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Abstract. The recent trend towards standardization of Electronic
Health Records (EHRs) represents a significant opportunity and chal-
lenge for medical big-data analytics. The challenge typically arises from
the nature of the data which may be heterogeneous, sparse, very high-
dimensional, incomplete and inaccurate. Of these, standard pattern
recognition methods can typically address issues of high-dimensionality,
sparsity and inaccuracy. The remaining issues of incompleteness and het-
erogeneity however are problematic; data can be as diverse as handwrit-
ten notes, blood-pressure readings and MR scans, and typically very little
of this data will be co-present for each patient at any given time interval.

We therefore advocate a kernel-based framework as being most ap-
propriate for handling these issues, using the neutral point substitution
method to accommodate missing inter-modal data. For pre-processing
of image-based MR data we advocate a Deep Learning solution for con-
textual areal segmentation, with edit-distance based kernel measurement
then used to characterize relevant morphology.

Keywords: Knowledge Discovery, Kernel-Based Methods, Medical
Analytics.

1 Introduction

The introduction of electronic health records as a means of standardizing the
recording and storage of healthcare information has been significantly acceler-
ating in recent years, resulting in massive volumes of patient data being stored
online in a manner readily accessible to clinicians and health-care profession-
als [1, 2]. Clinicians routinely support patient diagnosis and the selection of the
individual treatment by analysis of symptoms in conjunction with the longi-
tudinal patterns evident in physiological data, past clinical events, family his-
tory, genetic tests, etc. The availability of this online data resource, covering
large cross-sections of the population, offers an unrivaled opportunity to employ
big data analytics to spot trends, relations and patterns that may escape the
eye of even most experienced clinicians. The results will support personalized
medicine, where decisions, practices, and treatments are tailored to the indi-
vidual patient [3]. (Decision support in particular is a key topic in biomedical
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informatics; it will likely prove essential in clinical practice for human intel-
ligence to be supported by machine intelligence: HumanComputer Interaction
and Knowledge Discovery will thus be critical areas of endeavor [4]).

However, analysis of medical records poses several serious challenges due to
the nature of the data which is typically heterogeneous, sparse, high-dimensional
and often both uncertain and incomplete [5]. Furthermore, image and video data
may contain not only the organs/regions of interest but also neighboring areas
with little relevance to the diagnosis.

In this paper we propose a kernel-based framework for medical big data ana-
lytics to address the issue of heterogeneous data, which employs a neutral point
substitution method to address the missing data problem presented by patients
with sparse or absent data modalities. In addition, since medical records contain
many images (X-ray, MRI, etc) we propose to employ a deep-learning approach
to address the problem of progressive areal segmentation, in order to improve
analysis and classification of key organs or regions.

In the following section we present the kernel-based framework for medical
big data analytics. Section 3 presents our arguments for the use of deep learning
in medical image segmentation. Final remarks and conclusions are presented in
Section 4.

1.1 Glossary and Key Terms

Kernel-Methods: Kernel-Methods constitute a complete machine learning
paradigm wherein data is mapped into a (typically) high-dimensional linear
feature-space in which classification and regression operations can take place
(the support vector machine being the most commonplace). The great advan-
tage of kernel-methods is that, by employing the kernel-trick, the coordinates
of the implicitly constructed embedding space need never be directly computed;
only the kernel matrix of intra-object comparisons are required.

Kernel: A kernel is defined as a symmetric function of arity-2 which forms a
positive semidefinite matrix for each finite collection of objects in which pairwise
comparison is possible. Critically, this matrix defines a linear space such that, in
particular, a maximum-margin classifier can be constructed in this embedding
space using the (kernelized) support vector machine. The convex optimization
problem is solved via the Lagrangian dual, with the decision hyperplane defined
by the set of support objects (those with non-zero Lagrangian multipliers).

Neutral Point Substitution: Kernel matrices can be linearly combined while re-
taining their kernel properties. This makes them ideal for the combination of
very heterogeneous data modalities (in multiple-kernel learning the coefficients
of this combination are explicitly optimized over). However, the absence of data
in any given modality presents significant difficulties in constructing the em-
bedding space. The neutral point substitution method attempts to overcome
these in an SVM context by utilizing an appropriate mathematical substitute
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to allow embedding-space construction while minimally biasing the classification
outcome.

Deep-learning: Deep-learning is the strategy of building multi-layered artificial
neural networks (ANNs) via a greedy layer-on-layer process in order to avoid
problems with standard back-propagation training. Hinton and Salakhutdinov
demonstrated that the greedy layering of unsupervised restricted Boltzmann ma-
chines (see below) with a final supervised back-propagation step overcomes many
of the problems associated with the deep-layering of tradition ANNs, enabling
the building of networks with a distributed, progressively-abstracted represen-
tational structure.

