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Abstract

“Antivirus is death” and probably every detection system that focuses on a single
strategy for indicators of compromise. This famous quote that Brian Dye –Symantec’s
senior vice president– stated in 2014 is the best representation of the current situation
with malware detection and mitigation. Concealment strategies evolved significantly
during the last years, not just like the classical ones based on polymorphic and meta-
morphic methodologies, which killed the signature-based detection that anti-viruses
use, but also the capabilities to fileless malware, i.e. malware only resident in volatile
memory that makes every disk analysis senseless. This review provides a historical
background of different concealment strategies introduced to protect malicious –and
not necessarily malicious– software from different detection or analysis techniques. It
will cover binary, static and dynamic analysis, and also new strategies based on machine
learning from both perspectives, the attackers and the defenders.
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1 Introduction

Once upon a time, in 1944 a bug –a real bug– entered into the bulbs of a massive
computer disrupting its functionality for days. The software developer Grace Murray
Hopper identified the problem and name what we know today as bugs. This was, indeed,
the first step to what it would become today’s malware. Some years later, in 1971, Bob
Thomas, at BBN Technologies, developed the first artificial virus, called the Creeper
system, as a proof of concept [65]. They wanted to prove that it was possible to create a

∗Corresponding Author

1



Malware: The Never-Ending Arms Race

malicious piece of software, based on John von Neumann’s “Theory of self-reproducing
automata” [76], and indeed it was.

The following years started with the first malware attacks, always attacking vul-
nerabilities related to human weaknesses. Some examples are: the Jerusalem Virus
or Friday 13th (which removed every file in a system every Friday 13th) [16]; and the
ILOVEYOU worm [51], a phishing attack that used social engineering to infect multi-
ple machines through a malicious email. Some of this malware enters the system using
human intervention or infecting USBs or floppy disks1. In this period malware used to
be very disruptive, and it was relatively easy to identify it.

It was years later when it started to become a weapon used for and against govern-
ments, and indeed against civilians. There are several cases, one of the most popular
is Stuxnet in 2010 [55], a malware created probably by some government2 that in-
fected every possible Windows device until it reached the centrifugate refrigerators of
the Iranian nuclear plants, disrupting their plans of nuclear development by spoiling
their refrigeration systems. Another interesting example is WannaCry in 2017 [73], a
ransomware that encrypted all the personal files in several users’ machines, asking them
for a ransom to recover their information. Ransomware became very popular after this
attack.

Detecting malware is a very difficult task. Consider the scenario: you have an
invisible enemy that uses resources that are sometimes wider and better than yours, this
enemy will attack from nowhere and you need to be ready for every possible attack that
they are going to perform. Indeed, they say that it is easier attacking than defending,
but in this arms race, malware is light years beyond defenders. For every step we do, the
attackers find a countermeasure, but we have still found responses to multiple attacks
that have been disrupting the peace of software during the last 50 years.

When we think about detecting malware, we normally start turning to anti-viruses.
They are the first line of defence, and therefore they are well-known by the malicious
attackers. Anti-viruses normally perform the first step of malware analysis, called
binary analysis. This step tries to identify any kind of signature that can target the
software as malware or benign-ware [75]. When this step is not enough, analysts tend
to use static analysis, which analyse the software without running it [74]. This helps to
identify potential indicators of compromise that might indicate whether the software is
malicious or not. If this is not enough, the next step in the triage is dynamic analysis,
meaning: run the software and analyse what is happening. This step is time-consuming,
but, at the same time, it can be extremely informative, because it provides accurate
information about the malicious behaviour [105]. Last but not least, if nothing works
from the previous triage steps, you need to reverse engineer the software, and that
requires a strong manual effort from a professional analyst to determine whether the
sample is malicious or not. Normally this process gives you all the information about
the piece of software if it is successful [114].

Several of these steps have helped analysts to identify malware in multiple differ-
ent contexts, and also some zero-day threats [37], meaning threats that have no been
seeing before. However, as I will discuss in this humble review, malware grows and
evolves, developing multiple concealment strategies from binary-based detection (see
Section 3), static (see Section 4) and dynamic analysis (see Section 5). But even with
these techniques affected by the concealment strategies, the new promises of machine
learning have been filling for years the security conferences and journals (see Section 6).

1If you are 20 or younger, the floppy disk had the shape of the “save file” icon.
2Probably a very powerful Western government in tandem with a Mediterranean ally.
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Is machine learning promising? Yes. Is it strong? Yes. Is it infallible? Nope. Machine
learning was another step in the arms race, but it has limitations and the adversaries
discovered and exploited them [20]. Even more, machine learning can be used to create
more sophisticated kinds of malware that learn to conceal from specific technologies
[72]. As I said, this is an arms race, every step will have a countermeasure and every
countermeasure might be either incremental or disruptive.

