
Formal Modeling and Analysis of Data Protection
for GDPR Compliance of IoT Healthcare Systems

Florian Kammüller
Middlesex University London, UK

f.kammueller@mdx.ac.uk

Abstract—In this paper, we investigate the implications of the
General Data Privacy Regulation (GDPR) on the design of an IoT
healthcare system. From 26th May 2018, the GDPR will become
mandatory within the European Union and hence also for any
supplier of IT products. Breaches of the regulation will be fined
with penalties of 20 Million EUR. This is a strong motivation
for system designers to enable the proof of compliance to the
GDPR. We propose the use of formal modeling and analysis
using interactive theorem proving. Based on previous work on
modeling infrastructures and security policies for insider attacks,
we demonstrate the use of logical modeling and machine assisted
verification to support data protection (privacy) by design. We
illustrate this process on the case study of IoT based monitoring
of Alzheimer’s patients that we work on in the CHIST-ERA
project SUCCESS.

I. INTRODUCTION

Infringements on the basic principles of data processing,
rights of data subjects, or other non-compliances to Articles
of the GDPR are fined with up to 20 million EUR or 4% of the
annual turnover of an undertaking whichever is higher (Article
79 (3a) [1]). Therefore, it is a crucial need for any company
to find ways to achieve and keep GDPR compliance. The
General Data Privacy Regulation (GDPR) [1] is a 209 page
legal document. For small businesses, it might be hard to tackle
such a complex requirements specification. For these reasons,
we strife in this paper, to reduce some of that complexity and
overcome the difficulty of legal formulation by
(a) summarizing the legal text, highlighting the technically

relevant parts and
(b) providing an abstract model of infrastructures with actors

and policies in which the requirements given by the
GDPR are formally specified in logic.

We thus provide an important first step towards producing
GDPR compliant systems by establishing a general framework
for creating a formal system design that provably complies to
the regulation. The latter strong guarantee is achieved because
the framework we suggest is based on the interactive theorem
prover Isabelle. Building on previous work of modeling and
verification of Insider threats using logical analysis [2], we
generalize and extend that framework for general privacy and
security analysis of infrastructures. In particular, we add a
completely new layer of data labeled with security labels in
the style of the Decentralized Label Model (DLM) [3].

In our approach we complement the convenience of tempo-
ral logics and Kripke structures with the expressive power of
Higher Order Logic (HOL) of Isabelle. This enables

(1) the formalisation of precise yet comprehensible system
design specifications. These specifications can then be
used to formally

(2) express data protection (privacy) properties of the GDPR
and prove them in the Isabelle framework using machine
assistance.

The combination of Steps (1) and (2) provides formally
verified data protection (privacy) by design.

Addressing point (a), we first give an overview of the
regulation pointing to the parts relevant for technical design
of information systems (Section II). We then address point (b)
by presenting our modeling and analysis technique in Isabelle
(Section III) showing how GDPR relevant properties can be
formalized using data types and state transition rules (Section
IV). In Section V, we illustrate the application of the frame-
work as a case study of our CHIST-ERA project SUCCESS
[4] on security and privacy of IoT healthcare systems showing
how temporal logic can be used to express GDPR compliance
naturally in Isabelle. We conclude in Section VI.

II. THE EUROPEAN STANDARD GDPR

The GDPR (General Data Protection Regulation) is in full
called “the regulation of the European parliament and the
council on the protection of individuals with regard to the
processing of personal data and on the free movement of such
data”. For this paper, we use the final proposal [1] as our
source to provide a comprehensive summary of the main points
relevant for a technical analysis. Despite the relatively large
size of the document of 209 pages, the relevant portion for this
is only about 30 pages (Pages 81–111, Chapters I to Chapter
III, Section 3). In more detail, the GDPR is constituted by the
following parts (according to page numbers):

• 1–5: Introduction
• 6–80: The ANNEX starts with a listing of sections

numbered (1). . . (135) addressing various aspects of the
regulation with no obvious subject structure but con-
taining valuable information clarifying and premeditating
important concepts, ideas and concepts. It might be
considered as prologue to the actual regulation text.

