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Abstract Understanding the importance of preference

management in ambient intelligent environments is key

to providing systems that are better prepared to meet

users’ expectations. This survey provides an account of

the various ways that preferences have been handled in

Artificial Intelligence (AI). Our analysis indicates that

most of those techniques lack the ability to handle am-

biguity and the evolution of preferences over time. Fur-

ther exploration shows that argumentation can provide

a feasible solution to complement existing work. We il-

lustrate our claim by using an intelligent environment

case study.

Keywords User Preferences · Preferences Handling ·
Ambient Intelligent · Argumentation

1 Introduction

The balancing of users’ preferences is one of the most

important [28,31]factors in designing successful Ambi-

ent Inteligence Systems (AmI), particularly in Ambient

Assisted Living (AAL) [8]. For a system to be effective

enough to support the user needs, it needs to know
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about users’ expectations. This research aims to under-

stand how to enhance user benefits from AAL technol-

ogy through effective handling of preferences. Due to

the impact of AAL on human lives [32,8] these system

require complex problem solving and intelligent deci-

sion making capabilities. Preferences have a number of

complexities. This may change over time, clash or con-

flict and be modified by experience. For example watch-

ing movies or listening to music may make us change

our mind on an opinion we have about a product and we

may decide to consume more or less of it. Preferences

can even be imposed to some extent, such as lifestyle ad-

justment requested by doctors or insurance companies,

e.g., the need to take medicines [6]. These changes are

what the proposed solution should handle, as the sys-

tem needs to observe changes in user’s behaviour and

have the ability to adapt to those changes. The system

receives input from the user and various other sources

(e.g. sensors and internet services), and if the system

needs to provide feedback or help in making decisions,

some real-time mechanism will be required to keep the

system updated and to react appropriately. Because of

the reasons above, our analysis of the systems in this

area will be made on the basis of:

– Conflict Resolution

– Application to complex problem

– Decision Making

– Ability to reason and represent user’s preferences

– Ability to handle time

Preference handling is one of the core issues in the

design of any system that automates and supports de-

cision making [19]. There have been various preference

handling techniques proposed in artificial intelligence

(e.g. CP-Net, UCP-Net, etc.) that address preference

recommendation and preference-based representation
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problems. These techniques are to some extent useful

in expressing users’ preference and they have been im-

plemented in various ways. However, they lack certain

core aspects, such as not having the ability to reason

and represent users’ preference over time and not being

able to handle inconsistencies. We illustrate these lim-

itations of previous systems using an AmI system case

study that deals with the automatic control of lights.

The paper is organised as follows. Section 2 de-

scribes the importance of preferences in AmI and the

motivation behind the survey. Section 3 discusses some

of the notable classical preference techniques in AI, and

were tested to know if they are able to handle the kind

of problems required by AmI systems. We continue our

survey in section 4 turning our attention towards ar-

gumentation. Then the criteria defined above in this

section were applied in comparing the preferences han-

dling in classical AI and argumentation, and result is

shown in Table 9. Finally we conclude in Section 5,

along with a discussion on further work.

2 Motivation

A key mission of AmI is to enhance the way individuals

interact with their environment and to promote safety

which will enrich their lives [5]. AmI systems are meant

to act proactively to anticipate preferences, in order to

support users in making decisions [11]. Users should be

empowered to personalize systems according to their

preferences and this should be reasonably easy to do

[7].

Preference handling can naturally lead to conflicts,
such as when we have feelings or desire about what

we want that conflict with what needs to be done (as

will be seen in the case study description). These needs

can be resolved if the system has the ability to un-

derstand such situations and present solutions to users

which are perceived as natural. In addition, these pref-

erences change with time, such as temperature prefer-

ences during seasons or lighting preferences during day

and night.

Given that this survey focuses on finding the most

suitable approach to handle preferences, we simplified

the analysis as much as possible to illustrate some im-

portant points. In doing so we focus on managing the

preferences of one user. Various works focus on one user

and so we follow this line, leaving as further work to

consider more than one user [35]. The following example

will be used throughout this article to compare different

features needed in managing preferences and to assess

the extent to which current formalisms cover those de-

sirable features.

2.1 AAL Case Study

Let us consider a smart home with a light manage-

ment system capable in understanding the activities in

a room, in order to make decisions for the user. The

following description depicts a representative situation;

Dr. Bob is a 65 years old man who lives alone and

loves reading at night. He usually falls asleep during

reading process, leaving the lights on. Bob does not have

any problem sleeping with the lights on, but he knows

that keeping the light on when it is not needed increases

the lighting bills and can also lead to other risks (such

as, electrical issues) he does not want.

This description implies specifiable preferences such

as stating how long he wants the light to be ’on’ for

when the system has detected that he is asleep. The

idea is to have a system that will be intelligent enough

to understand and react to significant changes. From

the above description, three scenarios will be created,

to illustrate and compare possible solutions to handle

this type situation.

– Scenario 1 (Bob comes home and prepares to

go to bed): The light can be on until the system

detects that the user is asleep, and then it turns the

lights off after some time (specified by the user).

– Scenario 2 (Bob wakes up in the middle of

the night): The user is asleep (light should be off

at this point), then if the user wakes up (e.g. to use

the toilet, etc.), the light should come on. If the user

goes back to sleep, the light goes off after 10minutes.

– Scenario 3 (Bob leaves home):The user wakes

up from sleep then the lights comes on. Then the

user leaves home (e.g. to go to work). The system

should turn the lights off after some time, if the user

forgets to switch off the lights before leaving home.

Table 1 summarise the highlights of the scenario

above, with added sample times associated with its

main stages.

2.2 Problem Statement

The scenarios above describe a light management sys-

tem in operation within a bedroom of a smart house.

Modern sensor can respond to human movement [34].

For example some systems typically used at offices will

turn lights off when there is no movement for some time.

However, this is unhelpful when we stay still absorbed

in reading and suddenly the lights go off, breaking our

concentration and forcing us to wave our arms to turn

lights back on again. Conversely, as soon as movement

is detected the system brings the lights back on. This
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Table 1 Summary of Scenarios

Scenarios Times Significant Developments

Scenario 1
10pm Bob enters the room and the

light comes on (system detects
movement and detects that its
dark outside)

11pm Bob goes to bed (lights goes af-
ter some time (e.g. 10mins), if no
movement is detected and pres-
sure is detected on the bed sen-
sor)

Scenario 2
2am Bob wakes up in the middle of

the night to use the toilet (lights
comes on gradually up to 50%as
soon as he gets out of bed)

2:05am Bob goes back to bed (lights goes
off again after detecting that Bob
is asleep).

Scenario 3
7am Bob wakes up in the morning

(lights comes on gradually when
movement is detected out of
bed).

8am Bob leaves home for work (light
goes off automatically after a
specified time, when Bob forgets
to switch off the lights).

is fine for an office but not for a bedroom as moving

during the night will cause the lights to go on and off

intermittently several times.

There are two problems with the above type of sys-

tems which our work will try to address. One is that

those office systems are set in such a way that (whilst

not impossible to change), modifying the waiting time

is usually beyond most typical users’ capabilities. The

other problem is that the system’s notion of context is

very limited. The only context they recognize is time

without movement. Our research into these systems

aims at providing ways for users to easily personalize

the behaviour of the system through parameters which

represent their preferences. The parameters which can

facilitate this personalization, depend on the technology

available in a given environment. We will keep the sys-

tem functionality, the technology and the type of per-

sonalization simple. We still hope to demonstrate our

system is more intelligent and capable enough to detect

whether the person is sleeping or not and whether lights

should be turned on or off in a sensible and flexible way.

A system like the one described can be created with

current technology based on wireless sensors [34]. For

example movement within a room can be perceived by

the system using Passive Infrared Sensors (PIR) which

measure spatial variations of heat. These sensors are

commonly used in domestic alarm systems as a way to

detect the movement of intruders. The type system this

research aim to provide will enable the user to perform

usual activities of moving around, getting in or out of

Table 2 Input-output to the smart lighting system

input Output

Sensors Human Actuator

Type Pressure PIR Bob Bob Light
Pad Bulb

Values on-off on-off actions prefe- on-off
rences dimmed

bed, without going to turn off or on the lights. They

can also set up preferences which affect the way the

system reacts, for example how long should the system

wait when there is no movement to turn lights off. The

system can react by turning the lights on or off. This

includes turning them half way (dimmed) when the user

gets up from bed during the night. A similar system

was used in [9], although that system was more centred

on measuring quality of sleep and to detect dangerous

situation that threaten the safety of the user. However,

the system did not allow for preference personalization.