This short review about my experience in the malware world is part of my dedication
to understanding the different dimensions of this massive problem. Several parts come
from my experience at UCL when I was working with Dr David Clark and Professor Earl
Barr on malware detection and evasion, others come from my multiple collaborations
and discussions with Dr Guillermo Suárez-Tangil and others come from my recent
experience acquire in memory analysis, that I learnt during my period at Middlesex.
This does not pretend to be a survey but a gentle introductory walk through the malware
world, that I have done during these years with these amazing collaborators. In the
end, I also leave a short list of tools and datasets that I either used or recommend for
analysing malware following any of the previously mentioned strategies (see Section 7).

2 Background

The definition of malware is discussed by several authors [53]. There is no consensus for
a final definition, but there are several features that lead analysts to classify software
as malicious. These features are related to what the software aims to do:

• it performs a harmful action that affects the user’s machine or data, for example,
ransomware;

• it steals resources from the machine to perform a specific task, where the software
owner will get a specific benefit, for example, crypto-miners;

• it steals user’s data or changes the advertisement of an application, for example,
spyware or adware;

• it opens a backdoor or reduces the security of either the computer or the network,
typically something that a trojan horse or a worm might do.

These features are behaviours and can not be described without “understanding”
them, meaning that there is a semantic component that machines are not yet ready to
discern, although there are several trails in this direction [84]. But this does not mean
that the game is over, it is the beginning. Even if these features can not be semantically
understood, they leave “clues” that we can identify, called indicators of compromised
[77].

The first step in the arms race was to define these indicators of compromise, and
they were defined in the form of signatures [23]. If a piece of software has a specific
signature that belongs to malicious software, that software is automatically classified as
malicious. This has been the main anti-virus logic since the beginning. These signatures
started as hexadecimal codes but these days they are more sophisticated. The Yara
project 3 is a good example of the level of sophistication that the signatures can reach
[18]. Yara is one of the most popular open-source signature-based detection tools, and it
is also associated with the Yara-project4 that provides multiple signatures for malware
detection, among others.

3https://yara.readthedocs.io
4https://yara-rules.github.io/blog/

https://yara.readthedocs.io
https://yara-rules.github.io/blog/
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But, as I said, this was the first step of an arms race, and it generated a response.
If the anti-virus can detect the malware using a piece of it, the malware only needs to
change that piece or conceal it [93]. For that, two main moves responded to signature-
based detection: polymorphism and metamorphism. Both methodologies reshape the
binary files to make them undetectable under these premises [60]. Polymorphism en-
crypts the binary and adds a decryption stub –or code– that differ from a malware
variant to another. Metamorphism uses equivalent instructions to replace the original
ones and recompiles the code when needed.

This was a game-changer because the anti[viruses passed from detecting specific
malware to detect specific variants and, at the same time, these variants grew exponen-
tially. Therefore, the focus changed the detection of signatures to traces or dynamic
signatures. However dynamic signatures forced the analyst to run the malware and
that reduced the analysis scalability [81]. And even if these signatures avoided the
polymorphic and metamorphic encryption by paying the scalability price, the malware
developers found a way to avoid the dynamic-based detection, by including mecha-
nisms that would change the behaviour of malware depending on the circumstances
[108]. Some good examples are those concealment strategies focused on detecting vir-
tual machine-based environments [45] or the debugging mode [17]. Other examples
targeted specific devices or specific users and do not react until they reach their target
[19]. This was again another disruptive move against malware mitigation, but it was
not the end, as analysts always aimed to find new techniques to detect malware.

During the following sections, I will define these concepts and continue with the
story of the arms race, trying to cover the main areas of the concealment strategies and
keeping a historical perspective of the different steps.

2.1 Types of Malware

Malware has many faces and, as the definition itself, it is general enough to provide
strong headaches to analysts and researchers on the topic. Besides, it evolves and
changes, therefore, new kinds of malware will appear in the following years. Just to
mention some of the classic and actual types of malware, we have:

• Viruses: this is the most classical kind of malware and it is normally defined as
the biological virus. A malicious piece of software reproduces itself infecting every
machine that it touches and propagates through other machines, normally via a
USB stick or infected device [82].

• Worms: similar to viruses, worms propagate through the network and infect
every machine connected that is vulnerable to the infection itself [91].

• Trojan horses: these types of malware conceals behind a genuine behaviour.
The malware performs an expected task, while it performs a malicious activity in
the background, for instance, it steals the user’s passwords [49].

• Ransomware: this type became more popular a few years ago with the attack of
WannaCry [73]. This type of malware normally encrypts all the files in a system
and asks the user for a ransom to obtain the decryption key and recover the file
system.

• Rootkits: this type of malware normally works in kernel or admin mode. Ex-
ploiting some vulnerabilities, it tends to create a new kernel module in the system
to obtain root (or admin) privileges and take control of the whole machine without
the user’s consent [26].
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• Spyware: this malware is normally a kind of rootkit that activates some of the
user’s devices, such as the camera or microphone, to obtain the user’s informa-
tion in real-time [46]. This is normally used to spy on politicians, journalists, or
activists, such as the recent Pegasus operation [50].

