
Privacy Enforcement and Analysis for Functional
Active Objects

Florian Kammüller

Technische Universität Berlin
flokam@cs.tu-berlin.de

Abstract. In this paper we present an approach for the enforcement of
privacy in distributed active object systems, illustrate its implementation
in the language ASPfun, and formally prove privacy based on information
flow security.

1 Introduction

The language ASPfun is a calculus of active objects. It has been developed in the
interactive theorem prover Isabelle/HOL – in a fully formal co-development style
[HK09]. ASPfun is a functional language using the Theory of Objects by Abadi
and Cardelli for local object calculation but adding a second layer of distributed
activities that communicate asynchronously via futures.

Activities are a unification of objects and processes having – like objects – a
local data space while representing a unit of distribution containing a queue of
currently processed calls to methods of this activity’s object.

Futures are promises to the results of method calls. They realize asynchronous
communication because an activity that calls a method in another activity im-
mediately receives a future as a result. Thus, the calling activity can continue
its current calculation. Only when the calling activity needs the actual result of
the method call, a so-called wait-by-necessity could occur. In Proactive, an im-
perative Java implementation of distributed active objects for Grid-computing,
this is indeed the case. In our functional computation model ASPfun, however,
we allow the return of possibly not fully evaluated methods calls. We completely
avoid wait-by-necessity and possibly resulting dead-lock situations.

Moreover, we can fully prove in our Isabelle/HOL formalization that ASPfun

is non-blocking. This proof actually comes as a by-product of the proof of type
safety we have conducted in Isabelle/HOL for our ASPfun type system [HK09].
The suitability of ASPfun as a privacy enforcement language has already been
demonstrated [Kam10]: based on the semantic primitive of active object update,
an economic and clean implementation of data hiding is possible.

The contribution of this paper is a concept more generally useful for pri-
vacy: flexible parameterization – enabling the use of service functions while not
supplying all parameters. For example, in the European project SENSORIA the
COWS calculus has been designed as an extension to the Pi-calculus to realize
correlation a similarly dynamic service concept [BNRNP08].

In ASPfun, we get this privacy enhancing use of services for free via the flex-
ibility provided through functional replies. This idea has been tested through
practical applications with a prototypical ASPfun implementation in Erlang
[FK10]. Now, we formalize this idea and prove its security using the well-established
method of information flow analysis. More precisely, our contribution consists in
the following steps.

– We provide a security model for ASPfun for formal security analysis, i.e. a
formal definition of noninterference for functional active objects.

– Based on the construction of a function-like currying for our object calculus,
we provide a generic way of implementing flexible parameterization.

– Using the formal notion of noninterference, we prove that flexible parame-
terization is secure, and thus provides privacy.

As a global methodology we aim at providing a double-sided method comple-
menting privacy enforcement with an accompanying analysis. To round off the
paper, we present a concept for a modular assembly kit for security for ASPfun

(in the style of Mantel’s successful approach) that enables a systematic rep-
resentation of language based security properties for distributed active object
systems, thereby modeling privacy.

2 Functional Active Objects with ASPfun

The language ASPfun [HK09] is a computation model for functional active ob-
jects. Its local object language is a simple ς-calculus [AC96] featuring method
call t.l(s), and method update t.l := ς(x, y)b on objects (ς is a binder for the
self x and method parameter y). Objects consist of a set of labeled methods
[li = ς(x, y)b]i∈1..n (attributes are considered as methods with no parameters).
ASPfun now simply extends this basic object language by a command Active(t)
for creating an activity for an object t. A simple configuration containing just
activities α and β within which are so-called active objects t and t′ is depicted
in Figure 1. This figure also illustrates futures, a concept enabling asynchronous
communication. Futures are promises for the results of remote method calls, for
example in Figure 1, fk points to the location in activity β where at some point
the result of the method evaluation t′.l(s) can be retrieved from. Futures are
first class citizen but they are not part of the static syntax of ASPfun, that is,
they cannot be used by a programmer. Similarly, activity references, e.g. α, β,
in Figure 1, are references and not part of the static syntax. Instead, futures
and activity references constitute the machinery for the computation of config-
urations of active objects. ASPfun is built as a conceptual simplification of ASP
[CH05] – both languages support the Java API Proactive [Pro08].

