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Abstract 

Background: Platinum-based chemotherapy is the standard of care for ovarian cancer 

and non-small cell lung cancer (NSCLC). However, resistance to platinum agents 

invariably develops. Targeted therapies, such as tyrosine kinase inhibitors (TKIs), have 

great potential here as they exert their anti-tumour effect via alternative mechanisms to 

platinum-based drugs and as such may remain unaffected by emergent resistance to 

platinum.  

Methods: A systematic review was conducted to investigate whether two EGFR-TKIs, 

erlotinib and gefitinib, have efficacy in the platinum-resistance setting. Preclinical studies 

of platinum-resistant cancer cell lines, which had been subsequently treated with EGFR-

TKIs, were sought to establish proof-of-concept. Clinical trials reporting administration 

of EGFR-TKIs to ovarian cancer and NSCLC patients relapsed after therapy with 

platinum drugs were investigated to determine sensitivity of these cohorts to EGFR-TKI 

treatment. The role of EGFR mutation, copy number and protein expression on response 

to EGFR-TKIs after failure of platinum chemotherapy were also investigated. 

Results: Preclinical models of platinum-resistant cancer were found which display a 

spectrum of cross-resistance profiles to EGFR-TKIs. Sensitivity to EGFR-TKIs is 

dependent on the activation of the EGFR pathway or EGFR interacting proteins such as 

HER-2. EGFR-TKIs show favourable response rates in platinum-pretreated NSCLC, 

11.14% and 15.25% for 150 mg/day erlotinib and 250 mg/day gefitinib, respectively. 

These response rates significantly improve in patients of Asian descent (28.3% and 

29.17%, respectively) and patients with EGFR activation mutations (41.6% and 63.89%, 

respectively) or increased copy number (33.3% and 45.45%, respectively). Gefitinib 

significantly outperformed erlotinib and should therefore be the EGFR-TKI of choice in 

platinum-pretreated relapsed NSCLC. In contrast, response rates are very poor to both 

erlotinib and gefitinib in platinum pretreated ovarian cancer, 0-5.9% and they should not 

be used in this cohort of patients. 

Preclinical models demonstrate that, while cross resistance can occur between platinums 

and EGFR-TKIs, there is not a generalised cross-resistance phenotype. Erlotinib and 

gefitinib are suitable for the treatment of platinum-pretreated NSCLC, particularly in 

patients with EGFR mutations or increases in copy number. Unfortunately, the high rates 

of EGFR protein overexpression in ovarian cancer are not translating to a clinically 

useful therapeutic target for EGFR-TKIs; EGFR mutations are rare in ovarian cancer. 

Newer TKIs may improve response rates in these cohorts and future clinical trials need to 

collect tumour biopsies from all patients to ensure the success of personalised 

chemotherapy. 
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1. Introduction 

The lungs are the most common site of cancer occurrence when both genders are 

considered together (12.7% of cancer cases); lung cancer also results in the greatest 

mortality by site of cancer origin (18.2%) (Ferlay et al., 2008). Amongst lung cancer 

subtypes, those characterised as non-small cell lung cancers (NSCLCs) are the most 

prevalent (89%) and prognosis is poor for advanced stages of the disease – 5 year 

survival is estimated to be 10% for stage IIIA and 4% for stage IV (Yang et al., 2005). 

Similarly, for ovarian cancer, estimated to be the seventh most common cause of 

mortality in women due to invasive cancers worldwide (Ferlay et al., 2008), survival 

worsens with disease progression – 5 year survival among a US population up to 2001 

was estimated to be 33.5% and 17.9% for stages III and IV ovarian cancer, respectively, 

compared with 53.8% survival after 5 years across all stages (Ries et al., 2007). At an 

advanced stage, these cancers have developed lymph node metastases or have 

proliferated across the peritoneum in the case of many ovarian cancers. This distribution 

limits surgical options and hence chemotherapy is the standard of care. Typically, this 

comprises a platinum/taxol drug combination regimen (Vasey et al., 2005; Rajeswaran et 

al., 2008). While a moderate percentage of patients initially respond well after first-line 

chemotherapy, recurrence of disease is commonly observed, with only modest response 

rates in a substantial number of such cases. Recurrence is frequently accompanied by 

resistance to the platinum-based chemotherapy administered as first-line treatment. In the 

case of ovarian cancer, drug resistance is demarcated by a re-emergence of detectable 

disease within 6 months of documented regression following platinum treatment 

(Markman et al., 1992). The resistance to chemotherapy highlights the necessity for anti-

cancer agents which operate via different mechanisms than that of platinum-based drugs. 

Platinum-based anticancer drugs such as cisplatin and carboplatin cause 

cytotoxicity mainly due to interaction with DNA, forming inter- and intra-strand adducts, 

hindering RNA transcription and DNA replication, leading to cell cycle arrest and 

apoptosis. Inevitably, the use of platinum chemotherapy is limited by the development of 

drug resistance. Numerous cellular mechanisms potentially contributing to clinical 

platinum resistance have been proposed, including changes in cellular drug accumulation, 

detoxification of the drug, inhibition of apoptosis and DNA repair of platinum adducts  

(Stordal et al., 2007a; Shahzad et al., 2009; Brabec and Kasparkova, 2005; Borst et al., 

2008). 

Research and evaluation of chemotherapeutic treatment options for platinum-

resistant cancer take several approaches: i) development of novel cytotoxic agents for 

first-line monotherapy; ii) addition of a third cytotoxic agent to standard first-line 

platinum/taxane doublet therapy and iii) addition of a molecularly-targeted agent to first-

line or salvage therapy (Goffin et al., 2010; Triano et al., 2010). In the targeted-agent 

approach, receptor tyrosine kinases are currently mainstay as potential targets, because 
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they have a central role in development, survival and  proliferation of cancer cells (Hynes 

et al., 2005) related to their frequent dysregulation and/or gain-of-function mutations, 

evident in NSCLC (Hirsch et al., 2003; Rusch et al., 1993) and ovarian cancer (Lafky et 

al., 2008). The pre-eminent tyrosine kinase targets are those of the epidermal growth 

factor receptor (EGFR) tyrosine kinase family, also known as ErbB (avian 

erythroblastosis oncogene B) or HER (human epidermal growth factor receptor), in 

particular EGFR (Erb1). After binding with their ligands, tyrosine kinase receptors 

trigger a cascade of phosphorylation and activation of signalling pathways which have 

the overall effect of increasing tumor cell proliferation, angiogenesis, invasion and 

metastasis as well as inhibiting apoptosis (Rosa et al., 2008). Each family member 

dimerises with another upon ligand binding, with HER2 being the preferred partner, this 

is necessary for HER2 activity as it lacks a cognate ligand. It is thought that HER2 

mediates growth and survival of cancer cells by activation of the PI3K/AKT and MAPK 

signalling pathways, while their invasive potential may be modulated via NF-κB 

signalling (Merkhofer et al., 2010).  

EGFR may possess one of several commonly observed mutations coinciding with 

aberrant activity of the receptor, including an altered response to EGFR tyrosine kinase 

inhibitors (TKIs) and, therefore, altered clinical efficacy. These are most often 

substitution mutations or in-frame deletions arising in exons 19 or 21 (City of Hope 

Molecular Diagnostic Laboratory, 2010). In NSCLC, mutations at these sites alter the 

tyrosine kinase domain and are associated with improved response rate to EGFR-TKI 

treatment versus tumours expressing wild type EGFR. These mutants may in fact be 

associated with a state of addiction of the tumour cell to their activity, therefore 

sensitising the cell to EGFR-TKIs and accounting for the observed clinical efficacy of 

erlotinib and gefitinib (Gazdar et al., 2004). Conversely, tumours expressing the exons 2–

7 deletion mutant, EGFRvIII, which affects the extracellular domain of the protein, are 

relatively unresponsive to treatment by erlotinib or gefitinib (Ji et al., 2006). Resistance 

to EGFR-TKI treatment may also be acquired following selection of cells which have 

either developed a de-sensitising mutation or been present as a subset in the pre-treatment 

tumour, for example the T790M mutation, which occurs in up to 50% of NSCLC or lung 

adenocarcinoma (Balak et al., 2006; Kosaka et al., 2006; Sharma et al., 2007). 

