
Nature-Inspired Optimization Algorithms: Challenges
and Open Problems

Xin-She Yang

School of Science and Technology, Middlesex University, London NW4 4BT, UK

Abstract

Citation Detail:
Xin-She Yang, Nature-Inspired Optimization Algorithms: Challenges and Open
Problems, Journal of Computational Science, Article 101104, (2020).
https://doi.org/10.1016/j.jocs.2020.101104

Received 4 Jan 2020, Accepted 5 Mar 2020, Published Online 6 Mar 2020.

Many problems in science and engineering can be formulated as optimization
problems, subject to complex nonlinear constraints. The solutions of highly
nonlinear problems usually require sophisticated optimization algorithms, and
traditional algorithms may struggle to deal with such problems. A current trend
is to use nature-inspired algorithms due to their flexibility and effectiveness.
However, there are some key issues concerning nature-inspired computation and
swarm intelligence. This paper provides an in-depth review of some recent
nature-inspired algorithms with the emphasis on their search mechanisms and
mathematical foundations. Some challenging issues are identified and five open
problems are highlighted, concerning the analysis of algorithmic convergence and
stability, parameter tuning, mathematical framework, role of benchmarking and
scalability. These problems are discussed with the directions for future research.

Keywords: Algorithm, bat algorithm, convergence, cuckoo search, differential
evolution, firefly algorithm, flower pollination algorithm, metaheuristic,
nature-inspired computation, optimization, particle swarm optimization,
stability, swarm intelligence.

1. Introduction

Many real-world applications involve the optimization of certain objectives
such as the minimization of costs, energy consumption, environment and the
maximization of performance, efficiency and sustainability. In many cases, the

Preprint submitted to Journal of Computational Science: SI: ICCS-Keynotes

optimization problems that can be formulated are highly nonlinear with multi-
modal objective landscapes, subject to a set of complex, nonlinear constraints.
Such problems are challenging to solve. Even with the ever-increasing power
of modern computers, it is still impractical and not desirable to use simple
brute force approaches. Thus, whenever possible, efficient algorithms are cru-
cially important to such applications. However, efficient algorithms may not
exist for most of the optimization problems in applications. Though there are
a wide range of optimization algorithms such as gradient-based algorithms, the
interior-point method and trust-region method, most of such algorithms are
gradient-based and local search algorithms [1, 2], which means that the final so-
lutions may depend on the initial starting points. In addition, the computation
of derivatives can be computationally expensive, and some problems such as the
objective with discontinuities may not have derivatives in certain regions.

A recent trend is to use evolutionary algorithms such as genetic algorithm
(GA) [3], and swarm intelligence (SI) based algorithms. In fact, a wide spectrum
of SI-based algorithms have emerged in the last decades, including ant colony
optimization (ACO) [4], particle swarm optimization (PSO) [5], bat algorithm
(BA) [6], firefly algorithm (FA) [7], cuckoo search (CS) [8] and others [2]. These
nature-inspired algorithms tend to be global optimizers, using a swarm of mul-
tiple, interacting agents to generate the search moves in the search space. Such
global optimizers are typically simple, flexible and yet surprisingly efficient,
which have been shown in many applications and case studies [9, 10, 11, 12, 2].
In the last three decades, significant progress has been and various applications
have appeared. This paper will briefly summarize some of these important
developments.

Despite the extensive studies and developments, there are still some im-
portant issues concerning swarm intelligence and nature-inspired algorithms.
Firstly, there still lacks a unified mathematical framework to analyze these al-
gorithms. Consequently, it lacks in-depth understanding how such algorithms
may converge and how quickly they can converge. Secondly, there are many
different algorithms and their comparison studies have mainly based on numer-
ical experiments, and it is difficult to justify if such comparison is always fair.
Thirdly, most of the applications in the literature concern small-scale problems,
and it is not clear if such approaches can be directly applied to large-scale
problems. Finally, it is not clear what are the conditions for the emergence of
swarming and intelligence behaviour, even though the term ‘swarm intelligence’
is used widely. All these mean that a systematical review and analysis is needed,
and this paper is a preliminary attempt to analyze nature-inspired algorithms
in a comprehensive and unified manner.

Therefore, this paper is organized as follows. Section 2 briefly review and
summarize some of the recent SI-based algorithms, with the emphasis on their
main characteristics. Section 3 focuses on the search mechanisms and their
possible mathematical foundations. Section 4 attempts to highlight some of the
main issues concerning nature-inspired algorithms from different perspectives,
and outline some open problems and future research directions.

2

2. Nature-Inspired Optimization Algorithms

There are many nature-inspired algorithms in the current literature, it is
estimated there are more than 100 different algorithms and variants [13, 9, 14,
15, 16, 17, 18]. It is not our intention to review all of them. Instead, our empha-
sis will be on the typical characteristics of algorithms and search mechanisms,
and consequently we have selected only a few algorithms in our discussions
here. Though different algorithms can be described in different ways, it would
be convenient for the discussions later if we can subdivide the descriptions of
algorithms into two categories: procedure-based and equation-based.

2.1. Procedure-Based Algorithms

Though the genetic algorithm (GA) can have quite rigorous mathematical
analyses [3, 19], it is mainly a procedure as an optimization algorithm. Its main
steps are carried out in an iterative manner, and its main procedure consists of
three parts:

• Solution representations: A solution vector x to a D-dimensional problem
is usually represented or encoded as a binary string of a fixed length or a
string of real numbers.

• Solution modifications: Solutions can be modified by mutation or crossover.
Mutation can be applied to a single solution at a single place or multiple
places, while crossover is carried out over two parent solutions by mixing
or swap relevant parts to form new solutions.

• Solution selection: The fitness of a solution is evaluated, usually in terms
of its objective value. The selection of a solution among a population is
carried out according to its fitness (higher values for maximization prob-
lems) and the best solutions are usually passed onto the next generation.