2.1 Informal Semantics of ASPfun

Local (ς-calculus) and parallel (configuration) semantics are given by a set of
reduction rules informally described as follows.

configuration

request queue
t

activity

active object
α

...

...

...

E [fk]

request queue
t'

β

...

...

...

t'.l(s)

Fig. 1. ASPfun: a configuration

– local: the local reduction relation →ς is based on the ς-calculus.
– active: Active(t) creates a new activity α[∅, t] for new name α, empty

request queue, and with t as active object.
– request: method call β.l creates new future fk in future-list of activity β

(see Figure 1).
– reply: returns result, i.e. replaces future fk by the referenced result term s

(possibly not fully evaluated).
– upname-ao: activity upname creates a copy of the activity and upnames the

active object of the copy – the original remains the same (functional active
objects are immutable).

2.2 Formal ASPfun semantics

We use a concise contextual description with contexts E defined as usual. Clas-
sically we define contexts as expressions with a single hole (•).

E ::= • | [li = ς(x, y)E, lj = ς(xj , yj)t
j∈(1..n)−{i}
j] |E.li(t) |

s.li(E) |E.li := ς(x, y)s | s.li := ς(x, y)E|Active(E)

E[s] denotes the term obtained by replacing the single hole by s. The semantics
of the ς-calculus is then given by the following two reduction rules for calling
and updating a method (or field) of an object.

call
li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]

j∈1..n.li(b)
]
→ς

E
[
bi{xi ← [lj = ς(xj , yj)bj]

j∈1..n, yj ← b}
]

update
li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]

j∈1..n.li := ς(x, y)b
]
→ς

E
[
[li = ς(x, y)b, lj = ς(xj , yj)b

j∈(1..n)−{i}
j]

]

local
s→ς s

′

α[fi 7→ s ::Q, t] :: C →‖ α[fi 7→ s′ ::Q, t] :: C

active
γ /∈ (dom(C) ∪ {α}) noFV(s)

α[fi 7→ E[Active(s)] ::Q, t] :: C →‖ α[fi 7→ E[γ] ::Q, t] :: γ[∅, s] :: C

request
fk fresh noFV(s)

α [fi 7→ E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→ E[fk] ::Q, t] :: β
[
fk 7→ t′.l(s) ::R, t′

]
:: C

self-request
fk fresh noFV(s)

α [fi 7→ E[α.l(s)] ::Q, t] :: C →‖ α [fk 7→ t.l(s) :: fi 7→ E[fk] ::Q, t] :: C

reply
β[fk 7→ s ::R, t′] ∈ α[fi 7→ E[fk] ::Q, t] :: C

α[fi 7→ E[fk] ::Q, t] :: C →‖ α[fi 7→ E[s] ::Q, t] :: C

update-AO
γ /∈ (dom(C) ∪ {α})

noFV(ς(x, y)s) β[R, t′] ∈ (α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C)

α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C →‖ α[fi 7→ E[γ] :: Q, t] :: γ[∅, t′.l := ς(x, y)s] :: C

Table 1. ASPfun semantics

The semantics of ASPfun is built over the local semantics of the ς-calculus as a
reduction relation →‖ that we call the parallel semantics (see Table 1).

2.3 Broker example

The following example illustrates the advantages of futures for the implementa-
tion of services. The three activities hotel, broker, and customer are composed by
‖ into a configuration. The customer wants to make a hotel reservation in hotel.
He uses a broker for this service by calling a method book provided in the active
object of the broker. We omit the actual search of the broker in his database and
instead hardwire the solution to always contact some hotel. That is, the method
book is implemented as a call ς(x, date)hotel.room(date) to a function room in
the hotel. Also the internal administration of hotel is omitted; its method room
just returns a constant bookingreference bookingref. The dependence of this
bookingref on the parameter date exists only implicitly. Therefore, we denote it
by bookingref〈date〉 in instantiations. Initially, only the future list of the customer
contains a request for a booking to broker; the future lists of broker and hotel
are empty. The following steps of the semantic reduction relation →‖ illustrate

how iterated application of reduction rules evaluates the program.

customer[f0 7→ broker.book(date), t]
‖ broker[∅, [book = ς(x, (date))hotel.room(date), . . .]]
‖ hotel[∅, [room = ς(x,date)bookingref, . . .]]