 For unselected patient cohorts, the overall response to treatment with EGFR-TKIs 

is relatively low. However, retrospective analysis of NSCLC tumour samples reveals a 

high percentage of EGFR mutations in patients who had responded to the EGFR-TKI 

gefitinib as salvage chemotherapy, 88.8%, n=9 (Lynch et al., 2004). The rate of EGFR 

mutations in NSCLC is relatively high and varies by ethnicity, with tumours from 

patients of Asian extraction displaying substantially higher rates of occurrence; 15/58 

(25.8%) mutations in Japanese patients compared with 1/61 in non-Asian patients from 

the USA (1.6%) (Paez et al., 2004). For many other commonly occurring solid tumours, 
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the incidence of mutations in EGFR is very low or non-existent.  Lee et al. examined 536 

tumours from colon, gastric, breast, hepatic cancers and adult leukaemias. Only one 

EGFR mutation was detected in a breast carcinoma, but it was a silent mutation not 

affecting the protein sequence (Lee et al., 2005a). EGFR mutations have not been 

detected in cervical cancer (Arias-Pulido et al., 2008). This is also the case for ovarian 

cancer, where often no deleterious EGFR mutations are detected in a group of patients 

(Lacroix et al., 2006; Lassus et al., 2006; Steffensen et al., 2008). However, high rates of 

EGFR mutations have been seen in Asian ovarian cancer patients, 23.5% (Takana et al., 

2011). 

However, there may be a role for EGFR-TKIs in tumours which do not have 

EGFR mutations, such as ovarian cancer,  if there is an activation of the EGFR pathway 

either as part of the carcinogenesis of the tumour or as a response to first-line 

chemotherapy. Increased copy number of EGFR as determined by FISH occurs in 12-

20% of ovarian carcinomas (Lassus et al., 2006; Stadlmann et al., 2006; Vermeij et al., 

2008). EGFR protein overexpression occurs in 17-38% of ovarian tumours as determined 

by immunocytochemistry (Lassus et al., 2006; Stadlmann et al., 2006; Vermeij et al., 

2008). Increased EGFR copy number and protein expression have also been associated 

with poor patient outcome in ovarian cancer (Lassus et al., 2006). Treatment with an 

EGFR-TKI may improve the prognosis of this cohort of ovarian cancer patients. This 

systematic review will examine the effect of EGFR mutation in NSCLC and EGFR 

activation in ovarian cancer on the response to treatment with EGFR-TKIs after failure of 

platinum-based chemotherapy. 

 The correlation between EGFR expression and response to EGFR-TKIs has been 

studied extensively. Ono and colleagues investigated the relationship between EGFR 

expression by western blot and response to gefitinib; they saw a correlation in their panel 

of NSCLC cell lines (Ono et al., 2004). In contrast, Suzuki and colleagues investigated 

the relationship between EGFR, pEGFR, HER-2 protein expression, and KRAS gene 

mutation and response to erlotinib in a panel of 19 NSCLC cell lines; they found no 

correlation of any of these markers, as determined by western blot and PCR, with the IC50 

of erlotinib (Suzuki et al., 2003). The lack of correlation between EGFR and pEGFR 

expression and the activity of EGFR-TKIs is discouraging; however these still remain the 

first biomarkers to investigate to predict the response to EGFR-TKIs. This systematic 

review will examine a range of biomarkers in preclinical studies in order to accurately 

categorise a cell line or cancer patient as potentially EGFR-TKI sensitive. 

The development of cisplatin resistance in cell lines can also alter the expression 

of EGFR and pEGFR and activate the pathway. A panel of four cisplatin-resistant 

neuroblastoma cell lines have also been shown to have increased EGFR and pEGFR 

protein expression and be more sensitive to treatment with novel EGFR-targeted agents 

than their cisplatin-sensitive counterparts (Michaelis et al., 2008). Similar results were 
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seen in two cisplatin-resistant oral carcinoma cell lines, increased EGFR and pEGFR and 

sensitivity to the novel EGFR inhibitor AG1478 (Hiraishi et al., 2008). Therefore, 

treatment with platinum and the development of platinum resistance may cause EGFR 

dysfunction by altering the protein expression and activity of components of the EGFR 

pathway in a subpopulation of relapsed cancer patients. Therefore, we hypothesise that 

EGFR-TKIs could be useful in treating platinum pretreated and/or platinum-resistant 

cancers if a dysfunction in the EGFR pathway has developed as a result of first-line 

platinum-based chemotherapy. Identifying this subpopulation may yield better response 

rates to salvage chemotherapy with EGFR-TKIs. 

Erlotinib and gefitinib are both EGFR-TKIs, which bind the ATP-binding site in 

the cytosolic EGFR tyrosine kinase-domain, preventing autophosphorylation and 

activation of key signalling pathways (Rosa et al., 2008, Yun et al., 2008).  Both have 

been FDA-approved for the treatment of advanced or metastatic NSCLC where foregoing 

chemotherapy has failed and, therefore, are the focus of this review in the context of their 

suitability as targeted salvage treatment agents for NSCLC and ovarian cancers which 

have recurred after treatment with platinum-based chemotherapy. 
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2. Methods 

2.1. Data collection 

 Medline and EMBASE were searched systematically for preclinical and clinical 

studies reporting outcomes of platinum-resistant ovarian/non-small cell lung cancer cell 

lines and tumours treated with either erlotinib or gefitinib. The literature searches were 

performed by both review authors independently and last updated in February 2011. The 

searches were limited to papers published in the English language only. Conference 

abstracts and review articles were excluded from the analysis. 

2.1.1. Preclinical 

A keyword search strategy was utilised, combining relevant words or their common 

synonyms for:-  

1) Cancer types (cancer*, carcinom*, neoplas*, tum*, malignan*, ovar*, NSCLC),  

2) Platinum drugs (platin*, cisplatin, oxaliplatin, carboplatin, CDDP),  

3) EGFR-TKIs (gefitinib, Iressa, ZD1839, erlotinib, Tarceva, OSI-774)  

4) Drug resistance status (resist*, cross resist*, toxicity, IC50).  

5) Preclinical (cells or cell line). 

Resistance studies looking at a panel of cancer cell lines and the relative resistance 

between them were excluded, as these studies examine intrinsic platinum resistance and 

not resistance developed from exposure to chemotherapy. Resistant cell lines resulting 

from transfection were excluded. 

2.1.2. Clinical 

 Medline and EMBASE were searched for all clinical trials using erlotinib or 

gefitinib alone or in combination as treatment for patients who had previously received 

cisplatin or carboplatin-based chemotherapy.  

1) Cancer types (cancer*, carcinom*, neoplas*, tum*, malignan*, ovar*, NSCLC),  

2) Platinum drugs (platin*, cisplatin, oxaliplatin, carboplatin, CDDP),  

3) EGFR-TKIs (gefitinib, Iressa, ZD1839, erlotinib, Tarceva, OSI-774)  

4) Second Line Therapy/ Drug-resistant Disease (resist*, refractory, relaps*, retreat*, re-

treat*, pretreat*, pre-treat*, progress*, persistant, salvage, second-line) 

5) Clinical Trial (trial, phase, patient*, group*, random*, cohort, random). 
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All studies of “first-line” or chemotherapy-naïve patients were excluded. Second 

line studies were excluded if patients had received no prior platinum chemotherapy. Case 

studies reporting less than 5 patients were excluded. Reports of maintenance 

chemotherapy for non-relapsed/ non-progressed platinum pretreated patients were 

excluded. Reports apparently relevant by reading of abstracts were scrutinised and, where 

relevant information was provided, data were extracted and tabulated. Relevant reviews 

were also examined in order to identify further studies not returned by searching of the 

databases. The reference lists of included studies were also searched for relevant papers. 

Where insufficient data had been presented, attempts were made to contact authors for 

clarification.  

2.3. Statistics 

 The Fisher’s exact test, using two tails for p values as calculated by Graphpad 

Quickcalc was used to test for significant differences between the pooled response rates 

in the clinical data. P values of less than 0.05 were considered significant. 

