one of the conjunct has to be false, say ψ , and Falsifier chooses it. By the induction hypothesis,

Falsifier has a dominant winning strategy for ψ . At ϕ , this constitutes Falsifier’s winning strategy. Is his

strategy then dominant? According to the truth table, the only possibilities for the conjuncts are true and

false. Thus, they cannot be nonsense or super, otherwise ϕ would not be false. Therefore, Dominator

and Dictator have no winning strategies at ϕ . Thus, Falsifier’s winning strategy is dominant.

CONJUNCTION FOR DICTATOR: Let ϕ = ψ ∧ χ . Assume that Dictator has a dominant winning

strategy for ϕ . He follows his dominant strategy and chooses one of the conjuncts, say ψ . The induction

hypothesis says that ψ has the truth value super. Thus, by the the truth table of BH4 given in Figure 2, ϕ

is super.

Conversely, if ϕ is super, then some of the conjuncts has to be super. Dictator is allowed to make a

move at a conjunction, and he chooses the super conjunct. The induction hypothesis says that Dictator

has a dominant winning strategy for that conjunct. According to the game rules, Dictator’s strategy

dominates all. So, his dominant winning strategy at the conjunct remains to be a dominant strategy at

ϕ . �

Following our methodology, different combinations of the above game rules can be constructed,

yielding different logics with more or different infectious truth values. Furthermore, similar to what is

suggested in [7], additional truth values, thus players, beyond the fourth can be introduced in a way that

the dominant winning strategies form a linear order: Dominator dominates the classical players; Dictator

dominates Dominator; a fifth player, say King, dominates Dictator and the rest etc. This procedure is

rather straight-forward for countably many players. The semantic games seem to get more interesting

once >ω-many players are considered with a linear or branching order of dominant strategies.

5 From BH3-Games to LP-Games

In an earlier work, a game theoretical semantics for Graham Priest’s Logic of Paradox (LP, for short) was

given [3]. In that work, the semantic games employed concurrent plays. At certain nodes, players en-

gaged in concurrent plays where none were assumed to have dominant winning strategies. Consequently,

those game rules produced significantly weaker correctness theorems for the game semantics for LP. It

is then a natural question whether a game semantics for LP can be given using dominant strategies and

if they entail a stronger correctness theorem. This would complement our overall aim of focusing on

strategic dominance in game semantics for non-classical logics, and, at the same time, provide yet an-

other game semantics for LP. This is our goal in this section.

The logic of paradox introduces a third truth value which was intended to represent paradoxical

statements. The third truth value P is called paradoxical and requires its own player, which was called

Astrolabe [3]. Astrolabe forces the game to an end with the truth value P, so he is the paradoxifier. In
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semantic games for LP, conjunctions are for Falsifier and Paradoxifier and disjunctions are for Verifier

and Paradoxifier. At negations, similar to BH3 games, Verifier and Falsifier switch roles, and Paradoxifier

keeps his role. We reproduce the truth table for LP in the following.

¬

T F

F T

P P

∧ T P F

T T P F

P P P F

F F F F

∨ T P F

T T T T

P T P P

F T P F

Figure 3: The truth tables underlying LP.

Notice that the very same game would work for the Strong Kleene System with minimal alterations

as Strong Kleene and LP differ only on their designated truth values.

In [3], a game semantics for LP was suggested by allocating Astrolabe as the parallel player. He

made moves, just as Dictator in BH3 games, along with Verifier or Falsifier. However, as the strategies

and their strength were not properly considered in the aforementioned, the correctness theorems were

not as strong.

Theorem 5.1 ([3]). In a GTSLP semantic game ΓLP(M,ϕ),

• Verifier has a winning strategy if ϕ is true in M,

• Falsifier has a winning strategy if ϕ is false in M,

• The pardoxifier has a winning strategy if ϕ is paradoxical in M.

Theorem 5.2 ([3]). In a GTSLP semantic game ΓLP(M,ϕ),

• If Verifier has a winning strategy, then ϕ is true in M,

• If Falsifier has a winning strategy, then ϕ is false in M,

• If Paradoxifier has a winning strategy, but not the other players, then ϕ is paradoxical in M.

These two theorems –especially the third bullet point in Theorem 5.2– seem to allude to some hi-

erarchy between the player’s strategies. In the sequel, we remedy this issue by imposing an order of

domination over strategies.

We now give the new game rules for GTSLP games as follows for ΓLP(M,ϕ) with respect to players’

roles.

(ρLP
p ) If ϕ is atomic, the game terminates, and Verifier wins if ϕ is true, Falsifier wins if ϕ is false, and

Paradoxifier wins if ϕ is paradoxical,

(ρLP
¬ ) if ϕ = ¬ψ , Verifier and Falsifier switch roles, Paradoxifier keeps his role, and the game continues

as ΓLP(M,ψ),

(ρLP
∧ ) if ϕ = χ ∧ψ , Falsifier and Paradoxifier choose between χ and ψ simultaneously,

(ρLP
∨ ) if ϕ = χ ∨ψ , Verifier and Paradoxifier choose between χ and ψ simultaneously,

(ρLP
s ) Paradoxifier’s strategy is strictly dominated by Verifier’s and Falsifier’s.