• Adware: this malware aims to modify the advertisement of the different system
apps to obtain the advertisement payment that would correspond to a genuine
app. Normally this kind of malware is either a trojan horse, such as a browser
add-on or an app that is cheaper than the original (but it is just the original
repacked) [58]. It is normally detected because of the advertisement cookies, that
do not corresponds with the user’s preferences [44].

• Botnets: this malware infects machines and waits for orders from a command and
controller machine [34]. This is one of the classic methodologies to create comput-
ers networks for performing a specific task. The infected machines connect with
one or many controller machines. These controllers coordinate the communica-
tions between the attacker and the infected machines. When the attacker requires
a strong computational power to, for example, attack a strong network of servers,
it coordinates all the infected machines to perform a denial of services attack or
any other kind. An example was the Mirai botnet coordinated attack using IoT in
2016, which infected multiple smart TVs to perform a denial of service to different
popular services such as Netflix, Twitter and Airbnb, among others [4].

• Crypto-miners: This kind of malware aims to conceal from the user as much
as possible and it uses the computer resources to mine crypto-currencies. This
malware has generated a strong economic impact in the dark web market as
Pastrana and Suárez-Tangil studied by extracting transaction information from
crypto-miner’s pools [80].

• Autoimmune: This malware cheaps the system to attack itself. For example,
a benign app with a malicious signature would be the target for an anti-virus.
Imagine that multiple variants of a specific malware family constantly repeat a
signature, and that signature is a popular app (for instance, a Google product),
then the anti-virus will learn the signature and mark that benign app as malicious,
removing it from the system [72]. This happened to me when I was studying
the response of different anti-viruses to an intelligent packer. The moment we
added benign-ware to the packing process the anti-viruses started to generate
false positives [72].

Although these are the most common kinds of malware, there are other types that
are either new or variations of the previous ones. It is also possible that, at some point,
the extension of malware will bring a new dimension when we will reach the limits of
biology. If the malware can ransom, for example, a bypass or an implant, it would
become a potential digital-to-biological virus.

3 Classic Concealment: Poly and Metamorphic

Classic concealment aims to cover binary signatures. To reach that goal, the binary files
need a different shape to the original file where the signature was extracted [85]. With
that purpose in mind, the attackers created methods that reshape the binary files based
on encryption and compression. These methods are called packing, polymorphism and
metamorphism [21].
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3.1 Polymorphism and Metamorphism

Packing does not modify the semantics of the program, it only modifies the way it
is stored. Given a program binary, such as a PE (Program Executable, normally on
Windows systems) or an ELF (Executable Linkable Format, normally on Unix/Linux)
file, we can apply a packer and create the pack version of this program. The binary file
is divided into sections, for instance .data, .text, .rscr, .bss (see Table 1). These
sections normally correspond with different program parts. The packer will modify
these sections and create new ones. For example, a popular packer is UPX [96]. UPX
takes all the sections but those related to the imports (neither the overlay in the case
of PE32) and compresses them into a single section called UPX1. The import names
are also taken and stored in a section called UPX2, as a list of names, so the executable
file is no longer linked to these libraries. UPX adds a code, called stub, in the UPX1
section that will decompress the original section in execution time and will reconstruct
the table of imports by reading the UPX2 section. This means that the stub will be
the entry point of the new version of the program. For the import reconstruction, UPX
uses four functions that will read each function name and link it with the proper library
in execution time.

This process allows to significantly reduce the file size and, considering that UPX is
not malicious per se, it also conceals any signature of the original binary, considering
that the packed file will be a different binary file after the compression. However,
this only generates a variant of the malware. To extend this to multiple variants, it is
possible to add a modification to UPX that also adds XOR encryption to the compressed
area, keeping the key in the stub [71]. This encryption gives you up to 255 more variants
if the key is one byte long, or more depending on the encryption strategy. This strategy
led to oligomorphic engines, that allow to conceal the malware and add multiple different
types of stubs giving millions of potential variants [72]. The stub is normally modified
to make sure it does not become the binary’s signature. Oligomorphism has a set of
stubs to choose from, but at some point, anti-viruses would be able to have the whole
list. For that reason, malware engineers created polymorphism, which allows creating as
many stubs as they need to conceal their malware and make it completely undetectable
by using metamorphic variations of the stub [21].

Although polymorphism is a popular method to conceal malware, it is sensitive
to memory analysis. When the program runs, it goes into memory. Then, the stub

Section Description

.data Program’s data.

.text The program’s code.

.rscr List of imports.

.src Extra imports and libraries.

.bss Uninitialized variables.
overlay Extra information that will be read as a file (win32 only).

UPX0 Empty section to decompress the original code.
UPX1 Compressed code and execution stub.
UPX2 List of imports and overlay.

Table 1: Sections of a PE/ELF binary file in the system after linking either before (top) or
after packing (bottom).
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will decrypt, decompress and run the original code. Either the whole program will be
decompressed and decrypted, as is the case of UPX, or parts of the program, as is the
case for Themida [95]. In both cases, the original code –or part of it– will be exposed.
Having a system that can monitor the RAM, such as an online version of Volatility [62],
the signature can be detected. Another popular method to detect polymorphic malware
focuses on detecting the polymorphic engine [3]. Polymorphism leaves a signature in
terms of entropy. Compression and encryption increase the entropy of a binary file,
because of the aim to condense the information and make the file looks as “random”
as possible. This helps to know whether a binary is using these kinds of protection,
and it can be considered as an indicator of compromise. However, the entropy of a file
after packing can be controlled, as my colleges and I proved with our tool EEE (The
Evolutionary Packer) [71], which introduced controlled entropy regions in packed files.