 

3. Results 

3.1. Preclinical Studies 

 Cell line models of acquired drug resistance are developed in the laboratory by 

repeatedly exposing cancer cells in culture to chemotherapeutic agents. Methodologies 

for development vary between laboratories, some use the same dose of chemotherapy 

with minimal dose escalation (Stordal et al., 2006; Locke et al.,1999), and others 

gradually increase the dose of chemotherapy the cells are exposed to over a longer time 

period (Akiyama et al., 1985; Clynes et al., 1992). The surviving resistant cells are then 

compared to the parental sensitive cells using a cell viability assay such as the MTT, acid 

phosphatase or clonogenic assay. The sensitivity of these paired cell lines to any 

particular drug is usually determined by exposing them to a range of drug concentrations 

and then assessing cell viability. The IC50 (drug concentration causing 50% growth 

inhibition) for these paired cell lines can be used to determine the increase in resistance 

known as fold resistance by the following equation:- 

Fold Resistance = IC50 of Resistant Cell Line / IC50 of Parental Cell Line 

 The literature search for models of acquired drug resistance which report cross- 

resistance data for both a platinum chemotherapeutic and erlotinib or gefitinib identified 

4 papers reporting 10 cell lines (Table 1). The definition of cross-resistance between two 

chemotherapy drugs is a matter of debate in the literature. Some studies consider two 

drugs cross-resistant only if a similar level of resistance is observed. Studies which have 

developed cell lines from patients before and after chemotherapy have found that drug 

resistance in the clinic typically produces resistance of 2- to 3-fold) (Kawai et al., 2002; 
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Kuroda et al., 1991). For the purposes of this review we have defined cross-resistance 

between platinums and EGFR-TKIs as greater than or equal to 2-fold resistance to both 

drugs. This definition is therefore based on what would be clinically observed as cross- 

resistance.  

Dai et al. sought to investigate the relative efficacy of erlotinib in several human 

cancer-derived cell lines and their drug-resistant sublines (Table 1) (Dai et al., 2005). 

This included a cisplatin-resistant ovarian cancer cell line derived from A2780 cells, 

A2780/CDDP, which exhibited a 15-fold resistance to cisplatin. Their results indicated 

no change in resistance to erlotinib in A2780/CDDP compared to the parental A2870 

cells (0.93-fold) and a decrease in expression of EGFR by western blot. These findings 

indicate that erlotinib might still be a potentially useful therapy in cisplatin-resistant 

ovarian cancer. Dai et al. showed increased sensitivity to erlotinib in the cisplatin-

resistant cervical cancer cell line, AE-ME180/CDDP; this sensitivity correlated with the 

over-expression of EGFR protein and ‘activated’ pEGFR proteins. In contrast, two other 

cisplatin-resistant models studied by Dai et al., HT212/11/CDDP and HT180/1/CDDP, 

also had increased EGFR protein but no increase in activated pEGFR protein. These two 

cell lines showed no change in erlotinib resistance suggesting that erlotinib sensitivity 

may be dependent on the activation of the EGFR pathway. Overall, this study suggests 

that erlotinib treatment might still be beneficial in a platinum pretreated patient 

population as no cross-resistance to erlotinib was gained in association with cisplatin 

resistance. 

 Chin et al. investigated the efficacy of erlotinib in a NSCLC-derived cell line, 

PC9, harbouring an EGFR mutation (single exon 19 deletions ∆E746-A750). They also 

examined PC9(CR), a model with acquired resistance to cisplatin (Chin et al., 2008). In a 

short term cytotoxicity assay they found that cisplatin-resistance was associated with low 

level resistance to erlotinib (Table 1). Interestingly, in a longer term clonogenic assay, 

they found a 5-fold increase in resistance to erlotinib in the cisplatin-resistant PC9 cells 

which persisted even after discontinuation of cisplatin treatment. The cisplatin-resistant 

PC9(CR) cells had a decrease in EGFR protein expression and a slight increase in 

pEGFR. However, the mechanism of resistance to erlotinib appeared to be activation of 

the AKT survival pathway such that inhibition with EGFR-TKIs was less effective. 

Upregulation or alterations in the AKT survival pathway have been previously associated 

with cisplatin-resistance in other ovarian cell models (Lee et al., 2005b; Yang et al., 

2006).  

 Gefitinib sensitivity has also been examined in A2780 and the cisplatin-resistant 

subline A2780/Pt (Servidei et al., 2008). The A2780/Pt cells were more sensitive to 

gefitinib (Table 1). The A2780/Pt cells had no increase in EGFR or pEGFR protein 

expression; rather they had increased expression and activation of two of EGFRs’ binding 

partners, HER-2 and HER-3. This model shows that sensitivity to gefitinib can occur in 
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cell models with constitutive activation of HER2 signalling pathways. The A2780/CDDP 

and A2780/Pt cell models highlight the fact that different mechanisms of platinum 

resistance can develop independently from the same parental cell line, and this 

consequently affects the cross-resistance profile to other agents such as EGFR-TKIs.  

Benedetti et al. investigated the response to gefitinib in two platinum-resistant 

ovarian cancer cell lines, IGROV-1/Pt1 and IGROV-1/OHP, developed with cisplatin and 

oxaliplatin, respectively (Benedetti et al., 2008). Both platinum-resistant cell lines 

exhibited cross-resistance to gefitinib (Table 1). The cell lines had reduced expression of 

EGFR and pEGFR protein. Cross-resistance to gefitinib appeared to be caused by 

decreased apoptosis in response to treatment with the TKI, again being associated with 

increased AKT activity.  

Figure 1 summarises the molecular changes in platinum-resistant cell lines from 

Table 1 that contribute to the response to EGFR-TKIs (Figure 1). The decision tree 

diagram divides the cisplatin-resistant cell lines into subgroups based on response to 

EGFR-TKIs. There are multiple categories, showing a different pattern of molecular 

markers, for EGFR-TKI sensitivity and resistance highlighting the complexity of using 

molecular markers in the clinic to predict the outcome of EGFR-TKI therapy. 

Upregulation of the AKT survival pathway and anti-apoptosis mechanisms of resistance 

may cause cross resistance to both platinums and EGFR-TKIs but this does not occur 

frequently enough for cross resistance to be a common phenotype in cell models. Only 3 

out of 10 platinum-resistant models found in this systematic review were cross resistant 

to both platinums and EGFR-TKIs. The same numbers of models, 3 out of the 10, were 

actually more sensitive to EGFR-TKIs than the parental cell lines that they were derived 

from. These models had activation of the EGFR or activation of an EGFR binding 

partner. Therefore, EGFR-TKIs have a promising future in the salvage chemotherapy of 

platinum-resistant cancers as only 30% of cell lines show a cross-resistance phenotype, 

the remaining 70% remain sensitive or have become hypersensitive to EGFR-TKIs. 

3.2. Erlotinib in non-small cell lung cancer 

 The literature search for clinical trials using erlotinib for the treatment of platinum 

pretreated NSCLC identified 6 studies, 5 single-agent and 1 combination regimen (Table 

2A). In all studies patients had received at least one cycle of prior chemotherapy and 

patients were assessed for response by either RECIST or WHO response criteria.  

 There were 5 studies which reported the use of 150 mg/day single-agent erlotinib 

for the treatment of platinum pretreated NSCLC (Table 2A). The pooled overall response 

rate of all patients including all platinum refractory, resistant, sensitive and unknown 

status patients was 11.14% (72 responders/646 patients) (Perez-Soler et al., 2004; 

Shepard et al., 2005; Lilenbaum et al., 2008; Kubota et al., 2008; Felip et al., 2008). In 
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studies which provided separate data for the platinum-refractory cohort, the overall 

response rate was similar, being 10% (16 responders/ 160 patients) (Shepard et al., 2005; 

Felip et al., 2008).  This suggests that it is likely that many of the “unknown” or 

unreported platinum-resistance status patients were most likely platinum refractory or 

resistant, as one generally observes higher response rates in platinum-sensitive cohorts 

(Stordal et al., 2007b; Stordal et al., 2007c). The overall response rate was higher in the 

one study with 100% of patients being of Asian ethnicity 28.3% (17 responders / 60 

patients) (Kubota et al., 2008) and this difference is significant (p = 0.0097) (Figure 2). 