This iterative procedure is relative generic for many algorithms. For example,
the evolutionary strategy (ES) can also fit into the above procedure, though
crossover is not used in ES. In addition, the ant colony optimization (ACO) [4]
can also fit into the above steps, though solution modifications are not by mu-
tation or crossover. Chemical pheromone is used to represent the fitness of a
solution, and the modification of solutions are by pheromone deposition and
evaporation.

2.2. Equation-Based Algorithms

A vast majority of the recent nature-inspired algorithms for optimization are
equation-based where all solution vectors xi(i = 1, 2, ..., n) are represented as a
population set of n solutions in a D-dimensional search space. In this sense, all
different algorithms use the same type of vector representations of solutions.

In addition, the selection of the solutions is mainly based on their fitness
values. The fittest solutions (higher objective values for maximization, or lower
objective values for minimization) are most likely to be passed onto the next

3

generation in the population. Though there some subtle form of selection, such
as fitness-proportional elitism, the essence of solution selection is basically the
same.

Consequently, the main differences among different nature-inspired optimiza-
tion algorithms now are the ways of solution modifications, usually using dif-
ferent mathematical forms or search mechanisms. In general, a solution vector
xti at iteration or generation t is a position vector, and the new solution xt+1

i is
generated by a modification increment or mutation vector ∆xti. That is

xt+1
i = xti + ∆xti, (1)

which dictates the main differences between different algorithms. Traditionally,
this increment is a step size (or a step vector). In case of gradient-based algo-
rithms such as the Newton-Raphson method, this step is linked to the negative
gradient

∆xti = −η∇f(x), (2)

where ∇f is the gradient of the objective function f(x), and η > 0 is the
so-called learning parameter [1, 2].

In some nature-inspired algorithms, the modification in ∆xti is often related
to the increment of velocity modification ∆vti = vt+1

i − vti such as

∆xti = vti ∆t, (3)

where vti and vt+1
i are the velocity for the solution i (particle, agent, etc.)

at iterations t and t + 1, respectively. Here, ∆t is the time increment. As
all algorithms are iterative or time-discrete dynamical systems, the time step or
increment ∆t is essentially the difference in the iteration counter t, which means
that ∆t = 1 can be used for all these algorithms. Consequently, there is no need
to worry about the units of these quantities and thus consider all quantities in
the same units.

Now let us discuss the equations for modifying solutions in different algo-
rithms.

• Differential evolution (DE): In differential evolution [20], the main muta-
tion is realized by

xt+1
i = xti + F (xtj − xtk), (4)

which can be written as

xt+1
i = xti + ∆xti, ∆xti = F (xtj − xtk), (5)

where xti,x
t
j and xtk are three distinct solution vectors from the popula-

tion. The parameter F ∈ (0, 2) controls the mutation strength.

• Particle swarm optimization (PSO) [5]: The main inspiration of PSO
comes from the swarming behaviour of birds and fish. The position and
velocity of particle i at any iteration or pseudo-time t can be updated
iteratively using

vt+1
i = vti + ∆vti, (6)

4

xt+1
i = xti + ∆xti, (7)

with
∆xti = vt+1

i ∆t = vt+1
i , (8)

and
∆vti = αε1[g∗ − xti] + βε2[x∗i − xti], (9)

where ε1 and ε2 are two uniformly distributed random numbers in [0,1].
Here, g∗ is the best solution of the population at iteration t, while x∗i is
the individual best solution for particle i among its search history up to
iteration t.

• Firefly algorithm (FA) [21, 7]: The main characteristics of FA are based
on the attraction and flashing behaviour of tropical fireflies. The position
vector xi of firefly i at iteration t is updated by

xt+1
i = xti + ∆xti, (10)

and
∆xti = β0e

−γr2ij (xtj − xti) + α εti, (11)

where β0 > 0 is the attractiveness at zero distance, that is rij = 0. The
scale-depending parameter γ controls the visibility of fireflies, while α
essentially controls the strength of randomization in FA.

• Bat algorithm (BA) [6]: The main inspiration of BA is based on the echolo-
cation of microbats and the associated frequency-tuning characteristics in
a range from fmin to fmax, in combination with varying pulse emission
rate and loudness [22, 23].

The position of a bat is updated by

vti = vt−1i + ∆vti, (12)

xti = xt−1i + ∆xti, (13)

with

∆vti = (xt−1i − x∗)[fmin + β(fmax − fmin)], ∆xti = vti∆ = vti, (14)

where x∗ is the best solution among the population of n bats, and β is a
random number in [0,1].

• Cuckoo search (CS) [8]: CS was based on the aggressive reproduction
strategy of some cuckoo species and their interactions with host species
such as warblers [24]. The eggs laid by cuckoos can be discovered and thus
abandoned with a probability pa, realized by a Heaviside step function
H with the use of a random number ε in [0,1]. The similarity of two
eggs (solutions xj and xk) can be roughly measured by their difference
(xj − xk). Thus, the position at iteration t can be updated [25] by

xt+1
i = xti + ∆xti, (15)

5

where
∆xti = αs⊗H(pa − ε)⊗ (xtj − xtk). (16)

The step size s, scaled by a parameter α so as to limit its strength, is
drawn from a Lévy distribution with an exponent λ [26]. The generation
of this step size can be realized by some sophisticated algorithms such as
the Mantegna’s algorithm [27].

• Flower pollination algorithm (FPA) [28]: The FPA was mainly based on
the pollination processes and characteristics of flowering plants [28, 29],
including biotic and abiotic pollination as well as flower constancy [30].
The solution vector xi of a pollen particle i can be simulated by

xt+1
i = xti + ∆xti, (17)

and

∆xti =


γL(λ)(g∗ − xti), if r < p,

ε(xtj − xtk), otherwise.
(18)

Here, r is a uniformly distributed random number in [0, 1], and γ is a
scaling parameter. g∗ is the best solution found so far at iteration t. In
the above equation, L(λ) can be considered as a random number vector
to be drawn from a Lévy distribution with an exponent of λ [26].

