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Abstract— Background and Objectives: This study aims to assist 
rapid accurate diagnosis of COVID-19 based on chest x-ray 
(CXR) images to provide supplementary information, leading to 
screening program for early detection of COVID-19 based on 
CXR images by developing an interpretable, robust and 
performant AI system. Methods: A case-based reasoning 
approach built upon autoencoder deep learning architecture is 
applied to classify COVID-19 from other non-COVID-19 as well 
as normal subjects from chest x-ray images.  The system 
integrates the interpretation and decision-making together by 
producing a set of profiles that in appearance resemble the 
training samples and hence explain the outcome of 
classifications. Three classes are studied, which are COVID-19 
(n=250), other non-COVID-19 diseases (NCD) (n=384), 
including TB and ARDS, and normal (n=327).  Results: This 
COVID-CBR system sustains the average sensitivity and 
specificity of 93.1±3.58% and 96.1±4.10% respectively for 
classification of these three classes. In comparison with the 
current state of the art, including COVID-Net, VGG-16 and 
other explainable AI systems, the developed COVID-CBR 
system appears to perform similar or better when classifying 
multi-class categories. Conclusion: This paper presents a case-
based reasoning deep learning system for detection of COVID-
19 from chest x-ray images. Comparison with several state of the 
art systems is conducted. Although the improvement tends to be 
marginal, especially for VGG-16, the novelty of this work 
manifests its interpretable feature building upon case-based 
reasoning, leading to revealing this viral insight and hence 
ascertaining more effective treatment and drugs while 
maintaining being transparent. Furthermore, different from 
several other current explainable networks that highlight key 
regions or the points of an input that activate the network, i.e. 
heat maps, this work is constructed upon whole training images, 
i.e. case-based, whereby each training image belongs to one of
the case clusters.
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I. INTRODUCTION 

This study presents an interpretable deep learning system 
built upon case-based reasoning, to classify COVID-19 from 
normal and other respiratory diseases from chest x-ray 
images, complimenting the current laboratory methods for 
testing COVID-19, leading to improved diagnostic accuracy. 

1.1 Covid-19 

The novel coronavirus 2019 (COVID-19), a classified 
pandemic by World Health Organisation (WHO) in March 
2020 [1] and commenced in late 2019 [2, 3], has shattered the 

world by infecting more than 120 million people and caused 
over 2.6 million deaths [4].  

Officially known as SARS-CoV-2, COVID-19 is a strain 
of coronavirus that remains contiguous and can transmit from 
person to person. The clinical symptoms of Covid-19 can 
range from a mild common cold-like symptoms, to a severe 
viral pneumonia leading to acute respiratory distress 
syndrome (ARDS), advancing to potentially fatal. At present, 
the presence of COVID-19 in respiratory specimens is 
detected by next generation sequencing or real-time reverse 
transcription polymerase chain reaction (RT-PCR) methods, 
the gold standard of a laboratory technique combining reverse 
transcription of Ribonucleic acid (RNA) into 
Deoxyribonucleic acid (DNA) and amplification of specific 
DNA targets. Another type of test is to take on antibody 
samples, by which a blood sample is collected to check for 
antibodies.  

Because there remains many unknowns regarding to 
Covid-19, every test has its limitations on [5] conclusive 
diagnosis, usually with low specificities especially at the 
onset of COVID-19. Hence, it is important to provide 
additional information to corroborate diagnosis as any false 
negative diagnosis can instigate potential spreading risk to 
other people unknowingly.  

As confirmed cases continues to increase considerably 
globally, timely detection of the disease not only can provide 
supportive care required by patients but also can prevent 
further spread of the virus.  Consequently, effective screening 
infected patients using CXR accounts for a critical step in this 
fight against COVID-19 as well as to circumvent temporary 
shortage of RT-PCR kits in confirming COVID-19 infection. 

This study works on the detection of COVID-19 from 
chest x-ray images employing a case-based reasoning 
approach, aiming at providing complimentary information to 
improve the accuracy of diagnosis while minimising 
invasiveness while maintaining the developed deep learning 
system transparent and interpretable. With regard to medical 
images for diagnosis of COVID-19, Computed Tomography 
(CT) and Chest X-ray (CXR) represent the most common 
imaging tools. While x-ray machines remain one of the first 
imaging tools in clinics with advantageous features of being 
portable, non-invasive, fast image acquisition, economic and 
much less exposing to radiation in comparison with 
Computerised Tomography (CT), 3D CT lung images 
provide high resolution and detailed information. On a CXR, 
the most common features of COVID-19 appear to be 
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bilateral infiltrated with peripheral opacities and patchy 
consolidation [6, 7] whereas bilateral ground glass opacities 
retain a key finding on CT [8, 9]. 