Another popular strategy for malware concealment is metamorphism [113]. Simi-
larly to polymorphism, metamorphism modifies the binary file, but at code level (nor-
mally a disassembled version of the code), creating variations of the code instructions.
These variations break signatures, and they are diverse enough to become hard to detect
by anti-virus engines. Moreover, once the executable file is in memory, the signature
can not be detected as it was the case of polymorphism because the new code is seman-
tically equivalent and therefore it does not need any runtime modification to run. This
makes it harder to detect metamorphic engines. Nonetheless, the metamorphic engine
can also leave signatures that can be detected by static analysers if the file has no extra
protection. Examples go from the strings to specific functions calls or flows within the
program. It is important to include other strategies to conceal the files, even if they
are already strong in front of anti-virus based detection.

3.2 Detecting Polymorphism and Metamorphism at Bi-
nary Level

When analysts aimed to face the challenge of detecting polymorphism and metamor-
phism, they needed to perform the first disruptive move in the arms race. Looking
for options moved them to strategies based on information theory, mainly n-gram and
entropy-based detection methods.

Some works that started with this kind of detection was mainly based on the average
entropy of a file. The work introduced by Lyda and Hamrock [64] in 2007 was able to
detect the entropy signature of the polymorphic engine. Then, the work of Li et al,
based on n-grams, tried to create a reconstruction of the malicious file in terms of byte
sequences [59]. These sequences showed the most common file patterns used to detect
whether it was malicious or not. Several of these techniques were currently combined
with machine learning (see Section 6).

The main idea behind binary-based detection systems was to create a set of features
that can provide enough information to the machine learning classifiers to distinguish
malware or benign-ware. And this was indeed a successful step, at least for a while.
Some good examples were the work of Mark Stamp and colleges on structural entropy
[11], which extended the work of Ivan Sorokin by creating entropy profiles [97]. Sorokin’s
technique created a profile per binary file with a specific signature size. With this
profile, they were able to create file segments and compare different files based on these
segments. Stamp’s team extended this feature space with machine learning. Even
though this idea was good, it missed information on the profile and its scalability
was quadratic. In that period, we consider improving the scalability of this technique
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using time series analysis, and we created the entropy time series (or EnTS) [12], that
obtained better results and scale linearly, which means that it was about 1000 faster
than other techniques of the state-of-the-art, for instance, another technique called
normalised compressed distance, which was better in terms of detection than ours but
3000 times slower [3]. However, this part of the story ended in a bitter-sweet way. We
are able to detect malware variants, but we generate false positives, which is dangerous
for anti-virus systems, due to benign applications will be targeted as malicious. Other
ways of analysis are needed and for that reason, we kept exploring static and dynamic
analysis.

4 Anti-Static Concealment

Binary-based detection is not enough, especially when the attackers use a strong con-
cealment strategy. Besides, when the attackers create new malware, they can also
recycle old indicators of compromise that can not be discovered by these techniques.
Then, the next step of the triage is to understand the malware from a static analysis
perspective, where the malware is analysed but not executed [25].

Static analysis was introduced to understand the different behaviours of malware,
for instance, the code [88], its system dependencies [104], flows between inputs and
outputs [6], third-party libraries used [68], permissions [7], and static behaviours [2],
among others.

There are multiple examples of these specific features that are indicators of compro-
mise. The most classical ones are on Windows, for instance, Santos et al. [88] analyse
opcode from reversed malware in order to identify malicious sequences. During my
work on this topic, my colleges and I [68] focused on the analysis of API calls also
aiming to detect those sequences of API calls that might be either scaling privileges or
attacking the system. Similarly, we can find third party calls as one of the main de-
tection strategies for two reasons: 1) the combination of sequences of these calls might
lead to malicious behaviours, and, 2) they can not be obfuscated within the original
malware [2].

Focusing on Android malware analysis, we see more sophisticated techniques. A
good example is FlowDroid [6]. This tool identifies paths within the code between a
specific source of data to a specific sink –for example, a password as a source and an
SMS as the sink. When it finds a flow between the source and sink, it sets a flag on that
flow. Another example is related to the permissions of an Android app [7]. Permissions
have proven to be one of the most accurate methodologies to identify malware for a long
time, mainly because some malware needs specific permissions to operate. However,
this changed during the last years and malware started to focused on leveraging other
apps to attack the systems, via intent actions [35], i.e. public interfaces that some apps
can leverage from others, such as the photo camera.

Other relevant static strategies are taint-analysis, which aims to follow variables
within the program code or API callbacks [39]; symbolic execution to identify, for
example, potential payload triggers within the malware by finding the input or the
environment that would activate a suspicious piece of code [110].