Several studies investigated EGFR mutations, copy number or EGFR protein expression 

by immunohistochemistry (IHC), although the number of patients assessed for 

biomarkers was much smaller than the whole treated numbers, often due to the lack of 

availability of tumour samples. The two studies which examined EGFR expression by 

IHC reported similar response rates in EGFR positive patients to the overall response 

rates, 11.65% (19 responders/163 patients).  The response rates in patients with mutations 

in the EGFR gene or increased gene copy number were much higher, 41.6% (5 

responders/12 patients) and 33.33% (5 responders/15 patients), respectively (Kubota et 

al., 2008; Felip et al., 2008). These differences in response rate were statistically 

significant, p = 0.008 and p = 0.0224, respectively (Figure 2). This suggests that EGFR 

mutations and copy number changes are predictive of response to erlotinib in platinum 

pretreated NSCLC patients. 

 Survival data were also presented in the single-agent erlotinib studies. The 

weighted mean PFS and OS for erlotinib in all patients were 2.24 (n = 544) and 8.12  (n = 

573) months respectively (Perez-Soler et al., 2004; Shepard et al., 2005; Lilenbaum et al., 

2008; Kubota et al., 2008). One year survival data was only given in two studies; the 

weighted mean was 45.40%, n = 86 (Perez-Soler et al., 2004;  Kubota et al., 2008). PFS 

and OS were also longer in patients in the Felip et al. study with EGFR mutations 205 

days vs. 43 days and 205 days vs. 113 days, compared to patients with wild-type EGFR 

although both were non-significant due to low patient numbers  (Felip et al., 2008). 

 Two combination erlotinib studies were identified where erlotinib was combined 

with bevacizumab or pemetrexed (Herbst et al., 2007; Ranson et al., 2010). The 

bevacizumab combination resulted in slightly higher response rates, 17.9% (7 responders 

/ 39 patients), and longer PFS and OS, 4.4 and 13.7 months, respectively (Herbst et al., 

2007). However, the pemetrexed combination gave similar outcomes to single-agent 

erlotinib (Table 2A). 

3.3. Gefitinib in Non-small Cell Lung Cancer 

 The literature search for clinical trials using gefitinib for the treatment of platinum 

pre-treated NSCLC identified 16 studies, 12 single-agent and 4 combination regimens 
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(Table 2B). In all studies, patients had received at least one cycle of prior chemotherapy 

and patients were assessed for response by either RECIST or WHO response criteria. 

 There were 10 studies which reported the use of 250 mg/day, single-agent 

gefitinib for the treatment of platinum-pretreated NSCLC (Table 2B). The pooled overall 

response rate of all patients, including all platinum refractory, resistant, sensitive and 

unknown status patients, was 15.25% (231 responders/1515 patients) (Fukuoka et al., 

2003; Kris et al., 2003; Santoro et al., 2004; Kim et al., 2008; Maruyama et al., 2008; Lee 

et al., 2010; Natale et al., 2009a; Zhang et al., 2005; Chen et al., 2007; Wang et al., 

2008). One study exclusively examined platinum-refractory patients and the overall 

response rate was similar, 18.1% (19 responders/ 103 patients) (Fukuoka et al., 2003). 

The overall response rate was higher in studies with patients of Asian ethnicity, 29.17% 

(140 responders / 480 patients) (Kim et al., 2008; Maruyama et al., 2008; Zhang et al., 

2005; Chen et al., 2007; Fukuoka et al., 2003; Wang et al., 2008), this difference from the 

total patient population was statistically significant, p = <0.0001 (Figure 2). 

 Several studies investigated EGFR mutations, copy number as well as EGFR and 

pEGFR protein expression by IHC, although again with smaller patient numbers. The 

response rates in patients with mutations in the EGFR gene or increased pEGFR were 

significantly higher, 63.89% (23 responders/36 patients) and 60.0% (6 responders/10 

patients), respectively, p < 0.0001 and p = 0.0016 (Maruyama et al., 2008; Chen et al., 

2007; Wang et al., 2008). This suggests that EGFR mutations and phosphorylation of 

EGFR are predictive of response to gefitinib in a platinum-pretreated, relapsed NSCLC 

population. (Figure 2). Increased EGFR expression by IHC and increased copy number 

of the EGFR gene also led to significantly higher response rates of 34.7% (8 responders / 

23 patients) and 45.45% (5 responders / 11 patients), respectively, p = 0.0178 and p = 

0.0176. This correlates with our own preclinical findings from the systematic review in 

Section 3.1; an increased expression of pEGFR is more strongly associated with 

sensitivity to EGFR-TKIs than an increase in EGFR alone as the pathway is active and 

therefore sensitive to inhibition (Figure 1). 

 Survival data were also presented in the single-agent 250 mg/day gefitinib studies. 

The weighted mean PFS, OS and 1 year survival for gefitinib in all patients were 2.82 (n 

= 1340) and 8.64 (n = 1493) months and 34.49% (n = 1223), respectively (Fukuoka et al., 

2003; Kris et al., 2003; Santoro et al., 2004; Kim et al., 2008; Maruyama et al., 2008; Lee 

et al., 2010; Natale et al., 2009a; Zhang et al., 2005; Chen et al., 2007; Wang et al., 

2008). PFS and OS were longer in Asian patients, 4.05 (n = 429) and 12.68 (n = 407) 

months, respectively (Kim et al., 2008; Maruyama et al., 2008; Zhang et al., 2005; Chen 

et al., 2007; Wang et al., 2008). 

 There were two studies which reported the use of 500mg/day single-agent 

gefitinib for the treatment of platinum-pretreated NSCLC (Table 2B). The pooled overall 
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response rate of all patients including all platinum refractory, resistant, sensitive and 

unknown status patients was 13.2% (29 responders/219 patients) (Fukuoka et al., 2003; 

Kris et al., 2003). The response rate of the platinum refractory patients from the Fukuoka 

et al. study was 18.0%. The increased dose of gefitinib did not improve any clinical 

outcomes in both studies and was associated with more adverse events. Therefore 

250mg/day is proposed as the standard dose of administration. 

 Four studies were identified that used a combination gefitinib regimen for the 

treatment of platinum-pretreated NCSLC (Table 2B) (Chen et al., 2007; Gadgeel et al., 

2007; O'Byrne et al., 2007; Ramalingham et al., 2008). Response rates vary largely 

between the studies, as high as 52% when combined with vinorelbine in an Asian 

population (Chen et al., 2007) and as low as 0% when combined with cetuximab in a 

non-Asian population  (Ramalingham et al., 2008).    

3.4. Erlotinib and Gefitinib in Ovarian Cancer 

 No small molecule TKI is currently approved for use in ovarian cancer, but 

several clinical trials have investigated the use of either erlotinib or gefitinib as second 

line therapy. The literature search for clinical trials using erlotinib or gefitinib for the 

treatment of platinum pretreated ovarian cancer identified 6 studies (Table 3). In all 

studies, patients had received at least one cycle of prior chemotherapy and patients were 

assessed for response by either RECIST or WHO response criteria. 

 A single arm, phase II study was conducted by Gordon et al. to evaluate erlotinib 

(150 mg/day) as a treatment option for platinum-resistant or -refractory patients with 

ovarian cancer (n=34) (Gordon et al., 2005). All tumours were confirmed to be EGFR 

protein expression positive by IHC. The objective response rate was 6% (partial 

responses) and median survival was 8 months. Hirte and colleagues investigated the 

effect of addition of erlotinib (150 mg/day) to salvage carboplatin chemotherapy (AUC 

5/21 days) for ovarian cancer patients who had previously received platinum-based drugs 

(Hirte et al., 2010). Their trial consisted of two arms to distinguish platinum-sensitive and 

-resistant patients (n=34 and 17, respectively). The ORRs were 57% for platinum-

sensitive and 7% for platinum-resistant patients. For platinum-sensitive patients with 

EGFR positive tumours as determined by IHC, there were 12 responses (60% ORR), and 

in the platinum-resistant arm, the responding patient was EGFR-positive. The addition of 

bevacizumab to erlotinib gave a higher response rate in a platinum refractory/resistant 

population 23.1% (Chambers et al., 2010). 