The challenge facing detecting COVID-19 from CXR 
images is that when the disease is at its early onset, the 
characteristic patterns present less obvious to the human eyes 
[10]. However, as more cases arrive, more COVID-19-
specifc patterns will be determined.  Progress on detection of 
COVID-19 from CXR has been made significantly recently 
with a plethora of research work being published, in 
particular by means of deep learning techniques.  

A. Deep learning networks for detection of COVID-19 
From 2020, a large number of work has been conducted 

applying AI techniques,  in particular, deep learning, to 
predict COVID-19 virus and have demonstrated significant 
performance. For example, for 3D CT images, attention-
based deep learning networks have shown effectiveness in 
classifying COVID-19 from normal subjects [11, 12]. In 
relation to chest x-ray images,  patch-based CNN is applied 
to study chest x-ray images [13] and to differentiate 
discriminatory features of COVID-19. Specifically, COVID-
Net [14], one of the pioneer studies, classifies COVID-19 
from normal and other pneumonia diseases through the 
application of a tailored deep learning network. COVID-Net 
starts with a pre-trained model of COVID-Net-S and endorses 
the design pattern of projection-expansion-projection 
coupled with features of high architectural diversity and 
selective long-range connectivity. To overcome the shortage 
of datasets, a number of researchers [15] apply generative 
adversarial neural network (GAN) to augment data first and 
subsequently to classify COVID-19. 

With regard to chest x-ray images, significant work has 
also been conducted on. For example, the work in [16] 
evaluates five pre-trained CNN backbone of ResNet series of 
models and concludes that ResNet50 present the best 
performance. In the studies in [17, 18], VGG series of 
networks as well as ResNet models are evaluated including 
MobileNetV2, AlexNet, VGG16, VGG19 and GoogleNet. 
Understandably,  to a large extend, the performance of each 
network is dependent on the dataset properties, including, 
size, disease types and classification categories, e.g. binary 
classification (e.g. COVID-19 vs non-COVID-19) usually 
presents better performance than multi-class classification 
(e.g. COVID-19, Normal and other pulmonary diseases). 

While deep learning techniques have achieved state of the 
art results, giving rise to becoming an integral and 
indispensable approach in assisting people to process big data 
in the current digital era, its transparency and interpretability 
become increasingly important, especially in clinical 
practices [19]. Hence, progress towards the development of 
explainable deep learning networks have been made more 
recently [20, 21] for prediction of COVID-19 applying heat 
maps [22] to visualise the activation maps. However, the 
networks that generate these heat maps are usually not part of 
the original training architectures and apply different sets of 
parameters to start, to train and to conclude, which leads 
challenges to interpret together with the original input 
images.  

Therefore, in this study, a deep-learning network is 
developed with a feature of case-based reasoning (CBR),  

coined as COVID-CBR, to assist the diagnosis of COVID-19 
from CXR, aiming at reliably identifying infected patients 
with a low rate of both false negatives and false positives 
while elucidating the reason behind detection results. 
Specifically, different from the other existing deep-learning 
based computer systems, the decisions made by this COVID-
CBR will make a step closer towards being transparent and 
interpretable to clinicians.  

B. Case-based reasoning deep learning neural networks 
In the evidence-based medical domain, cases are the most 

specialised form of knowledge representation, consisting of 
both general understanding and clinicians’ experiences, 
taking into considerations of differences between their 
current patient and typical or known exceptional cases [23]. 
This process is known as case-based reasoning (CBR) 
whereas the generalised cases are termed as prototypes [24] 
or profiles.  