Similar to the case of BH3, Verifier and Falsifier will never have conflicting strategies. If either

Verifier or Falsifier may have some conflicting strategy, it can only be with Paradoxifier where the par-

doxifier’s strategy is strictly dominated by them.
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It is important to notice that the difference in the truth tables for BH3 and LP (given in Figures 1

and 3), can be accounted by the difference between the strategic dominance of players, as specified by

game rules (ρs) and (ρLP
s ). Therefore, the only (game theoretical) difference between BH3 games and

the LP games are whether the third player is the strictly dominant or the strictly dominated player. The

following theorems summarizes our findings.

Theorem 5.3. In a GTSLP semantic game ΓLP(M,ϕ), Verifier and Falsifier can never have winning

strategies at the same time.

Proof. The proof is very similar to that of Theorem 3.3, hence skipped. �

Theorem 5.4. In a GTSLP semantic game ΓLP(M,ϕ),

• Verifier has a dominant winning strategy if and only if ϕ is true in M,

• Falsifier has a dominant winning strategy if and only if ϕ is false in M,

• Paradoxifier has a dominant winning strategy if and only if ϕ is paradoxical in M.

Proof. The proof is by induction on ϕ and very similar to the proof of Theorem 3.5. We will only

consider some interesting cases.

DISJUNCTION FOR VERIFIER: Let ϕ =ψ∨χ . Assume that Verifier has a dominant winning strategy.

Then, following his strategy he makes a choice, say ψ . His dominant strategy remains to be his dominant

winning strategy at ψ . At the same time, Paradoxifier makes a choice. But whatever choice he makes,

even if he has a winning strategy, by the game rules, it is strictly dominated by Verifier’s strategy. Then,

by the induction hypothesis, ψ is true. According to the truth table for LP given in Figure 3, ϕ is true as

well.

Conversely, let ϕ be true. Both Verifier and Paradoxifier make moves. According to the truth table,

at least one of the disjuncts must be true, and Verifier chooses that. By the induction hypothesis, Verifier

has a dominant winning strategy at that disjunct. Then, at ϕ , Verifier’s dominant strategy is to choose

the disjunct with the dominant winning strategy. Whatever choice Paradoxifier makes, his strategy is

dominated. Thus, he cannot have a dominant strategy.

CONJUNCTION FOR PARADOXIFIER: Let ϕ = ψ ∧ χ . Assume that Paradoxifier has a dominant

winning strategy. Since his strategy is always dominated by Verifier’s and Falsifier’s, this means that

neither Verifier nor Falsifier has a winning strategy for ϕ . Now, both Paradoxifier and Falsifier are

allowed to make a move. Falsifier does not have a winning strategy, which means that, by some other

cases of the very theorem, neither of the conjuncts is false. If they were, then Falsifier may have a

winning strategy, and by the game rules his strategy would be the dominant. Thus, Paradoxifier follows

his winning strategy and makes a choice, say ψ , without loss of generality. According to the truth table,

as we established that χ can only be paradoxical or true, ϕ turns out to be paradoxical.

Conversely, let ϕ = ψ ∧ χ be paradoxical. According to the truth table for LP given in Figure 3,

conjuncts can be either true or paradoxical. Paradoxifier chooses the paradoxical conjunct. By the

induction hypothesis, it is his winning strategy for that conjunct. And at ϕ , he constructs his winning

strategy by choosing the said conjunct with a winning strategy. But, is Paradoxifier’s winning strategy

dominant? At conjunctions, Verifier is not allowed to make a move - if he was, he may have chosen

the true conjunct if there was one. This would constitute his winning strategy, which, according to the

game rules, would dominate Paradoxifier’s. Therefore, at a paradoxical conjunct, Verifier is not allowed

to make a move and Falsifier does not have a winning strategy. Hence, Paradoxifier’s winning strategy is

dominant. �
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Compared to Theorem 5.2, Theorem 5.4 makes it precise what game theoretically corresponds to

the condition that “only paradoxifier has a winning strategy”. We replaced this condition by dominated

strategies. As such, the above result complements what has been presented in [3]. It furthermore suggests

that certain combinations of strategy dominance amongst the players may result in various interesting

logical ideas. For example, in our work strategies strictly dominate some others. What is then the logic

of those semantic games where strategies weakly dominate? In the context of semantic games, weak

strategy domination is an interesting issue.5 It may mean that the correctness theorems work only on one

direction, failing to provide a bidirectional stronger result. We refer the interested reader to [3].

Similar to the questions we raised for BH3/BH4, can we extend LP game theoretically to a four-

valued paraconsistent system? Such questions point out to various future work possibilities.

6 Conclusion

In this paper, we showed how non-classical game theory helps us understand the nuances of non-classical

logics as well as certain game theoretical concepts.

To the best of our knowledge, this is the first game theoretical semantics suggested for Bochvar–

Halldén logics and infectious logics in general, relating infectiousness to strategy dominance. This

proves that studying various combinations of dominant and dominated strategies is a fruitful direction to

develop various new logics and study their model theory. A linear order of strategy dominance relates

directly to certain solution concepts in game theory. Then the next question is to study a branching order

of strategy dominance and how they relate to truth-coalitions in game semantics.

Conversely, it is possible to inquire the opposite direction and develop logical methods for some other

solution concepts and equilibria computation in game theory. Computing game theoretical equilibria is

an important research direction in computer science. Incorporating logical elements to this methodology

will certainly have immediate impact in aforementioned fields.
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