• 81–209: Chapters I–XI contain 91 articles with subsec-
tions (paragraphs) ordering them along major purposes
and themes. More complex chapters are divided into
sections.
In more detail these chapters are:

Chapter I, 81–87, General Provisions, Articles (1–4):
Subject matter and objectives, Material scope, Terri-
torial scope, Definitions.

Chapter II, 88–96, Principles, Articles (5–10):
Principle relating to personal data processing, Law-
fulness of processing, Conditions for consent, Pro-
cessing of data.

Chapter III, 96–115, Rights of the Data Subject, Articles (11–21):
Section 1 (Transparency and modalities), Section 2
(Information and access to data), Section 3 (Rec-
tification and erasure), Section 4 (Right to object
and automated individual decision making), Section
5 (Restrictions).

Chapter IV, 116–144, Controller and Processor, Articles (22–
39a):
Section 1 (General obligations), Section 2 (Data
Security), Section 3 (Data protection assessment and
prior consultation), Section 4 (Data protection offi-
cer), Section 5 (Codes of conduct and certification).

Chapter V, 145–156, Transfer of Personal Data to Third Coun-
tries or International Organisations, Articles (40–
45).

Chapter VI, 157–168, Independent Supervisory Authorities, Arti-
cles (46–54):
Section 1 (Independent status), Section 2 (Compe-
tence, Tasks and Powers).

Chapter VII, 169–181, Co-operation and Consistency, Articles
(54a–72):
Section 1 (Co-operation), Section 2 (Consistency),
Section 3 (European Data Protection Board).

Chapter VIII, 182–199, Remedies, Liability, and Sanctions, Arti-
cles (73–79b).

Chapter IX, 200–204, Provisions Relating to Specific Data Pro-
cessing Situations, Articles (80–85).

Chapter X, 205–206, Delegated Acts and Implementing Acts,
Articles (86–87).

Chapter XI, 207–209, Final Provisions, Articles (88–91).

The central laws for enforcing Security and Privacy are Arti-
cles 23 Data protection by design and by default and Article
30 Secure Processing. However, the technically relevant parts
providing the detailed definition of terms and functional com-
pliance requirements of systems are contained in the earlier
Articles (1–21) in Chapter I to Chapter III, Section 3.

Chapter I generally defines the scope of the regulation in
terms of main purpose (protection of individuals), material
scope (personal data) and territories (in the Union); Article 4
provides definitions (1–21) for main terms like personal data,
processing, profiling, controller, or third party amongst others.
Thus Chapter I is relevant for the basic definitions of our model
in Section III.

Chapter II defines the principles for data processing and re-
tention. Article 5 states that data must be processed “lawfully,
fairly and in a transparent manner” [1] and furthermore the
article defines purpose limitation, data minimisation, accuracy,
storage limitation, integrity and confidentiality, and account-

ability. Article 6 then details the notion of lawfulness. Article
7 specifies the conditions for consent which is requested for
any processing of data concerning the data subject. Article 8
adds the details for a child’s consent. Article 9 is dedicated
to the processing of special categories of personal data, for
example, revealing ethnic origin, political opinions or religious
or philosophical beliefs and provides in Sentence 2 a list
of exceptions where data protection is exempt. Article 9a
defines further exemptions in case of criminal convictions
and offences. Article 10 is very relevant for the use of data
for scientific purposes: Processing not requiring identification.
Sentence 1 relieves the duty of data identification if the
purpose of processing does no longer require this. Sentence
2 specifies the exemption from the central Articles 15–18 on
access and erasure rights of the data subject that we explain
next.

While Chapters I and II provide essential definitions, more
technical requirements for data processing are provided in
Chapter III, Sections 1 to 3.

• Section 1 describes Transparency and Modalities. Article
12 states that the controller must provide any information
and communication (specified in Article 14–20) “relating
to the data subject in a concise transparent and intelligible
and easily accessible form . . . ”.

• Section 2 provides details of the access rights and the
information that the controller must provide to a data
subject on request (Articles 14, 14a, 15), like the retention
time and the purpose of data collection.

• Section 3 defines the right of a data subject to rectification
and erasure of personal data (“right to be forgotten”) as
well as the right to restrict its processing (Articles 15–18).