At present, the interpretation of a deep learning network 
is realised in two steps. Firstly, a neural network is designed 
to achieve state of the art results. Then, its interpretability is 
analysed after the training by setting up a separate model to 
decipher the achieved results, e.g. studying saliency map 
features. This however gives rise to the credibility of attained 
explanations as interpretability analysis derives from a 
different modelling process with priors that are not part of the 
training from the original networks [25]. To ensure the 
interpretation of a network is meaningful, understandable and 
credible, much research has since been conducted with a 
focus on the visualisation of parts of images that most 
strongly activate a given feature map [26]. More recently, 
progress has been made to allow case-based interpretation 
through prototyping [27]. Rather than imposing an additional 
structure on feature maps, the prototype-based approach 
introduces a special prototype layer for explanation of 
decision making within the same training network. 

Inspired by the work in [28] and autoencoder [29] 
architecture, this study builds an enhanced case-based 
reasoning deep learning network to classify COVID-19 from 
normal and other lung diseases on chest x-ray images. This 
network models a profile layer comprising a list of profiles 
whereby each profile resembles observations in one of classes 
in visual appearance. Hence this set of profiles learns toward 
being a representative of the whole training set, which intends 
to be significant beneficial as more data will determine more 
COVID-19 specific features.  

. 

II. METHODS 

A. Data collection 
The datasets in this study are collected from public 

resources and consist of 961 posteroanterior (PA) view (back 
projection) chest radiograph  images, making up COVID-19 
(n=250), other lung diseases (n=384), and normal subjects 
(n=327). The public available sources include COVID-19 
Image Data Collection [30], Figure1 COVID-19 Chest X-
ray Dataset Initiative [31], Databiology [32], Italian Society 
of Medical and Interventional Radiology [33] and 
Radiopeadia [34], at which images are constantly updated. 
In addition, two public x-ray datasets for both Tuberculosis 
(TB) and normal subjects are collected [35]. These data are 
grouped into three clusters, which are COVID-19, non-



COVID-19 diseases (NCD) (including TB, ARDS, SARS, 
E.Coli, Pneumocystics, Streptococcus, Chlamydophila, 
Legionella, Klebsiella) and normal as exemplified in Fig. 1 
where arrows point to the diseased regions. 

 

 
Fig 1. Examples of chest x-rays of COVID-19 ( (a) to (c)) in comparison 
with the other pulmonary diseases ((d): TB, (e) ARDS, (f) SARS ) and 
normal ((g) to (i))). Arrows refer to diseased regions. 

 
The top row of Figure 1 comprises COVID-19 disease ((a) 

to (c)) whereas middle row the other pulmonary diseases ((d) 
TB, (e) ARDS, (f) SARS). Figure 1(g) to Figure 1(i) display 
CXR images from normal subjects. For COVID-19, the 
visual patterns include bilateral infiltrated with peripheral 
opacities (Figure 1(a)), patchy consolidation (Figure 1(b)),  
and bilateral ground glass opacities (Figure 1(c)). For TB 
(Figure 1(d)), consolidation (arrowhead) and left 
paratracheal stripe (arrow) are present. With regard to ARDS 
(Figure 1(e)), airway stenosis is shown with patchy 
consolidation. Figure 1(f) illustrates an example of SARS 
presenting airspace opacities in the middle or lower zones.. 
While these non-COVID-19 lung diseases (Figures 1(d) to 
(f)) share several  visual features, e.g. SARS may show 
ARDS types with confluent consolidation, they are different 
from COVID-19 that exhibits bilateral patterns. 

In this collection, due to data coming from different 
resources, such as publications of various journals, the 
resolutions of images vary between 150×150 and 
4200×3400 pixels. Hence these images are firstly 
normalised to 512×512 and then converted to MNIST [37]  
dataset format for expedition of training process. The ratio 
between training and testing data retains 90:10.  

 

B. Deep learning network with case-based reasoning for 
classification of COVID-19  
As illustrated in Fig. 2, this proposed case-based reasoning 

architecture incorporates four components: encoder, decoder, 
classifier and reasoning profiles. The network is analogous to 
an autoencoder architecture, where the profiles, 
(𝑝𝑝1, 𝑝𝑝2, …  𝑝𝑝𝑚𝑚), as well as the classifier are in the latent space. 
These profiles are expected to provide common features hence 
the explanation of the decision making towards classification 
by producing similar images in appearance to one of classes. 

Hence, when a test image is loaded to the trained model, the 
model calculates the overall distance between this test image 
and each of the profile images and delivers the final 
classification result. 

 
Fig. 2. The proposed case-based reasoning profiling network that interprets 
the classification. 
 

