
Revisiting direct neuralisation of first-order logic
Iain A. D. Gunn

Department of Computer Science
Middlesex University

London
Email: i.gunn@mdx.ac.uk

David Windridge
Department of Computer Science

Middlesex University
London

Email: d.windridge@mdx.ac.uk

Abstract—There is a long history of direct translation of
propositional Horn-clause logic programs into neural networks.
The possibility of translating first-order logical syntax in the same
way has been largely overlooked, perhaps due to a “propositional
fixation” fixation! We briefly revise the possibility and advantage
of translating existentially and universally quantified clauses into
a neural form that follows the first-order syntax in a natural way.

I. INTRODUCTION

The direct translation of logic programs into artificial neural
networks has a relatively long history. A standard approach to
neuralisation of Horn clauses, using a local representation in
which each (ground) atom corresponds to a single dedicated
neuron, is exemplified by the Knowledge-Based Artificial
Neural Network of Towell and Shavlik [1].

Networks of this type have been criticised as having a
“propositional fixation” [2]: a finite neural network can repre-
sent only a finite number of ground atoms, and can therefore
represent a logic program only for a finite base. A language
with first-order syntax but only a finite alphabet of symbols
is equivalent to propositional logic, because any universally
quantified (“for all X”) clause can be translated into finitely
many propositional clauses of the same form, one for each
possible value of X . Thus, networks of the KBANN type
cannot implement “true” first-order logic programs, only a
finite fragment of first-order logic. 1

However, in practice the syntax of first-order logic may
be very valuable, notwithstanding this formal equivalence to
propositional logic. Making a thousand or a million copies of
a clause, one for each possible grounding of a variable X ,
might under some circumstances be desirable behaviour for a
compiler creating machine code for immediate use, but is very
undesirable under other circumstances. One such circumstance
is if human interpretability is desired, but even if the rule-base
is to be refined purely automatically, it may well be desirable
to maintain the concept that there is a universal rule, rather
than a thousand unconnected rules, each of which might be
only very weakly evidentially supported on its own (This is
the thinking behind the “connectionist” but non-neural Markov
Logic Network approach [5]).

1Note, though, that Hölldobler et al. [3] give a neural method that will
approximate, in a sense, the immediate-consequence operator TP of a
true First-Order Logic program, to a desired degree of accuracy in a real
embedding. This is discussed in section 6 of the recent Besold et al. survey
[4]

Most existing literature on neural translation of logic pro-
grams (with local representation) focuses on propositional
logic. We believe the question of the translation of first-
order syntax may have been neglected because of the well-
known “propositional fixation”, despite the possible practical
advantages of first-order syntax even in the case of a finite
base. Often, authors offhandedly mention that their architec-
ture, designed with propositional logic in mind, is also in
principle applicable to finite fragments of first order logic,
provided they are fully grounded. Although such statements
are true in their broad thrust, a lot of details may be hidden
by the simple word “grounding”, in that a naı̈ve exhaustive
approach to translating a first-order logic program to grounded
propositional statements may lead to a very inefficient neural
structure.

For this reason, we seek in the present paper to review and
explore some approaches to neuralisation of logic programs
with first-order syntax which may offer advantages over the
naı̈ve approach.

II. RELATED NON-NEURAL APPROACHES

Closely related “connectionist” approaches to first-order
logic are the Connectionist Horn Clause Logic system of
Hölldobler and Kurfess [6], and the MMCILP model of
Hallack et al. [7]. Hallack et al. follow the neural topology
of KBANN/CILP, but use a generalised concept of neuron
based on the “discrete neuron” of Sun [8].

Markov Logic Networks [5] combine First-Order Logic
rules with the inference techniques of probabilistic graphical
models, rather than neural methods. MLNs are discussed in
section 7 of the recent comprehensive survey by Besold et al.
[4].