• Other Algorithms: There are many other nature-inspired algorithms, such
as simulated annealing [31], bacteria foraging optimization [32], biogeography-
based optimization [33], gravitational search [34], charged particle sys-
tem [35], black-hole algorithm [36], krill herd algorithm [37], eagle strat-
egy [38] and others. However, their main differences are in the ways of
generating ∆xti and ∆vti from the population of the existing solutions.

Most recently, new variants and applications are appearing regularly, in-
cluding local ant system for allocating robot swarms [39], hybrid ant and
firefly algorithms [40], usability feature selection by MBBAT [41], vehicle
routing [42, 43] and others [17, 44, 18].

Though the expressions of ∆xti and ∆vti may be different and some algo-
rithms do not use velocity at all, the detailed underlying search mechanisms
may also be very different, even for seemingly similar expression of ∆xti. For
example, the mutation in Eq. (5) of differential evolution seems to be similar to
the form in Eq. (7) for PSO. However, the former was done by random permuta-
tion, while the latter was done by a difference vector with perturbed directions
using a uniform distribution. Similarly, the modification in Eq. (14) in BA uses
frequency tuning by varying frequencies, though it has some similarity to the
mathematical term in Eq. (7). Therefore, in order to gain better insight, we
should analyze the underlying search mechanisms and their mathematical or
statistical foundations.

6

2.3. Applications

Before we discuss various search mechanisms in nature-inspired algorithms,
let us briefly outline some of their recent applications. These algorithms have
been applied in almost every area of science, engineering and industry, from en-
gineering optimization [45, 46, 47, 48, 49, 50] and deep learning [51] to the
coordination of swarming robots [44, 52] and the travelling salesman prob-
lem [53, 54, 42, 43].

For comprehensive reviews, please refer to some recent review articles [55,
13, 56, 16, 25, 17, 18] and books [9, 11, 12].

3. Search Mechanisms and Theoretical Foundations

Different algorithms usually use different search mechanisms, and these search
moves are often based on the underly probability distributions. Though solu-
tion modifications or perturbations are largely part of mutation, we now focus
on their statistical foundations and underlying mechanisms. Loosely speaking,
we can put the ways of modifying or perturbing existing solutions into five cat-
egories: gradient-guided moves (GGM), random permutation (RP), direction-
based perturbations (DBP), isotropic random walks (IRW), and long-tailed,
scale-free random walks (LTRW).

Table 1: Position and velocity modifications in algorithms.

Algorithm Position increment ∆x Velocity increment ∆v
Newton-Raphson GGM None
PSO DBP DBP
DE RP, DBP None
CS RP, DBP, LTRW None
SA IRW None
FA DBP, IRW None
BA RP, DBP RP, DBP
FPA DBP, LTRW None

Gradient-guided moves are mainly used in gradient-based optimization al-
gorithms such as the Newton-Raphson method. The modification is parallel
to the gradient direction, and the step length can be controlled by a learning
parameter.

Random permutation tends to mix up a set of n solutions, and then k ≥ 1 so-
lutions are randomly selected to generate new solutions. Random permutations
are used in many algorithms, such as DE and FPA.

Direction-based perturbations are used in many algorithms with the term of
(g∗ − xi) or (xj − xk). The difference between any two vectors such as xj and
xk determines a direction, but this direction is then perturbed by multiplying
by a uniformly distributed random number ε. Thus, the actual directions of the
moves are randomly distributed within a cone.

7

Table 2: Nature-inspired algorithms and their search characteristics.

Algorithm Probability Search
Distribution Characteristics

PSO Uniform Guided search towards g∗
DE Uniform Auto-scaling search

Permutation Random mutation
CS Lévy flights Self-similar search moves

Long-tailed Scale-free search
FA Gaussian, uniform Nonlinear attraction
BA Uniform Frequency-tuning

Fitness-dependent switching
FPA Uniform Scale-free search

Lévy flights Jumps biased towards g∗

Random walks are a general framework for solution perturbations [57]. If
we consider the current solution xti as the current state St at time t, the next
state (or solution) can be achieved by a local move wt+1

St+1 = St + wt+1. (19)

Here, we use the non-bold form to denote the state in the D-dimensional space,
and perturbations can be done in a dimension by dimension manner. Here, wt+1

can be an array of random numbers to be drawn from the Gaussian distribution

wt+1 ∼ N(0, 1), (20)

which means that the random walk becomes a Brownian motion. Here, the
notation ‘∼’ emphasizes that the random steps should be drawn from the prob-
ability distribution described by the right-hand side of the equation. As the
iteration time is discrete, the pseudotime counter t can be replaced by the num-
ber (N = t) of steps, which means that the average distance dN covered by a
Brownian random walk is

dN ∝
√
N. (21)

This square-root law is a typical feature for many diffusion phenomena [57]. If
the steps are drawn from Gaussian distributions, the random walks are isotropic
random walks.

However, some probability density distributions can have a long tail, or a
heavy tail. If the steps are drawn from a heavy-tailed or long-tailed distribution,
the random walks can become non-isotropic, long-tailed random walks or even
scale-free random networks. A good example of heavy-tailed distributions is the
Cauchy distribution

p(x, µ, γ) =
1

πγ

[γ2

(x− µ)2 + γ2

]
, −∞ < x <∞, (22)

with two parameters µ and γ. Both its mean and variance are infinite or unde-
fined [58, 59].

8

Another important long-tailed distribution is the Lévy distribution, which
has been used in nature-inspired computation. Lévy flights are a very special
random walk whose steps are drawn from the Lévy distribution.