The function of encoder aims to reduce the dimensionality 
of the input (as well as noise) and to learn the weights (𝑊𝑊) of 
transformation from input, leading to the final prediction of 
classes using Eq. (1), whereas the profile layers (𝑃𝑃 ) in 
between generates the profile units ( 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚)  that 
resemble in appearance one of the 𝐾𝐾 classes.  In our case, 
𝐾𝐾 = 3, which symbolizes ‘COVID-19’, ‘NCD’ for other lung 
diseases (e.g. pneumonia, TB, ARDS, etc.), and ‘normal’. 

𝑃𝑃 = 𝑓𝑓(𝑋𝑋) = 𝑓𝑓′(𝑊𝑊𝑊𝑊 + 𝐵𝐵)    (1) 
In Eq.(1),  the input 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 indicates 𝑛𝑛 
samples with each image (𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛) having a size of 
512 × 512  and produces an set of profiles 𝑃𝑃 =
 (𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, … , 𝑝𝑝𝑚𝑚)𝑇𝑇 . In addition, 𝐵𝐵 represents the bias that is 
initiated randomly during the training. The profile number 
(𝑚𝑚) (i.e. different visual patterns of training dataset) is pre-
defined and can have the size of class numbers (𝐾𝐾) or more 
(in this study, m=30). 𝑊𝑊 stands for the weight matrixes in the 
encoder that are to be determined in the training process. 

Specifically, 𝑓𝑓’ refers to the transformation from a range 
convolution layers to profiles in an encoder as illustrated in 
Figure 2. In this study, the magnitude of 𝑚𝑚 varying from 3 to 
45 is investigated. It has been found that more profiles do not 
necessarily lead to more accurate results as over-sized 
profiles appear to lead many being redundant by presenting 
near blank features. 

This profile layer measures the squared distance between 
encoded input 𝒛𝒛 �Eq. (2)� and each of the profile vectors as 
formatted in Eq. (3). 
 
𝒛𝒛 = [𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2), 𝑓𝑓(𝑥𝑥3), . . . , 𝑓𝑓(𝑥𝑥𝑛𝑛)]  (2) 
𝑃𝑃(𝒛𝒛) =  [∑(𝒛𝒛 − 𝑝𝑝1)2,∑(𝒛𝒛 − 𝑝𝑝2)2, … ,∑(𝒛𝒛 − 𝑝𝑝𝑚𝑚)2]𝑇𝑇 (3) 
 

After the profile layer, a fully connected layer and a 
classification layer follow to compute weighted sums of these 
distances 𝑊𝑊𝑃𝑃(𝑃𝑃(𝑧𝑧)), where 𝑊𝑊𝑃𝑃  is the 𝐾𝐾 × 𝑚𝑚 weight matrix 
and will be learnt by way of training as illustrated in Figure 
2. These weighted sums are then normalized by the Softmax 
layer to produce a probability distribution over the 𝐾𝐾 classes.  
Hence, the distribution of probability of a test image that 
belongs to each class is calculated in the Softmax layer 
resulting in a form of a vector with 𝐾𝐾 elements, where the 𝑘𝑘𝑡𝑡ℎ 



(𝑘𝑘 = 1, . . ,𝐾𝐾) component of the output of the Softmax layer is 
defined by Eq. (4). 

𝑘𝑘𝑡𝑡ℎ = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎(𝑣𝑣𝑘𝑘) = exp (𝑣𝑣𝑘𝑘)
∑ exp (𝑣𝑣𝑖𝑖)𝐾𝐾
𝑖𝑖=1

   (4) 

In Eq. (4), 𝑣𝑣𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  component of the vector 𝑉𝑉 =
 𝑊𝑊𝑃𝑃�𝑃𝑃(𝑧𝑧)� = (𝑣𝑣1, … , 𝑣𝑣𝑘𝑘). 

During the prediction, the neural network architecture 
depicted in Figure 2 delivers the class label that has the 
highest probability among the 𝐾𝐾 vector derived from Eq. (4). 

In Fig. 2, the Decoder reconstructs back the input 𝑥𝑥 ∈ 𝑋𝑋, 
based on the profiles, i.e. from 𝑚𝑚 × 1  profile units to 
construct 512×512 image using a function 𝑔𝑔 expressed in Eq. 
(5), which decodes the encoded feature vectors in 𝑥𝑥, 𝑥𝑥 ∈ 𝑋𝑋.  