The following step of the semantic reduction relation →∗‖ creates the new future
f1 in broker by rule request, this call is reduced according to local, and the
original call in the customer replaced by f1.

customer[f0 7→ f1, t]
‖ broker[f1 7→ hotel.room(date), . . .]
‖ hotel[∅, [room = ς(x,date)bookingref, . . .]]

The parameter x representing the self is not used but the call to hotel’s method
room with parameter date creates again by rule request a new future in the
request queue of the hotel activity that is immediately reduced due to local to
bookingreference where the index indicates that date has been used.

customer[f0 7→ f1, t]]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref〈date〉, . . .]

Finally, the result bookingreference is returned to the client by two reply-steps:
first the future f2 is returned from the broker to the customer and then this
client receives the bookingreference via f2 directly from the hotel.

customer[f0 7→ bookingref〈date〉, t]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref〈date〉, . . .]

This configuration can be considered as the final one; at least the service has
been finished. From the perspective of privacy, it is actually here that we would
like to end the evaluation. Unfortunately, the future f2 is also available to the
broker. So, in an final step the broker can serve himself the bookingreference as
well.

customer[f0 7→ bookingref〈date〉, t]
‖ broker[f1 7→ bookingref〈date〉, . . .]
‖ hotel[f2 7→ bookingref〈date〉, . . .]

The abstract general semantics of ASPfun allows this privacy breach.
We introduce now a general way of enforcing privacy by not disclosing private

data in the first place. We show that relying on the ASPfun paradigm guarantees
that flexible parameterization can be used to use services in a private manner.

3 Flexible parameterization

We use the example of the hotel broker again to show how flexible parameter-
ization may be used to keep private data in one’s secure local environment. As

an informal security policy we assume that the client does not want to disclose
his name to the broker. In Figure 2, we see the same scenario as in the previous
section’s example but with a slightly generalized program. Here, the function
room in hotel has an additional parameter name besides date. However, room
can be called just supplying the first date parameter. The broker still delegates
the partially instantiated request to the hotel. Thereby, the customer can then
directly access a function in hotel – via the futures f1 and f2 – that calculates
his bookingref on supplying the missing parameter name. The broker can also
access the resulting function but not the private data of the customer as it does
not need to be transmitted. We have implemented this technique in our Erlang

[book = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
n → bookingref]

broker.book(date,name)

t

...

customer

broker

hotel

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
n → bookingref]

f1(n)

t

...

customer

broker

hotel

hotel.room(date)

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
 n → bookingref]

f1(n)

t

...

customer

broker

hotel

f2

n → bookingref

Fig. 2. Flexible parameterization: delegation to partially instantiatable room method

prototype for ASPfun [FK10] as a pragmatic extension of the base language.
However, as we will show now, this feature on flexible parameterization can be
constructed conservatively in ASPfun using currying.

Currying is a well known technique in functional programming to render
functions with several parameters partially applicable. That is, the parameters
of a curried function may be supplied one after the other, in each step returning
a new function.

Recall the definition of curry and its inverse uncurry in the λ-calculus.

curry ≡ λ f p. f(fst p)(snd p)
uncurry ≡ λ f a b. f(a, b)

Here, (a, b) denotes the product and fst and snd the corresponding projections on
a and b respectively. This datatype is itself definable in terms of simpler λ-terms
as follows.

(a, b) ≡ λ f. f a b
fst p ≡ (λ x y. x)

snd p ≡ (λ x y. y)

We recall these classic definitions in order to prepare the less intuitive definition
of currying for the ς-calculus and hence for ASPfun.