 A phase II trial conducted by Posadas et al. investigated the phosphorylation 

status of EGFR following daily treatment with gefitinib (500 mg/day) and observed no 

objective responses amongst the ovarian tumours of 16 previously-treated patients who 

they evaluated (Posadas et al., 2007). All patients were EGFR-positive and decreases of 
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both EGFR and pEGFR were noted in 50% of cases. The publication does not state 

explicitly that patients have received prior platinum. However, in a heavily pretreated 

population, many with >5 cycles, we are presuming platinum pretreatment. While all 

patients were recipients of previous chemotherapy and had progressive disease, no 

information was provided about the constituent therapeutics of their prior treatment or 

their time to relapse and, hence, resistance status. In the trial conducted by Schilder et al. 

(Schilder et al., 2005), 27 evaluable patients were treated with gefitinib (500 mg/day), of 

whom 17 were confirmed to be platinum-resistant. From this subgroup, 1 partial response 

was observed (5.9%). This patient was the only responder observed in the overall study 

group, and was confirmed to have EGFR protein expression as well as an EGFR 

mutation. Four patients, each of whom were platinum-resistant, experienced prolonged 

PFS (>9 months) above the median PFS (2.2 months). These patients were EGFR protein 

expression positive; however, these responses did not correlate with intensity of EGFR 

staining by immunohistochemistry. Four patients in this study had primary peritoneal 

rather than ovarian cancer and this data cannot be separated. 

 The addition of gefitinib (500 mg/day) to tamoxifen (40 mg/day) salvage therapy 

was investigated by Wagner et al.; all patients were either refractory or resistant to 

platinum chemotherapy (n=56). There were no responders to the combination regimen 

during the trial, while 28·6% of patients had stable disease while on treatment (Wagner et 

al., 2007). The addition of gefitinib (500 mg/day) to paclitaxel (175mg/m
2
) and 

carboplatin (AUC5/21 days) was investigated by Pautier et al.; patients were stratified as 

either resistant (n=21) or sensitive (n=42), response rates were 19.2% and 61.9% and 

overall survival 16.9 and 25.7 months, respectively (Pautier et al., 2010). These are the 

best response rates and survival rates identified in the review for EGFR-TKIs for the 

treatment of platinum-resistant ovarian cancer. However they appear to have more to do 

with the success of the combination regimen of carboplatin and paclitaxel than the 

gefitinib. Both of these studies included a small minority of patients with fallopian tube 

or primary peritoneum cancer and data can not be separated from the ovarian cancer 

patients. 

4. Discussion 

 A primary goal of anticancer therapy is to stop tumour cells from proliferating 

and to induce selective tumour cell death. This goal may be achieved by disruption of 

signalling pathways essential for growth, division, differentiation and/or invasion of 

tumour cells, causing arrest of the cell cycle or by sensitising the cells to 

apoptosis/anoikis, (Giménez-Bonafé et al., 2009; Westhoff and Fulda, 2009). EGFR is an 

important cell surface receptor mediating downstream survival signalling and has become 

an important target for new cancer therapeutics. This has led to the approval of erlotinib 

and gefitinib in NSCLC because of tremendous benefit to an identifiable subpopulation 

of patients, specifically those with EGFR mutations (Gadgeel et al., 2010) which result in 
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dependence of the tumour cells on the mitogenic downstream signalling via EGFR, a 

phenomenon referred to as “oncogene addiction” (Weinstein and Joe, 2008). Erlotinib 

and gefitinib also have a relatively minimal toxicity profile when compared to other 

chemotherapeutics such as carboplatin and taxol; a rash is the most common side effect 

of the EGFR-TKIs, whereas the standard chemotherapy agents cause a wide range of 

adverse events (Lilenbaum et al., 2008; Mok et al., 2009). 

 

4.1. Preclinical efficacy of EGFR-TKIs in platinum-resistant cell lines and implications 

for clinical treatment. 

 The diversity of possible responses to erlotinib and gefitinib in platinum-resistant 

cell lines is evident in Table 1. With relatively few studies found by literature search we 

have described platinum-resistant cell lines which are sensitive, resistant or show no 

change in response to EGFR-TKIs. This poses a challenge for the clinical treatment of 

platinum resistant cancer, how to identify which patients may benefit from second line 

therapy with erlotinib or gefitinib? Figure 1 is a summary of the mechanisms of 

resistance or sensitivity to EGFR-TKIs identified in this systematic review. We have 

identified two separate mechanisms of EGFR-TKI sensitivity; activation of the EFGR 

pathway or activation of an EGFR binding partner and consequent pathway (HER-2, 

HER-3). We have also identified two separate mechanisms of resistance, a defect in 

apoptosis or AKT signalling in response to treatment with an EGFR-TKI (Figure 1). 

 As we have seen from the clinical studies identified in this systematic review, 

some have examined EGFR mutation (Kubota et al., 2008; Felip et al., 2008; Maruyama 

et al., 2008; Chen et al., 2007), copy number (Kubota et al., 2008; Chen et al., 2007) and 

some protein expression of EGFR (Perez-Soler et al., 2004; Shepard et al., 2005; 

Maruyama et al., 2008) or pEGFR (Chen et al., 2007). Figure 1 demonstrates how the 

expression and activity of many other proteins and pathways apart from EGFR will 

influence the overall outcome of EGFR-TKI treatment. Indeed, as is evident from our 

decision tree diagram, the analysis of EGFR expression alone will not segregate the 

resistant from the sensitive models. Even when EGFR expression is increased, pEGFR 

expression needs to be evaluated to determine if EGFR-TKI sensitivity can occur, and 

sensitivity can occur by other mechanisms such as via other ErbB family members and 

their downstream signalling molecules, at a minimum. If clinical studies are going to be 

able to use biomarkers to stratify patients for therapy they would need to examine the 

protein expression of EGFR, pEGFR, HER-2, HER-3, pHER-2, pHER-3, AKT, pAKT 

and markers of apoptosis to be able to categorise a patient as potentially EGFR-TKI 

responsive.  
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Gadgeel and collegues have recently published a decision tree diagram for the treatment 

options for NSCLC. Their algorithm uses EGFR mutation, EML4/ALK+, ERCC1/RRM1 

low, ERCC1/TS low and ERCC1 high to choose between treatment with erlotinib or 

gefitinib, crizontib, platinum/gemcitabine, platinum/premetrexed or taxane/non-platinum 

(Gadgeel et al., 2010). Our decision tree diagram adds to this by showing in preclinical 

models that if enough members of the EGFR family and other proteins are assayed it is 

possible to categorise cell lines as sensitive to EGFR-TKIs even where EGFR is not 

mutated and in a platinum-resistance setting. A review has recently been published about 

the predictive value of KRAS mutations in NSCLC and predicting the outcome of EGFR 

targeted therapy (Roberts et al., 2010). Mutations in KRAS, EML4-ALK translocations 

and EGFR are mutually exclusive in NSCLC patients (Roberts et al., 2010). An 

association between a mutation in KRAS and a lack of response to EGFR-TKIs has been 

observed, but it is unclear of the impact on survival (Roberts et al., 2010). By examining 

KRAS mutation status, EGFR mutation status can be confidently predicted. However, the 

EGFR pathway could still be activated at the protein level and EGFR-TKIs may be of 

benefit in a subset of patients. 

4.2. The EGFR-TKI resistant phenotype 

 Work by Galetti and colleagues indicates that resistance to gefitinib does not 

appear to be related to the uptake of the drug, as the rate of uptake was comparable 

between both intrinsically gefitinib-sensitive and -resistant NSCLC cell lines (Galetti et 

al., 2010). Janmaat and colleagues demonstrated that cell death following EGFR 

inhibition resulted from apoptosis mediated by the inactivation of both MAPK kinase and 

PI3K in NSCLC cell lines. Hence, activation mutants downstream in either of these 

pathways may cause resistance to EGFR-TKIs (Janmaat et al., 2003). Support for this is 

provided by studies in which AKT activity was de-coupled from upstream PI3K; 

treatment with gefitinib did not effect cell death when AKT was activated via tensin 

homolog (PTEN) down-regulation (Bianco et al., 2003; She et al., 2003; Yamamoto et 

al., 2010). Furthermore, Morgillo and colleagues showed that levels of pAKT were 

increased in Calu-3 cell lines with acquired resistance to either erlotinib or gefitinib 

(Morgillo et al., 2010). Cisplatin resistance has been frequently associated with an 

activation of the PI3K and AKT pathway in ovarian cancer (Lee et al., 2005b; Yang et 

al., 2006) and NSCLC cancer cells (Chin et al., 2008). This is therefore a potential 

mechanism of cross-resistance between the two classes of agents. 