In summary, Chapter III specifies that the controller must
give the data subject read access (1) to any information,
communications, and “meta-data” of the data, e.g., retention
time and purpose. In addition, the system must enable deletion
of data (2) and restriction of processing.

An invariant condition for data processing resulting from
these Articles is that the system functions must preserve any
of the access rights of personal data (3).

III. FORMAL MODEL IN ISABELLE

In this section, we describe the Isabelle framework for
security and privacy analysis of infrastructures with policies.

Isabelle is a generic Higher Order Logic (HOL) proof
assistant. Its generic aspect allows the embedding of so-
called object-logics as new theories on top of HOL. There
are sophisticated proof tactics available to support reasoning:
simplification, first-order resolution, and special macros to
support arithmetic amongst others. The use of HOL has the
advantage that it enables expressing even the most complex
application scenarios, conditions, and logical requirements.
Isabelle enables the analysis of meta-theory, that is, we can
prove theorems in an object logic but also about it.

Object-logics are added to Isabelle using constant and type
definitions forming a so-called conservative extension. That is,
no inconsistency can be introduced: new types are defined as

subsets of existing types; properties are proved using a one-to-
one relationship to the new type from properties of the existing
type.

A. Isabelle Framework for Infrastructure Security and Privacy

This framework has been created initially for the modeling
and analysis of Insider threats [2]. Its use has been validated
on the most well-known insider threat patterns identified by
the CERT-Guide to Insider threats [5]. More recently, this
Isabelle framework has been successfully applied to realistic
case studies of insider attacks in airplane safety [6] and on
auction protocols [7]. These larger case studies as well as
complementary work on the analysis of Insider attacks on IoT
infrastructures [8]–[10] have motivated the extension of the
original framework by Kripke structures and temporal logic
[11] as well as a formalisation of attack trees [12].

In the course of this extension, the Isabelle framework has
been restructured such that it is now a general framework
for the state-based security analysis of infrastructures with
policies and actors. Temporal logic and Kripke structure build
the foundation. Meta-theoretical results have been established
to show equivalence between attack trees and CTL statements.
This foundation provides a generic notion of state transition on
which attack trees and temporal logic can be used to express
properties. Interactive proof is used to prove these properties
but the meta-theory can be applied to immediately produce
results. Figure 1 gives an overview of the framework.

Kripke structures & CTL

Attack trees

Infrastructure S&P

GDPR for
IoT healthcare

Fig. 1. Generic framework for infrastructrures embeds applications.

Without going into too much detail, we will provide a short
introduction to provide just enough detail to understand how
we model the GDPR requirements.

B. Kripke Structure, CTL, and Attack Trees

We apply Kripke structures and CTL to model state based
systems and analyse properties under dynamic state changes.
Snapshots of systems are the states on which we define a state
transition. Temporal logic is then employed to express security
and privacy properties.

In Isabelle, the system states and their transition relation are
defined as a type class called state containing an abstract
constant state_transition. It introduces the syntactic infix

notation I →i I’ to denote that system state I and I’ are
in this relation.

class state =
fixes state_transition :: [σ :: type, σ] ⇒ bool

("_ →i _")

The above class definition allows lifting Kripke structures and
CTL to a general level. Branching time temporal logic CTL is
defined over Kripke structures with such state transitions and
can be applied to the theory of infrastructures.

Based on the generic state transition →i of the state type
class, the CTL-operators EX and AX express that property
f holds in some or all next states, respectively. The CTL
formula AG f means that on all paths branching from a state
s the formula f is always true (G stands for ‘globally’). It
can be defined using the Tarski fixpoint theory by applying
the greatest fixpoint operator. In a similar way, the other CTL
operators are defined. The formal Isabelle definition of what
it means that formula f holds in a Kripke structure M can be
stated as: the initial states of the Kripke structure init M need
to be contained in the set of all states states M that imply
f .

M ` f ≡ init M ⊆ { s ∈ states M. s ∈ f }

In an application, the set of states of the Kripke struc-
ture will be defined as the set of states reachable by the
infrastructure state transition from some initial state, say
example_scenario.

example_states ≡ { I. example_scenario →i^* I }

The relation →i^* is an operator supplied by the Isabelle
theory library. It is the reflexive transitive closure applied to
the relation →i.