3.1 Currying in ASPfun

In comparison to the ς-calculus, the base objects of ASPfun differ in that we
explicitly introduce a second parameter to each method in addition to the self-
parameter x. Therefore, when we emulate functions in our version of the ς-
calculus we profit from this parameter and avoid roundabout ways of encoding
parameters.1 As a prerequisite for having several parameters, we need products.
Compared to the above presented encoding of pairs in the λ-calculus, pairs in the
ς-calculus can make use of the natural record structure of objects thus rendering
a more intuitive notion of product as follows.

(a, b) ≡ [fst = ς(x, y)a, snd = ς(x, y)b]

fst p ≡ p.fst
snd p ≡ p.snd

We simulate currying of a method f of an object o that expects a pair p of
type α× β as second parameter, i.e.

o = [f = ς(x, p).t]

by extending this object o with a second method fC as follows.

curry o ≡ [f = ς(x, p)o.f(p),
fC = ς(x, a)[f ′ = ς(y, b)x.f(a, b)]]

1 In the ς-calculus the parameter has to be simulated by updating a separate field in
an objects and that consequently needs to be attached to each object.

3.2 Hiding

We introduce formal definitions of hiding and restrictions that will be used later
for the formal definition of strong noninterference. Hiding, at the object level, is
an operation that takes a ς-object and a label and hides the methods that are
identified by the label. Practically, it is realized by overwriting the field labeled
h of a ς-object with the empty object 〈〉.

Definition 1 (Hiding for ς-terms).

(o.m)(p) \ l ≡ if m = l then 〈〉 else (o \ l).m(p \ l)

[lj = ς(xj , yj)bj]
j∈1..n \ l ≡

{
[li = ς(x, y)〈〉, lj = ς(xj , yj)bj]

j∈1..n−{i}
, if li = l

[lj = ς(xj , yj)(bj \ l)]j∈1..n , else

(o.m := f) \ l ≡ if m = l then o.m := 〈〉 else (o \ l).m := f

To lift the hiding operator to configurations, we just have to introduce name
spacing with respect to configuration names and map that to the previous hiding
definition.

Definition 2 (Hiding for ASPfun terms). For any configuration C hiding is
defined as follows.

(α[Q, t] :: C) \ Λ.l ≡
{
α[Q, t] :: (C \ Λ.l) if α 6= Λ
α[Q, t \ l] :: (C \ Λ.l) else

In order to define a notion of security for ASPfun, we define observational equiv-
alence. This means informally that programs are considered to be secure if an
attacker cannot tell apart the outcomes of the program when observing only
those parts that are visible to him according to a security policy. For simplicity,
we assume this security policy for ASPfun programs to be S : C → {∆,∇}. That
is, we assume that all activities of a configuration C can be divided into only
two groups: the secure part represented by ∆ (usually called high H) and the
insecure part represented by ∆’s complement ∇ ≡ dom(C)−∆ (or low L). 2 In
general, this is not such an unrealistic assumption if one takes the viewpoint of
the secure part: the rest of the world is either part of the secure domain or not.

Definition 3 (Security for ASPfun). Two configurations C0, C1 are equiv-
alent for the attacker C0 =∇ C1 if their visible parts in ∇ are equal modulo
renaming and local reduction with →ς . A configuration C0 is now called secure,
if for any other configuration C1 that is equivalent C0 =∇ C1, if C0 →∗‖ C

′
0 and

C1 →∗‖ C
′
1 such that C ′0, C ′1 are values, then C ′0 =∇ C

′
1.

2 We use here − instead of \ for symmetric set difference because \ is now used for
hiding.

Equality up to renaming and local reduction needs a word of explanation. We
assume two configurations to be equal from an attackers perspective if the “low”
parts in ∇ are isomorphic: we cannot assume the names to be equal as they
are generated in each run. However, given a bijection on these names, we can
identify any two configurations in two runs of an ASPfun program if their low
parts are isomorphic. We further normalize the low equality relation module local
reduction as two configurations should not be distinguishable if they differ only
in the local evaluation of request queue entries and are otherwise isomorphic.
Overloading syntax, we simply write t \∆ to denote hiding the list of labels of
all activities that are in ∆, i.e. that are considered to be high. Hiding is not
a usual term operation: it takes labels as second argument, which are terms.
Hence, the confluence result for terms, or the context rules [HK09], respectively,
do not apply. That is, from t→‖ t′ does not follow t \∆→‖ t′ \∆. In fact, this
is the case if and only iff hiding is secure as we will see in the following section.