Table 2 summarizes the main parameters of the en-

vironment which can be perceived by the system to

feed the context-awareness module along with the main

ways the system can act upon the environment.

3 Preference in Classical AI

Preferences guide the choices of the user. So under-

standing several aspects of preference handling is im-

portant both for supporting active user control and de-

signing systems that act on behalf of users. Preference

is known as a core issue in the design of automated sys-

tems that aims to support the decision making of the

users. It is therefore crucial to understand preference

handling and the tools needed to help develop a system

that can handle inconsistencies and deal with time.

One of the main aims of this paper is to address

some existing classical preference in AI and then inves-

tigate their ability to deal with conflicting situations

and represent users preference over time. These clas-

sical AI models will be discussed and analysed with

the light case scenario to assess whether they are suit-

able for addressing the problem described. The classical

preferences techniques include:

– CP-nets

– UCP-nets

– TCP-nets

– LCP-nets

Note that these are not all the preference handling tech-

niques that exist in AI. In this survey we focus on these

because they relate closely to the proposed solution this

study aims to provide.
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3.1 Conditional Preference Network (CP-Nets)
CP-net is known to be the most prominent qualitative

approach for presenting preferences. Its clear graphical

structure unifies an easy representation of user desires

with cordial computational properties when computing

the best outcome [33].

CP-nets is a directed graph representation of condi-

tional preferences, where nodes represent variables and

edges express preference links between variables. CP-

nets exploits the power of conditional ceteris paribus

rules [2] which enables a compact representation of hu-

man preferences. CP-net is naturally suited to simple

applications (e.g. recommender systems to buy books

on the web) in which preferences can easily be approx-

imated by lexicographic rules on attributes with small

domains [29]. It represents a complex preference over

objects, using a set of atomic preferences each of which

is a preference over a single object attributes given that

the values of the other attributes are equal (the ceteris

paribus principles). Such as: Bob prefers X = x1 to X

= x2 .

Example of how CP-net expresses preferences could

be that of light choice. Figure 1 expresses preference

of light choice in a house. This network consists of two

variables B and R, standing for Bulb and Room respec-

tively. A user might prefer coloured Bulb (Bc) to white

Bulb (Bw), and their preference of whether the user

wants the white bulb or a coloured one, could be condi-

tioned based on the sitting room (Rs) or the bedroom

(Rb): Bob prefers coloured bulb than white bulb in his

bedroom and the white bulb in his sitting room than

the coloured one.

Room

Bulb Bc > Bw

Rb
Rs

Bc > Bw
Bw > Bc

Fig. 1 CP-net for Light Choice: Bulb and Room

According to [18], “tools for representing and rea-

soning about Ceteris paribus preferences are important

because they should aid in elicitation process for naive

users”.

Various studies of CP-nets are restricted to prefer-

ences that are strict, binary, known and complete [2].

This means all the features which an outcomes depends

on are known. For instance, an individual who lives

alone may prefer the light to be off during the day and

wants the light on at night as long as it not her bed time

(which can vary for users). These are strict preferences

because this is a user who works during the day and

sleeps at night. An example of a complete, strict and

acyclic CP-net is illustrated in figure 2. The diagram

illustrates a user (e.g. student) who prefers to have the

light on when she studies at night and off when she

studies during the day.

Light

Night > Day UserTime

Night, Study-Night: On > Off
Night, Study-Day: Off > Off

Day, Study-Night: Off > On

Day, Study-Day: Off > On

:Study-Night > Study - Day

Fig. 2 A Strict, Complete, Binary, Acyclic CP-net.

However, when the users’ preference is unknown, es-

pecially given that users preferences do change more of-

ten, a method that has the ability to handle the change

over time and resolve conflicting situations will be needed,

and these capabilities are not present in CP-net.

Formally, a preference relation is a partial pre-order

on a set of alternatives (or outcomes) O. The expres-

sion O > P means that O is preferred to P. If neither

outcome is preferred to the other, they are said to be

incomparable. CP-nets have been developed for such

problems, rather than to compare alternatives in bits,

as decision makers consider how the preference over one

feature depends on the values of the other in the deci-

sion domain.

Let us consider the example of a student who lives

alone and studies every night to prepare for an up-

coming exam. She falls asleep almost every night with-

out turning the lights off. This means that she falls

asleep any time during the reading night, so it is un-

known when the student actually falls asleep. It will be

difficult to represent this using CP-net of ceteris paribus

statements as the time when the student falls asleep is
unknown.

As we have shown above, CP-nets has not advanced

in a sufficient way for widespread use in complex, real

world engineering applications [2] like AAL systems we

want to address in this paper. Considering this, using

CP-nets to represent the preferences of a user over time

to help in dealing with conflicting situations will not be

feasible.

3.2 Utility Conditional Preference Networks

(UCP-Nets)

This model was proposed by [17] in 2001 by combining

the appealing aspects of two existing preference models

which are: GAI (a graphical model used to represent

and manage independences among attributes [29]) and

CP-nets. UCP-nets can be viewed as an extension of

the CP-network that allows representation of qualita-

tive utility information rather than simple preference
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ordering. UCP-nets facilitate an incremental elicitation

process, as they have a number of conceptual and com-

putational advantages over GAI and CP-nets models,

providing leverage with respect to interference and elic-

itation. The model is directed like CP-nets but prefer-

ences are quantified with utilities and by extending CP-

nets with quantitative utility information. The expres-

sive power is enhanced and dominance queries become

computationally efficient. By introducing directionality

and a ceteris paribus semantics to GAI, it allows utility

functions to be expressed more naturally and optimiza-

tion queries to be answered much effectively. Further-

more, this model allows for more powerful statements

that are often more natural. This leads to more effec-

tive inference, and can be used in interactive elicitation

processes in determining relevant parameters of UCP

models in a specific decision scenario.

Despite identifying how UCP-net has various con-

ceptual and computation advantages over CP-nets and

GAI model, the authors emphasised in the concluding

part of their study that practical experience and em-

pirical studies are needed to gauge the ultimate effec-

tiveness of UCP-nets [17]. This model has not currently

been applied to the type of problem (light scenario) we

are trying to solve.

In addition, one of the crucial problems faced in the use

of a decision theoretic model is the elicitation of pref-

erence information [17]. This is one key motivation be-

hind the development of the UCP-nets model. However,

the problem this research aim to address goes beyond

eliciting and representing of qualitative utility informa-

tion, because our research aims to resolve conflicts and

represent users’ preference over time.

3.3 Tradeoffs-Enhanced Conditional Preference

Networks (TCP-Nets)

This is another extension of CP-nets that can be re-

ferred to as a relative important statement for con-

ditional preference networks with trade-off [20]. It is

a graph based representation that encodes statement

of (conditional) preferential independence and (condi-

tional) relative importance [22]. To better understand

this, Using our light scenario, a Bed-Room (BR) can

consists of both a White-Bulb (WB) and Coloured-Bulb

(CB) (as values) and the Sitting-Room (SR) consists

of White-Fluorescent (WF ) and Coloured-Fluorescent

(CF ) lights. The user may prefer to want to read in

the Bed-Room than the Sitting-Room and wants to

use Brighter Light (BL), (knowing that Bed-Room and

Sitting-Room are preferentially independent), then the

preference order over Bed-Room can be specified as

White Bulb > Coloured Bulb, independently of the

value of the Sitting-Room. In a similar way preference

values over the Sitting-Room (if the user wants to read

in the Sitting-Room), will be of White-Fluorescent >

Coloured-Fluorescent, independent of the values of the

Bed-Room. We can infer from this that WB and WF is

a more preferred outcome than CB and CF .