𝑥𝑥_  =  𝑔𝑔(𝑥𝑥)   (5) 
Hence, the multi-task loss function (ℒ) for the network of 
Figure 2 is formulated in Eq. (6) by combining the loss of 
classification, decoding and two interpretability 
regularisation measures. 

    ℒ = 𝜆𝜆1ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆2ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1 +
 𝜆𝜆4ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−2          (6) 

 
where 𝜆𝜆1  to 𝜆𝜆4  are the real valued hyperparameters and 
applied to adjust the ratios between those four terms. 

The classification loss applies the standard cross-entropy 
function as given in Eq. (7). 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 ∗ log (𝑦𝑦�𝑖𝑖))𝑛𝑛
𝑖𝑖    (7) 

where 𝑛𝑛 is the total number of data samples with 𝑦𝑦𝑖𝑖  referring 
to the 𝑖𝑖𝑡𝑡ℎ sample label and 𝑦𝑦�𝑖𝑖 the predicted label. 

Furthermore, as expressed in Eq. (8), the loss function for 
the reconstruction of decoding is quantified using mean 
squared errors (𝑀𝑀𝑀𝑀𝑀𝑀). 

ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑛𝑛
∑(𝑋𝑋 − 𝑋𝑋_)2    (8) 

Similar to the work described in [28], the two 
interpretability measures are calculated using Eqs. (9) and 
(10), which are established to safeguard respectively the 
distance of each profile to be as close as possible to at least 
one of the training samples in the latent space, and the 
distance of each encoded training sample to be as close to one 
of the profiles as possible. 
 ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1 = 1

𝑚𝑚
∑ min

 
(𝑚𝑚

𝑗𝑗=1 (𝑝𝑝𝑗𝑗 − 𝑓𝑓(𝑥𝑥1))2, (𝑝𝑝𝑗𝑗 −
𝑓𝑓(𝑥𝑥𝑛𝑛))2)      (9) 

ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−2 = 1
𝑛𝑛
∑ min

 
(𝑛𝑛

𝑖𝑖=1 (𝑝𝑝1 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2 , (𝑝𝑝𝑚𝑚 −
𝑓𝑓(𝑥𝑥𝑖𝑖))2)      (10) 

In this way, ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1 will propel the profile vectors 
to have meaningful decoding in the pixel space, whereas 
ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−2  will cluster the training samples closely 
around profiles in the latent space. Therefore, these two 
measures are anticipated to usher profiles to training samples 
in a tight closeness in visual appearance. 

III. RESULTS AND ANALYSIS 
The implementation takes place applying Python with 

TensorFlow and Keras libraries. In this study, the values of 
𝜆𝜆1  to 𝜆𝜆4  are set to 0.85, 0.05, 0.05, and 0.05 respectively, 
allotting highest weight to classification, which appears to 
deliver optimal results in comparison with other 
combinations. Similar to conventional CNN, the encoding 

process is composed of six convolutional layers with each 
one having a filter size 3 × 3.   

After training for 3000 epochs, for classification of three 
classes of ‘‘COVID-19, ‘NCD, and ‘normal’, the proposed 
model (Figure 2) achieved averaged sensitivity of 93.1 ± 
3.48% and specificity of 96.1 ± 4.10% when the profile 
numbers (𝑚𝑚) are set to 30. The testing result is based on 5 
runs with each run taking 20 test samples. 

Fig. 3 demonstrates the performance of decoding to 
reproduce twenty training samples (top row) (randomly 
selected from test set) using trained profiles. Visually, the 
regenerated samples (bottom row) appear to be close to the 
original images (top row), indicating the profiles tend to be 
representative of the training samples. 

 
Fig.3. Demonstration of re-generated samples (bottom row of (a) and (b)) 
using the trained model of profiles from the original images (top row of (a) 
and (b)). 
 

While most of the samples are re-constructed well in 
appearance, all the re-generated images appear to be less 
sharp than the original ones. For example, the red circle in 
Figure 3(b) exhibits less clear horizontal lines (e.g. ribs) than 
the above original image marked in green circle. However, 
when it comes to the classification of COVID-19, this 
smoothing feature tends to be insignificant in comparison 
with other deep learning models as given in Table 1. 