4 Noninterference via Hiding

4.1 Language Based Modular Assembly Kit for Security
(LB-MAKS)

In this section we want to introduce a conceptual framework – MAKS [Man00]
– enabling the comparison and proof of security properties. MAKS is based on
labeled transition systems, a model too abstract for the consideration of certain
security critical situations — like blockings.

MAKS is based on a labeled transition system model for systems. It defines a
set of six basic security predicates defined as closures over set properties [Man02].
Backwards strong deletion (BSD) and backwards strong insertion (BSI) are two
basic security predicates. The strongest security property in MAKS is given as
the conjunction of backwards strong deletion and backwards strong insertion for
the flow policy VLHL defined as (L,∅, H) – the classical policy: “information may
flow from L to H but not vice versa”. This “root” property is not named but it
forms the root of the tree formed by implications between the identified prop-
erties. On one branch from this root lie separability, nondeducibility on inputs,
perfect security property, noninference (note this is not noninterference) and on
the other branch lie forward correctability and generalized noninterference. Both
branches unite in the same property generalized noninference (without “ter”).
The positions in this “implication” tree are implicitly proved since all these prop-
erties are expressed as conjunctions of basic security predicates.

Focardi and Gorrieri compare security properties based on trace semantics
but already consider algebraic characterizations using their process algebra SPA
[FG95]. Like us, motivated by the fact that bisimulation based approaches are
more fine grained, they provide algebraic definitions of security properties. For
example, the simple characterization of strong nondeterministic noninterference
(SNNI) in [FG95] is as follows, where |∆ is restriction and \∆ hiding.

E |∆
∼
= E \∆ (1)

We adapt the original syntax to avoid confusion. This relation ∼= can either
represent a trace set equality or – for a more refined view – a bisimulation
relation. This notion of strong nondeterministic noninterference is very concise
but also a strong predicate. It corresponds to BSDVLH

L
(Tr) ∧ BSIVLH

L
(Tr), the

root of the MAKS tree [Man00]. The open question is: how does our language
based characterization of security relate to the classical notions given by Mantel,
Focardi and Gorrieri, and McLean? In the following, we show that we can enforce
noninterference based on hiding in our language based model.

Hiding (see Section 3.2) can be used to enforce information flow control. In
[Kam10], we showed that in some special cases hiding implies security. These
cases use that sometimes hiding has no effect, i.e. t→∗‖ t

′ and t \∆→∗‖ t
′.

4.2 Language based security characterization

The characterization of security by hiding we have given in [Kam10] somehow
implicitly assumes that t′ = t \ ∆ This assumption expresses that in secure
programs the hiding operation is compositional, i.e. t→‖ t′ ⇒ t′ \∆ = t \∆. In
an attempt to transfer the hiding based noninterference by Focardi and Gorrieri
to ASPfun, we derive the following theorem.

Theorem 1 (NI by Hiding). Let t be an ASPfun term representing a program
and ∆ be a security policy. If t→∗‖ t

′ implies t \∆→∗‖ t
∆ with t∆ =∇ t

′ \∆, i.e.
\ is (low)-compositional for ∆, then t is secure in the sense of Definition 3.