The cellular signals transduced by EGFR are mediated by several other kinases 

whose activity is usually dependent on activation by pEGFR. Any of these enzymes may 

themselves become mutated and this can lead to a constitutively active pathway. This 

constitutively active pathway will remain active regardless of EGFR blockade, hence, 

furnishing an EGFR-TKI-resistant phenotype. This situation has been similarly described 

for KRAS (Schubbert et al., 2007), which is estimated to be mutated in 14% of ovarian 
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cancers, amalgamating all histological subtypes, based on data collected in the Catalogue 

of Somatic Mutations in Cancer (COSMIC) database (Bamford et al., 2004) and 16% of 

NSCLC, as described recently by Mao et al. (Mao et al., 2010). It is worth considering 

whether administration of platinum-based chemotherapeutics may itself select for such 

mutants and in effect induce these EGFR-bypassed mutants. 

4.3. Erlotinib and gefitinib as salvage therapy for platinum-resistant NSCLC 

 The overall response rate in platinum pretreated NSCLC to erlotinib (150 mg/day) 

and gefitinib (250 mg/day) were 11.14% and 15.25%, respectively. Gefitinib had a 

significantly higher response rate (p = 0.0122) (Figure 2). This highlights the power of 

pooling data across multiple studies to yield higher patient numbers, n = 646 for erlotinib 

and n = 1515 for gefitinib. Gefitinib should therefore be the EGFR-TKI of choice in 

platinum-pretreated NSCLC. Interestingly, gefitinib is also superior to erlotinib in 

patients with an overexpression of EGFR measured by IHC, 34.7% vs 11.65%, p=0.0077. 

This suggests that there may be a benefit of gefitinib in patients with 

overexpression/activation of the EGFR pathway. Gefitinib also outperforms erlotinib in 

patients with EGFR mutations but this difference was not significant. The results of the 

pooled analysis of this review suggest that being EGFR-mutation positive, increased copy 

number positive or having increased protein expression of EGFR/pEGFR leads to 

significantly improved response rates to EGFR-TKIs used as salvage chemotherapy in 

platinum pre-treated NSCLC (Figure 2). This expands the cohort of NSCLC patients 

which may benefit from EGFR-TKIs after failure of platinum chemotherapy. However, 

patients with activating EGFR mutations or increased pEGFR expression are still 

relatively rare in the NSCLC population before and after platinum chemotherapy so other 

agents need to be investigated in this patient cohort. 

 EGFR-TKIs perform better in platinum pretreated NSCLC when compared to 

placebo and docetaxel. Shepherd and colleagues compared erlotinib (150 mg/day) with 

placebo; erlotinib had an 8.9% response rate (38 responders / 427 patients) compared 

with 0.94% for placebo (2 responders / 211 patients) (Shepherd et al., 2005). The 

INTEREST trial compared gefitinib (250 mg/day) with docetaxel (75 mg/m2). The 

overall response rates were 9.1% for gefitinib (66 responders / 723 patients) and 7.6% for 

docetaxel (54 responders /710 patients) (p > 0.05). A modest improvement in overall 

survival was also noted, 8.0 vs 7.6 months in favour of gefitinib. The study also 

demonstrated lesser toxicity resulting from gefitinib treatment, with incidence of adverse 

events occurring in 4% of patients versus 18% of those given docetaxel (Kim et al. 2008). 

A more dramatic difference was shown in the ISTANA trial in an Asian patient 

population comparing the same doses of gefitinib and docetaxel as the INTEREST trial. 

The overall response rate for gefitinib treatment was 28.1% (23 responders / 83 patients) 

vs 7.6% for docetaxel (p < 0.001). Median survival was also 2 months longer with 

gefitinib, but this was not significant (Lee et al., 2010). 
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4.4. Erlotinib and gefitinib as salvage therapy for platinum-resistant ovarian cancer 

 Studies have demonstrated a correlation between high expression levels of EGFR 

in patients with ovarian carcinoma and poor prognosis for both disease-free and overall 

survival (17 vs 31 months; p = 0.0001 and 12 vs 22 months; p = 0.0005, respectively) 

(Psyrri et al., 2005). Expression of EGFR was assessed by immunohistochemistry in 

ovarian tumours from patients who had gone on to receive standard platinum/paclitaxel 

combination therapy. It has been demonstrated, using tissue lysate arrays, that 

administration of gefitinib to ovarian cancer patients does indeed decrease the 

phosphorylation of EGFR and its’ associated downstream signalling molecules, including 

AKT (Posadas et al., 2007). This work also demonstrates the feasibility of observing 

target-specific effects of TKI activity in vivo. Notably, reduction in phosphorylation did 

not translate into objective responses in this heavily pretreated patient cohort. 

 The response rate to single agent erlotinib or gefitinib in platinum-pretreated 

ovarian cancer was overall very low 0-5.9%, this rate was slightly higher in patients who 

had been characterised as EGFR-positive 5.9-9%. However, these response rates are 

much lower than that of single-agent oxaliplatin or paclitaxel in platinum-resistant 

cancers, 8% and 22%, respectively (Stordal et al 2007b, Stordal et al. 2007c). These two 

previous systematic reviews could more strictly examine the platinum-resistant and the 

platinum-sensitive patients separately. Hence, we are seeing higher response rates to 

oxaliplatin and paclitaxel in a cohort of patients that we would expect to respond poorly 

to continued chemotherapy. If we had been able to discriminate between resistant and 

sensitive patients for the erlotinib and gefitinib studies, chances are the response rates 

would be even lower. 

 The response rates of combination erlotinib or gefitinib therapy in ovarian cancer 

are considerably higher, 7.1-19.2% in the platinum refractory/resistant cohorts and 56.7-

61.9% in the platinum-sensitive cohorts (Table 3). Unfortunately, none of these studies 

performed a direct comparison between chemotherapy and the addition of the EGFR-TKI 

to the combination regimen. However, from our previous review on paclitaxel for the 

treatment of platinum-resistant cancers, we can see that the response rates for the addition 

of erlotinib or gefitinib are not any higher than the response rates of platinum/taxane 

combination chemotherapy in both platinum-resistant (32%) and platinum-sensitive 

disease (79.5%) (Stordal et al., 2007c). 

4.5. Availability of tissue for molecular marker analysis 

In two of the largest studies of single-agent gefitinib in platinum pre-treated 

NSCLC, IDEAL-1 and IDEAL-2 (Fukuoka et al., 2003; Kris et al., 2003), molecular 

profiling of EGFR mutations was published in a separate publication after the initial 

clinical trial publications (Bell et al., 2005). IDEAL-1 and IDEAL-2 had a combined 
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patient enrolment of 424; only 119 patient tumour samples were available for molecular 

analysis (28%). Of these, an even smaller number were usable for EGFR sequencing (n = 

79) and copy number analysis (n = 90). 13 EGFR mutations were detected, and 6 of these 

patients responded to gefitinib therapy (Bell et al., 2005). Unfortunately, the way the data 

is reported in the Bell et al. study, it can’t be determined if these patients came from 

IDEAL-1 or IDEAL-2 or any other clinical parameters for the responders. This highlights 

the importance of designing clinical trials with a molecular profiling focus to have tissue 

collection as mandatory for patient enrolment (Fojo and Parkinson, 2010). 

4.6. Other TKI therapeutic strategies for platinum-resistant cancers  

 In practice, therapy with EGFR-TKIs does not yield a complete durable response. 

Alternating treatment between erlotinib and gefitinib may not prove adequate, as cross-

resistance studies on NSCLC-derived Calu-3 cell lines have shown (Morgillo et al., 

2010). The erlotinib-resistant cell line was resistant to gefitinib and vice versa due to 

similar mechanisms of resistance. TKIs, directed against EGFR, which also have 

specificity for other signalling kinases are likely to be less prone to mutation-derived 

inactivity as they can target alternate pathways. For example, the dual specificity of 

lapatinib for EGFR and ErbB2 indicates that it should exhibit a potent inhibition of 

EGFR/ErbB2 heterodimers. Therefore, even without direct binding to EGFR, lapatinib 

may inhibit some of the cellular effects mediated by ErbB2, such as cell proliferation 

(Hsieh et al., 2000). 