Boltzmann machines: A Boltzmann machine consists in a network of units
equipped with weighted connection-strengths to other units along with a bias
offset. Activation of units is governed stochastically (in contrast to the other-
wise similar Hopfield Network) according to the Boltzmann distribution; each
unit thus contributes an ‘energy’ when activated to the overall global energy of
the network which derives from the weighted sum of its activations from other
units plus the bias. The activation likelihood is itself dependant on the thermo-
dynamic temperature multiplied by this energy magnitude (in accordance with
the Boltzmann distribution). Units are themselves split into hidden and visi-
ble categories, with the training process consisting in a gradient descent over
weights such that the Kullback-Leibler divergence between the thermal equilib-
rium solution of the network marginalized over the hidden units (obtained via
simulated annealing with respect to the temperature) and the distribution over
the training set is minimized.

Restricted Boltzmann machines are a special class of the above in which a
layering of units is apparent, i.e. such that there are no intra-layer connections
between hidden units. These can thus be ‘stacked’ by carrying out layer-wise
training in the manner above, with hidden units from the layer beneath providing
the training-data distributions for the layer above.

2 A Kernel-Based Framework for Medical Big Data

Kernel methods [6–8] incorporate important distinctions from traditional sta-
tistical pattern recognition approaches, which typically involve an analysis of
object clustering within a measurement space. Rather, kernel-based approaches
implicitly construct an embedding space via similarity measurements between
objects, within which the classification (e.g. via an SVM) or regression takes
place. The dimensionality of the space is dictated by number of objects and the
choice of kernel rather than the underlying feature dimensionality.

Kernel methods thus provide an ideal basis for combining heterogeneous med-
ical information for the purposes of regression and classification, where data can
range from hand-written medical notes to MR scans to genomic micro array data.
Under standard pattern recognition, pre-processing of individual medical data
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modalities would be required to render this data combination problem tractable
(i.e. representable in a real vector space), and such representation would in-
variably involve a loss of information when the data is in a non-vector (e.g
graph-based) format.

2.1 Dealing with Heterogeneous Data

Kernel methods provide an excellent framework for combination of heteroge-
neous data for two principle reasons:

1. Mercer Kernels Are Now for All Data Types
A kernel obeying Mercer’s properties (i.e one which leads to a positive definite
kernel matrix) can now be built for almost all data formats, for instance:

– text (via NLP parse-tree kernels/LSA kernels [9, 10])
– graphs and sequences (via string kernels, random walk kernels [11, 12])
– shapes (via edit distance kernels [13])
– real vectors (via dot product kernels, polynomial kernels etc [14])
– sets of pixels/voxels (efficient match kernels, pyramid match kernels [15])
– stochastic data (Fisher kernels [8])

Almost all forms of medical data (hand-written medical notes, MR scans, micro
array data, temporal blood pressure measurements etc) fall into one or other
of these categories. This means that even the most heterogeneous medical data
archive is potentially kernalizable.

2. The Linear Combination of a Set of Mercer Kernels Is Also a Mercer
Kernel
This means that the combination of kernalizable heterogeneous medical data is
straightforward; it is only required to solve the kernel weighting problem (i.e. the
optimal coefficients of the linear combination). Fortunately, for the most typical
classification context (SVM classification), this is straightforwardly soluble (if no
longer convex). Since the sum of kernel matrices of equal size does not increase
the summed matrix size we are free (within the limits of the above MKL problem)
to add additional kernels indefinitely. This can be useful when multiple kernels
are available for each modality, either of different types, or else due to a range
a parametric settings available for individual kernels. We can thus capture an
enormous range of problem representations - and, of course, we may also employ
’meta’ kernels - for instance Gaussian/RBFs built in conjunction with the above
kernels, further massively extending the range of possible representations (both
individually and collectively). This can be advantageous e.g. for inducing linear
separability in the data (Gaussian/RBF kernels are guaranteed to achieve this).

2.2 Dealing with Missing Data

While kernel methods thus, in general, make the problem of combining hetero-
geneous medical data much more tractable than would be the case for stan-
dard pattern recognition methods, there are certain caveats that are specific to
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them. The most critical of these is due to the missing intermodal data problem,
e.g. where a person has incomplete data in a given modality (this is especially
common in time-series data where e.g. blood pressure measurements or ECG
measurements [16] may have been made irregularly over some interval of the
patient’s life). This is problematic in standard pattern recognition of course, but
can be straightforwardly addressed by interpolating the existing data distribu-
tion over the feature space. However, this option is not immediately available
for kernel methods, where the data itself defines the embedding space.