TCP-net model basically empowers users to express

trade-offs, which they are willing to concede among var-

ious preference criteria. The idea of conditional relative

importance complements the one of conditional ceteris

paribus independence [20] so as to provide for a richer

conceptual framework and reason about the user’s pref-

erences. Figure 3 illustrates how TCP-nets extends CP-

net by adding an i-arc from (BR) to (BL) and (SR) to

(BL) (which describes the relative importance from BR

to BL and SR to BL) and also ci-arc (which is for con-

ditional importance) between (WB) and (CB) as well as

(WE) and (CB). The relative importance of (WB) and

(CB) or (WE) and (CB) depends on the assignment to

(BR) and (BL) or (SR) and (BL) respectively.

BR BL

WB CB
SR

 SR > B R

WF > CFBR, BL

SR BL

WF CB
SR, BL

BR

 BR > SR

WB > CB

Fig. 3 Illustrations for Example TCP-Net

TCP-net has been used to propose a heuristic for

estimating the preference ordering over the different

choices at each stage in the composition to improve the

efficiency of an algorithm (TCP-Compose*) [42]. This

algorithm was presented to generate a set of composite

services that achieve the desired functionality and con-

stitute a non-dominated set of solutions with respect

to user specified preferences and trade-offs over non-

functional attributes [42]. Given that preference elicita-

tion can be a bottleneck in many applications, TCP-net

was suggested [20] as an enhancement of CP-nets for

structuring, representing and reasoning about quality

preference statements. It helps to make an optimally de-

sirable solution for users who lack the knowledge, time

or expert support required to specify complex multi-

attribute functions.

In other words, TCP-nets provide a richer frame-

work for representing users preferences, allowing stronger

conclusions to be drawn among two variables. However,

this research aims for more, such as providing a solution

to resolve conflict, as well as representing and reasoning

with users’ preference over time rather than trading-off

a less preferred outcome among two attributes.



3.4 Linguistic Conditional Preference Networks

(LCP-Nets)

This model was proposed as a result of two impor-

tant weaknesses spotted in *CP-nets models (includ-

ing extended ones) [23], in expressing preferences in

a Quality of Service setting (QoS). QoS dimensions

are defined on continuous domain and *CP-nets only

deal with finite domain variable. Using fuzzy linguis-

tic terms [47], LCP-net was proposed to discretize con-

tinuous domains instead of crisp sets, so as to better

capture user intentions, eliminating the need for the

user to express preferences among values of a continu-

ous domain. The other limitation is that, getting pre-

cise utility from non-speciality users is difficult, so giv-

ing numbers to express preferences is not always fea-

sible. Current *CP-net models provide two alternative

in this case. The original CP-nets expresses preferences

through a more simple and intuitive relation, but suf-

fer from low performance when comparing two assign-

ments. On the other hand, UCP-nets perform the com-

parison more efficiently, but it is harder to get precise

numeric utility values.

This version of CP-nets model (LCP) was developed

to address the problem of expressing preferences, in-

cluding non-functional properties. It provides program-

mers with an intuitive tool to express their preferences

among services via their various qualities of services

monitored at run-time. The advantage of fuzzy linguis-

tic approaches in LCP-nets was acquired by combin-

ing UCP-nets and TCP-nets techniques, allowing pref-

erence modelling of more qualitative statement such

as I prefer the more or less V1 value for property X

over exactly V2 if properties Y equals approximately

VY and Z equals a bit more than VZ. [22] expresses

how LCP nets are easier to establish than writing sev-

eral set of fuzzy rules that can be interdependent but

qualitative to deal with user or QoS sensor impreci-

sion. They further stated that LCP-nets allow users

to express trade-offs among variables using i-arcs from

TCP-nets and have CPTs (conditional preference table)

similar to that of UCP-nets, but they express utilities

with linguistic terms rather than numeric values. With

LCP-nets it is possible to:

– Reveal relative importance of non-functional prop-

erties

– Elicit preferred assignment for specific QoS domain

– Indicate trade-offs between non-functional proper-

ties

Consider figure 4 where user preference on having

the lights on (such as for security purpose) is detailed.

The main goal here is for the user to have the light on at

night. The goal is translated into preferences according

Snone Sfull

 very Low  very high

Very low medium Very high

BL BM BH

BL

BM

BH

low

very low

very high

very high

very low

high

CL CH

S

C

B

Fig. 4 The Imaging We service QoS preferences example
using LCP-nets

to three of its QoS properties: security (S ), Bright-light

(B) and Colour-Bulb (C ). The user would always prefer

Bright-light over security but if the light is low, colour-

bulb would be preferred so as to still have light at night.

In a different study, the same authors [23] that intro-

duced the LCP-nets framework, applied the framework

in tackling the multi-criteria decision making. This arises

from run time choice among candidate service and sev-

eral unrelated Quality of Service (QoS) properties. This

was applied to select best service among a set of offers,

given their dynamic non-functional properties. Gener-

ally, this new variant of CP-nets aids non-specialist pro-

grammers to express preferences in a qualitative way

among values of the different QoS properties in this

multi-criteria decision making process. This decision

making process does not include resolving conflicting

situations nor dealing with time, both of which are cru-

cial in developing a system that will reason with users

so as to assist in making vital decisions. Furthermore,

according to the conclusion of [23], one of the limita-

tions of LCP-nets is that it does not have the flexibility

to share common preference among complex business

processes decision sites, which indicates this method

cannot address the complex scenario provided by this

survey.

3.5 Other Related Approaches

Further research identified a system that facilitates web

service selection when dealing with incomplete or in-

consistent users’ preferences [46]. The system explores

the information of historical users to modify the ac-

tive users’ preference, improving the results of the se-

lected services. Simulation conducted certifies the ef-

ficiency and effectiveness of the technique in conflict

removal. The approach uses a CP-net model, similar to

LCP-nets, which is used for the same reason to provide

QoS-based late-binding of service invocations, adding

extra agility to business process execution [22]. How-

ever, there is no evidence of the work having ability to

manage user preferences over time.



Table 3 Table summarizing the pros and cons of preferences in classical AI

AI Preference
Models

Pros Cons

CP-Nets: Conditional
Preference Networks

The promising approach for representing preferences in a qualitative and
quantitative way is CP-nets [33].

Consistency of cyclic CP-net is not guaranteed.

CP-net-s offers a compact and arguably natural representation of prefer-
ence information, necessary for solving many simple real world problems.

CP-nets are restricted to preferences that are strict, complete and binary
and the dependency graph are usually assumed to be acyclic

Partial order can be created from small set of alternatives. It will not be practical to create a partial order from large number of
features

Aids elicitation process for naive/non-expert users Does not allows for the comparison or the ordering of all its alternatives

UCP-Nets: Utility
Conditional Prefer-
ences Networks

UCP-nets facilitates an incremental elicitation process Practical experience and empirical studies are needed as to gauge its
effectiveness.

Has a number of conceptual and computational advantages over the CP-
nets model, providing leverage as regards to inference and elicitation.

To the best of our knowledge, there is not implementation of UCP-nets

Allows one to make more powerful statements that are often more natural
and lead to more effective inferences.

TCP-Nets: Tradeoffs-
enhanced Conditional
Preference Network

With the limitation in CP-nets that does not express preferences over
the variables themselves, TCP-nets was introduced to represent relatively
importance between variables.

There is no research work reporting on the implementation of TCP-net
as a solver [48].

Adds more important relations and conditional relative importance state-
ment to ceteris Paribus statement

To the best of our knowledge and that of [48], there is no implementation
of TCP-nets.

TCP-nets only deal with preferences (soft constraints) as hard constraints
are not considered explicitly, which can be a real limitation when deal-
ing with a wide real life problems that includes both constraints and
preferences.

The challenge of consistency of TCP-nets that is not conditionally acyclic.

LCP-Net: Linguistic
Conditional Prefer-
ence Network

This is a variant of CP-nets that has the same service ranking with all
CP-nets extensions, but expressing CP-nets is easier LCP-nets.

Focuses more on the mathematical modelling, allowing to aggregate the
LCP-nets compared to CP-nets and TCP-nets that catches the eye due
to their simplicity and expressiveness ( [45]).

Applies to select the best service among a set of offers.

Indicates trade-off between non-functional property and revealing relative
important of non-functional property.

Service Selection
Framework

This system was developed to utilize the information of historical users
to enhance the preferences of the active users, improving the service se-
lection results as the simulation results verified the effectiveness and ef-
ficiency in conflict removal [46].