 Many other TKIs, currently undergoing clinical trials for the disruption of tumour 

angiogenesis and specific for a VEGFR have been examined as therapies for platinum-

resistant ovarian cancer or NSCLC; cediranib (Hirte et al., 2008; Matulonis et al., 2009); 

pazopanib (Friedlander et al., 2010); sorafenib (NCT01047891; Blumenschein, Jr. et al., 

2009); sunitinib (Biagi et al., 2010; Ping et al., 2010; Novello et al., 2009; Socinski et al., 

2008); vandetanib (Annunziata et al., 2010; Natale et al., 2009a). This strategy so far 

appears to have had limited success in chemo-resistant NSCLC or ovarian cancer. This is 

even the case for TKIs which have multiple specificities. For example, vandetanib, the 

small molecule inhibitor of both VEGFR-2 and EGFR, would be expected to prove 

particularly versatile as it can contribute to the amelioration of angiogenesis via VEGFR-

2 inhibition and prevent the EGFR-induced production of angiogenic growth factors and 

activation of tumour adjacent endothelial cells, in addition to the putative effects on the 

cell cycle progression of EGFR inhibition. However, clinical studies have so far shown 

vandetanib to offer only modest extensions to progression-free survival of patients with 

late-stage NSCLC (over erlotinib/gefitinib) either alone or in combination with other 

agents. The phase III ‘Zactima Efficacy when Studied versus Tarceva’ (ZEST) trial 

illustrates this in a direct comparison between vandetanib and erlotinib monotherapies for 

previously treated NSCLC; both arms display an overall response rate of 12% (Natale et 

al., 2009b). These TKIs may be of greater benefit if administered in ovarian cancer and 
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NSCLC at earlier stages during tumour development, where angiogenesis is still 

predominantly reliant on VEGFR activity (Morabito et al., 2009) and hence more likely 

to prove susceptible to VEGFR inhibition. However, in practical terms, such early 

detection is difficult to achieve and relies on the discovery of novel, early biomarkers. 

5. Future Developments and conclusions 

 The detection of mutated or up-regulated targets for EGFR-TKIs may allow for a 

personalised treatment for NSCLC but also potentially other cancer types. Any such 

molecular targets which are seen to be prevalent in many patients in a cohort may serve 

as reliable biomarkers or become the focus of efforts to develop further inhibitors as new 

chemotherapy agents. Such is the success of treatment of NSCLC tumours with an 

acquired translocation of EML4 with ALK leading to the expression of an oncoprotein 

termed EML4-ALK. Crizotinib, an ALK inhibitor has shown dramatic clinical benefit to 

this cohort of NSCLC (Gerber et al., 2010). Genomic profiling techniques can enable 

prediction of patient response to treatment and prognostication of treatment outcome 

(Fehrmann et al., 2007). Promising proof-of-concept for this emerging facet of patient 

care has been developed by Dressman and colleagues for advanced ovarian cancer, 

wherein a genetic screening/signalling pathway-analysis protocol is employed for 

prediction of patients’ platinum-resistance status at diagnosis of disease and has been 

shown to do so with a precision of 84% (Dressman et al., 2007).  

 There are substantial technical difficulties impeding progress in this regard –time 

and cost primary among them– but nonetheless the number of studies employing ‘biomic’ 

technologies to cancer cell lines or tissue samples has seen a marked increase over the 

last decade (Jacob et al., 2009). The response of individual patients to chemotherapeutics 

which are administered without biomic profiling of the tumour is likely suboptimal as a 

result of lack of expression of the drugs’ cognate target, evolution of compensatory 

mechanisms for cell survival or overexpression of drug disposal machinery. Thus, a focus 

on the development of robust and cost-effective diagnostic technologies for the detection 

of these biomarkers or responsive phenotypes (Roukos, 2010) will enable tailored 

treatment to be issued to the patient and have profound benefit. Our understanding of the 

signalling network under control of EGFR in tumour cells has increased enormously, 

further aided by advanced functional proteomics technologies (Kolch and Pitt., 2010). 

The insights offered by this ‘surveillance’ of the “cell-at-work” should enable a 

dissection of the reasons underlying the failure of present generation anti-cancer drugs 

where it occurs.  

 The overall indication given by the preclinical and clinical evidence is that 

administration of neither erlotinib nor gefitinib alone is capable of effecting a profound 

extension in overall survival for patients with platinum pre-treated ovarian cancer or 

NSCLC. However, EGFR-TKIs appear to be a good current choice for the treatment of 
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relapsed NSCLC when compared to other salvage chemotherapy such as docetaxel. 

Response rates are higher still in patients of Asian ethnicity and/or patients with EGFR 

activating mutations or EGFR pathway activation. EGFR-TKIs do not appear to be 

suitable for the treatment of platinum pre-treated ovarian cancer than standard 

chemotherapy agents such as paclitaxel.  

Ultimately, determination of a molecular profile of each patient’s tumour should 

enable better treatment and extend survival for a greater number of patients, including 

those who had previously failed platinum chemotherapy. The major downfall of many of 

the studies we have reported on is the lack of availability of tumour biopsy material. 

Tissue collection needs to be mandatory in this age of molecular profiling and the desire 

to move towards personalised chemotherapy.  
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Figure Legends 

Figure 1 – Decision tree diagram for dividing cisplatin resistant cell lines into subgroups 

based on response to treatment to EGFR-TKIs. Models described in this diagram are 

characterised in Table 1. 

Figure 2 – Overall response rates to single-agent erlotinib and gefitinib in NSCLC 

patient subgroups. Open bars represent erlotinib (150 mg/day) and closed bars represent 

gefitinib (250 mg/day). Numbers above each bar are the total patient number in each 

subgroup. Studies used to prepare this diagram are summarised in Tables 2A and 2B. * 

Indicates a significant difference in the response rate of the subgroup compared to the 

total patient population. # Indicates a significant difference between the response rates to 

treatment with erlotinib or gefitinib. Fisher’s exact test was used, with significance 

p<0·05. 



Table 1.  Platinum-resistant cell lines reporting resistance to erlotinib or gefitinib. 

Parent 

Cell Line 

Cancer 

Type 

EGFR 

Mutation 

Resistant Cell 

Line 

Developed 

With 

Fold Resistance 
EGFR in Resistant 

Cell Line  

Reference 

P
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n
u
m

 

(S
e
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c
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n
g
 

A
g
e
n
t)
 

E
rl

o
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n
ib

 

G
e
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n
ib

 

E
G

F
R

 

M
u
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o
n
 

E
G

F
R

 

P
r
o
te

in
 

p
E

G
F
R

 

P
r
o
te

in
 

A2780 Ovarian 

No           

Servidei 

et al., 2008 

 

A2780/CDDP Cisplatin 14.9 0.93 - ND ↓ ND 

Dai et al., 2005 

ME180 Cervical 

No          

Aris-Pulido 

et al 2008 

AE-ME180/CDDP Cisplatin 9.3 <0.05 - ND ↑ ↑ 

HT212/9 Cervical ND HT212/11/CDDP Cisplatin 4.5 <0.86 - ND ↑ X 

HT180/8 Cervical ND HT180/1/CDDP Cisplatin 9.6 1.0 - ND ↑ X 

LoVo Colon 

No   

Nagahara et 

al 2005 

LoVo/CDDP Cisplatin >1.6 1.0 - ND ↓ ND 

PC9 NSCLC Yes PC9 (CR) Cisplatin >6 ~2-5 - Yes,. ↓ ↑ Chin et al., 

2008 

A2780 Ovarian No A2780/Pt Cisplatin 10 - 0.60 No X X Servidei 

et al., 2008, 

2001 and 2006 
U87-MG Glioma No U87-MG/Pt Cisplatin 4.8-16 - 0.57 No X X 



IGROV-1 Ovarian No IGROV-1/Pt1 Cisplatin 14 - 51 No ↑ X 
Benedetti 

et al., 2008 
IGROV-1 Ovarian No IGROV-1/OHP Oxaliplatin 73 - 19 No 

↑ X 

ND – Not Determined, X – No Change. 