Proof. By definition of =∇, t =∇ t\∆ for any term t. Let t0 =∇ t1, t0 →∗‖ t
′
0 and

t1 →∗‖ t
′
1 such that t′0, t′1 are values according to the hypotheses in the Security

Definition 3.

t0 =∇ t1t0\∆

t1\∆t0' t0\∆ =∇=∇ t0
∆

t1\∆=∇

=∇t1
∆ t1'=∇=∇

=

=∇

=∇

Since t0 =∇ t1, by definition, t0 \∆ = t1 \∆ up to isomorphism due to renaming.
Since t0 →∗‖ t

′
0 and t1 →∗‖ t

′
1, we can apply the assumption to obtain t0\∆→∗‖ t

∆
0 ,

t∆0 =∇ t′0 \ ∆ and t1 \ ∆ →∗‖ t
∆
1 and t∆1 =∇ t′1 \ ∆. Now, t0 \ ∆ = t1 \ ∆

implies t∆0 =→∗‖ t
∆
1 because of confluence of ASPfunwhich gives t∆0 =∇ t

∆
1 . Since

t∆0 =∇ t′0 \ ∆ and t∆1 =∇ t′1 \ ∆ we get in turn by transitivity of =∇ that
t′0 \∆ =∇ t

′
1 \∆ under the same renaming as before (or possibly a conservative

extension due to creation of new low elements). This corresponds to t′0 =∇ t
′
1 by

definition of =∇ and we are finished. �

Theorem 1 proves noninterference according to Definition 3. This is a less re-
strictive security as the notion of strong nondeterministic noninterference, as
used by Focardi and Gorrieri [FG95]. But the criteria characterizing security
in Theorem 1 corresponds to the original definition (1) [FG95]. What is more,
ours is a real language based security notion for active objects in ASPfun and
not abstract event systems. Conceptually, the correspondence provides an im-
portant link between the elegant world of event systems and the more tedious
but fairer language based models. It marks the first important stepping stone for
LB-MAKS, our envisaged security tool kit for ASPfun. In the following section,
we will evaluate our notion on the running example of the hotel broker.

4.3 Application example

In this section, we demonstrate how the security characterization given in The-
orem 1 can be practically useful to statically verify security. We reconsider the
hotel broker example from Section 2.3 to prove that it is insecure; we then show
using the same method that the improved version using flexible parameteriza-
tion by currying (Section 3) is secure. To model private data, we refine the initial
configuration by introducing some private information. There is a data object
containing the customer’s identity “name” that he wants to keep private from
the broker.

t ≡

data[∅, [name = id]]
‖ customer[f0 7→ broker.book(data.name), t]
‖ broker[∅, [book = ς(x, (d, n))hotel.room(d, n), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref, . . .]]

In several evaluation steps this program reduces to the following. Other than
the insertion of the identity, the evaluation is little changed with respect to
the earlier version in Section 2.3, apart from the fact that bookingref now also
depends on the customer’s id.

t′ ≡

data[f1 7→ id, [name = id]]
‖ customer[f0 7→ bookingref〈d,id〉, [. . .]]

‖ broker[f2 7→ bookingref〈d,id〉, [. . .]]

‖ hotel[f3 7→ bookingref〈d,id〉, [. . .]]

We want to prove security of enforcement via hiding for the example con-
figuration given the security policy ∆ = {customer, data},∇ = {hotel, broker}.
According to Theorem 1, we need to show compositionality of hiding with re-
spect to private data labeled data.name since this is (for simplicity) the only
data in ∆.

Applying hiding of customer’s identity to the initial configuration t, i.e. t\∆,
erases the customer’s name in data.


data[∅, [name = id]]
‖ customer[f0 7→ broker.book(data.name), t]
‖ broker[∅, [book = ς(x, (d, n))hotel.room(d, n), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref, . . .]]

 \ data.name =

data[∅, [name = 〈〉]]
‖ customer[f0 7→ broker.book(data.name), t]
‖ broker[∅, [book = ς(x, (d, n))hotel.room(d, n), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref, . . .]]

Finally, this t \∆ reduces to the following t∆.

t∆ ≡

data[f1 7→ id, [name = 〈〉]]
‖ customer[f0 7→ bookingref〈d,〈〉〉, [. . .]]

‖ broker[f2 7→ bookingref〈d,〈〉〉, [. . .]]

‖ hotel[f3 7→ bookingref〈d,〈〉〉, [. . .]]