In Fig. 4, the thirty profiles are presented, which are 
trained to be representative of three classes (i.e. ‘COVID-19, 
‘NCD’, and ‘normal’) of the training samples. While in 
appearance, those profiles depict less resemblance to a proper 
CXR image, they intend to encompass distinguishing features 
between classes.  

 
Fig. 4. The thirty profiles that represent training samples of three classes, 

i.e., ‘COVID-19, ‘NCD’, and ‘normal’, where * refers to centroid of each 
class. 



Table 1 lists the classification result for this developed 
COVID-CBR system together with current state of the art 
deep learning systems, including VGG-16, COVID-Net and 
COVID-Net-Shuffle. All these systems are trinaing using the 
same set of data. VGG-16 denotes a transfer learning 
classification network containing nine convolutional layers 
built upon a pre-trained model VGG16 that comprises 16 
layers, whereas COVID-Net-Shuffle signifies the 
architecture built upon ShuffleNet [38] to enhance the 
calculation efficiency by balancing the performance between 
the calculation speed and accuracy.   

TABLE 1. COMPARISON OF CLASSIFICATION RESULTS BY 
COVID-CBR, VGG-16, COVID-NET-SHUFFLE AND COVID-NET 
SYSTEMS USING THE SAME SET OF DATA. SPE=SPECFICITY; 

SEN=SENSITIVITY. 
COVID-

19 
NCD Normal Average 

(%) 
COVID-

CBR 
Spe 98.6±0.57 87.1±4.17 93.5±6.01 93.1±3.58 
Sen 96.5±3.19 95.6±3.94 96.3±5.17 96.1±4.10 

VGG-16 Spe 97.6±0.94 88.3±7.86 93.5±1.91 93.1±3.57 
Sen 96.6±1.27 95.3±1.11 94.7±3.75 95.5±2.04 

COVID-
Net-

Shuffle 

Spe 92.6±2.0 84.4±5.78 89.1±2.94 88.7±3.08 
Sen 90.7±3.65 89.4±4.81 93.9±1.91 91.3±2.66 

COVID-
Net 

Spe 90.2±7.32 80.9±2.13 90.2±4.16 87.1±4.53 
Sen 93.1±2.46 91.1±1.62 95.9±1.98 93.4±2.02 

Table 1 depicts that this developed COVID-CBR deep 
learning system performs the best and can predict COVID-19 
with 98.6% sensitivity and 96.5% specificity whereas 93.5% 
sensitivity and 96.3% specificity are achieved for the normal 
subjects. For the other pulmonary diseases, i.e. class of 
‘NCD’, while the specificity tends to be higher at 95.6%, the 
sensitivity retains only 87.1%, implying that while the other 
two classes (e.g. COVID-19 and Normal) are less likely to be 
classified into this ‘NCD’ class, this class is much easier to 
be categorised into being either COVID-19 or Normal. 
Overall, the average sensitivity and specificity for the three 
classes retain 93.1 ± 3.58% and 96.1 ± 4.10% respectively, 
which are attained base on 5 runs of testing with each run 
accommodating 20 test samples. 

The performance based on transfer learning built upon 
VGG16 appear to be very similar to the results by COVID-
CBR with the average of 93.1% and 95.5% sensitivity and 
specificity respectively with slightly better performance on 
NCD class with 88.3% sensitivity (87.1% for COVID-CBR). 
For COVID-Net-Shuffle, the average sensitivity and 
selectivity are 88.7% and 91.3% whereas 86.1% and 92.65% 
are realised for COVID-Net. 

Overall, all approaches listed in Table 1 exhibit higher 
specificity for prediction of COVID-19 with 96.5%, 96.6%, 
90.7% and 95.6% respectively for COVID-CBR, VGG-16, 
COVID-Net-Shuffle and COVID-Net, suggesting that the 
patterns of COVID-19 on x-rays present appreciably unique 
characteristics comparing with the other two classes, from 
which those two classes are less likely to be classified into 
COVID-19. 

Comparison with the other multi-class classification 
systems is provided in Table 2 where the results are directly 
obtained from their publications with different number of 
datasets (in brackets). 

TABLE 2. COMPARISON OF SENSITIVITY (ACCURACY) WITH 
PUBLISHED WORK FOR MULTI-CLASS DETECTION AND WITH 
EXPLAINABLE NETWORKS BASED ON CHEST X-RAY IMAGES. 