4.1 Obfuscation Methods

Although static analysis is a powerful tool to detect malware, it relies a lot on access
to the source code, which good attackers conceal not just with polymorphism and
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metamorphism but also with other static analysis techniques that try to reduce the
possibility of detecting indicators of compromise.

The first obvious technique, which would be close to metamorphism, although the
latter applies to binary level, is code obfuscation [24]. Code obfuscation has several
levels of sophistication and has been used to conceal the code behaviour by making
it unreadable. Some good examples of obfuscation strategies are renaming variables
or changing arithmetic operations [32]. However, there are others more sophisticated.
Collberg et al. [24] describe several of them their taxonomy of obfuscation. The fol-
lowing lists some obfuscations that can be found in Tigress [10] or other tools and that
affect static analysis:

• Breaking methods: this obfuscation takes a method and divides it into two or
more methods to make the analysis harder.

• Anti-Taint analysis: this obfuscation generates noise during the taint analysis
process by adding variables or other elements to the code. This makes it hard to
follow a specific static trace.

• Virtualization: this obfuscation creates its own interpreter on top of the origi-
nal program and rewrites the program in its own language, making any reverse
engineering or disassemble process extremely hard.

• Opaque Predicates: this obfuscation adds predicates or branches to the program
that will never be traversed, therefore, the code within these program parts will
not be executed. The conditions for these predicates are not easy to understand
and the static analysers normally assume that they will be executed.

• Hashing or Encrypted Strings: it is also common to conceal the strings as they
can be indicators of compromise (for example a URL or a Bitcoin wallet).

• Reflective programming: another obfuscation strategy is to leave some code as a
string (normally encrypted), and load it in runtime (similarly to packers). This
strategy significantly affects several static analysis tools that tend to ignore these
parts of the program.

Although all these techniques are focused on facing static analysis, several of them
can not deal with dynamic analysis, for that reason, when a piece of software is diffi-
cult to understand from a static perspective during the triage process, it is normally
submitted to the dynamic analysis team.

5 Anti-Dynamic Concealment

Dynamic analysis is the next step during the triage process, where the analyst needs
to run the malware to understand its behaviour. The analyst uses a virtual machine
or sandbox environment to perform this kind of analysis, keeping information of the
different malware traces produced, for instance, network packets, files created, URLs
connections, flows between different elements of the binary file, among others [78].

Concealing from dynamic analysis is a compromise between altering the malware
behaviour when the malware is within the sandbox and performing its normal operations
when it is within the infected system. This leads the malware to activate specific
behaviours under specific contexts. These activations that alter the malicious behaviour
are either call triggers when the malware release a payload [19] or red-pills when the
malware detects the virtual environment [79].
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5.1 Concealing from the Sandbox

There are multiple techniques that malware uses to conceal itself from the sandbox.
Considering that dynamic analysis has a strong time component, the malware needs to
wait long enough to make sure it does not release any indicator of compromise. Some
of the most relevant techniques are:

• Packing Memory Protection: several malicious software employs packing to
prevent static analysis (see Section 4). Dynamic analysis was presented as a
potential solution, considering that the software needs to unpack itself in memory
before running. However, the levels of sophistication of some packers like Themida
[47], also keep this into consideration during the development process. To make
sure that not all the code is visible even in run memory –when the malware is
running–, the packer performs its task by blocks, encoding the blocks that are not
used once they are executed and decoding them only to run.

• Metamorphism and Obfuscation: These two techniques are also present in
static analysis and also prevent any kind of dynamic analysis considering that
even when the code is visible, the analyst has trouble understanding it [9].

• Anti-virtual machine: these methods use the so call red-pills to detect the
environment. When the malware detects a virtual machine it can decide to stop
running or delay some instructions based on the virtualization environment. Some-
times, when the malware is already compromised, it conceals part of its behaviours
so only known indicators of compromise are release and others that could iden-
tify variants keep hidden [45]. This prevents the malware to scale to the reverse
engineering step of the triage process.

• Anti-Debugging: some analysts use debugging as a controlled methodology to
analyse malware and skip some code sections to focus on indicators of compro-
mise. Even though this process is very close to reverse engineering, there are
also automatic debugging processes that can carry out a malware analysis [8].
However, debugging also requires activating some specific flags during the process
execution that the malware can detect to conceal some parts of its code and make
the analysis harder [22].

These are just a few examples of how the malware can detect the virtualization or
analysis environment to conceal its behaviour. The following shows specialized design
malware that can only be detected using dynamic analysis.

5.2 Concealing from the Analyst

It is important to recall that dynamic analysis can detect some kinds of malware that
can hardly be detected by static analysis and, at the same time, it is a strong tool to
detect indicators of compromise. These kinds of malware are:

• Fileless Malware: This kind of malware leaves no trace in the hard drive, keeping
itself as part of the RAM in an active process. It can perform operations for
persistence like modifying the Windows registry or creating specific services that
download or generate the malware once the operating system starts [54]. The
only way to detect this kind of malware is to perform a dynamic analysis of
the principal memory (or RAM) and identify the persistence strategy and the
concealment method.