If we apply hiding “data.name” to the reduced configuration t′ instead, we
still erase the identity of the customer in data but do not erase the id that is
now implicit in bookingref.

data[f0 7→ id, [name = id]]
‖ customer[f1 7→ bookingref〈d,id〉, [. . .]]

‖ broker[f2 7→ bookingref〈d,id〉, [. . .]]

‖ hotel[f3 7→ bookingref〈d,id〉, [. . .]]

 \ data.name =

data[f0 7→ name, [name = 〈〉]]
‖ customer[f1 7→ bookingref〈d,id〉, [. . .]]

‖ broker[f2 7→ bookingref〈d,id〉, [. . .]]

‖ hotel[f3 7→ bookingref〈d,id〉, [. . .]]

In this example program, hiding data.name is not preserved by the program
evaluation. The program thus does not meet the prerequisites of Theorem 1. It
is also intuitively clear, that this program is not secure as the broker has access
to the private booking result of the customer.

Example with currying

By contrast, in the program that uses the curried version, hiding is respected by
the program evaluation and therefore secure according to our Theorem 1.

t ≡

data[∅, [name = id]]
‖ customer[f0 7→ broker.bookC(d).room’(data.name), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x, n)x.room(d, n)]]]

This configuration reduces to the following, where H abbreviates the active
object of hotel.

data[f1 7→ id, [name = id]]
‖ customer[f0 7→ f3.room’(id), t]
‖ broker[f2 7→ f3, [. . .]]
‖ hotel[f3 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]]

Replying the semi-evaluated function via f3 to customer and broker and
reducing locally we get the personalized bookingref in customer’s request list.

t′ ≡

data[f1 7→ id, [name = id]]
‖ customer[f0 7→ bookingref〈d,id〉), t]

‖ broker[f2 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]
‖ hotel[f3 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]]

The crucial test is now to apply hiding first to the initial configuration t′.


data[∅, [name = id]]
‖ customer[f0 7→ broker.bookC(d).room’(data.name), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x, n)x.room(d, n)]]]

 \ data.name =

data[∅, [name = 〈〉]]
‖ customer[f0 7→ broker.bookC(d).room’(data.name), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x, n)x.room(d, n)]]]

Reducing this, we reach the following configuration t∆.

t∆ ≡

data[f1 7→ 〈〉, [name = 〈〉]]
‖ customer[f0 7→ bookingref〈d,〈〉〉), t]

‖ broker[f2 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]
‖ hotel[f3 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]]

Now, if we consider hiding ∆ in the reduction of the previous configuration,
i.e. t′ \∆ we get this configuration.

t′ \ data.name ≡

data[f1 7→ 〈〉, [name = 〈〉]]
‖ customer[f0 7→ bookingref〈d,id〉), t]

‖ broker[f2 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]
‖ hotel[f3 7→ [room’ = ς(x, n)H.room(d, n)], [. . .]]]

At first sight, this seems odd because t∆ 6= t \∆ (they differ in f0) but we
have t∆ =∇ t \∆. This suffices for the conclusion of Theorem 1. We have thus
shown that this program is secure for ∆.

5 Conclusions

5.1 Related Work

Myers and Liskow augmented the DLM model with the idea of information flow
control as described in the papers [ML00]. Further works by Myers have been
mostly practically oriented, foundations only considered later [ZM07]. Initially,
he implemented a Java tool package called JFlow, nowadays JIF, that imple-
ments his Decentralzied Label Model (DLM) based on information flow control
[Mye99]. In more recent work, still along the same lines, Zheng and Myers [ZM07]
have gone even further in exploring the possibilities to dynamically assign secu-
rity labels while still trying to arrive at static information flow control. The main
criticism to the DLM is that it assumes that all principals respect the DLM. We
also consider this as a weakness in particular in distributed applications where
assumptions about remote parties seems inappropriate. To illustrate this differ-
ence: in our example above the DLM would have assumed that the customer’s
call of book to the broker would also be high and thus be treated confidentially.
Contrarily to this strong assumption of the DLM, we do not make any assump-
tions about the low site. In particular the customer can see everything in his
request queue, be it marked high or low.