The Kripke constructor combines the constituents initial
state, state set and state transition relation →i.

example_Kripke ≡
Kripke example_states {example_scenario} →i

In Isabelle, the concept of sets and predicates coincide1. Thus
a property is a predicate over states which is equal to a set
of states. For example, we can then try to prove that there is
a path (E) to a state in which the property eventually holds
(in the Future) by starting the following proof in Isabelle.

example_Kripke ` EF property

C. Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the repre-
sentation of infrastructures as graphs with actors and policies
attached to nodes. These infrastructures are the states of the
Kripke structure.

The transition between states is triggered by non-
parametrized actions get, move, eval, and put executed
by actors. Actors are given by an abstract type actor and
a function Actor that creates elements of that type from

1In general, this is often referred to as predicate transformer semantics.

identities (of type string). Policies are given by pairs of
predicates (conditions) and sets of (enabled) actions.

type_synonym policy = ((actor ⇒ bool) × action set)

Actors are contained in an infrastructure graph.

datatype igraph =
Lgraph (location × location)set

location ⇒ identity set
actor ⇒ (string set × string set)
location ⇒ (string × acond)

An igraph contains a set of location pairs representing the
topology of the infrastructure as a graph of nodes and a list of
actor identities associated to each node (location) in the graph.
Also an igraph associates actors to a pair of string sets by
a pair-valued function whose first range component is a set
describing the credentials in the possession of an actor and
the second component is a set defining the roles the actor can
take on. More importantly in this context, an igraph assigns
locations to a pair of a string that defines the state of the
component and an element of type acond. This type acond

is defined as a set of labelled data representing a condition on
that data. Corresponding projection functions for each of these
components of an igraph are provided; they are named gra

for the actual set of pairs of locations, agra for the actor map,
cgra for the credentials, and lgra for the state of a location
and the data at that location.

Infrastructures are given by the following datatype that
contains an infrastructure graph of type igraph and a policy
given by a function that assigns local policies over a graph to
all locations of the graph.

datatype infrastructure =
Infrastructure

igraph
[igraph, location] ⇒ policy set

There are projection functions graphI and delta when
applied to an infrastructure return the graph and the policy,
respectively. Policies specify the expected behaviour of ac-
tors of an infrastructure. They are defined by the enables

predicate: an actor h is enabled to perform an action a in
infrastructure I, at location l if there exists a pair (p,e) in
the local policy of l (delta I l projects to the local policy)
such that the action a is a member of the action set e and the
policy predicate p holds for actor h.

enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

Equipped with the basic Infrastructure constructors, we con-
sider next how these can be used to specify a GDPR compliant
system.

IV. DATA PROTECTION BY DESIGN FOR GDPR
COMPLIANCE

A. Security and Privacy by Labeling Data

The Decentralised Label Model (DLM) [3] introduced the
idea to label data by owners and readers. We pick up this idea
and formalize a new type to encode the owner and the set of
readers.

type synonym dlm = actor × actor set

Labelled data is then just given by the type dlm × data

where data can be any data type. Additional meta-data, like
retention time and purpose, can be encoded as part of this
type data. We omit these detail here for conciseness of the
exposition.

Using labeled data, we can now express the essence of
Article 4 Paragraph (1): ’personal data’ means any information
relating to an identified or identifiable natural person (’data
subject’). Since we have a more constructive system view, we
express this by defining the owner of a data item d of type
dlm as the actor that is the first element in the pair that is the
first of the pair d. Then, we use this function to express the
predicate “owns”.

definition owner :: dlm × data ⇒ actor
where owner d ≡ fst(fst d)

definition owns ::
[igraph, location, actor, dlm × data] ⇒ bool

where owns G l a d ≡ owner d = a

The introduction of a similar function for readers projecting
the second element of a dlm label

definition readers :: dlm × data =⇒ actor set
where readers d ≡ snd (fst d)

enables specifying when an actor may access a data item.