III. TRANSLATION FOR EXISTENTIALLY AND
UNIVERSALLY QUANTIFIED CLAUSES

Consider first the case where some predicates cannot si-
multaneously be true of certain pairs of groundings, and this
exclusion principle can be encoded into the logic program in a
systematic way, using first-order syntax, as an existentially and
universally quantified clause. Such a clause can be translated
into a neural structure in a way that naturally follows the
quantification syntax, as in the First-Order Neural Network
of Botta et al. [9], with potentially great advantage over

naı̈vely translating the first-order clause into many proposi-
tional clauses. Botta et al. write: “even when a problem can be
reduced to a propositional setting, the solutions found in FOL
are more abstract and simpler than the corresponding ones
in propositional logics”. The following example will illustrate
this.

Consider the case where a variable, I , represents an object
ID. Consider a predicate C(I,X, T), representing the concept
that the object with identity code I is in location X at time
T . Then, for a suitably sharply defined concept of location,
it can never be the case that C(i1, x1, t1) = C(i1, x2, t1)
for x1 6= x2. If each object is required to occupy one and
only one location at all times, this principle could sensibly
be incorporated into the logic program as a single-predicate
clause:

∀I, T ∃!X C(I,X, T). (1)

To use a KBANN-style approach to neuralisation, it is
necessary to first translate this first-order rule into many
propositional rules:

NOT (C(i1, x1, t1) AND C(i1, x2, t1)), (2)

and many other rules of this form (and some further OR
clauses to enforce existence as well as uniqueness). Thus, a
naı̈ve KBANN-style neural translation of (1) would involve
creating an input layer with a neuron for every possible
combination of groundings of I , X , and T , and then a second
layer with a neuron connected to each pair of input neurons
with the same values of I and T , to check that no two such
neurons fire at once. This neural translation is illustrated in
Figure 1.

If there are ni possible values of I , nx possible values of
X , and nt possible values of T , this neuralisation requires
ninxnt neurons in the input layer, and nintnx(nx−1) neurons
in the second layer. Even for a relatively small system with
ni = 10 object IDs, nt = 10 time slots, and nx = 10 possible
object locations, this results in ∼ 10000 neurons in the hidden
layer, just to implement the single exclusivity clause. (And yet
more neural wiring would be required to enforce existence of
a suitable x for each (i, t): the network illustrated in Figure 1
implements only uniqueness.)

This combinatorial explosion in the number of neurons is
very undesirable. But a better neural translation is possible
through following the first-order syntax of (1), instead of
removing it through immediate propositionalistaion. This is
illustrated in Figure 2.

The first (left-most) layer of neurons in Figure 2 is the
same as for Figure 1: it consists of all ninxnt possible
groundings of C(I,X, T), arranged in nint groups of nx

neurons each, giving all possible groundings of X for each
choice of groundings for (I, T). But in the second layer, where
for each such group in Figure 1 there was a neuron for each
choice of pairing of neurons in the first-layer group, in Figure 2
there is now a single neuron for each group. Thus, the neuronal

NOR

...

C(i1, x1, t1)

C(i1, xnx , t1)

...

...

C(ini
, x1, tnt

)

C(ini , xnx , tnt)

...

C(i1, x1, t1) ∧ C(i1, x2, t1)

C(i1, xnx−1, t1) ∧ C(i1, xnx
, t1)

...

C(ini
, x1, tnt

) ∧ C(ini
, x2, tnt

)

C(ini , xnx−1, tnt) ∧ C(ini , xnx , tnt)

...

Fig. 1. Naı̈ve neural implementation of uniqueness requirement of clause (1).

NOR

...

C(i1, x1, t1)

C(i1, xnx
, t1)

...

...

C(ini
, x1, tnt

)

C(ini
, xnx

, tnt
)

...

Fig. 2. Improved neural translation of (1). The threshold of each grey neuron
is set such that it fires if more than one of the blue input neurons it is connected
to fires.

budget for Figure 2 is dominated by the ninxnt neurons in
the input layer. (As with Figure 1, the neural network depicted
enforces only uniqueness and not existence, but the extra
neural architecture to enforce existence is small compared with
the size of the input layer, and identical in each of the cases
Fig. 1 and Fig. 2.) Thus, in the example we considered with
ni = nx = nt = 10, the neural approach of Fig. 2 requires
∼ 1000 neurons, an order of magnitude (in general, a factor
of nx) less than the approach of Fig. 1.