The rigorous definition of Lévy probability distribution can be tricky, in-
volving an integral [60, 26]

p(x) =
1

π

∫ ∞
0

cos(kx)e−α|k|
β

dk, (0 < β ≤ 2), (23)

where α > 0. The case of β = 1 is equivalent to a Cauchy distribution, while
β = 2 leads to a normal distribution. For the practical purpose, we can use the
following approximations for large steps (s)

L(s)→ α β Γ(β) sin(πβ/2)

π|s|1+β
, s� 0, (24)

where Γ(β) is the standard gamma function. Comparing the variance of the
Brownian random walks, the variance or the distance covered by Lévy flights
increases much faster [2]. The mean distance covered by the Lévy flights after
N steps is

dN ∝ N (3−β)/2. (25)

This power-law feature is typically for super-diffusion phenomena [26].
By analyzing nature-inspired algorithms in great detail, we can summarize

the search mechanisms and their underlying statistical characteristics in Tables 1
and 2. Most algorithms modify their solution population directly without using
velocities as shown in Table 1. However, even for the same types of probabil-
ity distributions, their role and effects on search characteristics can be subtly
different, and we summarize their search characteristics loosely in Table 2.

4. Challenges and Open Problems

Despite the effectiveness of nature-inspired algorithms and their popularity,
there are still many challenging issues concerning such algorithms, especially
from theoretical perspectives. Though researchers know the basic mechanisms
of how such algorithms can work in practice, it is not quite clear why they work
and under exactly what conditions. In addition, all nature-inspired algorithms
have algorithm-dependent parameters, and the values of these parameters can
affect the performance of the algorithm under consideration. However, it is not
clear what the best values or settings are and how to tune these parameters to
achieve the best performance. Furthermore, though there are some theoretical
analyses of some nature-inspired algorithms [61, 62], it still lacks a unified math-
ematical framework to analyze all algorithms to get in-depth understanding of
their stability, convergence, rates of convergence and robustness.

In the rest of this paper, we will highlight five open problems concerning
nature-inspired algorithms: mathematical framework for stability and conver-
gence, parameter tuning, role of benchmarking, performance measures for fair
comparison, and large-scale scalability.

9

4.1. Mathematical Framework

As almost all algorithms for optimization are iterative, traditional numerical
analysis tends to use fixed-point theorems to see if it is possible to show the
conditions for such theorems are satisfied. Basically, an iterative algorithm
means that a new solution xk+1 can be obtained from the current solution xk
by an algorithm A with a parameter α or a set of parameters. That is

xk+1 = A(xk, α), (26)

If we omit the bold font and use the standard notations in numerical analysis,
we can write the above equation simply as

xk+1 = A(xk), (27)

without stating α explicitly. Using the properties of function composites, we
have

xk+1 = Ak+1(x0) = (A ◦Ak)(x0), (28)

where x0 is the initial starting point.
From the well-known Banach fixed-point theorem [63, 64], we know that a

fixed point x∗ can exist if A(x∗) = x∗ under the condition that certain distance
metric ρ(., .)

ρ
(
A(xi), A(xj)

)
≤ θ ρ(xi, xj), 0 ≤ θ < 1, (29)

for all xi and xj . This requires that ρ is a shrinking or contracting metric. If a
fixed point exists, it is possible to approach this point iteratively via

lim
k→∞

xk+1 = lim
k→∞

Ak+1(x0) = x∗. (30)

However, for most nature-inspired algorithms, this condition may not be true
at all [57].

Alternatively, we can view the iterative system such as Eq. (26) as a dy-
namical system, which allows us to analyze its behaviour in the framework of
dynamical system theory. For example, the analysis of PSO was first carried
out using dynamical system theory [61].

In case when an algorithm is linear in terms of its position or solution vectors.
It is possible to write the updating equations as a set of linear equations as a
time-discrete linear dynamical system

xk+1 = Bxk, (31)

where B becomes a linear mathematical operator on xk [65]. Its solution can
be written as

x(k) = Bkx0. (32)

The Lyapunov stability requires that all the n eigenvalues λi of B must satisfy

|λi| ≤ 1. (33)

10

If |λi| < 1 (without equality), the algorithm or system becomes globally asymp-
totically stable.

Using a dynamical system framework, Chen et al. [62] studied an extended
bat algorithm system

vk+1 = −ζxk + θvk + ζg, (34)

xk+1 = xk + θvk + ζg − ζxk, (35)

where vk and xk are the velocity and position of a bat at iteration k. Here, g is
the best solution found by the current population. ζ and θ are two parameters.

The above two equations can be rewritten compactly as

Yk+1 = CYk +Mg, (36)

where

Yk =

[
xk
vk

]
, C =

[
1− ζ θ
−ζ θ

]
, M =

[
ζ
ζ

]
. (37)

Their analysis obtained some stability conditions for the parameters so that
−1 ≤ θ ≤ +1,

ζ ≥ 0,

2θ − ζ + 2 ≥ 0.

(38)

They also used numerical experiments confirmed such stability [62].
Another common way for analyzing the probabilistic convergence is to use

Markov chain theory. There are some extensive studies in this area. For ex-
ample, the convergence of the genetic algorithm has been analyzed in terms
of Markov chains [66, 67, 68, 69], and this framework has been applied to an-
alyze the cuckoo search algorithm [70] and the bat algorithm [62]. However,
these studies have focused on the probabilistic convergence, but there still lacks
information about the rate of convergence.

From the Markov chain theory [58, 71], we know that the largest eigenvalue of
a proper Markov chain is λ1 = 1, it is believed that the second largest eigenvalue
0 < λ2 < 1 controls the error variations ||E|| or the rate of convergence

||E|| ≤ C(1− λ2)k, (39)

where C > 0 is a positive constant, which depends on the exact forms of the
chains. In principle, the chain should converge as k → ∞, but it can be very
challenging to figure out this eigenvalue λ2. There is almost no literature on
this topic in the context of nature-inspired algorithms. Thus, an open problem
in this area is as follows:

Open Problem 1. How to build a unified framework for analyzing all
nature-inspired algorithms mathematically, so as to obtain in-depth information
about their convergence, rate of convergence, stability, and robustness?

As we have seen from the above, it seems that this framework may require
a multidisciplinary approach to combine different mathematical, stochastic and
numerical methods so that we can study algorithms from different perspectives.

11

4.2. Parameter Tuning

All nature-inspired algorithms have algorithm-dependent parameters, though
the number of parameters can vary greatly. For traditional algorithms such as
quasi-Newton methods, the tuning of a single parameter can have rigorous math-
ematical foundations [1, 72, 73, 74]. However, for nature-inspired algorithms,
the tuning is mainly empirical or by parametric studies [75].