definition has_access ::
[igraph, location, actor, dlm × data] ⇒ bool

where has_access G l a d ≡
owns G l a d ∨ a ∈ readers d

B. Privacy Preserving Functions

The labels of data must not be changed by processing: we
have identified this finally as an invariant (3) resulting from
the GDPR in Section II. This invariant can be formalized in
our Isabelle model by a type definition of functions on labeled
data that preserve their labels.

typedef label_fun = {f :: dlm × data =⇒ dlm × data.
∀ x. fst x = fst (f x)}

We also define an additional function application operator m
on this new type. Then we can use this restricted function
type to implicitly specify that only functions preserving labels
may be applied in the definition of the system behaviour in
the following state transition rules.

C. Data Protecting State Transition

The abstract state transition provided in the underlying
Kripke structure theory is instantiated in the GDPR infras-
tructure model by an inductive definition of a state transition
relation →n over infrastructures. A set of inductive rules
defines this transition relation →n relative to characteristics
of the current state. These characteristics can exploit the
information encoded into the infrastructure as well as the
enables predicate to express how the next infrastructure state
evolves from the current one. It is here where the GDPR

articles are incarnated into the system specification. We show
here the rules for put, get, process and delete (see the complete
source code [13] for full details).

1) The put pata rule: assumes an actor a residing at a
location l in the infrastructure graph G and being enabled the
put action. If infrastructure state I fulfils those preconditions,
the next state I’ can be constructed from the current state
by adding the data item ((Actor a, as), n) at location l.
The addition is given by updating (using :=) the existing data
storage lgra G l at location l with the set union of its second
element and the singleton set {((Actor a, as), n)}. Note
that the first component Actor a marks the owner of this data
item as a. The other components, the reader list as, and the
actual data n, as well as the state of the location s can be
instantiated freely within the limitations given by the Isabelle
types.

put:
G = graphI I =⇒ a @G l =⇒
enables I l (Actor a) put =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
((lgra G)(l :=
(s, snd (lgra G l) ∪ {((Actor a, as), n)}))))

(delta I)
=⇒ I →n I’

2) The get data rule: resembles the put data rule in many
parts. However, here an actor a accesses data in a remote
location l’ and adds it to the data in his current location l.
This copying of data is only permitted if the current location
l’ of the data enables a to get and if the list of readers as

in the data item ((Actor a’, as), n) contains the entry
Actor a. Different to the put rule, this rule preserves the first
component fst(lgra G l) of the state of location l.

get_data:
G = graphI I =⇒ a @G l =⇒
enables I l’ (Actor a) get =⇒
((Actor a’, as), n) ∈ snd (lgra G l’) =⇒
Actor a ∈ as =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
((lgra G)(l := (fst (lgra G l),

snd (lgra G l) ∪ {((Actor a’, as), n)}))))
(delta I)

=⇒ I →n I’

3) The process rule: prescribes how data within the in-
frastructure may be processed. It imposes that only privacy
preserving functions may be applied to data (see Section
IV-B). This is achieved by using the application operator m
because it enforces the variable f to be of type label_fun.
The existing data item ((Actor a’, as), n) is replaced
by f m((Actor a’, as), n) while preserving the label
(Actor a’, as) owing to the properties of type label_fun.
Clearly, the actor needs to be eval enabled in his location
where also the data must reside.

process:
G = graphI I =⇒ a @G l =⇒
enables I l (Actor a) eval =⇒

((Actor a’, as), n) ∈ snd (lgra G l) =⇒
Actor a ∈ as =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
((lgra G)(l := (fst (lgra G l),
snd (lgra G l) - {((Actor a’, as), n)}

∪ {f m ((Actor a’, as), n)}))))
(delta I)

=⇒ I →n I’

4) The delete rule: enables the owner of the data to delete
his or her data from a location in the infrastructure graph. Note
that, different to the previous rules, here are no preconditions
on the location of the actor nor the location of the data other
than that they are in the infrastructure graph. Neither is there
any requested enabledness of actions imposed on the actor.
That is, the owner can delete his data anywhere.