However, methods developed by the author (the ’neutral point substitution’
method [17–19]) render this tractable. (Neutral point substitution involves the
unbiased missing value substitution of a placeholder mathematical object in
multi-modal SVM combination). We thus, in principle, have the expertise and
tool sets required to address the big medical data challenge.

Because of the imaging-based aspect of certain of the data (MR scans in par-
ticular), we would anticipate that the kernelized framework for medical data
combination would be employed in the context of other computer vision areas,
in particular segmentation. Segmentation would be employed, in particular, to
identify individual organs prior to kernelized shape characterization for incorpo-
ration into the above medical data combination framework.

This aspect of medical segmentation lend itself, in particular, to deep learning
approaches, which we now explore.

3 Deep Learning for Medical Image Segmentation

We propose to leverage the hierarchical decompositional characteristics of deep
belief networks to address the problem of medical imaging, specifically the as-
pects of progressive areal segmentation, in order to improve classification of key
organs.

Historically, neural networks have been limited to single hidden-layers due
to the constraints of back-propagation - specifically the limitations of back-
propagation when faced with the parametric freedom and local minima char-
acteristics of the optimization function generated by multiple hidden layers.

The recent development of Deep Networks [20–23] has addressed these issues
through the use of a predominantly forward training based approach. Deep net-
works thus aim to form a generative model in which individual layers encode
statistical relationships between units in the layer immediately beneath it in
order to maximize the likelihood of the input training data. Thus, there is a
greedy training of each layer, from the lowest level to the highest level using
the previous layer’s activations as inputs. A more recent advancement is the
convolutional deep belief network [24] that explicitly aims to produce an efficient
hierarchical generative model that supports both top-down and bottom-up prob-
abilistic inference; it is these characteristics make it particularly applicable to
image processing.

Typically, within a convolutional deep belief network, weights linking the hid-
den layers to visible layers are distributed over the entire lower layer e.g. an
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image pixel grid at the lower layer; in which case the second layer constitutes
a bank of image filters (note that since higher-level representations are over-
complete a sparsity constraint is enforced). However, while such weight learning
is a forward-only, greedy, layer-wise procedure, the network’s representation of
an image is constrained by both top-down and bottom-up constraints. Thus,
since the network is pyramidal in shape, with pooling units serving to enforce
compression of representation throughout the network, there is necessarily a bias
towards compositionality in the network’s image representation, since maximiz-
ing compositionality and factorizability renders the network as a whole more
efficient. Consequently, a convolutional deep belief network is particularly well-
suited to capturing progressively higher level hierarchical grammars, with higher
levels representing progressively greater abstractions of the data to the extent
that the higher levels can embody notions of categoricity.

We might, in an ideal case, thus anticipate an encoding of a set of images to
consist of the following layers; firstly, an input level of pixel grids; secondly, a
set of wavelet-like orthonormal bases for maximal representational compactness
over the entire image database; thirdly, a set of feature detectors built from these
orthonormal bases but tuned to specific common patterns in the image database.
Finally, at the highest levels, we might hope for encoding of broad object cate-
gories such as organs. Thus, the network as a whole can readily function as an
organ segmenter. There is hence a strong continuity of mechanism across the
whole representation process, unlike the standard image processing pipeline, in
which feature representation and classification are typically separate processes,
with attendant numerical mismatches that manifest themselves, for example, as
curse-of-dimensionality problems.

All of the above characteristics make deep belief networks and their variants
particularly well suited to the proposed application domain of medical imaging.
(In particular, a clear hierarchy of image grammars is present; at the highest
level there are the individual organs and their relative positional relationship.
At the lower level are the organ subcomponents (typically where disease is most
manifest). Thus, (in the generative approach) the deep belief network forms a
hierarchical segmentation of images in an unsupervised manner, in which differ-
ent levels of interpretation (i.e. respective conceptual or spatial coarse-grainings)
of the data are apparent.

Relevant here are the recent developments by Socher et al. [25] in which
a complete NLP grammatical parse tree is distributed across the hierarchy of
a recursive deep belief network. In particular, a syntactically untied recursive
neural network is employed to simultaneously characterize both the relevant
phrase structure and its most appropriate representation (the system thus learns
both the parse tree and a compositional vector representation [i.e a semantic
vector space] at the same time). The use of recursive neural tensor networks
extends this representation to allow more complex ’operator’-type word-classes
to exist within the parse tree.