Héctor D. Menéndez

• Return Oriented Programming: This kind of malware leverages a combina-
tion of the stack and other processes code to generate its malicious behaviour by
reading the code and combining return operations [83]. The main component of
this malware is its lack of action per se. It does not have any malicious code but
a combination of actions that activates malicious codes in others.

• Hijacking: If the malware can not conceal itself within the system, it can hijack a
specific function from a system’s library [87]. This method consists of replacing the
legitimate function with a malicious one. It satisfies two actions, 1) it guarantees
that the malware is not removed from the system when the user tries to remove it,
and, 2) it runs the malicious payload. For example, if the malware wants to read
any buffer related to the user’s information, it can hijack the memory functions
that control the heaps [62].

Normally these cases are identified through their persistence mechanism and it re-
quires memory analysis to be able to acquire enough information to study them. An
interesting and powerful tool for this is Volatility [62] that provides several different
components to analyse RAM snapshots for Windows, Linux and Mac.

6 Learning-based Detection

The previous sections focused on different perspectives for malware analysis. In these
cases, the analyst aims to understand how malware works and what can be done to
detect indicators of compromise. However, sometimes these indicators of compromise
are hidden, and identifying malware requires identifying other kinds of patterns at a
statistical level. Other times, it is tedious to apply the same analysis several times,
and we need a way to identify similar data related to malicious software to accelerate
the detection process. This is how machine learning is applied to malware detection to
discriminate malware from benign-ware [99] or identifying malware families [20].

This process uses a methodology that extracts features from the software under
analysis. These features can either be from the binary file itself (for example, the
entropy [64] or the n-gram distribution [59]), from static analysis (for example, opcodes
from the disassembly version [88] or flows from the program [6]), and from dynamic
analysis (network traces [81] or files created [103]).

Once we have the process to extract the features, we select a corpus. Depending
on the goal, either malware detection or malware families classification, we choose a
corpus of malware and benign-ware, or malware families. It is important to guarantee
that every targeted class, meaning the two classes of malware/benign or the n-classes
related to the n-families you need to classify, are balanced [56].

Once the data is ready and analysed, we can train a machine learning algorithm
for creating a model [56]. The model will learn from the features how to discriminate
the classes, for example, malware and benign-ware. Every new sample that we pass
through the model (or test) will be classified according to this learning process in the
most probable class. The advantage of these models is the ability to automatically learn
from the data and to extrapolate their knowledge in a way the can seriously acceler-
ate the malware detection and classification process. This led to a significant series
of contributions from multiple perspectives of cybersecurity that relayed in machine
learning.

There are multiple contributions to the analysis of malware based on using binary,
static and/or dynamic features to feed machine learning to detect malware. Some
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examples are already mentioned, such as structural entropy [97], and its extensions
to metamorphic malware detection [11], time-series features [71], and mimicking anti-
virus behaviours [70]. Other good examples –more classical–, are the work Schultz et
al. [92] who used n-gram features to feed different machine learning approaches for
Windows malware detection; Kolter and Maloof who also [52] included the information
gain metric and byte-level analysis to the n-gram features; Stolfo et al. [98] who applied
a similar methodology to PDF malware detection; Tabish et al. [101] who combined
the n-grams with histograms to extract different metrics from information-theory; and
Santos et al. [89] who used n-gram features but reduced the labelling process by using
semi-supervised methods. The work of Alshahwan et al. [3] is one of the last appli-
cations of these techniques. In this work, we compared different information-theoretic
techniques combined with machine learning to detect Windows malware using different
concealment strategies. Other modern examples have been applied to Android malware
detection, for example, the work of Martin et al. [67] combining n-grams and Android
permissions to detect Android malware.

Static analysis is significantly more popular in terms of identifying features for mal-
ware. Examples are using the control flow graph [90], op-code analysis [88], PE headers
and API calls [111]. However, as Moser et al. highlighted [74], it has significant diffi-
culties to deal with concealment strategies. This is partially because these techniques
tend to rely on taint analysis [36] or symbolic execution [86]. They are more popular
for Android systems, where the concealment strategies are not as strong as for Win-
dows systems. For example, CHABADA [42] uses API calls from the apps combines
with unsupervised learning, MOCDroid [68] combines them with genetic algorithms,
and the work of Yerime et al.[112] combines them with Bayesian classifiers. Another
popular methodology is RevealDroid [38] that combines multiple static features such
as permissions, API calls, intent actions and flows. In this part, we could also consider
tools like ADROIT [66], which uses the meta-information of the malware to detect it.

In terms of dynamic analysis, multiple machine learning applications combine in-
formation extracted either from the malware execution in virtual machines [30, 106]
(even though red pills can alter it, as I mentioned in Section 5), or network traces
[81]. Some interesting applications focused on Android are Drebin [5] and CopperDroid
[102] which create behavioural models using the execution traces, and apply anomaly
detection to detect malware. Another example of these tools is ALTERDROID [100],
which can detect obfuscated components from behavioural traces. There are also some
cases where both static and dynamic features are combined. Tools like AndroPyTool
have been designed for this purpose and a popular dataset created with this tool for
machine learning applications is the OmniDroid dataset [69].