Using CP-nets models, the approach tends to handle incomplete and
inconsistent user preferences and but does not demonstration the ability
to handle users’ preferences over time.



4 Argumentation

The previous section provided an overview of several

theoretical methods which can capture the process of

selection based on preferences. However, from the point

of view of Ambient Intelligence there are some further

dimensions to the concept which are not explicitly ad-

dressed by those methods. Preferences sometimes are in

conflict with each other. For example, sometimes there

may be reasons to keep the lights on and also reasons

to keep them off. Time also plays an important prac-

tical role, in particular preferences changing over time.

For example, we prefer different levels of lighting at

night or day and through different seasons we prefer

different ambient temperatures. Computer Science has

long investigated both these features of handling con-

flicts and inconsistencies. For example, this constitutes

an interesting feature of Argumentation Systems [13,

36,14]. Time has also been an important topic in vari-

ous areas of CS and AI [4] and in particular in AmI [12,

37]. For all these reasons we believe argumentation is an

option worth exploring, offering advantages which the

methods in the previous section could not. We use this

section to introduce some basics of argumentation, and

in particular temporal argumentation, and later show

with example scenarios how AmI desirable features are

more naturally captured by the Argumentation System

we describe.

Argumentation started to attract attention within

CS during the 80’s as a branch of AI focusing on find-

ing ways to represent the processes humans follow when

using common sense reasoning, particularly, taking into

account exceptions and the way our conclusions adapt

to the continuous influx of new information. Previously,

Argumentation Systems appeared as an alternative to

so-called ‘non-monotonic reasoning’, ‘default reasoning’

and ‘defeasible reasoning’ [24] [15]. The basic idea of

argumentation is to create arguments in favour of and

against a statement in order to determine if that state-

ment can be acceptable or not and why [21]. Here we

only briefly mention the concepts we need for the fol-

lowing subsections below and we refer the reader to [10]

for full technical details and definitions.

Amongst other features Argumentation offers a way

to represent defeasible reasoning, characterizing the skill

that allows us to reason about a changing world where

available information is incomplete or not very reliable.

Argumentation systems have the ability to change con-

clusions according to the new information that comes

to the system. The conclusions obtained by the system

are “justified” through “arguments” supporting their

consideration. In addition, an argument could be seen

as a “defeasible proof” for a conclusion. The knowledge

of new facts can lead to prefer a conclusion to a previ-

ous one, or to consider a previous inference no longer

correct. In particular, there could exist an argument for

a conclusion C and a “counter-argument”, contradict-

ing in some way the argument for C. An argument is a

justification for a conclusion C if it is better than any

other counter-argument for C. To establish the prefer-

ence of an argument over the others, definition of pref-

erence criteria is required. Although several preference

methods are possible, one that is widely used is “speci-

ficity”: more specific information, i.e., better informed

arguments. It is important to highlight that Argumen-

tation Systems emphasize the role of inference justifi-

cation and the dialectical process related to reasoning

activities.

Given the limitations we have noticed in the han-

dling of preferences by state of the art systems, includ-

ing both handling of inconsistency and time-related in-

formation, we will use an Argumentation System which

allows us to explicitly refer to time [10]. We refer to the

reader to the original article for a full and detailed de-

scription of the underlying theoretical framework and

here we provide only a short overview of the notation

which is required to understand the description of the

three scenarios further down in our article.

The system presented in [10] is actually an exten-

sion of a previous well-known argumentation framework

[43]. The extension includes the addition of a temporal

language LT. This temporal language allows reification

over time, properties, events and actions, which have

been considered in the AI literature as key concepts to

model a rational agent in a dynamic world. The system

used to represent knowledge is based on a many-sorted

logic [27], where different sorts are used to formalize the

different groups of concepts represented in the system.

The fundamental building blocks such as time, proper-

ties, events and actions listed above are only examples

of possible sorts. Others can be added depending on

needs.

The temporal language allows the association of

knowledge to either “instants” (T ) or “intervals” (I)

so that we can express developments in real-world sce-

narios which happen (or are perceived to happen) in-

stantaneously as well as developments which take time

to complete. Example of an instant could be something

that happened in a second in a system where seconds

is the minimum time granularity, and an example of an

interval will be a whole minute in that system. So if

a PIR sensor is triggered only once in a second, e.g. at

17:06PM, then we can describe that as an instantaneous

occurrence. If the same sensor is activated continuously

for 15 seconds we can say that the activation of the sen-

sor lasted for a while and those 15 seconds will become
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an interval of time, e.g., from 17:06PM to 17:21PM. We

can define familiar order relationships between units of

time, so for example the following relationship between

instants represent the notion of ‘earlier time’ <: T × T
such that we can say 17 : 06PM < 17 : 21PM. We can

also define the notion of interval as a sequence of con-

secutive instants I = {[i1, i2] ∈ T × T |i1 < i2} so that,

for example, [17 : 06PM, 17 : 21PM] can be the inter-

val where the sensor was continuously active. Auxiliary

useful functions like begin, end : I → T can be defined

to obtain the beginning and ending points of an inter-

val: begin([i1, i2]) =def i1 and end([i1, i2]) =def i2.

We will consider a set of well-known relations in the

literature as those between intervals defined by Ham-

blin [30] and later adopted by Allen [1] (see table 4).

Although we have adopted Interval Logic as it is by far

the most widespread way to represent and reason about

time in CS, especially within AI, we understand other

developers may wish to use other time handling options

such as the one proposed in [44].

We will consider events as noticeable occurrences of

Relation Conditions

BEFORE(X,Y)

MEETS(X,Y)

OVERLAP(X,Y)

STARTS(X,Y)

DURING(X,Y)

FINISHES(X,Y)

EQUAL(X,Y)

Table 4 Interval-Interval relations (where X and Y represent
two intervals). [1]

the real-world which can have an effect on a given situ-

ation. So for example the system sending a command to

the light system causes it to produce light in the room.

We will use a predicate Occurson(e, i) (Occurson(e, I))

to indicate that an event e has occurred in an instant i

(interval I).

For example: Occurson(TurnOnLight, 7 : 00AM).

We will assume the following is true of events:

Occurson(e, I) =def ∀T i (In(i, I)→ ¬Occursat(e, i))

where In(i, I) =def Start(i, I) ∨Divides(i, I) ∨ Ends(i, I)

where these three predicates are true when an instant

is at the beginning, ‘inside’ or the end of an interval.

The definition given above for Occurson(e, I) means the

occurrence of an event in an interval implies it does not

occurs inside the interval (this is usually called “non-

homogeneity”). Also we consider “weak negation” over

durative events in the following sense:

¬Occurson(e, I) =def ∃T i (In(i, I) ∧ ¬Occursat(e, i))

That is, consequently with the concept of

non-homogeneity explained above, an event will be con-

sidered not to have occurred if a fragment (even just an

instant) of it has not occurred.

We assume the world can be described as a set of

elements or entities with specific properties for which we

will use the following predicate: Holdsat(p, i), Holdsat ⊆
P × T , and Holdson(p, I), Holdson ⊆ P × I, denoting

that p is a property that is true in the moment i or

interval I respectively. Holdson and Holdsat are related

in the following way:

Holdson(p, I) =def ∀T i (In(i, I)→ Holdsat(p, i))

We will assume “homogeneity” of properties over an

interval, meaning that if a property holds in an interval

then it also holds in any of its subintervals. For example,

if a sensor was activated during 15 minutes in a row,

in particular it was activated in each minute of that

interval (and each second of each minute):

∀T i ∀I I (Holdson(p, I) ∧ In(i, I)→ Holdsat(p, i)

∀I I, I′ (Holdson(p, I) ∧ I′ v I)→ Holdson(p, I′))

We consider “weak negation” of properties over inter-

vals that can be obtained directly from the negation of

the previous definition:

¬Holdson(p, I) =def ∃T i (In(i, I) ∧ ¬Holdsat(p, i))

We will ascribe actions only to humans, so humans

usually acting on their free will perform actions which

typically causes some events to occur which in turn

potentially change some properties of the world. We

will consider that each human agent a from the sort of

agents A has a repertoire W of possible actions g:

∀A a ∃W g Agent(a, g) (1)

There could be instantaneous actions Doat (e.g., switch-

ing the light on) and durative actions Doon (e.g., getting

up from bed).