del_data:
G = graphI I =⇒ a ∈ actors G =⇒
l ∈ nodes G =⇒
((Actor a, as), n) ∈ snd (lgra G l) =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
((lgra G)(l := (fst (lgra G l),

snd (lgra G l) - {((Actor a’, as), n)}))))
(delta I)

=⇒ I →n I’

V. APPLICATION EXAMPLE FROM IOT HEALTHCARE

A. System Model

The example of an IoT healthcare systems is from the
CHIST-ERA project SUCCESS [4] on monitoring Alzheimer’s
patients. Figure 2 illustrates the system architecture where data
collected by sensors in the home or via a smart phone helps
monitoring bio markers of the patient. The data collection
is in a cloud based server to enable hospitals (or scientific
institutions) to access the data which is controlled via the smart
phone. We show the encoding of the igraph for this system

cloud

hospital

home

Patient

sensor hub

sphone

Doctor

Fig. 2. IoT healthcare monitoring system for SUCCESS project

architecture in the Infrastructure model.

ex_graph ≡ Lgraph
{(home, cloud), (sphone, cloud), (cloud,hospital)}
(λ x. if x = home then {’’Patient’’} else

(if x = hospital then {’’Doctor’’} else {}))
ex_creds ex_locs

The data and its privacy access control definition is given
by the parameter ex_locs specifying that the data 42, for
example some bio marker’s value, is owned by the patient
and can be read by the doctor.

ex_locs ≡ (λ x. if x = cloud then (’’free’’,
{((Actor’’Patient’’,{Actor’’Doctor’’}),42)}) else {})

B. Policy Enforcement
Using the formal model of infrastructures, we can now

prove privacy by design for GDPR compliance of the specified
system. We show how the properties relating to data owner-
ship, processing and deletion can be formally captured using
Kripke structures and CTL and the Infrastructure framework.

1) Owner and listed readers can access: we can now use
the basic definition over the DLM labels from Section IV-A
to express that in all states globally (AG) owners and listed
readers can access a data item.

theorem GDPR_one:
∀ h ∈ gdpr_actors. ∀ l ∈ gdpr_locations.
Actor h ∈ {owner d} ∪ readers d −→
gdpr_Kripke `

AG {x. has_access (graphI x) l (Actor h) d }

2) Owner can delete: the property that any actor of the
infrastructure can delete his or her data at any time is expressed
using the definition actor_can_delete which expresses that
a location l does not contain any data for an actor h.

actor_can_delete I h l ≡
(∀ as n. ((h, as), n) /∈ (snd (lgra (graphI I) l)))

This definition is then used within an AG statement that entails
another temporal formula: for all paths holds in all states that
there is a path x in which the data of Actor h is deleted.

theorem GDPR_two:
∀ h ∈ gdpr_actors. ∀ l ∈ gdpr_locations.
gdpr_Kripke `

AG (EX {x. actor_can_delete x (Actor h) l})

The inner formula is an EX formula (instead of an AX) since
not necessarily in all possible next states from the state x the
data is deleted: Actor h may still consent to keep the data.
We have formulated this property here within the healthcare
application but it can be proved in more general terms – for
arbitrary Kripke structures – at the general level of the theory
Infrastructure.

3) Processing preserves privacy: we can prove that pro-
cessing preserves ownership as defined in the initial state for
all paths globally (AG) within the Kripke structure and in all
locations of the graph. Note, that it would not be possible to
express such a set using a universally quantified formula within
a temporal operator when using Modelcheckers since they only
allow propositional logic within states. This generalisation is
only possible since we use Higher Order Logic.

theorem GDPR_three: h ∈ gdpr_actors =⇒
l ∈ gdpr_locations =⇒
owns (Igraph gdpr_scenario) l (Actor h) d =⇒
gdpr_Kripke `

AG {x. ∀ l ∈ gdpr_locations.
owns (Igraph x) l (Actor h) d }

VI. CONCLUSIONS

In this paper, we have summarised the GDPR and demon-
strated that the Isabelle Infrastructure framework can be used
to apply this data protection regulation for compliance check-
ing. We have illustrated how the Isabelle Infrastructure frame-
work can formally encode the technical requirements entailed
in the GDPR by using Kripke structures and the temporal
logic CTL. We have illustrated on an IoT healthcare patient
monitoring system, how to encode the system architecture and
how to specify the privacy access control. Finally, we have
formalized the major proof obligations given by the GDPR.