To guarantee that machine learning has enough data to be applied, it is important
to identify the proper datasets. Section 7 provides different datasets that can be used
for malware analysis.

6.1 Adversarial Machine Learning

Machine learning looked like the holy grail in the malware arms race. Unfortunately,
this golden grail was not the right one. Machine learning parts from the assumption
that the test and train sets follow the same distribution. This statistical assumption is
useful for those cases where the data has no intelligence behind it. But in the malware
arms race, we always have to consider that our adversary or attacker will perform a step
forward the moment that we figure out a defence. This step forward, in the machine
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learning context, is called adversarial machine learning [13].
Adversarial machine learning studies the limits of machine learning systems. These

might be affected by the boundaries between classes, data bias, wrong selection of
parameters, over-fitting, or wrong selection of the classifier. The main idea of the
application of adversarial machine learning to malware detection is to be able to predict
which incremental steps an adversary can perform to find a misclasification. This idea,
which my colleges and I named hothousing [72], will force the adversary to perform
a disruptive move in the arms race to prevent the detection, as every incremental
movement is supposed to be contemplated. Some authors consider this scenario as a
zero-sum Stackelberg game [117], where the defender has to wait for the next step of
the adversary to respond.

Depending on the adversary’s knowledge, there are four levels where the adversary
can work [15, 57]. The highest (level 3) assumes that the adversaries have knowledge
about the data, features and classifier used, and they have direct access to the classifier
or can create an equivalent one. The next level (level 2) assumes that the adversaries
have access to the classifier and they know which features are used during the training
process. Level 1 only allows information about the classifier, while level 0 only provides
access to the final decision (malware or benign-are).

In the malware context, adversarial machine learning has been applied to multiple
problems. One of the most popular is evadeML [109] which is a genetic-programming
system (in level 3, meaning with all knowledge) that manipulates PDF malware to create
variants that can evade detection. The success of this methodology led to multiple works
in the area. Some examples where I was involved are IagoDroid [20], which is also a level
3 system that uses evolutionary computation to evade family classification. It proved to
defeat RevealDroid with no effort. Another similar methodology applied to Windows
malware is EEE, the evolutionary packer. This packer is the only one in the literature
that proves its effectiveness as a level 0 system, defeating multiple anti-viruses [72] and
machine learning algorithms [71], by controlling the entropy of malware variants.

Adversarial machine learning can also been seeing depending on the machine learn-
ing part that the attackers target. For example, Globerson and Roweis [40] focused
their attacks on manipulating sample features aiming to evade a support vector ma-
chine, Zhou et al. [116] defined an attack directly on the support vector machine
classifier, similarly to EvadeML [109]. Other interesting works in this area are the
works of Battista Biggio. Some examples can be found on the compilation of Biggio
and Roli about applications of adversarial machine learning [13]. There are also inter-
esting examples of what adversarial machine learning can reach. Some are focused on
data poisoning [14] or even attacking the malware triage [20]. There are also some cases
studying the transferability of adversarial samples [28] where a sample that successfully
evades a classifier can evade a similar one having no knowledge about it.

There are also works where the defender aims to adapt to the attacker. For example,
Kantarcioglu et al. [48] modified the classifier’s cut-off to be more resistant to the eva-
sion attack, while Lui and Chawla [63] use a game theory approach based on identifying
the Nash equilibrium between the attacker and defender. Another interesting case is
the study between EEE (the evolutionary packer) and VirusTotal, where VirusTotal
learns from EEE’s attacks [72].

Even though this looks like the end of this story, malware keeps evolving and de-
fenders keep developing new techniques to detect them. The next section will provide
some tools and data that can be useful for anyone who wants to start in this field.
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7 Malware Analysis Tools and Dataset

In order to start with malware analysis, there are two main things that everyone needs:
tools and data. As a researcher, you will need to obtain datasets with real malware or
malware information and tools that allow you to manage that data or analyse it.

7.1 Tools

In order to obtain a ground truth about the software, meaning either whether it is
malware or specific malware families, one of the first tools that any researcher needs is
VirusTotal5. Virus total has a corpus of anti-virus (around 80 at the moment) analysing
the malware and providing a ground truth and a label for the malware. For malware
families, it is likely that the anti-viruses disagree, therefore you need to find a consensus
among them. AVClass [94] helps to determine the best family classification. It is also
important to consider that some anti-viruses will be predictable. MimickAV [70] will
allow determining which anti-viruses are more predictable and therefore vulnerable to
potential evasion attacks based on the transferability of evasive samples [28].

For binary analysis, there are some tools that help to apply signatures either directly
to the malware samples, like Yara6. Another option to extract entropy profiles is EnTS7.
For reverse engineering, there are several tools, the most relevant are Radare28, Ghidra9

IDA Pro10, the GNU Debugger (GDB)11, OllyDbg12, the disassembler Capstone13, and
in the case of Android code, Androguard14.