Loosely speaking, an algorithm with m parameters pm=(p1, p2, ..., pm) can
be written schematically as

xk+1 = A(xk|p1, p2, ..., pm, ε1, ..., εs), (40)

where ε1, ..., εs are s different random numbers, which can be drawn from dif-
ferent probability distributions. To a certain degree, all these random numbers
are drawn iteratively, thus the tuning of an algorithm will mainly be about the
m parameters. Thus, we can compactly write the above as

xk+1 = A(xk,pm). (41)

If we use an algorithm B to tune this algorithm, how was algorithm B tuned
initially? If we used another algorithm C to tune algorithm B, how did we tune
C in the first place? In principle, we should use a well-tuned algorithm (or an
algorithm without any parameters) to tune a new algorithm. Thus, a key issue
is how to tune an unknown algorithm properly?

Systematical brute-force tuning can be very time-consuming if the number
of parameters is large. In addition, there is no guarantee that a well-tuned al-
gorithm works well for one type of problems can work well for a different type
of problems. It may be the case that parameter settings of an algorithm can
be algorithm-dependent and problem-dependent if we want to maximize the
overall performance. In addition, even if an algorithm is tuned, its parameters
become fixed after tuning. However, there is no reason that we cannot vary the
parameter during iterations. In fact, some studies showed that the variations of
a parameter can be advantageous, which leads to self-adaptive variants. For ex-
ample, self-adaptive differential evolution seems to work better than its original
version [76].

One way of tuning algorithms is to consider parameter tuning as a bi-
objective process so as to form a self-tuning framework [77], where the algorithm
to be tuned can be used to tune itself. This can still be a very time-consuming
approach. Now we have another open problem concerning parameter tuning
and parameter control.

Open Problem 2. How to best tune the parameters of a given algorithm
so that it can achieve its best performance for a given set of problems? How
to vary or control these parameters so as to maximize the performance of an
algorithm?

4.3. Role of Benchmarking and No-Free-Lunch Theorem

For any new algorithm, especially a new nature-inspired algorithm, an im-
portant study is to use benchmark functions to test how the new algorithm

12

may perform, in comparison with other algorithms. Such benchmarking allows
researchers to gain better understanding of the algorithm in terms of its conver-
gence behaviour, stability and advantages as well as disadvantages. However,
the key question is what benchmarks should be used.

In the current literature, the benchmarking practice seems to use a set of
test functions with different properties (such as mode shapes, separability and
optima locality), there are many such benchmark test functions [78] and some
test suites designed by different conferences or research groups. As these func-
tions are typically smooth, defined on some regular domains, they can serve
some purpose, but such benchmarking is not actually much use in practice.
There are many reasons, but we only highlight two here. One reason is that
these functions are often well-designed and sufficiently smooth, while real-world
problems are much more diverse and can be very different from these test func-
tions. Another reason is that these test functions are typically unconstrained
or with simple constraints on regular domains, while the problems in real-world
applications can have many nonlinear complex constraints and the domains can
be formed by many isolated regions or islands. Consequently, algorithms work
well for test functions cannot work well in applications.

For an algorithm to be validated properly, testing and validation should
include test functions with irregular domains, subject to various constraints. For
example, if an algorithm has been tested for all the benchmarks in the literature,
there is no guarantee that it can still be effective to solve other problems such
as the following newly designed, seemingly simple, two-dimensional function
f(x, y)

f(x, y) =

N∑
i=−N

N∑
j=−N

(|i|+ |j|) exp
[
− a(x− i)2 − a(y − j)2

]
, (42)

in the domain of

|x− i|+ |y − j| ≤ b =
1

a
, ∀i, j, (43)

where i, j are integers, N = 100 and a = 10. This function has 4N2 local peaks,
but it has four highest peaks at four corners; however, its domain is formed by
many isolated regions, or 4N2 = 40000 regions.

In the current literature, there are many different optimization algorithms.
A key question naturally arises: Which is the best one to use? Is there a univer-
sal tool that can be used to solve all or at least a vast majority of optimization
problems? The simple truth is that there are no such algorithms. This conclu-
sion has been formalized by Wolpert and Macready in 1997 in their influential
work on the no-free-lunch (NFL) theorem [79]. The NFL theorem states that if
an algorithm A can outperform another algorithm B for finding the optima of
some objective functions, then there are some other functions on which B will
outperform A. In other words, both A and B can perform equally well over all
these functions if their performance is averaged over all possible problems or
functions.

13

But the conclusions from most studies in terms of bechmarking seem to in-
dicate that some algorithms are better than others. In practice, we know that
some algorithms are indeed better than others, and the quicksort for sorting
numbers is indeed better than a method based on simple pair-wise comparison.
Now how do we resolve this seemingly contradiction? The key to resolve this
issue lies in the keywords ‘all’ and ‘average’. In practical problem-solving, we
are always concerned with a particular set of problems, not all problems. We are
also concerned with the actual individual performance of solving a particular
problem, not the averaged performance over all problems. As result, bench-
marking using a finite set of algorithms and a finite set of functions becomes a
zero-sum ranking problem [80, 57]. On the other hand, recent studies seemed
to indicate that free lunches may exist [81, 82], especially for continuous opti-
mization [81], multi-objective optimization [82] or co-evolution [83]. Therefore,
we now have an open problem concerning benchmarking.

Open Problem 3. What types of benchmarking are useful? Do free lunches
exist, under what conditions?

4.4. Performance Measures

For the benchmarking comparison of different algorithms, the conclusions
can be influenced by the performance metrics used. To make a comparison,
researchers have to select appropriate performance measures. In the current
literature, comparison studies are mainly concerned with the accuracy, compu-
tational efforts, stability, and success rates.