The use of CTL is reminiscent of Modelchecking tech-
niques. However, the use of Modelchecking is restricted
owing to the state explosion problem to finite domains and
propositional logic in the states. Using Isabelle, we overcome
this restriction and enable use of quantification and induction
necessary for invariant proofs (like the preservation property
(3) (Section V-B3)). For legal applications in computer science
deontic logics have been experimented with (see [14]) for
an overview). However, to our knowledge, this is the first
application of Isabelle or HOL to modeling GDPR. A major
advantage of using a proof assistant is that the formal specifi-
cation and proofs are machine-checked. Furthermore, abstract
system specifications can be provably refined and finally code
can be extracted to major programming languages, e.g. Scala.

REFERENCES

[1] E. Union, “The eu general data protection regulation (gdpr),” Accessed
20.3. 2018, http://www.eugdpr.org.

[2] F. Kammüller and C. W. Probst, “Modeling and verification of insider
threats using logical analysis,” IEEE Systems Journal vol. 11, no. 2,
pp. 534–545, 2017.

[3] A. C. Myers and B. Liskov, “Complete, safe information flow with
decentralized labels,” in Proceedings of the IEEE Symposium on Security
and Privacy. IEEE, 1999.

[4] CHIST-ERA, “Success: Secure accessibility for the internet of things,”
2016, http://www.chistera.eu/projects/success.

[5] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT Guide to
Insider Threats: How to Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud), 1st ed., ser. SEI Series in
Software Engineering. Addison-Wesley Professional, Feb. 2012.

[6] F. Kammüller and M. Kerber, “Investigating airplane safety and security
against insider threats using logical modeling,” in IEEE Security and
Privacy Workshops, WRIT’16. IEEE, 2016.

[7] F. Kammüller, M. Kerber, and C. Probst, “Towards formal analysis of
insider threats for auctions,” in 8th ACM CCS International Workshop
on Managing Insider Security Threats, MIST16. ACM, 2016.

[8] F. Kammüller, J. R. C. Nurse, and C. W. Probst, “Attack tree analysis
for insider threats on the IoT using Isabelle,” in Human Aspects of
Information Security, Privacy, and Trust, LNCS Springer, 2016.

[9] F. Kammüller, “Human centric security and privacy for the iot using
formal techniques,” in 3d International Conference on Human Factors
in Cybersecurity, vol. 593, AISC, Springer 2017.

[10] ——, “Formal models of human factors for security and privacy,” in
5th International Conference on Human Aspects of Security, Privacy
and Trust, HCII-HAS 2017, LNCS 10292, Springer, 2017.

[11] ——, “Isabelle modelchecking for insider threats,” in Data Privacy
Management, DPM16, assoc. w. ESORICS’16 LNCS 9963, 2016.

[12] ——, “A proof calculus for attack trees,” in Data Privacy Management,
DPM17, assoc. w. ESORICS’17, LNCS 10436, Springer, 2017.

[13] ——, “Isabelle infrastructure framework with iot healthcare s&p appli-
cation,” 2018, available at https://github.com/flokam/IsabelleAT.

[14] J. C. Meyer, R. J. Wieringa, and I. W. on Deontic Logic in Com-
puter Science, Deontic Logic in Computer Science Normative System
Specification, 1993.

http://www.eugdpr.org
https://github.com/flokam/IsabelleAT

	Introduction
	The European Standard GDPR
	Formal Model in Isabelle
	Isabelle Framework for Infrastructure Security and Privacy
	Kripke Structure, CTL, and Attack Trees
	Infrastructures, Policies, and Actors

	Data Protection by Design for GDPR compliance
	Security and Privacy by Labeling Data
	Privacy Preserving Functions
	Data Protecting State Transition
	The put pata rule
	The get data rule
	The process rule
	The delete rule

	Application Example from IoT Healthcare
	System Model
	Policy Enforcement
	Owner and listed readers can access
	Owner can delete
	Processing preserves privacy

	Conclusions
	References