The case of static analysis is more diverse. The tools that have proven to be more
effective are related to Android analysis. Good tools to perform static analysis are Flow-
Droid [6] and DroidSafe [41], which analyse whether there is a flow between a specific
source of code and sink. If you are creating a static analyser, you will need to compare it
with some state of the art systems. These are, for instance, Kirim [33] and DroidRanger
[61] which focuses on detecting malicious permission setup; DroidAPIMiner [1] and
DroidLegacy [29] perform a similar task by analysing API calls, and RevealDroid [38]
which aggregate with information with flows and intent actions.

For dynamic analysis, we can identify more general tools. For instance, Volatility
[62], the memory forensic tool, that can identify malware traces in RAM memory after
the malware runs; strace 15 and Triton16 that analyse malware traces; Cuckoo [78] and
PANDA [31], which are virtual machine environments that run malware and extract
all the different dynamic traces created during the execution; and Wireshark17 a tool
that analyses the network traces. For specific applications to Android, there are tools
like CopperDroid [102] for general dynamic analysis; IntelliDroid [107] to find malware

5https://virustotal.com
6http://yara.readthedocs.org and http://yararules.com/
7https://github.com/hdg7/EnTS/
8https://radare.org/
9https://github.com/NationalSecurityAgency/ghidra

10https://hex-rays.com/ida-pro/
11https://www.gnu.org/software/gdb/
12http://www.ollydbg.de/
13https://github.com/aquynh/capstone
14https://github.com/androguard/androguard
15https://sourceforge.net/projects/strace/
16https://triton.quarkslab.com/
17https://www.wireshark.org/
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triggers; and VizMal [27] for visualizing the analysis results.
There are several more tools for malware analysis, if the reader wants to refer to

a more extensive list of tools, I strongly recommend having a look at the Awesome
Malware Analysis List18.

7.2 Malware Data

There are several sources of malware data. Some of them are:

• VirusTotal: Apart from being a strong tool for analysing malware, VirusTotal
also provides malware data, especially under the academic license. These malware
samples are already analysed and the tool provides significant information related
to its behaviour.

• VirusShare19: VirusShare provides lived malware and is updated about every
month. It provides any kind of malware sample, for instance, Windows, Linux,
Android, Mac, PDF, Doc, and JavaScript, among others.

• Drebin20: This classical dataset is used for Android malware families. It has
5560 samples related to 179 Android families. Although this dataset has been
widely used in Android malware analysis, it is still very popular and can be found
in multiple research papers.

• Kaggle Malware Dataset21: This dataset was released in 2014 for a Kaggle
competition. This dataset contains 10,869 malware files in its training set, be-
longing to 9 different families. It is used in research for experiments for family
classification and malware detection. The data has the disassemble code and the
byte-code.

• Genome22: The Android Malware Genome Project [115] has also a classic dataset
of malicious Android apps, which has widely been used in the literature (it is
important to recall that this project has been abandoned in 2015). The dataset
contains 1,260 malware samples of 49 different families extracted between 2010
and 2011 from Android markets.

• AndroidZoo23: this dataset is becoming one of the largest Android malware
datasets with 16,355,705 Android apps analysed by different anti-viruses. The
malware labels are obtained via VirusTotal and Euphony [43], a system that infers
the final classification.

There are also several services that provide information about malware samples. It
is important to choose the data according to the main goals for the analysis.

8 Conclusions

One step after another the malware arms race creates more sophisticated software and
security protections, even if the cost is high in terms of the current software resilience.

18https://github.com/rshipp/awesome-malware-analysis
19http://virusshare.com
20https://www.sec.cs.tu-bs.de/~danarp/drebin/
21https://www.kaggle.com/c/malware-classification
22http://www.malgenomeproject.org/
23https://androzoo.uni.lu/

https://github.com/rshipp/awesome-malware-analysis
http://virusshare.com
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://www.kaggle.com/c/malware-classification
http://www.malgenomeproject.org/
https://androzoo.uni.lu/


Malware: The Never-Ending Arms Race

Indeed the attackers contribute to creating troubles for governments and companies,
but defenders are reaching strong levels of sophistication in their efforts to stop them.
Semantic analysis, symbolic execution, memory forensics, flow analysis, reverse en-
gineering tools and dynamic analysis tools are some good examples of all the good
software that this arms race is bringing to our side.

It is also important to remark that the defenders’ culture is based on sharing infor-
mation. Protecting us from malware threats requires sharing and, therefore, multiple
tools that we are using these days for malware analysis either have an open or a free
software license. We know that we will not be able to stop every possible attack, but
during the learning process, we will reach new knowledge that will also help to solve
other problems in the software world.
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[67] Alejandro Mart́ın, Héctor D Menéndez, and David Camacho. String-
based malware detection for android environments. In International Sym-
posium on Intelligent and Distributed Computing, pages 99–108. Springer,
2016. doi: 10.1007/978-3-319-48829-5 10. URL http://dx.doi.org/10.1007/

978-3-319-48829-5_10.
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