 



Table 2A. Clinical trials reporting the administration of erlotinib to patients with platinum pre-treated, relapsed NSCLC. 

Study  
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R
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R
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R
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n
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S
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l 
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n
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v
e
r
a
ll
 

S
u
r
v
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a
l 
(m
o
n
th
s)
 

1
 y
e
a
r
 S
u
r
v
iv
a
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Erlotinib Single Agent  

Perez-Soler et 

al 2004 

150  1.8 %  57 - - - 57 28 22 5 2 7/57 

12.3% 

7/57 

12.3% 

Protein 

IHC 

2.25 8.4 40% 

Shepard et al 

2005 

150  12.9% 

 

427 87 - - 340 162 154 35 3 38/427 

8.8% 

12/106 

11.3% 

Protein 

IHC 

2.2 6.7 ND 

Lilenbaum et 

al 2008  

150  ND 29 - - - 29 14 5 2 1 3/29 

10.3% 

UE UE ND 14.9 ND 

Kubota et al 

2008 

150  100% 60 - - - 60 27 13 17 0 17/60 

28.3% 

3/7  

42% 

Mutation 

Exon 19 

2.56 14.7 56% 

Felip et al 

2008  

150  ND  73 73 - - - 38 28 7 0 7/73 

9.5% 

5/15 

33%; 

2/5 

40% 

Copy 

Number 

FISH; 

Gene 

Mutation  

UE UE ND 

Erlotinib Combination  



Herbst et al 

2007  

150   

+  B 

7.7% 39 - - - 39 19 13 6 1 7/39 

17.9% 

1/1 

100% 

EGFR 

Mutation 

4.4 13.7 57.4% 

Ranson et al 

2010 

100-

150 + 

P 

ND 18 - - - 18 7 9 2 0 2/18 

11.1% 

0/1   

0%  

1/12 

8.3% 

EGFR 

Mutation 

Protein 

IHC 

ND ND ND 

ND – Not Determined in study, UE – Data unable to be extracted from published study, B = Bevacizumab 15mg/kg/ 21days, P = Pemetrexed 500-700 

mg/m
2
/21days. 

 



Table 2B. Clinical trials reporting the administration of gefitinib to patients with platinum pre-treated, relapsed NSCLC. 

Study  
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r
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iv
a
l 
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o
n
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e
a
r
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u
r
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a
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Gefitinib Single Agent 

Fukuoka et al 

2003 

(IDEAL1) 

250 49.5% 103 103 - - 42 37 19 0 19/103  

18.4% 

ND ND 2.7 7.6 ND 

500 48.5% 105 105 - - 44 34 19 1 19/105 

18.0% 

ND ND 2.8 8.0 ND 

Kris et al 2003 

(IDEAL2) 

250 ND 

USA 

102 - - - 102 UE UE 12 0 12/102  

11.7% 

ND ND ND 7 27% 

500 ND 

USA 

114 - - - 114 UE UE 9 0 10/114  

8.7% 

ND ND ND 6 24% 

Santoro et al 

2004 

250 ND 

Italy 

73 16 - - 57 34 32 6 1 7/73 

9.5% 

3/9 

33.3% 

Protein 

IHC 

ND 4 13.1% 

Kim et al 2008 

(INTEREST) 

250 21% 723 394 - - 329 UE UE 66 66/723 

9.1% 

UE IHC 

Copy 

number 

2.2 7.6 32% 

Maruyama et 

al 2008        

250 100% 245 - - - 245 UE UE 45 45/200 

22.5% 

6/9 

67% 

5/11 

EGFR 

Mutation 

EGFR 

2.0 11.5 47.8% 



(V-15-32) 46% 

5/14 

35.7% 

FISH 

EGFR 

IHC 

Lee et al 2010 

(INSTANA) 

250 100% 82 - - - 82 UE UE 23 23/82 

28.1% 

ND ND 3.3 14.1 ND 

Natale et al 

2009a 

250 ND 85 - - - 85 UE UE 1 1/85 

1.1% 

ND ND 2.02 7.4 ND 

Chen et al 

2007 

250 100% 27 - - - 27 6 6 15 0 15/27 

55% 

UE ND 7.1 13.3 21.2% 

Fujimoto et al 

2010  

Not 

Stated 

100% 6 - - - 6 - 2 4 0 4/6 

67% 

1/6 

16% 

Mutation 

Exon 19 

UE UE ND 

Bai et al 2009 Not 

Stated 

100% 102 - - - 102 - - 37 - 37/102 

36% 

22/37 

59% 

Mutation 

Exons 

19,21 

8.6 15.9 ND 

Zhang et al 

2005  

250 100% 98 - - - 98 32 35 30 1 31/98 

31.6% 

8/12  

66% 

6/10 

60% 

Mutation 

EGFR  

pEGFR 

IHC 

7.0 12.0 53.1% 

Wang et al 

2008  

250 100% 22 - - - 22 5 7 7 5 12/22 

54.5% 

9/15 

60% 

Mutation 

Exons 

18-21 

8.61 ND ND 

Gefitinib Combination 

Chen et al 

2007 

250   

+ V 

100% 21 - - - 21 3 7 11 0 11/21 

52% 

UE ND 12.8 23.4 57.1% 

Gadgeel et al 250   8% 27 27 - - - 19 6 2 0 2/27 ND ND 2.2 4.6 16% 



2007  + Cel 7.4% 

O’Byrne et al 

2007 

250   

+ R 

ND 42 - - - 42 27 13 1 1 2/42 

4.7% 

ND ND 1.83 4.8 ND 

Ramalingham 

et al 2008  

250   

+ Cet 

0% 13 13 - - - 8 4 0 0 0/13 

0% 

0/0 

0% 

Mutation 

and Copy 

Number 

ND ND ND 

ND – Not Determined in study, UE – Data unable to be extracted from published study, V = Vinorelbine 15mg/m
2 
14/days, Cel  = Celeoxib 400mg/

 
twice 

daily, R = Rofecoxib up to 50mg/day, C = Cetuximab 100-250mg/m
2
/ 7days.      

 



Table 3.  Clinical trials reporting the administration of erlotinib or gefitinib to patients with platinum pre-treated, relapsed ovarian 

cancer.  

Study Regimen 
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o
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1
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e
a
r
 S
u
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v
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a
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Erlotinib Single Agent 

Gordon et 

al 2005 

150mg/day 34 - - - 34 17 15 2 0 2/34 

5.9% 

2/34 

5.9% 

2.25 8 35% 

Erlotinib Combination 

Hirte et al 

2010 

150mg/day+ 

Carboplatin 25 

AUC/21 days 

49 - 17 - - 3 10 1 0 1/14 

7.1% 

1/13 

7.6% 

UE ND ND 

- - 32 - 0 13 14 3 17/30 

56.7% 

12/20 

60% 

UE ND ND 

Chambers 

et al 2010 

150mg/day + 

Bevacizumab 

10mg/kg 

39 39 - - 20 10 8 1 9/39 

23.1% 

ND 4.0 ND ND 

Gefitinib Single Agent 

Posadas et 500mg/day 16 - - - 16 UE UE 0 0 0/16 0% 0/16 ND ND ND 



al 2007 0% 

Schilder et 

al 2005 

500mg/day 27 - 17 10 - 15 8 1 0 1/27 

3.7% 

1/11 

9% 

2.17 12.16 ND 

Gefitinib Combination 

Wagner et 

al 2007 

500 mg/day + 

Tamoxifen 40 

mg/day 

56 56 - - 40 16 0 0 0/56 0% ND 1.93 8.43 ND 

Pautier et al 

2010 

500 mg/day + 

Paclitaxel 175 

mg/m
2
 and 

Carboplatin AUC 

5/21days.  

68 26 - - 4 13 4 1 5/26 

19.2% 

ND 6.1 16.9 ND 

  42 - 4 8 16 10 26/42 

61.9% 

ND 9.2 25.7 ND 

ND – Not Determined in study, UE – Data unable to be extracted from published study. 
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