IV. FACTS

Other improvements are possible over the mechanical pro-
cess of neuralising a propositionalised form of a logic pro-
gram. The lowest-hanging fruit might be assertions of fact.
A logic program might assert that some groundings of some
predicates are always true: these may be called “facts” of the
program. In a naı̈ve neuralisation, these groundings would be
represented by neurons that are constrained always to fire. But
in some cases there is scope for producing a much reduced
neural translation of the program, by introducing only a little
intelligence into the grounding process.

Consider the program
D(X,Y) :- C(X),S(X,Y);
S(1,2);
S(2,1);
where both X and Y take values in {1, 2}.
The “full-grounding” approach to the neuralisation of this

toy program is illustrated in Figure 3.
With the very least addition of sophistication to the process

of exhaustively grounding the terms, it may be determined that
groundings containing facts about S can be simplified: D(1,2)
:- C(1),S(1,2), combined with the assertion that S(1,2) is true,
reduces simply to D(1,2) :- C(1). (See figure 4). Any other
clauses depending on the same fact could be simplified in the
same way.

This takes us the first step down the path of automated
theorem proving, and less trivial improvements might be
gained through use of an intelligent “neural compiler” able to
streamline a given program using the techniques of theorem-
proving. This is a way of using a theorem-prover that allows
the online system for inference to be fully neuralised, rather
than using a logical system online as part of a hybrid system.

V. DISCUSSION

The form of the network in Figure 2 is reminiscent of
the Convolutional Neural Networks familiar from image-
recognition applications. The same neural structure, in this
case implementing uniqueness, is repeated across multi-
ple blocks of input neurons. This raises the possibility of

C(1)

S(1, 1)

S(1, 2)

S(2, 1)

S(2, 2)

C(2)

D(1, 1)

D(1, 2)

D(2, 1)

D(2, 2)

Fig. 3. Naı̈ve neuralisation of example program from section IV

C(1)

S(1, 1)

S(2, 2)

C(2)

D(1, 1)

D(1, 2)

D(2, 1)

D(2, 2)

Fig. 4. Improved neuralization of example program from section IV

parameter-sharing when training such a network, as for CNNs,
thus preserving the idea of a single first-order rule even
following the grounding and neural translation.

ACKNOWLEDGMENT

This work was supported by the EU 2020 project
Dreams4Cars, grant number 731593

REFERENCES

[1] G. Towell and J. W. Shavlik, “Knowledge based artificial neural net-
works,” Artificial Intelligence, vol. 70, no. 4, 1994.

[2] J. McCarthy, “Epistemological challenges for connectionism,” Behavioral
and Brain Sciences, vol. 44, 1988.

[3] S. Hölldobler, F. Kurfess, and H.-P. Störr, “Approximating the semantics
of logic programs by recurrent neural networks,” Applied Intelligence,
vol. 11, no. 1.

[4] T. R. Besold, A. d’Avila Garcez, S. Bader, H. Bowman, P. Domingos,
P. Hitzler, K.-U. Kühnberger, L. C. Lamb, D. Lowd, P. M. V. Lima, L. de
Penning, G. Pinkas, and G. Zaverucha, “Neural-symbolic learning and
reasoning: a survey and interpretation,” arXiv preprint arXiv:1711.03902,
2017.

[5] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, no. 1–2, 2006.

[6] S. Hölldobler and F. Kurfess, “CHCL - a connectionist inference system,”
1992.

[7] N. A. Hallack, G. Zaverucha, and V. C. Barbosa, “Towards a hybrid model
of first-order theory refinement,” Hybrid Neural Systems, 2000.

[8] R. Sun, “Robust reasoning: integrating rule-based and similarity-based
reasoning,” Artificial Intelligence, vol. 75, 1995.

[9] M. Botta, A. Giordana, and R. Piola, “FONN: Combining first order logic
with connectionist learning,” ICML, 1997.