For a given set of problems and a few algorithms, the algorithms obtained the
most accurate solutions in comparison with some known or analytical solutions
are considered better. Obviously, this will depend on the accuracy level and
the stopping criteria used. Obviously, if one algorithm runs longer than others,
even an ineffective algorithm may be able to obtain sufficiently good results if
allowed to run much longer. Thus, to be fair, all algorithms should use the same
computational efforts, which is usually realized by fixing the number of function
evaluations.

An alternative approach is to use a fixed accuracy and compare the number
of function calls or evaluations as a measure of computational costs. Algorithms
with the smaller numbers of function evaluations are considered better. Even for
the same number N of function calls, there are different ways of using this fixed
budget. If one algorithm first runs half of N (or any other values) evaluations
and select solutions, and then feed them into the run of the second half of
N evaluations, the performance may be different from the execution of the
same algorithm with a single run of N evaluations. Such different ways of
implementing the same algorithm may lead to mixed conclusions.

Due to the statistical nature of nature-inspired algorithms, results are not
exactly repeatable, and thus multiple runs are needed so as to get meaning
statistics. Thus, some researchers use the best objective value obtained at the
final iteration, together with their means, standard deviations and other statis-
tics. This may give a fuller picture about the algorithms. Though a smaller
standard derivation may indicate that the algorithm is more robust, but this

14

may be linked to the problem under consideration. In addition, the ways of ini-
tializing the population and the probability distributions used in the algorithm
may also influence such results, though it is not clear how initialization may
exactly affect the final results.

Another measure used for comparison is the success rate. For multiple runs
(Nr), there may be Ns times that an algorithm is able to find the optimal
solution, which means that the success rate is the ratio Ns/Nr. However, this
depends the way of how the success is defined. For a function f(x) with a
known optimal solution x∗ and the minimization objective fmin(x∗), the success
can be defined by either |x − x∗| ≤ δ or |f(x) − fmin| ≤ δ for a given small
neighborhood such as δ = 10−5. This can be two very different criteria if the
landscape is relative flat.

Some studies use one or more performance measures, but it is not clear if
the above performance measures are truly fair measures for a fair comparison.

Open Problem 4. What are the most suitable performance metrics for
fairly comparing all algorithms? Is it possible to design a unified framework to
compare all algorithms fairly and rigorously.

4.5. Algorithm Scalability

From the application point of view, the most important indicator of the effec-
tiveness of an algorithm is how efficiently it can solve a wide range of problems.
Apart from the constraints posed by the no-free-lunch theorem, the efficiency
of a given algorithm for a given type of problems can be largely affected by
the size of problem instances. A well-known example is the travelling salesman
problem (TSP) where a visitor is required to visit each city exactly once so as to
minimize the overall distanced travelling through n cities. For a small number
of cities (say, n ≤ 5), it is an easy problem. For a moderate or large n, this
problem becomes an NP-hard problem [84, 85, 86]. In this case, an algorithm
that works well for small-scale problem instances cannot be scaled up to solve
large-scale problems in a practically acceptable time scale.

Despite the diverse range of applications concerning nature-inspired algo-
rithms and evolutionary algorithms, the problem sizes tend to be small or mod-
erate, typically under several hundred parameters. It is not clear if these algo-
rithms can be scaled up, by parallel computing, high-performance computing or
cloud computing approaches.

Open Problem 5. How to best scale up the algorithms that work well for
small-scale problems to solve truly large-scale, real-world problems efficiently?

There are other open problems concerning nature-inspired algorithms, in-
cluding how to achieve the optimal balance of exploitation and exploration, how
to deal with nonlinear constraints effectively, and how to use these algorithms
for machine learning and deep learning.

Nature-inspired computation is an active area of research. It is hoped that
the above five open problems we have just highlighted can inspire more research
in this area in the near future.

15

References

[1] S. P. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, Cambridge UK, 2004.

[2] X.-S. Yang, Nature-Inspired Optimization Algorithms, Elsevier Insight,
London, 2014.

[3] J. Holland, Adaptation in Nature and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, USA, 1975.

[4] M. Dorigo, Optimization, Learning, and Natural Algorithms, Ph.D. Thesis,
Politecnico di Milano, Milan, Italy, 1992.

[5] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of
the IEEE International Conference on Neural Networks, IEEE, Piscataway,
NJ, USA, 1995, pp. 1942–1948.

[6] X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: C. Cruz,
J. R. González, D. A. Pelta, G. Terrazas (Eds.), Nature Inspired Cooper-
ative Strategies for Optimization (NISCO 2010), volume 284 of Studies in
Computational Intelligence, Springer, Berlin, Germany, 2010, pp. 65–74.

[7] X.-S. Yang, Firefly algorithms for multimodal optimization, in: O. Watan-
abe, T. Zeugmann (Eds.), Proceedings of Fifth Symposium on Stochastic
Algorithms, Foundations and Applications, volume 5792, Lecture Notes in
Computer Science, Springer, 2009, pp. 169–178.

[8] X.-S. Yang, S. Deb, Cuckoo search via lévy flights, in: Proceedings of
World Congress on Nature & Biologically Inspired Computing (NaBIC
2009), IEEE Publications, USA, 2009, pp. 210–214.

[9] J. Kennedy, R. C. Eberhart, Y. Shi, Swarm Intelligence, Academic Press,
London, UK, 2001.

[10] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence,
Wiley, Hoboken, NJ, USA, 2005.

[11] X.-S. Yang, Z. H. Cui, X. R. B, A. H. Gandom, M. Karamanoglu, Swarm
Intelligence and Bio-Inspired Computaion: Theory and Applications, Else-
vier, London, UK, 2013.

[12] X.-S. Yang, Cuckoo Search and Firefly Algorithm: Theory and Applica-
tions, volume 516 of Studies in Computational Intelligence, Springer, Hei-
delberg, Germany, 2013.

[13] M. Reyes-Sierra, A. C. Coello Coello, Multi-objective particle swarm opti-
mizers: a survey of the state-of-the-art, Int J Comput Intell Res 2 (2006)
287–308.

16

[14] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Ap-
proach to Global Optimization, Springer, Berlin, Germany, 2005.