The explanations above mostly refer to the time re-

lated representation of the world. Now we turn focus

more properly to inconsistency through the Argumen-

tation System. That is how that information about a

dynamic world can be grouped together to form argu-

ments, reasons to believe or support the view of specific

states of affairs in the real world we are describing.
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We will assume our Knowledge Base is composed

of a non-defeasible knowledge part KT which in turn is

organized in two subsets, one set of facts KT
G (general

knowledge) and one set of rules KT
P (particular knowl-

edge), where KT
P ∪ KT

G = KT and KT
P ∩ KT

G = ∅.
KT

P represents the safe facts of the world such as the

existence of a specific bedroom in a specific house and

a week in the calendar having seven days, and KT
G rep-

resents general laws, e.g. that if Monday is a day of a

week then it has 24hours. There is also a finite set ∆T

of temporal defeasible rules representing knowledge that

our AmI system agent aT is prepared to accept unless

it finds counter-evidence. Rules in ∆T have the form

α >−− β , where α and β are sets of literals of LT. ∆
T↓

will denote the set of basic instances of members of ∆T.

Given space restrictions, our simplified explanation of

later sections will actually only use ∆
T↓

instead of the

usually preferable ∆T as we merely want to illustrate

the potential of argumentation to capture certain key

aspects of preferences handling and we postpone a more

formal explanation for a future article.

We will largely adhere to the notation used in [10]

and use (KT, ∆T) to denote a temporal defeasible struc-

ture, where KT is a temporal context and ∆T is a fi-

nite set of temporal defeasible rules. We will also adopt

the same notion of temporal defeasible consequence, “

|∼ ”, and the notion of A of ∆
T↓

as a temporal argu-

ment for a temporal literal h and the associated notion

of a subargument. Our explanations in the next sec-

tion will actually be based on grounded arguments, A↓.
Let (KT, ∆T) be a temporal defeasible structure of aT.

TAStruc(∆
T↓

) will be the set of temporal arguments

that can be constructed from (KT, ∆
T↓

).

Our notion of disagreement is related to time, so

given a temporal function ρ({h1, h2}) which determines

whether two temporal literals h1 and h2 intersect in

their time references, and given two temporal argu-

ments 〈A1, h1〉 and 〈A2, h2〉, A1 for h1 and A2 for h2
are in disagreement at least about an instant i, 〈A1, h1〉
./T〈A2, h2〉, if and only if ρ({h1, h2}) 6= ∅ and KT ∪
{h1, h2} ` ⊥. So at least a common temporal reference

is required between the temporal references of the ar-

guments involved in the conflict.

A temporal argument 〈A1, h1〉 counterargues another

temporal argument 〈A2, h2〉 in a basic literal h, if and

only if there exists a subargument 〈A, h〉 of 〈A2, h2〉
such that 〈A1, h1〉 and 〈A, h〉 are in disagreement (in

at least an instant i). Let � be a partial order de-

fined over elements of TAStruc(∆
T↓

), we will say that

a temporal argument 〈A1, h1〉 defeats another 〈A2, h2〉,
〈A1, h1〉 �tdef

〈A2, h2〉 , if and only if there exists a

subargument 〈A, h〉 of 〈A2, h2〉 such as 〈A1, h1〉 coun-

terargues 〈A2, h2〉 in h and 〈A1, h1〉 � 〈A, h〉.

When there is a conflict between arguments, pref-

erence criteria are used to understand whether some

arguments may be preferable to others. Specificity is

one of such criterion which is widely used and it as-

sesses whether one of the arguments is better informed

than the rest (i.e., considers the information the others

do plus something additional). Specificity is based on

the structure of the arguments. It has the advantage of

being independent from the application domain. Still,

there are several other criteria which can be used to

compare and select arguments. In some cases Persis-

tency over time could be used as a reason to prefer an

explanation over another. We assume properties persist

unless we have reasons to believe otherwise. We will

use predicates Change+ −at (p, i)) and Change+ −in (p, I))

to indicate that a proposition p changes its truth value

from being true to false at an instant i or in an interval

I respectively. The following axioms allow the detection

of these situation:

∀P p ∀T i(Holdsat(p, i− 1) ∧ ¬Holdsat(p, i)

→ Change+ −at (p, i))

∀P p ∀II, I′(MEETS(I, I′)∧Holdson(p, I)∧¬Holdson(p, I′)

→ Change+ −in (p, I′)

We can also consider analogous axioms for Change− +
at

and Change− +
in for properties changing from being false

to being true. Let 〈A1, h1〉,〈A2, h2〉∈ TAStruc(∆
T ↓

),

we say that A1 for h1 is preferred under persistency to

A2 for h2, noted 〈A1, h1〉 �tpers 〈A2, h2〉, if and only if

〈A2, h2〉 use persistency and 〈A1, h1〉 does not.

In the next sections we assume the following prece-

dence order [40] between the preference criterion:

< = {�tspec ,�tpers},�tspec > �tpers . This means we

always try to apply specificity first. When the argu-

ments are incomparable under specificity or they are

equi-specific we apply the persistency criteria.

4.1 Light case study illustrated using Argumentation

The case study which has been described in section 2 in

three different scenarios has been translated into a more

technical form in table 5. Further below, we will illus-

trate how argumentation can handle users’preferences

over time and potential conflictive scenarios. Tables 6,

7, and 8 show at the beginning the initial state of the

world and then the evolution of the scenario through

the grounded arguments, A↓.
At the end of each scenario we also illustrate the

arguments in a tree format. However, the formal lan-

guage on each table was not strictly used to create the

tree, because we only wanted to demonstrate the basic

idea behind each arguments. The time measurement as-

sumed in the three scenarios is in minutes.
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Table 5 Dynamics evolution of the Light Case Scenario as regards time

Scenario 1

Interval

Relationship
MEETS(I0, I1) ∧MEETS(I1, I2) ∧MEETS(I2, I3) ∧MEETS(I3, I4)

Initial

Stage
Holdson(Movement, I0) ∧ ¬Holdson(Sleeping, I0) ∧ ¬Holdson(OnBed, I0) ∧Holdson(LightsOn, I0)

Properties

MoveDetected MoveDetected ¬MoveDetected ¬MoveDetected ¬ MoveDetected

¬ Sleeping ¬ Sleeping ¬ Sleeping Sleeping Sleeping

¬ OnBed OnBed OnBed OnBed OnBed

LightsOn LightsOn LightsOn LightsOn ¬ LightsOn

Transition

Cause

Doon
(GoingToBed,

I0)

¬Occursat

(MoveDectected,

end(I1))

Holdson(OnBed,

I2) ∧ ¬Holdson
(MoveDectected,

I2) ∧ Length(I2) > 10

Occurson
(SystemTurns

LightOff, I1)

Intervals I0 I1 I2 I3 I4 I5 I6 I7 I8

Scenario 2

Interval

Relationship
MEETS(I0, I1) ∧OV ERLAP (I1, I2) ∧MEETS(I2, I3) ∧ BEFORE(I3, I4) ∧MEETS(I4, I5) ∧MEETS(I5, I6) ∧MEETS(I6, I7) ∧MEETS(I7, I8)

Initial

Stage
Holdson(Movement, I0) ∧ ¬Holdson(Sleeping, I0) ∧ ¬Holdson(OnBed, I0) ∧Holdson(LightsOn, I0)

Properties

¬ MoveDetected MoveDetected MoveDetected MoveDetected MoveDetected MoveDetected ¬ MoveDetected ¬ MoveDetected ¬ MoveDetected

Sleeping Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping Sleeping Sleeping

OnBed OnBed OnBed ¬ OnBed ¬ OnBed OnBed OnBed OnBed OnBed

¬ LightsOn ¬ LightsOn ¬ LightsOn ¬ LightsOn LightsOn LightsOn LightsOn LightsOn ¬LightsOn

Transition

Cause

Occursat

(Movement,

begin(I1))

Holdson
(Movement,

I1) ∧ Length

(I1) > 2

Doon
(GettingOut

OfBed,

I2)