One very popular strand of research towards verification of security has been
static analysis of noninterference using type checking. Briefly, this means that
type systems are constructed that encode a noninterference property. When a
program passes the type check for that system then we know that it has a certain
security type. The security type can be for example an assignment of program
data to security classes. The type check then guarantees that the information
flows are only those allowed by the assignment of the data to the security classes.
A good survey giving an introduction to the matter and comparing various
activities is given by Sabelfeld and Myers [SM03]. A constructive way to support
noninterference analysis is by providing a set of basic properties that can be
combined to build various forms of noninterference. H. Mantel’s work since his
PhD has mainly focused on providing such a logical tool box [Man00,Man02].

Focardi and Gorrieri’s work has strongly influenced our current approach.
We take their method of algebraic characterization of information flow secu-
rity further in applying them to the distributed object calculus ASPfun thereby
addressing real language issues.

5.2 Discussion and Outlook

We aim at using functional active objects as a language calculus and build a
logical tool set for compositional properties. Since already on the simpler trace
models the definition and theory development for a MAKS is an intrinsically
complex task, we additionally employ Isabelle/HOL as a verification environ-
ment to support us. The derived LB-MAKS security properties shall be trans-
formed into security type systems – in the sense as described in the previous
section – to derive practically useful static analysis tools from our mechanized

LB-MAKS. The presented currying concept is a first important step towards
such an enforcement library. A further important stepping stone is the defini-
tion of hiding for ASPfun. It helps bridging the gap between abstract trace based
semantics and more detailed language based models as illustrated in this paper.

To our knowledge no one has considered the use of futures in combination
with confinement given by objects as a means to characterize information flow.
The major advantage of our approach is that we are less abstract than event sys-
tems while being abstract enough to consider realistic distributed applications.

References

[AC96] Martín Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
New York, 1996.

[BNRNP08] J. Bauer, F. Nielsen, H. Ries-Nielsen, and H. Pilegaard. Relational anal-
ysis of correlation. In Static Analysis, 15th International Symposium,
SAS’08, volume 5079 of LNCS, pages 32–46. Springer, 2008.

[CH05] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects.
Springer-Verlag New York, Inc., 2005.

[FG95] R. Focardi and R. Gorrieri. A classification of security properties for
process algebras. Journal of Computer Security, 3(1):5–33, 1995.

[FK10] A. Fleck and F. Kammüller. Implementing privacy with erlang active
objects. In 5th International Conference on Internet Monitoring and Pro-
tection, ICIMP’10. IEEE, 2010.

[HK09] L. Henrio and F. Kammüller. Functional active objects: Typing and for-
malisation. In 8th International Workshop on the Foundations of Coor-
dination Languages and Software Architectures, FOCLASA’09, ENTCS.
Elsevier, 2009. Also invited for journal publication in Science of Com-
puter Programming, Elsevier.

[Kam10] F. Kammüller. Using functional active objects to enforce privacy. In 5th
Conf. on Network Architectures and Information Systems Security, SAR-
SSI 2010, 2010.

[Man00] H. Mantel. Possibilistic definitions of security – an assembly kit. In Com-
puter Security Foundations Workshop, pages 185–199. IEEE, 2000.

[Man02] H. Mantel. On the composition of secure systems. In Symposium on
Security and Privacy, 2002.

[ML00] A. C. Myers and B. Liskov. Protecting privacy using the decentralized
label model. ACM Transactions on Software Engineering and Methodology,
9:410–442, 2000.

[Mye99] A. C. Myers. Jflow: Practical mostly-static information flow control.
In 26th ACM Symposium on Principles of Programming Languages,
POPL’99, 1999.

[Pro08] ProActive API and environment, 2008. Available at http://www.inria.
fr/oasis/proactive (under LGPL).

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
Selected Areas in Communications, 21:5–19, 2003.

[ZM07] L. Zheng and A. C. Myers. Dynamic security labels and static information
flow control. International Journal of Information Security, 6(2–3), 2007.