There is no distinction, in principle, between a generative top-down visual
grammar of topological relations between segmented regions of a medical image
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and the generative (recursive) construction of grammatical units within a NLP
parse-tree. Hence, we would anticipate, a recursive, grammatical approach such
as the above would be immediately applicable in the medical domain.

We thus, in summary, propose the hierarchical segmentation of medical data
by using a deep learning approach. This will require experimentation with the
methodology of convolutional deep belief networks in order to optimize the ap-
proach for hierarchical image decomposition in a manner most useful to medical
objectives. Following this segmentation, morphology and other textural char-
acteristics of the segmented reagion can be treated via an appropriate kernel-
characterization in order to allow integration of the deep-learning process into
the overall kernel combination framework (using e.g. edit-distance based kernels
for contour comparison).

4 Conclusions

In this paper we have outlined two novel research directions to address critical
issues in big medical data analytics in a complementary manner: (1) a kernel-
based framework for combining heterogeneous data with missing or uncertain
elements and (2) a new approach to medical image segmentation built around
hierarchical abstraction for later kernel-based characterization.

Kernelization is thus the key to addressing data-heterogeneity issues; the way
in which missing ‘intermodal’ data is combined in within the kernel-based frame-
work depends on the authors’ neutral point substitution method. A neutral point
is defined as a unique (not necessarily specified) instantiation of an object that
contributes exactly zero information to the classification (where necessary to
actuate this substitution explicitly -i.e. where missing data occurs in both test
and training data- we can select the minimum norm solution)

This is therefore an ideal substitute for missing values in that it contributes
no overall bias to the decision. Crucially, it can be used in multi-kernel learning
problems, enabling us to combine modalities optimally with arbitrary missing
data.

The calculation of the neutral points turns the O(n3) complexity of the
SVM problem into a maximum O(n4) complexity problem if uniform intermodal
weightings are used. Solving for arbitrary weights, in the general MKL optimiza-
tion procedure, is inherently a non-convex problem and solved via iterative al-
ternation between maximizing over Lagrangian multipliers and minimizing over
the modality weights. Appropriate modality weightings can thus be learned in
multimodal problems of arbitrary data completion; we hence have the ability to
combine any multiple modality data irrespective of modal omission.

Together, the two approaches of kernel-based combination of heterogeneous
data with neutral point substitution and deep-learning would thus, we argue,
address the major outstanding big-data challenges associated with Electronic
Health Record standardization, in particular incompleteness and heterogeneity.
However, there remain certain outstanding issues to be addressed:
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5 Open-Problems

While the proposed kernel-based framework is extremely generic, in that almost
any form of data can be accommodated, there has typically been a historical bias
in kernel research towards classification (particularly SVM-based classification),
particularly in terms of the algorithms that have deployed for kernel-based anal-
ysis. Classification, however, accounts for only a fraction of the medical big-data
activity that one would wish to carry-out (in particular, it corresponds to the ac-
tivity of disease diagnosis, though perhaps classification could also be employed
for the induction of key binary variables relating to health-care, such as deter-
mining whether a patient is likely to be a smoker given the available evidence).
The first open problem that we can thus identify is that of the 1. Breadth of
Problem Specification.

A second issue that we would need to address in an extensive treatment of
EHRs is that of 2. Data Mining/Unsupervised Clustering Analysis. Here, we wish
to utilize all the available data (in particular the exogenous variables) in order to
suggest investigative possibilities, rather than explicitly model or classify patient
data. This approach thus differs from standard modes of assessment in which
one seeks to test a null hypothesis against the available data. Typically, data
mining is thus a precursory stage to hypothesis evaluation; instead it belongs
to the stage of hypothesis generation. We may thus envisage a ‘virtuous circle’
of activity with progressive problem specification arising from the iterative in-
teraction between medical practitioners and machine-learning researchers, with
medical hypothesis suggestions being following by the progressive formalization
of diagnostic evaluation criteria. The hypothesis suggestions themselves would
arise from unsupervised clustering analysis; significant multimodality would be
suggestive of subpopulations within the data, in particular subpopulations that
may not be recognized within existing disease taxonomies.

A third related open problem is that of 3. Longitudinal Data Analysis for both
patients and any identified subpopulations within the data. This would generally
take the form of prediction modelling, in which we would attempt to determine
to what extent it is possible to predict an individual patient’s disease prognosis
from the data. A sufficiently comprehensive data set that extends across the
diverse range of medical measurement modalities would potentially enable novel
forms of analysis; for instance, apparently exogenous variables could prove to
affect outcomes in different ways.