Occurson
(MoveDetected,

I3) ∧ ¬Holdsat

(OnBed, begin, (I3))

Doon
(Going

ToBed,

I4)

¬Occursat

(MoveDectected,

begin(I6))

Holdson(OnBed, I6)

∧¬Holdson
(Movement, I6)

∧Length(I6) > 10

Occursat

(SystemTurns

LightOff,

begin(I7))

Intervals I0 I1 I2 I3 I4 I5 I6 I7 I8

Scenario 3

Interval

Relatioship
OV ERLAP (I0, I1) ∧MEETS(I1, I2) ∧MEETS(I2, I3) ∧MEETS(I3, I4) ∧MEETS(I4, I5) ∧MEETS(I5, I6)

Initial

Stage
Holdson(Movement, I0) ∧ ¬Holdson(Sleeping, I0) ∧ ¬Holdson(OnBed, I0) ∧Holdson(LightsOn, I0)

Properties

¬ MoveDetected MoveDetected MoveDetected MoveDetected MoveDetected ¬ MoveDetected ¬ MoveDetected

Sleeping Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping ¬ Sleeping

OnBed OnBed OnBed ¬ OnBed ¬ OnBed ¬ OnBed ¬ OnBed

¬ LightsOn ¬ LightsOn ¬ LightsOn ¬ LightsOn LightsOn LightsOn ¬ LightsOn

Transition

Cause

Occursat

(AlarmRings,

end(I0))

Holdson
(Movement,

I1) ∧ Length

(I1) > 2

Doon
(GettingOut

OfBed,

begin(I2))

¬Holdsat

(OnBed, begin

(I3)) ∧Holdson
(Movement, I3)

Doon
(Leaving

Home,

I4)

¬Holdsat(Movement,

I5) ∧ Length(I5)

> 15 ∧ ¬Holdsat

(OnBed, I5)

NotAtHome

Intervals I0 I1 I2 I3 I4 I5 I6 I7 I8
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Table 5 shows the progression in time of the three

scenarios. The time “Intervals” row a the end of each

scenario states the different relevant time periods for

the scenarios, for example for Scenario 1 we use 5 dif-

ferent intervals I0, . . . I4. The first “Interval Relation-

ship” row in each scenario states how they relate to

each other in time). For the first scenario it states all

the different time intervals mentioned are consecutive

to each other.

The “Initial Stage” row states how the system is

supposed to be at the time the scenario is considered.

For Scenario 1 it states that for the interval I0 there is

movement being detected by the PIR sensor, that the

system believes the person is not sleeping and is not in

bed and through the light sensor the system detects the

lights are on in the bedroom.

The “Properties” section consist of a number of

rows, one for each relevant property which depicts the

state of the system under consideration. In Scenario 1

we can trace the evolution of movement detection

(MoveDetected) as it evolves through time, and we can

see movement is detected through the PIR sensor dur-

ing I0 and I1 but movement is not detected (¬MoveDe-

tected) in the whole of I2, I3 and I4.

The “Transition Cause” row explains how the world

transitions from one state to the next one, it explains

change. For example, in Scenario 1, we can notice in I0
the system believes the person is not in bed, and then

at I1 it believes the person is in bed. This change of

believe is actually triggered by the action of the person

going to bed (Doon(GoingToBed, I0)).

So to understand how the scenario evolves the reader

has to see the values of the properties in two consecu-

tive states of the system of the “Properties” area of the

table, and look at the Transition cause under the first

state which will explain how the system transitioned to

the next state. In Scenario 1 the transition from I1 to

I2 is caused by an event (hence the use of an Occcurs

predicate), then the transition from I2 to I3 is caused by

a condition which triggers a rule in the system modify-

ing the current belief of the system (hence the use of an

Holds predicate), the transition from I3 to I4 is caused

by an event (hence the use of an Occurson predicate).

In summary we adopted the convention that the

states of the system can change due to an action of

the user (Do), an event related to a sensor (Occurs) or

an update in the system’s beliefs (Holds). Scenarios 2

and 3 evolve in similar fashion.

4.1.1 First Scenario

Table 6 focuses on the formalization of the first scenario.

An informal description of what happened in the first

scenario is given in Table 1 in section 2, then in Table 5

we provided the formalization of the evolution of that

scenario in time through different states as well as of

the actions, events and conditions which triggered those

changes. Table 6 focuses on the defeasible rules which

allows the system to reason with the knowledge of the

world as it changes so that is context-aware and can

react to the right contexts with sensible actuations.

The first line of the table shows the relationship of

the intervals of time, these are the same as they were

stated in table 5. The first column associates labels to

the rules, for example (S1, R4) refers to the fourth rule

of the first scenario.

The interpretation of the rules is according to the

syntax and semantics given for the knowledge represen-

tation language given in [10] so we invite readers not

familiar with it to use that publication as a support to

understand the rules in this article.

For example R1 states that when the user performs

the durative action of going to bed, it will have as a

result the occurrence of the event getting on bed. R2

states that this event in turns has as an effect on the

holding of the property of being on bed. R3 states if

the system detects through sensors there is no move-

ment detected at an instant (in this case at the end

of I1) then the system infers there is no movement at

that time. R4 states if the systems has information the

person is in bed and there is no movement for more

than 10 units of time (for example 10 minutes) these

are reasons to believe the person is sleeping. R5 states

the believe the person is sleeping is a reason for the sys-

tem to turn the lights off. R6 states when lights went off

the consequence is that the lights are not on anymore

(we assume as a simplification there is not other source
of light and the room is dark).

Argument A for the first scenario: As known

from the initial facts, the user turns the lights on when

he enters the room. So there is a possibility, because of

persistency, that the lights will remain on as reflected

in the following argumentation tree in figure 5.

LightsOn@I4

LightsOn@I3 notChange+−(LightsOn@I4)

Fig. 5 First Scenario Argument A Tree for LightsOn

Argument B for the first scenario: There is an

alternative explanation which is better informed than

the previous one, given that the system has been pro-
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Table 6 Knowledge Representation for First Scenario ¬LightsOn and LightsOn

MEETS(I0, I1) ∧MEETS(I1, I2) ∧MEETS(I2, I3) ∧MEETS(I3, I4)

¬Holdson(Movement, I0) ∧Holdson(Sleeping, I0) ∧Holdson(OnBed, I0) ∧ ¬Holdson(LightsOn, I0)

(S1, R1) Doon(GoingToBed, I0)>−−Occursat(GettingOnBed, begin(I1))

(S1, R2) Occursat(GettingToBed, begin(I1))>−−Holdsat(OnBed, begin(I1))

(S1, R3) ¬Occursat(MoveDectected, end(I1))>−−¬Holdsat(Movement, end(I1))

(S1, R4) Holdson(OnBed, I2) ∧ ¬Holdson(Movement, I2) ∧ Length(I2) > 10>−−Holdsat(Sleeping, end(I2))

(S1, R5) Holdson(Sleeping, I3)>−−Occurson(SystemTurnsLigthsOff, I3),

(S1, R6) Occurson(TurnLigtsOff, I3)>−−¬Holdson(LightsOn, I4)

grammed to understand when the lights are not needed

(¬Holdson(LightsOn, ...). The tree in figure 6 indicates

that Bob was going to bed at I0 and at I1 Bob was in

bed and stayed in bed till at I2 as seen in the lower left

part of the tree. Since there was no movement detected

at I2 (lower right part of the tree), the system has rea-

sons to believe that Bob is asleep at I2. Bob persists

on sleeping all through I3. At that moment the system

infers that it is reasonable to turn the lights off. As a

result, the lights are off at I4.

¬LightsOn@I4

SystemTurnsLightsOff@I3

Sleeping@I3

Sleeping@I2 notChange+−(Sleeping@I3)

OnBed@I2 ¬MoveDetected@I2

notChange+−(OnBed@I2)

OnBed@begin(I1)

¬MoveDetected@I1

notChange−+(¬MoveDetected@I2)

GettingOnBed@I1

GoingToBed@I0

Length@I2 > 10

Fig. 6 First Scenario Argument B Tree for ¬LightsOn

From the first scenario, A ./T B about I4, B�tspecA

because there is more information to support the reason

that the user is asleep. Therefore, B�
tdef

A, now the

system can state ∆
T↓ |∼ ¬Holdson(LightsOn, I4).