THE NUMBERS IN BRACKETS REFER TO DATA NUMBERS. 
Architecture COVID-

19 
(Spe (%)) 

Non-
COVID-

19 
(Spe (%)) 

Normal 
(Spe (%)) 

AVG 
(Total) 

VGG-19 [14] 
(Data number) 

58.7 
(358) 

90.0 
(5,538) 

98.0 
(8,066) 

82.2 
(13,962) 

ResNet-50 [14] 
(Data number) 

83 
(358) 

92 
(5,538) 

97 
(8,066) 

90.6 
(13,962) 

COVID-Net 
[14] 

(Data number) 

91.0 
(358) 

94 
(5,538) 

95 
(8,066) 

93.3 
(13,962) 

Transfer 
Learning [29] 
(Data number) 

96 

Stage 2 
(1,150) 

99.1 
Stage 1 
(3,303) 
Stage 2 
(2,753) 

95.7 
Stage 1 
(3,520) 

96.9 
(6,823) 
(3,903) 

COVIDx-
YOLO [28] 

(Data number) 

94.1 
(125) 

87.0 
(500) 

88.0 
(500) 

87.02 
(1,125) 

COVID-CBR 
(Data number) 

98.6 
(250) 

87.1 
(384) 

93.5 
(327) 

93.1 
(961) 

One of the challenges facing detection of COVID-19 is 
multi-class predictions, containing COVID-19, other 
pulmonary diseases and normal subjects. Hence comparison 
with the other systems for multi-class detection, also for 
explainable networks is provided in Table 2. Each study 
applies varying datasets. Understandably, larger  datasets 
usually produces better results. For example, in Table 2, 
COVID-Net (n=13,962) has an averaged specificity of 93.3% 
in Table 2 and 87.1% in Table 1 with a total number of data 
961. While transfer learning appears to perform the best with
96.9% specificity, in essence, at each stage, the network
conducts binary classification. For prediction of COVID-19,
our method of COVID-CBR out performs the others with
98.6% specificity.

IV. DISCUSSION AND CONCLUSION
This work aims at establishing a reasoning system based 

on experts’ knowledge to predict COVID-19 disease from 
chest radiographs. This case-based reasoning system, 
COVID-CBR, is deployed applying deep learning techniques 
and appears to have achieved better results in multi-class 
classification for COVID-19, NCD and normal categories. 

While most of the current work focuses on  two or three 
classes, detailed classification is conducted by Oh et al [13] 
[39], comprising categories of normal, tuberculosis, bacteria, 
viral and COVID-19. Due to limited dataset (n=502, 
viral=20), they segment lung regions first into patches before 
performing statistical analysis of characteristics of each class. 
The size of patches appears to affect the classification results, 
with the best sensitivity being 96.4%. In addition, the authors 
also apply Grad-CAM approach to generate heat maps for 
representing the system activations.   

This COVID-CBR network, however, utilises case-based 
reasoning instead of extractive reasoning by explaining its 
predictions based on similarities between observations and 
profile cases, rather than highlighting the most relevant parts 
of the input that in many cases are not determined. 

Significantly, this COVID-CBR is probably the first 
system that employs case-based reasoning to predict COVID-



19 and has demonstrated to be able to provide promising 
results. Furthermore, the predicting process manifests near-
transparency features by building upon existing known cases, 
in the form of profiles, which can potentially be applied to 
assist clinicians’ decision making while performing 
screening of this deadly devastating COVID-19 virus.   

Since these conclusions are based upon a small sample 
size (n=961), further study will collect more data sets and 
may also take 3D CT images into considerations. It is 
expected that more data will foster more comprehensive 
profiles. 

While more profiles (e.g. case representative) may cover 
variations of training samples, exceeding numbers may not 
necessarily maintain better accuracy with many appearing to 
be redundant.   

Since training takes place using the conventional 6-layer 
CNN structure (plus one fully connection layer) without 
transfer learning, small sample size will make considerable 
impact to the training process. Again, data enlargement will 
become crucial in the future to collect more cases that can 
then in turn be reasoned into more profiles. 

In conclusion, this work develops a case-based reasoning 
system for classification of COVID-19 from chest x-ray 
images and achieves state of the art results, especially for 
predicting COVID-19 class, contributing to the development 
of robust, transparent and performant AI systems for medical 
applications. 
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