One additional aspect of time-series data that would also potentially have
to be addressed is that of on-line learning; patient data would, in general, be
collected continuously, and therefore methods of classification and regression
would preferably therefore have to be trainable incrementally i.e. with relatively
little cost involved in retraining with small quantities of additional data.

The final open problem associated with our framework is that of 4. Utilizing
Human-Computer Interaction in the most effective way, particularly as regards
decision support. Here, we would not attempt to to directly resolve problems of
e.g. medical diagnosis/prognosis via regression/classification. Rather, the aim is
to utilize the framework to maximally assist the medical profession in arriving
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at their own diagnosis/prognosis decision. This might take the form of data-
representation i.e where machine learning is used to determine salient aspects
of the data set with respect to the current decision to be made. This can be at
both the high-level (determination of patient or population context) or at the
low-level (segmentation of relevant structures within imaging data). Another
possibility for HCI is explicit hybridization of the decision process [4], utilizing
the most effective respective areas of processing in combination (for example,
pattern-spotting in humans in conjunction with large data-base accessing in
computers).

In the following section we outline some provisional solutions and research
directions for addressing the most immediately tangible of these open issues
consistent with the proposed framework.

6 Future Outlook

To address the first open problem, Breadth of Problem Specification, it will likely
be necessary, in addition to carrying-out classification within a kernel context,
to exploit the full range of algorithms to which kernel methods apply: kernel-
principal component analysis, ridge regression, kernel-linear discriminant anal-
ysis, Gaussian processes etc (these are typically all convex optimization prob-
lems). The latter of these, Gaussian processes, ought particularly to be useful for
prediction of patient outcomes [26], and would directly assist with the missing
data problem by allowing both longitudinal data-interpolation and longitudinal
data-extrapolation.

A Gaussian process might thus be deployed for modelling time-series data via
Gaussian process regression (kriging), producing the best linear unbiased pre-
diction of extrapolation points. Primary outcome variables in a medical context
would thus be likely to be disease progression indicators such as tumor-size.

We therefore propose to explore a number of areas of kernel regression con-
sistent with our framework to address the big-data analytics problem.

In terms of the second open problem Data Mining/Unsupervised Clustering
Analysis, we might wish to explore rule-mining type approaches, since the result-
ing logical clauses most closely resemble the diagnostic criteria used by medical
professionals in evaluation disease conditions.

Unsupervised clustering, in particular the problem of determining the pres-
ence of sub-populations within the data, might be addressed by addressed by
model-fitting (Kernel regression [27], or perhaps K-means or Expectation Maxi-
mization with Gaussian Mixture Modelling in sufficiently low-dimensional vector
spaces) in conjunction with an appropriate model-selection criterion (for exam-
ple, the Akaike Information Criterion [28] or Bayesian Information Criterion).
The latter is required to correctly penalize model-parameterization with respect
to goodness-of-fit measurements such that the overfitting-risk is minimized. The
means of such partitioned clusters would then correspond to prototypes within
the data, which may be used for e.g. efficient indexing and kernel based char-
acterization of novel data. Manifold learning might also be required in order
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to determine the number of active factors within a data-set; Gaussian Process
Latent Variable Modelling [29] would be a good fit to the proposed framework.

More generally, regarding the use of such hypothesis generation methods
within a medical context, it is possible can regard the iterative process of exper-
imental feedback and problem refinement as one of Active Learning [30]. Active-
learning addresses the problem of how to choose the most informative examples
to train a machine learner; it does so by selecting those examples that most
effectively differentiate between hypotheses, thereby minimizing the number of
experimental surveys that need to be conducted in order to form a complete
model. It thus represents a maximally-efficient interaction model for medical
professions and machine-learning researchers.

Finally, addressing the third open problem, Longitudinal Analysis, within the
proposed kernel-based framework would likely involve the aforementioned Gaus-
sian processes given their ready incorporation within the kernel methodology.
Another possibility would be Structured Output Learning [31], a variant of the
Support Vector Machine that incorporates a loss-function capable of measur-
ing the distance between two structured outputs (for example, two temporal
series of labels). The Structured Output Learning problem, however, is gener-
ally not tractable with standard SVM solvers due to the additional parameter
complexity and thus requires bespoke iterative cutting plane-algorithms to train
in polynomial time.

In sum, it would appear that the proposed kernel framework has sufficient
flexibility to address many of the open questions identified, and indeed implicitly
sets out a programme of research to address these. However, it will invariably be
the case that each novel EHR dataset will involve characteristics that are more
suited to one particular form of machine learning approach over another -it is
not generally the case that this can be specified a priori, thereby necessitating
a flexible research programme with the potential to leverage the full range of
available kernel-based machine-learning techniques.
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