4.1.2 Second Scenario

Table 7 focuses on the formalization of the second sce-

nario. An informal description of what happened in the

second scenario was given in Table 1 section 2. As pre-

viously stated, Table 5 provides the formalization of

the evolution of that scenario in time through different

states and also of actions, events and conditions that

triggered the changes. Table 7 also focusses on defeasi-

ble rules just like Table 6 (same conventions apply for

all rule tables).

Row labelled (S2, R1) states that when the system

detects movement (maybe the user wakes up in the mid-

dle of the night to use the toilet), the property move-

ment holds. Row labelled (S2, R2) states that if the

movement continues over the next two minutes then it

is believe that the user is not sleeping. Row labelled

(S2, R3) states the durative action of the user getting

out of bed, it will have as a result of the occurrence

of the user is out of bed. This in turn has an effect in

(S2, R4) that the user is not in bed anymore. S2, R5

states that if movement is detected via sensor, and if

the user is not on bed, then the system turns the light

on. Row labelled (S2, R6) states when the system turns

the light on, then the lights stays on. Row labelled (S2,

R7) states the durative action of going back to bed (af-

ter using the toilet) causes the event of the user being

on bed. Rows labelled (S2, R7) to (S2, R12) are sim-

ilar to rows labelled (S1, R1) to (S2, R6) of the first

scenario.

Argument A for the Second scenario: As seen

from the initial facts, the user turns on the light when

he wakes up in the middle of the night, for example to

use the toilet, so there is a possibility that the light will

remain on at I8until he turns it off again.

LightsOn@I8

LightOn@I7
notChange+−(LightsOn@I8)

Fig. 7 Second Scenario Argument A Tree for LightsOn

Argument B for second scenario: There is an

alternative description for the second scenario which is

more informed than argument A. Thus, knowing that,
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Table 7 Knowledge Representation for the Second Scenario of ¬LightsOn and LightsOn

MEETS(I0, I1) ∧MEETS(I1, I2) ∧MEETS(I2, I3) ∧MEETS(I3, I4) ∧MEETS(I4, I5)

∧MEETS(I5, I6 ∧MEETS(I6, I7) ∧MEETS(I7, I8)

¬Holdson(Movement, I0) ∧Holdson(Sleeping, I0) ∧Holdson(OnBed, I0) ∧ ¬Holdson(LightsOn, I0)

(S2, R1) Occursat(MoveDetected, begin(I1))>−−Holdson(Movement, I1)

(S2, R2) Holdson(Movement, I1) ∧ Length(I1) > 2>−−¬Holdson(Sleeping, I1)

(S2, R3) Doon(GettingOutOfBed, I2)>−−Occursat(GetsOutOfBed, end(I2))

(S2, R4) Occursat(GetsOutOfBed, end(I2))>−−¬Holdat(OnBed, begin(I3))

(S2, R5) Occurson(MoveDetected, I3) ∧ ¬Holdsat(OnBed, begin, (I3))>−−Occurson(SystemTurnLightsOn, I3)

(S2, R6) Occurson(SystemTurnLightsOn, I3)>−−Holdson(LightsOn, end(I3))

(S2, R7) Doon(GoingToBed, , I4)>−−Occursat(GettingOnBed, begin(I5))

(S2, R8) Occursat(GettingToBed, begin(I5))>−−Holdsat(OnBed, end(I5))

(S2, R9) ¬Occursat(MoveDectected, begin(I6))>−−¬Holdsat(Movement, end(I6))

(S2, R10) Holdson(OnBed, I6) ∧ ¬Holdson(Movement, I6) ∧ Length(I6), > 10 > −Holdson(Sleeping, I6)

(S2, R11) Holdson(Sleeping, I6)>−−Occurson(SystemTurnLightsOff, I7)

(S2, R12) Occurson(SystemTurnLightsOff, I7)>−−¬Holdsat(LightsOn, end(I8))

the system has been programmed to understand that

the lights are not needed ¬Holdson(LightsOn, ...). Fig-

ure 8 signifies that if Bob was going back to bed, such

as at I4, and was in bed at I5 (as seen in the lower right

hand side of the table) then Bob will be in bed from

this interval onwards. Then for the system to have rea-

son to believe that Bob is asleep at I6, the system will

not have detected any movement at I6 and if this situ-

ation persists for the next 10 minutes, then the system

concludes that Bob is now sleeping. Also if Bob persists

on sleeping all through at I6, then system assume at I7
that it is reasonable to turn off the lights, as a result of

that, the lights are off at I8.

¬LightsOn@I8

SystemTurnLightsOff@I7

Sleeping@I6

notChange+−(OnBed@I6)

¬MoveDetected@I6

OnBed@I6

¬MoveDetected@I5

notChange−+(¬MoveDectected@I6)

OnBed@begin(I5)

GettingOnBed@begin(I5)

GoingToBed@I4

Length@I6 > 10

Fig. 8 Second Scenario Argument B Tree for ¬LightsOn

From the second scenario,A ./T B about I8,B�tspecA

because there is more information to support the reason

that the user has gone back to sleep so the system turns

the light off. Therefore, B�
tdef

A, now the system can

state ∆
T↓ |∼ ¬Holdson(LightsOn, I8).

4.1.3 Third Scenario

Table 8 focues on the formalization of the third sce-

nario. An informal description of the third scenario

given in Table 1 section 2. Table 5 provides the formal-

ization of the evolution of that scenario in time whilst

Table 8 focusses on defeasible rules.

Row labelled (S3, R1) states the occurrence of the
alarm ringing which will lead to awakening the user who

will then begin to move. Row labelled (S3, R2) states

if the movement continues for more than two minutes,

then the system believes that the user is not sleeping.

Row labelled (S3, R3) states the durative action of get-

ting out of bed out being performed by the user, will

result in the occurrence of the event getting off bed.

Row labelled (S3, R4) states that this event in turns has

an effect on the holding property of not being on bed.

Row labelled (S3, R5) states when property states that

user is not on bed and movement is detected with the

use of sensors, then the system turns the light on. Row

labelled (S3, R6) reflects the effect of the event which

turns the light on. Row labelled (S3, R7) states that the

durative action of the user leaving home will will lead

to the occurrence of event left home. Row labelled (S3,

R8) states that when the user has left no movement

is expected (¬Occurson(Movement, I5)). Row labelled

(S3, R9) states that if the property holds no movement

and this state remains the same for over 15 units of
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Table 8 Knowledge Representation for Third Scenario ¬LightsOn and LightsOn

MEETS(I0, I1) ∧MEETS(I1, I2) ∧MEETS(I2, I3) ∧MEETS(I3, I4) ∧MEETS(I4, I5) ∧MEETS(I5, I6)

¬Holdson(Movement, I0) ∧Holdson(Sleeping, I0) ∧Holdson(OnBed, I0) ∧ ¬Holdson(LightsOn, I0)

(S3, R1) Occurson(AlarmRings, end(I0))>−−Holdson(Movement, I1)

(S3, R2) Holdson(Movement, I1) ∧ Length(I1) > 2>−−¬Holdson(Sleeping, end(I1))

(S3, R3) Doat(GettingOutOfBed, begin(I2))>−−Occursat(GetsOutofBed, end(I2))

(S3, R4) Occursat(GetsOutofBed, end(I2))>−−¬Holdsat(OnBed, begin(I3))

(S3, R5) ¬Holdsat(OnBed, begin(I3)) ∧Holdson(Movement, I3)>−−Occurson(SystemTurnLightsOn, I3)

(S3, R6) Occurson(SystemTurnLightsOn, I3)>−−Holdsat(LightsOn, I3)

(S3, R7) Doon(LeavingHome, I4)>−−Occursat(LeftHome, end(I4))

(S3, R8) Occursat(LeftHome, end(I4))>−−¬Holdon(Movement, I5)

(S3, R9) ¬Holdsat(Movement, I5) ∧ Length(I5) > 15 ∧ ¬Holdsat(OnBed, I5)>−−Occurson(SystemTurnLightsOff, I6)

(S3, R10) Occurson(SystemTurnLightsOff, I6)>−−¬Holdson(LightsOn, I6)

time (for example 15 minutes) and the bed sensor does

not detect anyone on bed, this will make the system to

infer that the user has left home and then turns off the

light. Row labelled (S3, R10) reflect the effect of the

system turning the light off.