[15] I. Fister, I. Fister Jr, J. Brest, X.-S. Yang, A comprehensive review of
firefly algorithms, Swarm and Evolutionary Computation 13 (2013) 34–46.

[16] X.-S. Yang, X.-S. He, Bat algorithm: literature review and applications,
International Journal of Bio-Inspired Computation 5 (2013) 141–149.

[17] Z. A. A. Alyasseri, A. T. Khader, M. A. Al-Betar, M. A. Awadallah, X.-S.
Yang, Variants of the flower pollination algorithm: a review, in: X.-S. Yang
(Ed.), Nature-Inspired Algorithms and Applied Optimization, Springer,
Cham, 2018, pp. 91–118.

[18] M. Abdel-Basset, L. A. Shawky, Flower pollination algorithm: a compre-
hensive review, Artificial Intelligence Review 52 (2019) 2533–2557.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, USA, 1989.

[20] R. Storn, K. Price, Differential evolution: a simple and efficient heuristic
for global optimization, J Global Optimization 11 (1997) 341–359.

[21] X.-S. Yang, Nature-Inspired Metaheurisic Algorithms, Luniver Press, Bris-
tol, UK, 2008.

[22] J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press,
Oxford, UK, 1996.

[23] T. Colin, The Variety of Life, Oxford University Press, Oxford, UK, 2000.

[24] N. B. Davies, Cuckoo adaptations: trickery and tuning, Journal of Zoology
284 (2011) 1–14.

[25] X.-S. Yang, S. Deb, Cuckoo search: recent advances and applications,
Neural Computing and Applications 24 (2014) 169–174.

[26] I. Pavlyukevich, Lévy flights, non-local search and simulated annealing,
Journal of Computational Physics 226 (2007) 1830–44.

[27] R. N. Mantegna, Fast, accurate algorithm for numerical simulation of lévy
stable stochastic process, Physical Review E 49 (1994) 4677–83.

[28] X.-S. Yang, Flower pollination algorithm for global optimization, in:
J. Durand-Lose, N. Jonoska (Eds.), Unconventional Computation and Nat-
ural Computation (UCNC 2012, volume 7445, Springer, Berlin Heidelberg,
Germany, 2012, pp. 240–249.

[29] X.-S. Yang, M. Karamanoglu, X. S. He, Multi-objective flower algorithm
for optimization, Procedia Computer Science 18 (2013) 861–868.

17

[30] N. M. Waser, Flower constancy: definition, cause and measurement, Amer-
ican Naturalist 127 (1986) 596–603.

[31] S. Kirkpatrik, C. D. GEllat, M. P. Vecchi, Optimization by simulated
annealing, Science 220 (1983) 671–680.

[32] K. Passino, Biomimicry of bacterial foraging for distributed optimization
and control, IEEE Control Systems 22 (2002) 52–67.

[33] D. Simon, Biogeography-based optimization, IEEE Transactions on Evo-
lutionary Computatio 12 (2008) 702–713.

[34] E. Rashedi, H. H. Nezamabadi-Pour, S. Saryazdi, Gsa: a gravitational
search algorithm, Information sciences 179 (2009) 2232–2248.

[35] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged
system search, Acta Mechanica 213 (2010) 267–289.

[36] A. Hatamlou, Black hole: A new heuristic optimization approach for data
clustering, Information Sciences 222 (2012) 175–184.

[37] A. Gandomi, A. Alavi, Krill herd: a new bio-inspired optimization algo-
rithm, Communications in Nonlinear Science and Numerical Simulatio 17
(2012) 4831–4845.

[38] X.-S. Yang, S. Deb, Two-stage eagle strategy with differential evolution,
International Journal of Bio-Inspired Computation 4 (2012) 1–5.

[39] Y. Khaluf, S. Vanhee, P. Simoens, Local ant system for allocating robot
swarms to time-constrained tasks, Journal of Computaitonal Science 31
(2019) 33–44.

[40] R. Goel, R. Maini, A hybrid of ant colony and firefly algoirthms (hafa)
for solving vehicle routing problems, Journal of Computational Science 25
(2018) 28–37.

[41] D. Gupta, A. Ahlawat, Usability feature selection via mbbat: A novel
approach, Journal of Computational Science 23 (2017) 195–203.

[42] E. Osaba, X.-S. Yang, F. Diaz, E. Onieva, A. Masegosa, A. Perallos, A
discrete firefly algorithm to solve a rich vehicle routing problem modelling
a newspaper distribution system with recycling policy, Soft Computing 21
(2017) 5295–5308.

[43] E. Osaba, X.-S. Yang, I. F. Jr., P. Lopez-Garcia, A. Vazquez-Paravila, A
discrite and improved bat algorithm for solving a medical goods distribution
problem with pharmacological waste collection, Swarm and Evolutionary
Computation 44 (2019) 273–286.

18

[44] F. D. Rango, N. Palmieri, X.-S. Yang, S. Marano, Swarm robotics in
wireless distributed protocol design for coordinating robots invovled in co-
operative tasks, Soft Computing 22 (2018) 4251–4266.

[45] L. C. Cagnina, S. C. Esquivel, A. C. Coello Coello, Solving engineering op-
timization problems with the simple constrained particle swarm optimizer,
Informatica 32 (2008) 319–326.

[46] K. Deb, A. Pratap, S. Agarwal, T. Mayarivan, A fast and elitist multiobjec-
tive algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation
6 (2002) 182–197.

[47] X.-S. Yang, A. H. Gandomi, Bat algorithm: a novel approach for global
engineering optimization, Engineering Computation 29 (2012) 464–483.

[48] X.-S. Yang, S. Deb, Multiobjective cuckoo search for design optimization,
Computers & Operations Research 40 (2013) 1616–1624.

[49] A. H. Gandom, X.-S. Yang, Chaotic bat algorithm, Journal of Computa-
tional Science 5 (2014) 224–232.

[50] A. Chakri, R. Khelif, M. Benouaret, X.-S. Yang, New directional bat
algorithm for continuous optimization problems, Expert Systems with Ap-
plications 69 (2017) 159–175.