Argument A for the third scenario: The initial

facts show that the user turns the light on at I5 when

he wakes up in the morning, and as a result, there is a

possibility that the light will remain on at I6 as shown

in the argumentation tree in figure 9.

LightsOn@I6

LightsOn@I5
notChange+−(LightsOn@6)

Fig. 9 Third Scenario Argument A Tree for LightsOn

Argument B for the third scenario: The alarm

rings at I0 which will awake the user. As he begins to

move, this movement is detected by the system at I1
and persists for the next 10 minutes, then the system

understands that the user is awake as seen at the lower

middle of the tree figure 10. When the user gets out of

bed at I2, then he is no longer on bed at I3, as shown in

the low right of the argumentation tree. This informs

the system which then turns the light on at I3. As the

persistence of not being in bed continues from I3 to

I4 the system continues to keep the lights on (unless

the user turns the light off). The user is about to leave

home at I4, then at end of I4 the user is out of home. It

is possible that the user forgets to switch off the lights

before he leaves home (which happened in this case).

As a result, the system turns the lights off at I6 after

no movement is detected at I5 and not persistent state

of ¬HoldsOnBed remains at I5. The resulting argument

is explained in figure 10.

¬LightsOn@I6

SystemTurnLightsOff@I6

¬Movement@I5

¬Movement@I5

LeftHome@end(I4)

LeavingHome@I4

notChange−+(¬Movement@I5)

¬OnBed@I5

¬OnBed@I4

¬OnBed@I3

¬OnBed@begin(I3)

GetsOutOfBed@end(I2)

notChange−+(¬OnBed@I3)

GettingOutOfBed@begin(I2)

Movement@I1

AlarmRings@end(I0)

Lenght@I1 > 2

Length@I5 > 15 Light@I5

Light@I4

Light@I3

SystemTurnLightsOn@I3

¬OnBed@I3 Movement@I3

Fig. 10 Third Scenario Argument B Tree for ¬LightsOn

From the second scenario,A ./T B about I6,B�tspecA

because there is more information to support the reason

that the user has left home and then the system turns

the light off. Therefore, B�
tdef

A, now the system can

state ∆
T↓ |∼ ¬Holdson(LightsOn, I6).
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Table 9 Comparison of Classical Preferences in AI and Argumentation

Preferences in Classical AI Argumentation

Conflict Reso-
lution

Preference methods in AI aim at decision-support systems which include
web-based recommender systems, solving automated problems [39] and
other interactive systems that aim to elicit and satisfy the users prefer-
ence in order to give satisfactory recommendation.

Argumentation has been shown to handle complex situations in the pre-
vious work ( [36]; [13]; [14]; [3]) especially in dealing with conflicts, and
this has made researchers channel attention to this popular conflict res-
olution approach. Argumentation was shown to be a very relevant topic
in AmI domain [31].

Application to
complex prob-
lems

Most preferences handling methods in AI (CP-nets specifically) are re-
stricted to preferences that are strict/complete (which a limitation iden-
tified by [2] in his study), as the outcome is already known. Strict or
binary valued preference occurs in everyday life (such as, Bob prefers the
light to be off at 10pm) but multivalued preference are not common (Bob
prefers the light to be switched off in the evening). The latter is neither
strict nor complete as the term ”evening” is ambiguous thereby arising
conflicting questions like when in the evening?

Argumentation covers wide range of disciplines just like preferences in AI,
but has been applied in wider domains ( [16]; [38]; [35]; [26]) in AmI
as a knowledge representation and reasoning paradigm, for dealing with
incomplete and inconsistent (contradictory) knowledge. Though, one of
its main challenges is to design a formal system that enjoys desirable
semantic properties and tractable computational complexity, while being
easy to understand.

Decision Mak-
ing

Preferences in AI are known to express preferential dependencies between
attributes [28], such as when a Bob prefers to by hard cover mathematics
book (which he reads often) and a paperback survey book (which might
be read not more than twice). This indicates that the choice is dependent
on the book type. This limits preferences in AI in the sense that they
cannot model an arbitrary preference over a combinatorial domain.

In a usual context, once a decision is made a course of action is taken
leaving behind other possible choices. However, decision making in argu-
mentation is supported by reasoning, which will account for the charac-
teristics of the various available alternatives [25]. This shows the ability
that argumentation has to reason in a changing world where information
is not complete. When new information surfaces, it gives considerations
to obtain new reason to further conclusions or better reasons to sustain
previous one.

Ability to
reason and
represent
users’ prefer-
ences

One main important factor of preferences in AI is that it aids elicitation of
preference information from non-expert users directly or indirectly. How-
ever, certain questions are yet to be addressed, which include: How can
these preferences be represented? How will they be used for reasoning?
Can they be actually computed? [28].

Argumentation handles problems in AI which includes defeasible reason-
ing, (see [24]; [41]; [10]; [16]; [26]). Using the notion of instant or
interval or both, demonstration has been made [10] to show how known
problems of defeasible reasoning can be solved.

Ability to
handle time

Despite the apparent importance of preferences in AI, as it has been ap-
plied to handle challenges pose in AI (such as: cognitive challenges, com-
putational challenges, conceptual challenges and representational chal-
lenges) [19], there has been no recognition of preferences in AI having
the ability to represent users’ preference over time

Apart from the fact that argumentation is now a popular conflict resolu-
tion approach, and has been applied successfully in [31], it has also been
theoretically proven that argumentation can be used to represent users’
preferences over time [10].
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5 Conclusion and Further Work

Although significant research has been conducted within

Ambient Intelligence and despite being an area which

in essence is user-centred, it has not been enough to

facilitate a fluent inter-relation between AmI systems

and user preferences.

The research we are conducting investigates ways to

improve the understanding and management of pref-

erences. Our analysis of existing work in preferences

handling looked at various strategies developed to rep-

resent and reason with partial orders of various types to

explain how humans choose amongst alternatives. We

looked at several well-known alternatives like CP-nets

and UCP-nets, which are seen as promising in other

applications.

Our experience based on development of real Am-

bient Intelligence systems highlights the importance of

some aspects which are not well supported in AI for-

malisms for preference handling. One feature which is

naturally expected to deal with human preferences is

the tension amongst these as sometimes we wrestle with

what “we would like but we can’t have”. A prefer-

ence linked to tasty food may be also associated with

a preference from a health perspective advising against

its consumption. Another feature of preferences is that

they are dynamic, they change with time. It could be

that we internally change our preferences based on re-

peated experiences, or that a change of preference is

imposed externally to us, for example by health profes-

sionals or by weather.

This leads to the consideration of other formalisms

which have been designed to be able to handle con-

flict and inconsistent information as well as knowledge

in relation to time. We explain in section 4 how argu-

mentation systems can be used to deal not only with

conflictive preferences and with how preferences change

with time but also based on those exercises, we started

to understand that preferences can actually be embed-

ded in arguments as a sort of constraint. We provided

a summary of the pros and cons of the classical prefer-

ences in AI in table 3 and also a comparison between the

classical AI approaches and argumentation in table 9.

Although we provide one formal description which were

illustrated in to three scenarios, as we tried to keep it

simple, this is also consistent with what we have seen

in the scenarios we explored.

Motivated by earlier reflections on the importance

of preferences and the challenge they posse technically

[6], (see figure 11), we made a first attempt at trying to

find specific ways to manage this concept. Our initial

investigations are positive. We believe we have found

a useful tool to study the computational management

User's needs
and

Preferences 

System's
view of
UNPs

User Specifying PNs

System Learning, Feedback

Recommendations

Feedback, Questions

Actions on behalf of the user
(order groceries, order medicines)
and related updates

New facts coming from the world
(doctor advise, health news...)

Fig. 11 Main interactions among user, system and real world
affecting the dynamics of preference

of preferences and we will now be exploring ways to

generalize our findings as well as on creating suitable

bridges between users and systems, that is interfaces

which can facilitate the flow of preferences from user to

system and vice versa.
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