[51] J. P. Papa, G. H. Rosa, D. R. Pereira, X.-S. Yang, Quaternion-based deep
belief networks fine-tuning, Applied Soft Computing 60 (2017) 328–335.

[52] N. Palmieri, X.-S. Yang, F. D. Rango, A. F. Santamaria, Self-adaptive
decision-making mechanisms to balance the execution of multiple tasks for
a multi-robots team, Neurocomputing 306 (2018) 17–36.

[53] A. Ouaarab, B. Ahiod, X.-S. Yang, Discrite cuckoo search algorithm for
the travelling salesman problem, Neural Computing and Applications 24
(2014) 1659–1669.

[54] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, R. Carballedo, An im-
proved discrete bat algorithm for symmetric and assymmetric travelling
salesman problems, Engineering Applications of Artificial Intelligence 48
(2016) 59–71.

[55] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview
and conceptural comparison, ACM Comput. Survey 25 (2003) 268–308.

[56] J. Senthilnath, S. N. Omkar, V. Mani, Clustering using firefly algorithm:
performance study, Swarm and Evolutionary Computation 1 (2011) 164–
171.

[57] X.-S. Yang, X.-S. He, Mathematical Foundations of Nature-Inspired Al-
gorithms, Springer Briefs in Optimization, Springer, Cham, Switzerland,
2019.

19

[58] C. M. Grindstead, J. L. Snell, Introduction to Probability, Americal Math-
ematical Society, Providence, Rhode Island, second edition, 1997.

[59] U. N. Bhat, G. K. Miller, Elements of Applied Stochastic Processes, John
Wiley & Sons, New York, third edition, 2002.

[60] M. Gutowski, Lévy flights as an undelying mechanism for global optimiza-
tion algorithms, ArXiv Mathematical Physics e-Prints, Accessed 1 Sept
2019, 2001.

[61] M. Clerc, J. Kennedy, The particle swarm: explosion, stability, and con-
vergence in a multidimensional complex space, IEEE Transactions on Evo-
lutionary Computation 6 (2002) 58–73.

[62] S. Chen, G.-H. Peng, Xing-Shi, X.-S. Yang, Global convergence analysis
of the bat algorithm using a markovian framework and dynamic system
theory, Expert Systems with Applications 114 (2018) 173–182.

[63] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York,
2003.

[64] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Space and Fixed
Point Theory, John Wiley & Sons, New York, 2001.

[65] H. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, third edition,
1996.

[66] J. Suzuki, A markov chain analysis on simple genetic algorithms, IEEE
Trans Sys Man Cybern 25 (1995) 655–659.

[67] H. Aytug, S. Bhattacharrya, G. J. Koehler, A markov chain analysis of
genetic algorithms with power of 2 cardinality alphabets, European Journal
of Operational Research 96 (1996) 195–201.

[68] D. Greenhalgh, S. Marshal, Convergence criteria for genetic algorithm,
SIAM Journal Comput 30 (2000) 269–282.

[69] W. J. Gutjahr, Convergence analysis of metaheurtics, Annalysis Inf Sys
10 (2010) 159–187.

[70] X. S. He, F. Wang, Y. Wang, X. S. Yang, Global convergence analy-
sis of cuckoo search using markov theory, in: X.-S. Yang (Ed.), Nature-
Inspired Algorithms and Applied Optimization, volume 744, Springer Na-
ture, Cham, Switzerland, 2018, pp. 53–67.

[71] A. Ghate, R. Smith, Adaptive search with stochastic acceptance probability
for global optimization, Operations Research Letters 36 (2008) 285–290.

[72] D. P. Bertsekas, A. Nedic, A. Ozdaglar, Convex Analysis and Optimization,
Athena Scientific, Belmont, MA, second edition, 2003.

20

[73] J. L. Chabert, A History of Algorithms: From the Pebble to the Microchips,
Springer-Verlag, Heidelberg, 1999.

[74] D. Zdenek, Optimal Quadratic Programming Algorithms: With Applica-
tions to Variational Inequalities, Springer, Heidelberg, 2009.

[75] A. E. Eiben, S. K. Smit, Parameter tuning for configuring and analyzing
evolutionary algorithms, Swarm and Evolutionary Computation 1 (2011)
19–31.

[76] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting con-
trol parameters in differential evolution: a comparative study on numerical
benchmark functions, IEEE Transactions on Evolutionary Computation 10
(2006) 646–657.

[77] X.-S. Yang, S. Deb, M. Loomes, M. Karamanoglu, A framework for self-
tuning optimization algorithm, Neural Computing and Applications 23
(2013) 2051–2057.

[78] M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global
optimisation problems, International Journal of Mathematical Modelling
and Numerical Optimisation 4 (2013) 150–194.

[79] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization,
IEEE Treansactions on Evolutionary Computation 1 (1997) 67–82.

[80] T. Joyce, J. M. Herrmann, A review of no free lunch theorems, and their
implicatoins for metaheuristic optimisation, in: X.-S. Yang (Ed.), Nature-
Inspired Algorithms and Applied Optimization, Springer, Cham, Switzer-
land, 2018, pp. 27–52.

[81] A. Auger, O. Teytaud, Continuous lunches are free plus the design of
optimal optimization algorithms, Algorithmica 57 (2010) 121–146.

[82] D. Corne, J. Knowles, Some multiobjective optimizers are better than
others, Evolutionary Computation 4 (2003) 2506–2512.

[83] D. H. Wolpert, W. G. Macready, Coevolutionary free lunches, IEEE Trans-
actions on Evolutionary Computation 9 (2005) 721–735.

[84] S. Cook, An overview of computational complexity, Commun. ACM 26
(1983) 400–408.

[85] S. Arara, B. Barak, Computational Complexity: A Modern Approach,
Cambridge University Press, Cambridge, UK, 2009.

[86] O. Goldreich, Computational Complexity: A Conceptual Perspective,
Cambridge University Press, Cambridge, UK, 2008.

21

